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A b s t r a c t  

Software researchers and practitioners have stud- 
ied and used a number of approaches to integrating 
major design paradigms in order to improve Software 
Design Methodologies (SDMs). Software tool develop- 
ers have developed tools to aid the integration and cus- 
tomization of existing SDM support tools. However, a 
framework for understanding and guiding various in- 
tegration and customization processes is still lacking. 
Because of this users, even with tool support, often 
fail to systematically integrate SDMs and SDM sup- 
port tools. 

In this paper, we define a framework that can be 
used to understand various SDM integrations and cus- 
tomizations. Through this definition, we describe what 
kinds o f  integrations are useful, what difficulties are 
to be met, and how the integrity of the SDMs can be 
maintained. 

1 I n t r o d u c t i o n  

1.1 M o t i v a t i o n  

Designing software systems for different application 
domains often requires the use of different Software 
Design Methodologies (SDMs). As a consequence, 
a large number of SDMs have been developed dur- 
ing the past two decades and used in software devel- 
opment. These SDMs often emphasize support for 
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different phases in various software development life- 
cycles (e.g., some emphasize support for problem anal- 
ysis phase while some emphasize support for system 
design phase). These SDMs have different strengths 
and weaknesses in supporting software modeling and 
documentation. These SDMs are different in their 
qualities. For example, some SDM may provide a more 
complete process while it provides less expressive de- 
sign notations. 

Because of this, the SDM community has suggested 
the integration of SDMs--taking the best characteris- 
tics from several existing SDMs to form one more com- 
prehensive SDMs (e.g., Fusion [CAB+94]), or taking 
certain appropriate characteristics from various SDMs 
to form various domain specific SDMs. 

In the past few years, many papers [War89, AlaS8, 
Con89, Ja189, B.BP+91, Boo91, YT90, Wie91, BC91, 
WPM90, Hei87]) have addressed SDM integration. 
We have found that these papers focused on dis- 
cussing only the specific strategies to be used for in- 
tegrating certain SDMs. Most of them (e.g, [Ja189, 
WPM90, Hei87]) focus on discussing how to integrate 
the object oriented design paradigm with the func- 
tional or data flow paradigm. Some of them (e.g., 
[BC91]) discuss how to integrate Jackson System De- 
velopment (JSD)[Jac83] with Booch's Object Oriented 
Design method (BOOD) [Boo91]. Some of them 
present new SDMs (e.g., Object-oriented Modeling 
Technique (OMT)[R.BP+91]) that are based upon an 
integration of the object oriented paradigm, the state 
transition paradigm and the data flow paradigm. In 
OMT [R.BP+91], the object-oriented paradigm is used 
to define the static structure of a software system. 
The state transition paradigm is used to describe the 
dynamic behaviors of the system. The data flow 
paradigm is used to define the functions of the sys- 
tem. We found that many new Object Oriented De- 
sign Methods (OODs) ([SM88, SGME92, RBP+91]) 
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use similar strategies to integrate these paradigms. 
In this paper we shall refer to this kind of integra- 
tion, which integrates whole design paradigms or tech- 
niques, as high-level integration. We found that  the 
SDM community has been focusing on this High-Level 
Design Method Integration (HLDMI), and has suc- 
cessfully addressed many of the issues involved. 

In this paper, we define a framework that  helps 
organize the understanding of HLDMI. More impor- 
tantly, perhaps, we also use this framework to explain 
the Low-Level Design Method Integration (LLDMI) 
which integrates paris  of the design paradigms and 
documentation techniques. We believe that, while 
HLDMI has been well addressed by design method- 
ologies at a conceptual level, the actual implemen- 
tation of the SDMs will often be explored by soft- 
ware designers. For example, designers may incor- 
porate a notation coming from another SDM into 
BOOD to express the roles an object plays. Design- 
ers may integrate BOOD's measures for evaluating 
the design of a class into the Object Oriented Tech- 
nique (OMT) [RBP+91]. 

There are a number of difficulties in achieving this 
LLDMI. 

