
ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 46

A Framework for Understanding the Integration of Design
Methodologies*

Xiping Song
Siemens Corpora t e Research

755 College R o a d East
P r ince ton , NJ 08540

song@scr .s iemens .com

A b s t r a c t

Software researchers and practitioners have stud-
ied and used a number of approaches to integrating
major design paradigms in order to improve Software
Design Methodologies (SDMs). Software tool develop-
ers have developed tools to aid the integration and cus-
tomization of existing SDM support tools. However, a
framework for understanding and guiding various in-
tegration and customization processes is still lacking.
Because of this users, even with tool support, often
fail to systematically integrate SDMs and SDM sup-
port tools.

In this paper, we define a framework that can be
used to understand various SDM integrations and cus-
tomizations. Through this definition, we describe what
kinds o f integrations are useful, what difficulties are
to be met, and how the integrity of the SDMs can be
maintained.

1 I n t r o d u c t i o n

1.1 M o t i v a t i o n

Designing software systems for different application
domains often requires the use of different Software
Design Methodologies (SDMs). As a consequence,
a large number of SDMs have been developed dur-
ing the past two decades and used in software devel-
opment. These SDMs often emphasize support for

*This research was supported by the Advanced Research
Projects Agency, through ARPA Order #6100, Program Code
7E20, which was funded through grant #CCR-8705162 from
the National Science Foundation. This work is also spon-
sored by the Defense Advanced Research Projects Agency under
Grant Number MDA972-91-J-1012. Support was also provided
by the Naval Ocean Systems Center and the Office of Naval
Technology.

different phases in various software development life-
cycles (e.g., some emphasize support for problem anal-
ysis phase while some emphasize support for system
design phase). These SDMs have different strengths
and weaknesses in supporting software modeling and
documentation. These SDMs are different in their
qualities. For example, some SDM may provide a more
complete process while it provides less expressive de-
sign notations.

Because of this, the SDM community has suggested
the integration of SDMs--taking the best characteris-
tics from several existing SDMs to form one more com-
prehensive SDMs (e.g., Fusion [CAB+94]), or taking
certain appropriate characteristics from various SDMs
to form various domain specific SDMs.

In the past few years, many papers [War89, AlaS8,
Con89, Ja189, B.BP+91, Boo91, YT90, Wie91, BC91,
WPM90, Hei87]) have addressed SDM integration.
We have found that these papers focused on dis-
cussing only the specific strategies to be used for in-
tegrating certain SDMs. Most of them (e.g, [Ja189,
WPM90, Hei87]) focus on discussing how to integrate
the object oriented design paradigm with the func-
tional or data flow paradigm. Some of them (e.g.,
[BC91]) discuss how to integrate Jackson System De-
velopment (JSD)[Jac83] with Booch's Object Oriented
Design method (BOOD) [Boo91]. Some of them
present new SDMs (e.g., Object-oriented Modeling
Technique (OMT)[R.BP+91]) that are based upon an
integration of the object oriented paradigm, the state
transition paradigm and the data flow paradigm. In
OMT [R.BP+91], the object-oriented paradigm is used
to define the static structure of a software system.
The state transition paradigm is used to describe the
dynamic behaviors of the system. The data flow
paradigm is used to define the functions of the sys-
tem. We found that many new Object Oriented De-
sign Methods (OODs) ([SM88, SGME92, RBP+91])

http://crossmark.crossref.org/dialog/?doi=10.1145%2F225907.225913&domain=pdf&date_stamp=1995-01-01

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 47

use similar strategies to integrate these paradigms.
In this paper we shall refer to this kind of integra-
tion, which integrates whole design paradigms or tech-
niques, as high-level integration. We found that the
SDM community has been focusing on this High-Level
Design Method Integration (HLDMI), and has suc-
cessfully addressed many of the issues involved.

In this paper, we define a framework that helps
organize the understanding of HLDMI. More impor-
tantly, perhaps, we also use this framework to explain
the Low-Level Design Method Integration (LLDMI)
which integrates paris of the design paradigms and
documentation techniques. We believe that, while
HLDMI has been well addressed by design method-
ologies at a conceptual level, the actual implemen-
tation of the SDMs will often be explored by soft-
ware designers. For example, designers may incor-
porate a notation coming from another SDM into
BOOD to express the roles an object plays. Design-
ers may integrate BOOD's measures for evaluating
the design of a class into the Object Oriented Tech-
nique (OMT) [RBP+91].