1. SDMs have evolved from sets of simple, informal 
programming guidelines into very complex infor- 
mation products. Integrating a new method into 
an SDM may cause potential conflicts, such as a 
conflict between the semantics of the notations 
and terminologies used in the different SDMs. 

2. An integration of SDMs requires both broad and 
deep knowledge of the SDMs. As the SDMs are 
complex, it would be desirable for an SDM ex- 
pert to do the integration. However, as the low- 
level integration is likely to be project-specific, 
and thus to be made by designers, their knowl- 
edge of the SDMs may be insufficient. 

3. An integration process and framework are lack- 
ing. Though some work (e.g., [Pot89, SO94]) 
has addressed this issue, no comprehensive strat- 
egy has been defined and used to systematically 
customize and integrate SDMs. No technique or 
structure has been defined and used to record cus- 
tomizations and integrations. 

These difficulties also render some SDM customiza- 
tion tools ineffective. These tools (often called Meta- 
CASE tools) support  customization of of SDM sup- 
port tool. However, tool vendors have found that,  
without an explicit guidance, the tool users are usu- 
ally unable to to customize the SDM even though the 

tool provides many potentially useful capabilities (e.g., 
creating various notations and defining their seman- 
tics) [itMs92]. Therefore, a framework for under- 
standing the various integrations and their relation- 
ships is essential for aiding designers in their integra- 
tion efforts. Moreover, a process, possibly based upon 
this framework, that can be used to guide integration 
should be very useful for integrating SDMs. 

1.2 G o a l s  

In this paper, we define a framework that  can be 
used to understand various kinds of SDM integra- 
tions. Through this framework, we identify and de- 
scribe what kinds of integrations are useful. We also 
discuss the difficulties that  can be expected and how 
to maintain the consistency of SDMs in carrying out 
the integrations. 

To define this framework, we first analyze the struc- 
tures of SDMs and then formalize these structures into 
a standard SDM model. Based upon this model, we 
define a framework for understanding various kinds of 
SDM integrations. 

Section 2 defines the standard SDM model. Sec- 
tion 3 defines our framework for understanding SDM 
integrations. 

2 Our Mode l  of  S D M s  

In this section, based upon our analysis of a large 
number of SDMs, we define a standard model. This 
model characterizes the components of an SDM and 
the relationships among these components. This 
model is an enhanced version from a model we devel- 
oped previously for classifying parts of SDMs [SO92a, 
SO92b]. 

This model is defined based upon our analysis of 
the following SDMs: 

1. Jackson Systems Development [Jac83] (JSD), 

2. Rational Design Methodology [PC86] (RDM), 

3. Logical Construction of Programs [War76] (LCP), 

4. Data Structured System Development [Orr77] (DSSD), 

5. Structured Design [SMC74] (SD), 

6. Ward/Mellor's Real Time SDM [WM85] (Ward), 

7. Shumate's SDM [Shu91] (Shumate), 

8. Booch's OOD [Boo91] (BOOD), 

9. Jacobson's OOD [Jac87] (JOOD), 

10. Rumbaugh et. al.'s OMT [RBP+91] (OMT), 

11. Jalote's extended OOD [Jal89] (EOOD), and 

12. Shlaer/MeUor's OOA [SM88] (SMOOA). 



ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 48 

We selected these SDMs because they represent di- 
verse approaches to software design. Three of them are 
based on data-flow modeling. Two of them are based 
on hierarchical data structure modeling. The last five 
are based on object-oriented modeling. Thus we be- 
lieve that a model representing all of them, should be 
broad enough to represent most contemporary SDMs. 

2.1 H i g h - L e v e l  C o m p o n e n t s  

Our previous experiences [SO92a, SO94] have in- 
dicated that  entity-relation modeling is effective in 
characterizing SDMs. Thus, we used this modeling 
technique to define our SDM model (see Fig. 1). Our 
model defines an SDM as consisting of two major 
parts. The first part, as shown in the right part of 
Fig. 1, comprises the high levelcomponents of an SDM. 
As illustrated, an SDM defines or adapts a number of 
artifact models, and defines a design process which is 
suggested for use to develop the design artifacts. We 
define these entities as: 

1. A r t i f a c t  Models ,  which are structures and/or 
patterns for specifying and organizing design arti- 
facts. These models define their components and 
the semantics of the relationships among these 
components. Using these models and following 
their underlying semantics, designers can effec- 
tively handle system complexity and construct 
artifacts to characterize the targeted problem do- 
main or software systems. (e.g., the object model 
in OMT is an artifact model). 

2. P r o p e r t i e s ,  which are characteristics of design 
artifacts desired by designers in using the artifact 
models. An SDM is always aimed at producing 
artifacts that  have some superior properties, (e.g., 
design artifacts should be easy to understand and 
modify). 

3. P r inc ip les ,  which are concepts used to help in 
producing artifacts that  have the properties de- 
sired by customers and designers. An SDM either 
justifies new design principles or adopts some ex- 
isting principles as the basis of the SDM, (e.g., 
object-oriented SDMs use principles of informa- 
tion hiding and abstraction as their bases). 

4. R e p r e s e n t a t i o n s ,  which are the means used for 
expressing the artifact models. They are aimed at 
improving the precision with which an artifact is 
specified and at improving the comprehensibility 
of artifacts. One artifact model could have mul- 
tiple representations. They could be languages, 

sets of diagrammatic notations, (e.g., data flow 
diagram), etc. 

5. Processes ,  which are sequences of steps an SDM 
suggests for designers to use in developing a soft- 
ware system using certain artifact models, (e.g., 
the design processes defined in JSD and OMT). 

The type r e p r e s e n t a t i o n  is further classified 
based on the level of formality with which a repre- 
sentation is defined in the selected SDMs. 

1. S t r u c t u r a l  r e p r e s e n t a t i o n ,  which is a type of 
representation through which artifacts are cap- 
tured in the form of diagrammatic notations. 
This type of representation is used to highlight 
important components and inter-component re- 
lations in a complex software design, improving 
the comprehensibility of the design. Examples 
include data flow diagrams, structure charts, etc. 

2. M a t h e m a t i c a l  r e p r e s e n t a t i o n ,  which is a type 
of representation through which artifacts are cap- 
tured using mathematical notations and mathe- 
matical operations that are performed on them. 
Examples include set and relation theories. (e.g., 
RDM uses relations to specify system functions). 

3. L inguis t ic  r e p r e s e n t a t i o n ,  which is a type of 
representation through which artifacts are cap- 
tured in the form of statements in a defined lan- 
guage. Examples include English, various design 
languages, and templates (e.g., BOOD [Boo91] 
uses template to specify object) 

2.2 L o w - L e v e l  C o m p o n e n t s  

The second part of the model, as shown in the left 
part of Fig. 1, defines the low level components of an 
SDM. We define these entities as: 

. Model C o m p o n e n t s ,  which are the compo- 
nents of the artifact model. They provide se- 
mantics for specifying and organizing descrip- 
tions/specifications of entities involved in soft- 
ware design activities (e.g., class in the object 
model of OMT). Model components are used in 
all SDMs to define the various structures and 
models of a software system. 

. Cr i te r ia ,  which are rules advocated for use by 
designers in deciding if an artifact is an instance 
of a model component (e.g., to decide if door is a 
class in designing an elevator control system). An 
SDM usually provides a few criteria that  serve as 
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Figure 1: An Entity Relational Model of SDMs 

the necessary conditions for deciding what model 
component an artifact is, (e.g., JSD defines the 
criteria for deciding a JSD entity. RDM provides 
a set of rules used to decide how to decompose a 
design document into a tree of module specifica- 
tions). 

3. Gu ide l ines ,  which are concrete strategies, 
heuristics, or techniques advocated for use in 
identification and specification of artifacts and 
how they are to be structured into the artifact 
models. Guidelines are often described by giving 
examples of the model components. For instance, 
BOOD indicates that device, system, people, and 
location can be examples of objects. BOOD also 
suggests a guideline that  using informal English 
analysis techniques [Abb83] can help in identify- 1. 
ing objects. 