There are a number of difficulties in achieving this
LLDMI.

1. SDMs have evolved from sets of simple, informal
programming guidelines into very complex infor-
mation products. Integrating a new method into
an SDM may cause potential conflicts, such as a
conflict between the semantics of the notations
and terminologies used in the different SDMs.

2. An integration of SDMs requires both broad and
deep knowledge of the SDMs. As the SDMs are
complex, it would be desirable for an SDM ex-
pert to do the integration. However, as the low-
level integration is likely to be project-specific,
and thus to be made by designers, their knowl-
edge of the SDMs may be insufficient.

3. An integration process and framework are lack-
ing. Though some work (e.g., [Pot89, SO94])
has addressed this issue, no comprehensive strat-
egy has been defined and used to systematically
customize and integrate SDMs. No technique or
structure has been defined and used to record cus-
tomizations and integrations.

These difficulties also render some SDM customiza-
tion tools ineffective. These tools (often called Meta-
CASE tools) support customization of of SDM sup-
port tool. However, tool vendors have found that,
without an explicit guidance, the tool users are usu-
ally unable to to customize the SDM even though the

tool provides many potentially useful capabilities (e.g.,
creating various notations and defining their seman-
tics) [itMs92]. Therefore, a framework for under-
standing the various integrations and their relation-
ships is essential for aiding designers in their integra-
tion efforts. Moreover, a process, possibly based upon
this framework, that can be used to guide integration
should be very useful for integrating SDMs.

1.2 G o a l s

In this paper, we define a framework that can be
used to understand various kinds of SDM integra-
tions. Through this framework, we identify and de-
scribe what kinds of integrations are useful. We also
discuss the difficulties that can be expected and how
to maintain the consistency of SDMs in carrying out
the integrations.

To define this framework, we first analyze the struc-
tures of SDMs and then formalize these structures into
a standard SDM model. Based upon this model, we
define a framework for understanding various kinds of
SDM integrations.

Section 2 defines the standard SDM model. Sec-
tion 3 defines our framework for understanding SDM
integrations.

2 Our Mode l of S D M s

In this section, based upon our analysis of a large
number of SDMs, we define a standard model. This
model characterizes the components of an SDM and
the relationships among these components. This
model is an enhanced version from a model we devel-
oped previously for classifying parts of SDMs [SO92a,
SO92b].

This model is defined based upon our analysis of
the following SDMs:

1. Jackson Systems Development [Jac83] (JSD),

2. Rational Design Methodology [PC86] (RDM),

3. Logical Construction of Programs [War76] (LCP),

4. Data Structured System Development [Orr77] (DSSD),

5. Structured Design [SMC74] (SD),

6. Ward/Mellor's Real Time SDM [WM85] (Ward),

7. Shumate's SDM [Shu91] (Shumate),

8. Booch's OOD [Boo91] (BOOD),

9. Jacobson's OOD [Jac87] (JOOD),

10. Rumbaugh et. al.'s OMT [RBP+91] (OMT),

11. Jalote's extended OOD [Jal89] (EOOD), and

12. Shlaer/MeUor's OOA [SM88] (SMOOA).

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 48

We selected these SDMs because they represent di-
verse approaches to software design. Three of them are
based on data-flow modeling. Two of them are based
on hierarchical data structure modeling. The last five
are based on object-oriented modeling. Thus we be-
lieve that a model representing all of them, should be
broad enough to represent most contemporary SDMs.

2.1 H i g h - L e v e l C o m p o n e n t s

Our previous experiences [SO92a, SO94] have in-
dicated that entity-relation modeling is effective in
characterizing SDMs. Thus, we used this modeling
technique to define our SDM model (see Fig. 1). Our
model defines an SDM as consisting of two major
parts. The first part, as shown in the right part of
Fig. 1, comprises the high levelcomponents of an SDM.
As illustrated, an SDM defines or adapts a number of
artifact models, and defines a design process which is
suggested for use to develop the design artifacts. We
define these entities as:

1. A r t i f a c t Models , which are structures and/or
patterns for specifying and organizing design arti-
facts. These models define their components and
the semantics of the relationships among these
components. Using these models and following
their underlying semantics, designers can effec-
tively handle system complexity and construct
artifacts to characterize the targeted problem do-
main or software systems. (e.g., the object model
in OMT is an artifact model).

2. P r o p e r t i e s , which are characteristics of design
artifacts desired by designers in using the artifact
models. An SDM is always aimed at producing
artifacts that have some superior properties, (e.g.,
design artifacts should be easy to understand and
modify).

3. P r inc ip les , which are concepts used to help in
producing artifacts that have the properties de-
sired by customers and designers. An SDM either
justifies new design principles or adopts some ex-
isting principles as the basis of the SDM, (e.g.,
object-oriented SDMs use principles of informa-
tion hiding and abstraction as their bases).

4. R e p r e s e n t a t i o n s , which are the means used for
expressing the artifact models. They are aimed at
improving the precision with which an artifact is
specified and at improving the comprehensibility
of artifacts. One artifact model could have mul-
tiple representations. They could be languages,

sets of diagrammatic notations, (e.g., data flow
diagram), etc.

5. Processes , which are sequences of steps an SDM
suggests for designers to use in developing a soft-
ware system using certain artifact models, (e.g.,
the design processes defined in JSD and OMT).

The type r e p r e s e n t a t i o n is further classified
based on the level of formality with which a repre-
sentation is defined in the selected SDMs.

1. S t r u c t u r a l r e p r e s e n t a t i o n , which is a type of
representation through which artifacts are cap-
tured in the form of diagrammatic notations.
This type of representation is used to highlight
important components and inter-component re-
lations in a complex software design, improving
the comprehensibility of the design. Examples
include data flow diagrams, structure charts, etc.

2. M a t h e m a t i c a l r e p r e s e n t a t i o n , which is a type
of representation through which artifacts are cap-
tured using mathematical notations and mathe-
matical operations that are performed on them.
Examples include set and relation theories. (e.g.,
RDM uses relations to specify system functions).

3. L inguis t ic r e p r e s e n t a t i o n , which is a type of
representation through which artifacts are cap-
tured in the form of statements in a defined lan-
guage. Examples include English, various design
languages, and templates (e.g., BOOD [Boo91]
uses template to specify object)

2.2 L o w - L e v e l C o m p o n e n t s

The second part of the model, as shown in the left
part of Fig. 1, defines the low level components of an
SDM. We define these entities as:

. Model C o m p o n e n t s , which are the compo-
nents of the artifact model. They provide se-
mantics for specifying and organizing descrip-
tions/specifications of entities involved in soft-
ware design activities (e.g., class in the object
model of OMT). Model components are used in
all SDMs to define the various structures and
models of a software system.

. Cr i te r ia , which are rules advocated for use by
designers in deciding if an artifact is an instance
of a model component (e.g., to decide if door is a
class in designing an elevator control system). An
SDM usually provides a few criteria that serve as

ACM SIGSOFT Software Engineering Notes vol 20 no 1 :January 1995 Page 49

d ;
~Ol lw l t l le I AC t i v i t y ~ A~ l tC t

==
tl I l~II I,: II. : II I,

I: ' I
i v i l u l t l e I I

, _ ~ , I ' , I SDM , G ~ d e l ~ A I ~ I Y

I ,, n i l 1 . ~ I
t MOdel Argot I

I ' / e , r ~ . T d v . I I '

LI " , . , I . . _ , c .o :.j,, , . . . _ . ,,, ,,,

Figure 1: An Entity Relational Model of SDMs

the necessary conditions for deciding what model
component an artifact is, (e.g., JSD defines the
criteria for deciding a JSD entity. RDM provides
a set of rules used to decide how to decompose a
design document into a tree of module specifica-
tions).

3. Gu ide l ines , which are concrete strategies,
heuristics, or techniques advocated for use in
identification and specification of artifacts and
how they are to be structured into the artifact
models. Guidelines are often described by giving
examples of the model components. For instance,
BOOD indicates that device, system, people, and
location can be examples of objects. BOOD also
suggests a guideline that using informal English
analysis techniques [Abb83] can help in identify- 1.
ing objects.

4. M e a s u r e s , which are quantifications with re-
spect to some standard, or samples used for quan-
titative comparison or evaluation of the quality of
artifacts that are structured in the artifact model.
Some SDMs define measures to help quantify the 2.
degree to which various artifacts demonstrate de-
sired properties, (e.g., Structured Design defines
different bindings (e.g., functional, logical) and
uses them as the basis for a measure of the cohe-
siveness of a program design).

5. N o t a t i o n s , which are means for expressing the
artifacts that are identified and specified accord-
ing to the model components. They are parts of
the representation, (e.g., the rounded box is a no- 3.
tation in the object diagram of OMT).