4. M e a s u r e s ,  which are quantifications with re- 
spect to some standard, or samples used for quan- 
titative comparison or evaluation of the quality of 
artifacts that are structured in the artifact model. 
Some SDMs define measures to help quantify the 2. 
degree to which various artifacts demonstrate de- 
sired properties, (e.g., Structured Design defines 
different bindings (e.g., functional, logical) and 
uses them as the basis for a measure of the cohe- 
siveness of a program design). 

5. N o t a t i o n s ,  which are means for expressing the 
artifacts that  are identified and specified accord- 
ing to the model components. They are parts of 
the representation, (e.g., the rounded box is a no- 3. 
tation in the object diagram of OMT). 

6. Ac t ions ,  which are physical and/or  mental pro- 
cessing steps used for developing the artifacts that  
are structured in the artifact model. An action 
may create, modify or use an artifact. An action 
may- also evaluate an artifact and then decide if 
it needs further development. 

The type ac t i on  is further classified based on the 
technical nature of the actions described in the se- 
lected SDMs. Note that  the definitions in the decom- 
position that  follows are aimed at capturing the ac- 
tions that are described in various SDMs. They do 
not necessarily cover all fundamental design activities 
as are described in [Fre83]. The subtypes of a c t i o n  
are defined as: 

Deve lop ,  which is a high-level design action that  
is aimed at producing a major  part  of a complete 
design specification. It  is often defined as a ma-  
jor development phase of an SDM, consisting of 
various kinds of design actions. Examples include 
developing the system specification in JSD. 

Mode l ing ,  which is an abstraction action that  is 
aimed at characterizing certain aspects of a sys- 
tem in order to aid the analysis and evaluation of 
a system design before its implementation. Mod- 
eling is often defined as a development phase of 
an SDM, consisting of various low-level design ac- 
tions (e.g., the De f ine  action). Examples include 
the modeling of the environment outside the sys- 
tem in JSD. 

D e c o m p o s e ,  which is the action that ,  according 
to certain artifact models, subdivides an artifact 
into small pieces so that  the artifact can be more 
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readily understood, defined, and specified. Exam- 
pies include decomposing a function in Structured 
Design (SD). 

4. Speci fy ,  which is the action of elaborating the 
details of a design, often done in a descriptive 
manner. Examples include specifying implemen- 
tation of a module in BOOD. 

5. Def ine ,  which is the action of completely specify- 
ing the semantics of certain artifacts, often done 
ill a declarative manner. Examples include defin- 
ing the interface of a module in BOOD. 

6. Der ive ,  which is the action of constructing de- 
sign artifacts from other previously developed ar- 
tifacts by following some well-defined guidelines 
in SDMs. Examples include deriving a program 
from the data structure of its output in DSSD. 

7. I den t i fy :  which is the action of finding artifacts 
that should be defined and specified as instances 
of the model components. Examples include iden- 
tifying objects in BOOD. 

8. Select :  which is the action of choosing from, 
among a set of candidates, the ones that  satisfy 
some given criteria. This action can be a part of 
an I d e n t i f y  action. Examples include selecting 
entities in JSD. 

2 .3  R e l a t i o n s h i p s  

Some of the relationships in Fig. 1 are quite self- 
explanatory and seem satisfactorily explained through 
the definitions of the method component types given 
earlier. Some other relations seem less clear and can 
benefit from further explaination such as the following: 

1. Processes, artifact models and representations 
c o n t a i n  actions, model components and nota- 
tions, respectively. Processes can be procedu- 
rally or functionally described sequences of ac- 
tions. Models can be structures that define the 
relationships among various model components. 

2. Actions a p p l y  certain concepts. Composition of 
an action and execution of its sub-actions are in- 
fluenced by these concepts. For example, the ac- 
tion of identifying an object in BOOD app l i e s  
the guideline for identifying the nouns in an in- 
formal problem description. 

3. Properties a f fec t  the development of principles. 
For example, producing an easily changeable soft- 
ware design af fec ts  the development and uses of 
the principle of "infornmtion hiding". 

. Structures or models of an artifact d e t e r m i n e  
representations used for expressing the arti- 
fact. For example, the object-oriented model 
d e t e r m i n e s  the semantics to be supported by 
an object/class diagram (e.g., Beech's object- 
diagram). 