6. Ac t ions , which are physical and/or mental pro-
cessing steps used for developing the artifacts that
are structured in the artifact model. An action
may create, modify or use an artifact. An action
may- also evaluate an artifact and then decide if
it needs further development.

The type ac t i on is further classified based on the
technical nature of the actions described in the se-
lected SDMs. Note that the definitions in the decom-
position that follows are aimed at capturing the ac-
tions that are described in various SDMs. They do
not necessarily cover all fundamental design activities
as are described in [Fre83]. The subtypes of a c t i o n
are defined as:

Deve lop , which is a high-level design action that
is aimed at producing a major part of a complete
design specification. It is often defined as a ma-
jor development phase of an SDM, consisting of
various kinds of design actions. Examples include
developing the system specification in JSD.

Mode l ing , which is an abstraction action that is
aimed at characterizing certain aspects of a sys-
tem in order to aid the analysis and evaluation of
a system design before its implementation. Mod-
eling is often defined as a development phase of
an SDM, consisting of various low-level design ac-
tions (e.g., the De f ine action). Examples include
the modeling of the environment outside the sys-
tem in JSD.

D e c o m p o s e , which is the action that , according
to certain artifact models, subdivides an artifact
into small pieces so that the artifact can be more

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 50

readily understood, defined, and specified. Exam-
pies include decomposing a function in Structured
Design (SD).

4. Speci fy , which is the action of elaborating the
details of a design, often done in a descriptive
manner. Examples include specifying implemen-
tation of a module in BOOD.

5. Def ine , which is the action of completely specify-
ing the semantics of certain artifacts, often done
ill a declarative manner. Examples include defin-
ing the interface of a module in BOOD.

6. Der ive , which is the action of constructing de-
sign artifacts from other previously developed ar-
tifacts by following some well-defined guidelines
in SDMs. Examples include deriving a program
from the data structure of its output in DSSD.

7. I den t i fy : which is the action of finding artifacts
that should be defined and specified as instances
of the model components. Examples include iden-
tifying objects in BOOD.

8. Select : which is the action of choosing from,
among a set of candidates, the ones that satisfy
some given criteria. This action can be a part of
an I d e n t i f y action. Examples include selecting
entities in JSD.

2 .3 R e l a t i o n s h i p s

Some of the relationships in Fig. 1 are quite self-
explanatory and seem satisfactorily explained through
the definitions of the method component types given
earlier. Some other relations seem less clear and can
benefit from further explaination such as the following:

1. Processes, artifact models and representations
c o n t a i n actions, model components and nota-
tions, respectively. Processes can be procedu-
rally or functionally described sequences of ac-
tions. Models can be structures that define the
relationships among various model components.

2. Actions a p p l y certain concepts. Composition of
an action and execution of its sub-actions are in-
fluenced by these concepts. For example, the ac-
tion of identifying an object in BOOD app l i e s
the guideline for identifying the nouns in an in-
formal problem description.

3. Properties a f fec t the development of principles.
For example, producing an easily changeable soft-
ware design af fec ts the development and uses of
the principle of "infornmtion hiding".

. Structures or models of an artifact d e t e r m i n e
representations used for expressing the arti-
fact. For example, the object-oriented model
d e t e r m i n e s the semantics to be supported by
an object/class diagram (e.g., Beech's object-
diagram).

. Guidelines can be d e r i v e d from criteria or mea-
sures. For example, the criteria for deciding what
an object is (e.g., it must have an identity) can
also be used to derive guidelines for identifying
objects.

In the next section, we define a framework, based upon
this SDM model, for understanding SDM integration.

3 O u r I n t e g r a t i o n F r a m e w o r k

In surveying existing SDMs and their proposed in-
tegrations, we found that there are two primary ap-
proaches to the integration of SDMs. We call the first
f u n c t i o n - d r i v e n i n t e g r a t i o n , in which new func-
tional capabilities are added to an SDM. These ca-
pabilities are directly useful for modeling the problem
and/or software systems, and for supporting a soft-
ware development life-cycle. Integrating object ori-
ented design and the Structured Design is an example
of the function-driven integration.