. Guidelines can be d e r i v e d  from criteria or mea- 
sures. For example, the criteria for deciding what 
an object is (e.g., it must have an identity) can 
also be used to derive guidelines for identifying 
objects. 

In the next section, we define a framework, based upon 
this SDM model, for understanding SDM integration. 

3 O u r  I n t e g r a t i o n  F r a m e w o r k  

In surveying existing SDMs and their proposed in- 
tegrations, we found that there are two primary ap- 
proaches to the integration of SDMs. We call the first 
f u n c t i o n - d r i v e n  i n t e g r a t i o n ,  in which new func- 
tional capabilities are added to an SDM. These ca- 
pabilities are directly useful for modeling the problem 
and/or  software systems, and for supporting a soft- 
ware development life-cycle. Integrating object ori- 
ented design and the Structured Design is an example 
of the function-driven integration. 

We call the second approach q u a l i t y - d r i v e n  in- 
t e g r a t i o n ,  which adds no new functional capability 
to an SDM, but which improves its quality or usabil- 
ity. For example, the SDM quality improved could be 
expressiveness and understandabilities [Kun83]. The 
usability of an SDM is concerned with how effectively 
an SDM can be used in designing a software system. 
Adopting a new, expressive representation to substi- 
tute for an old, less expressive one is an example of how 
such integration, which does not directly add capabil- 
ities, does nevertheless improve SDM effectiveness. In 
the next two sections, we define a framework for un- 
derstanding the issues involved in carrying out these 
two kinds of integrations. We discuss what kinds of 
integrations have been done and what other kinds we 
expect to see. 

3.1 Function-driven Integrat ion 

3.1.1 High-Leve l  I n t e g r a t i o n  

HLDMI integrates the high-level components of 
SDMs. design methodologies have proposed numer- 
ous function-driven, HLDMIs, which seem to fall into 
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the following categories. 

Property Integration: 

Motivation.: Designers sometimes find that a partic- 
ular SDM does not effectively support produc- 
ing software systems that have certain desired 
properties. (e.g., ease of maintainence, software 
reusability). 

Benefit: A proposed property-integrated SDM will be 
able to help in producing a software system that 
is superior with respect to these properties. This 
is generally done by designing the new SDM to 
incorporate the additional development phases. 

Note: Support for producing software systems that 
have a desired quality may" require the integration 
of new design principles and artifact models from 
other SDMs. This may require integrating new 
design representations and processes (see Fig. 1). 

P r i n c i p l e  I n t e g r a t i o n :  

Motivation: 1) Sometimes SDM authors find that 
other SDMs have applied new and promising de- 
sign principles. In order to compete with these 
SDMs, these authors enhance their SDMs to sup- 
port these new principles. 2) Property integration 
can sometimes also lead to the principle integra- 
tion (see Fig. 1). 

Benefit: Supporting new design principles seems to 
be essential in assuring improvement in SDMs. 

Note: Not. all design principles used in software de- 
sign are compatible with each other. The new 
design principles to be incorporated might con- 
flict with principles already used in the SDM. 
For example, Shumate's SDM relies on the princi- 
ple that functional modeling is right for problem 
analysis because functional modeling is the foun- 
dation for systems engineering [Shu90]. There- 
fore, introducing the object-oriented design prin- 
ciple that modeling the structure of an applica- 
tion problem is more essential than modeling sys- 
tem functions, will lead to a conflict with Shu- 
mate's method. 

Artifact M o d e l  I n t e g r a t i o n :  

Motivation: 1) Desire to enhance an SDM to support 
the modeling of additional major aspects (e.g., 
the behavioral aspect) of an application prob- 
lem or software system. 2) Principle integration 
and property integration will sometimes lead to 

artifact model integration. 3) Some SDMs are 
only partial approaches (e.g., BOOD) to design- 
ing software systems, and they need to be in- 
tegrated with other SDMs to help produce the 
products of other development phases, thereby 
producing a more complete product. 

Benefit: The SDM will be able to support the model- 
ing of an additional major aspect of the applica- 
tion problem or software system. The SDM can 
be used to support a broader segment of the over- 
all software development life-cycle. 

Note: 1) The integration must clearly define the re- 
lationships between the new model and the old 
models that have been used in the SDM. Each 
model should be taken as a separate view of tile 
design artifact. For example, OMT describes 
clearly how the object model, dynamic model, 
and function model relate to each other. OMT 
describes what aspects each model will be used 
to characterize. 2) The integration must define 
relationships between the products of the differ- 
ent SDMs being integrated, i.e., how a product of 
one SDM, which supports one particular phase of 
a development life-cycle, can be used by another 
SDM to support another phase of the software 
development life-cycle. 

P roces s  I n t e g r a t i o n :  

Motivation: Artifact model integration leads to pro- 
cess integration. Some SDM authors describe how 
steps in the old process are to be coordinated with 
steps in the process used for specifying the new 
artifact model. It is rare that process integration 
is the major motivation for SDM integration. 

Benefit: Incorporating a new process into an old pro- 
cess appropriately can enable the two processes 
to provide guidelines to each other. For example, 
[Ja189] described how a functional decomposition 
process and an object decomposition process can 
guide each other. Incorporating a new process 
into an old process can also support a broader 
segment of the software development life-cycle of 
software development process life-cycle. 

Note: This may cause the integrated design pro- 
cess to be highly concurrent and cooperative (e.g., 
[Ja189]). Thus, this can increase both the power 
and the complexity of the SDM process signifi- 
cantly. 

Representation Integration: 
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Motivation: 1) Artifact model integration often leads 
to representation integration. A new representa- 
tion is generally integrated into an old SDM along 
with the integration of the corresponding artifact 
model. 

Benefit: It is often easier to integrate an existing 
representation than to invent a new one. The 
representation to be integrated is often already 
well known and has generally been evaluated as 
a vehicle for expressing the integrated artifact 
model. For example, the data  flow diagram has 
been adapted into many SDMs which incorporate 
the data flow model. 

Note: This may cause conflicts between the represen- 
tations. However, normally, SDM authors sepa- 
rate the new model from the old models. Thus, 
the new model represented in the new represen- 
tation can hardly have conflicts with the old rep- 
resentation. For example, OMT integrates the 
data  flow and state transition models, and sepa- 
rates them from the object model. Each of these 
models has its own set of notations. For exam- 
ple, the object model uses the object diagram; 
the dynamic model uses the state diagram; al- 
though both representations employ the rounded 
box notation, the semantics of the rounded boxes 
depend on the representation within which they 
are used, and thus can be distinguished clearly. 

3.1.2 Low- l eve l  I n t e g r a t i o n  

As indicated earlier, we have shown that  how the 
framework is constructed to understand HLDMI. In 
this section, we will show how the framework is con- 
structed to understand LLDMI. Using our standard 
SDM mode, we view that  LLDMI integrates the low- 
level components as shown in the left part  of Fig. 1. 

Model Component Integration: 

Motivation: SDM comparisons illustrate the compar- 
ative weaknesses of an SDM. This often motivates 
the SDM authors to add new model components 
into the SDM. One approach to achieving this is 
to integrate the model components used in other 
SDMs into the old SDM. 

Benefit: The SDM will be able to support the model- 
ing of the additional aspects of application prob- 
lem and software system. 

Note: There might be reasons for the components 
were not provided originally in the old SDM. For 

example, most modeling formalisms for object 
oriented analysis do not support  specification of 
the visibility of an object because specifying the 
visibility is often not required until the design 
phase. Thus, one should ensure that  the added 
features are consistent with the ways in which the 
model will be used. 

Criteria/Guideline/Action/Measure 
Integration: 

Motivation: Model component integration can lead 
to integrations of criteria, guidelines, actions, and 
measures. As illustrated by Fig. 1, actions will 
use the corresponding criteria to decide artifacts 
which are instances of the added model compo- 
nents. The actions will use the guidelines to spec- 
ify these artifacts, and use the measures to eval- 
uate these artifacts. 

Notation I n t e g r a t i o n :  

Motivation: ) Model component integration some- 
times leads to notation integration. 

Benefit: The SDM can have a more expressive and 
complete representation. 

Note: This may cause conflicts as an integrated no- 
tation might be same with an old notation which 
denotes the different model component.  For ex- 
ample, box represents different meanings in O M T  
and BOOD. This kind of conflict must be resolved 
before a notation can be adopted. 

3.2 Quality-driven integration 

The quality-driven integration does not incorporate 
any new components into the artifact model to model 
additional characteristics of the problem and system. 
Instead, the quality-driven integration is aimed at im- 
proving SDMs' quality and usability in supporting 
their existing features. 

3.2.1 The H i g h - L e v e l  I n t e g r a t i o n  

Because not incorporating any new artifact model and 
not supporting any new property, the quality-driven 
integration does not integrate any new design princi- 
ples. Thus, the high-level, quality-driven integration 
can be made only in the process and representation 
aspects (see Fig. 1). However, since all artifact model 
constrain its process and representation, the artifact 
model constrains the quality-driven integration in the 
process and representation. We believe that ,  the most  
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possible quality-driven integrations at the high-level 
are representation integrations, adopting more expres- 
sive notation. 

R e p r e s e n t a t i o n  I n t e g r a t i o n :  

Motivation: I) An SDM may adopt other SDMs' rep- 
resentations to express a part or all of its artifact 
model. 2) An artifact model may need to be ex- 
pressed in another kind of formality. For example, 
an SDM author may integrate a mathematical  
representation to express an artifact model (e.g., 
integrate the notations defined in [PM91] to ex- 
press system functions). 

Benefit: Increase the expressiveness, understandabil- 
ity, and formality of the representation. 

3 . 2 . 2  L o w - L e v e l  I n t e g r a t i o n  

SDM books (e.g., [Boo91]) often include many low- 
level, quality-driven integrations. The SDM authors 
adopt examples, guidelines, measures, and actions 
from some other SDMs to improve the usability of 
their own SDMs. 

The low-level, quality-driven integration can also be 
seen in the practice. Designers adopt examples, guide- 
lines, measures, and actions from some other SDMs to 
customize the SDM that is to be used. 

G u i d e l i n e  I n t e g r a t i o n :  

Motivation: 1) Some other SDMs provide additional, 
useful and complete guidelines. 2) Examples pro- 
vided in some other SDMs are more comprehen- 
sive and/or  close to the application domain of 
tile project to which the SDM is applied to (e.g., 
banking systems). 3) Examples provided in other 
SDMs use an implementation mechanism (e.g., 
programming language) which is similar to the 
mechanism that  the SDM users use. These inte- 
grated guidelines are more directly helpful for the 
designers. 

Note: Similar components in the different artifact 
models may still have differences. These differ- 
ences may cause it inappropriate for designers to 
directly borrow and apply the guidelines and ex- 
amples from other SDMs. 

M e a s u r e  I n t e g r a t i o n :  

Motivation: An SDM may not provide any mea- 
sure for evaluating the quality of an artifact (e.g., 
how well the interface of an object is defined). 
However, other SDMs may provide the measures 

for evaluating the similar artifacts. For example, 
Booch adopted measures coupling and cohesion 
of Structured Design into BOOD to measure the 
quality of objects. 

A c t i o n  I n t e g r a t i o n :  

Motivation: Specifying all artifact entails designers 
to perform various kinds of actions (e.g., mod- 
eling, selection, as indicated by our decompo- 
sition (page 4)). However, an SDM may not 
define all these kinds of actions. For exam- 
ple, the Shlaer/Mellor Object-Oriented Analysis 
method(SMOOA) does not define a class/object 
selection process. However, users of SMOOA 
could adopt such a process from BOOD or some 
other SDMs (e.g., JSD) to improve the usability 
of SMOOA. This provides more detailed and com- 
plete design procedures for specifying artifacts. 

N o t a t i o n  I n t e g r a t i o n :  

Motivation: An SDM may not provide a notation for 
expressing a component of its artifact model. For 
example, BOOD defines what a derived object is, 
however, does not provide a notation for express- 
ing the derived object. Integrating a new nota- 
tion helps in expressing the model component and 
thus making the representation more complete. 
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