We call the second approach q u a l i t y - d r i v e n in-
t e g r a t i o n , which adds no new functional capability
to an SDM, but which improves its quality or usabil-
ity. For example, the SDM quality improved could be
expressiveness and understandabilities [Kun83]. The
usability of an SDM is concerned with how effectively
an SDM can be used in designing a software system.
Adopting a new, expressive representation to substi-
tute for an old, less expressive one is an example of how
such integration, which does not directly add capabil-
ities, does nevertheless improve SDM effectiveness. In
the next two sections, we define a framework for un-
derstanding the issues involved in carrying out these
two kinds of integrations. We discuss what kinds of
integrations have been done and what other kinds we
expect to see.

3.1 Function-driven Integrat ion

3.1.1 High-Leve l I n t e g r a t i o n

HLDMI integrates the high-level components of
SDMs. design methodologies have proposed numer-
ous function-driven, HLDMIs, which seem to fall into

ACM SIGSOFT Software Engineering Notes vol 20 no 1 3anuary 1995 Page 51

the following categories.

Property Integration:

Motivation.: Designers sometimes find that a partic-
ular SDM does not effectively support produc-
ing software systems that have certain desired
properties. (e.g., ease of maintainence, software
reusability).

Benefit: A proposed property-integrated SDM will be
able to help in producing a software system that
is superior with respect to these properties. This
is generally done by designing the new SDM to
incorporate the additional development phases.

Note: Support for producing software systems that
have a desired quality may" require the integration
of new design principles and artifact models from
other SDMs. This may require integrating new
design representations and processes (see Fig. 1).

P r i n c i p l e I n t e g r a t i o n :

Motivation: 1) Sometimes SDM authors find that
other SDMs have applied new and promising de-
sign principles. In order to compete with these
SDMs, these authors enhance their SDMs to sup-
port these new principles. 2) Property integration
can sometimes also lead to the principle integra-
tion (see Fig. 1).

Benefit: Supporting new design principles seems to
be essential in assuring improvement in SDMs.

Note: Not. all design principles used in software de-
sign are compatible with each other. The new
design principles to be incorporated might con-
flict with principles already used in the SDM.
For example, Shumate's SDM relies on the princi-
ple that functional modeling is right for problem
analysis because functional modeling is the foun-
dation for systems engineering [Shu90]. There-
fore, introducing the object-oriented design prin-
ciple that modeling the structure of an applica-
tion problem is more essential than modeling sys-
tem functions, will lead to a conflict with Shu-
mate's method.

Artifact M o d e l I n t e g r a t i o n :

Motivation: 1) Desire to enhance an SDM to support
the modeling of additional major aspects (e.g.,
the behavioral aspect) of an application prob-
lem or software system. 2) Principle integration
and property integration will sometimes lead to

artifact model integration. 3) Some SDMs are
only partial approaches (e.g., BOOD) to design-
ing software systems, and they need to be in-
tegrated with other SDMs to help produce the
products of other development phases, thereby
producing a more complete product.

Benefit: The SDM will be able to support the model-
ing of an additional major aspect of the applica-
tion problem or software system. The SDM can
be used to support a broader segment of the over-
all software development life-cycle.

Note: 1) The integration must clearly define the re-
lationships between the new model and the old
models that have been used in the SDM. Each
model should be taken as a separate view of tile
design artifact. For example, OMT describes
clearly how the object model, dynamic model,
and function model relate to each other. OMT
describes what aspects each model will be used
to characterize. 2) The integration must define
relationships between the products of the differ-
ent SDMs being integrated, i.e., how a product of
one SDM, which supports one particular phase of
a development life-cycle, can be used by another
SDM to support another phase of the software
development life-cycle.

P roces s I n t e g r a t i o n :

Motivation: Artifact model integration leads to pro-
cess integration. Some SDM authors describe how
steps in the old process are to be coordinated with
steps in the process used for specifying the new
artifact model. It is rare that process integration
is the major motivation for SDM integration.

Benefit: Incorporating a new process into an old pro-
cess appropriately can enable the two processes
to provide guidelines to each other. For example,
[Ja189] described how a functional decomposition
process and an object decomposition process can
guide each other. Incorporating a new process
into an old process can also support a broader
segment of the software development life-cycle of
software development process life-cycle.

Note: This may cause the integrated design pro-
cess to be highly concurrent and cooperative (e.g.,
[Ja189]). Thus, this can increase both the power
and the complexity of the SDM process signifi-
cantly.

Representation Integration:

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 52

Motivation: 1) Artifact model integration often leads
to representation integration. A new representa-
tion is generally integrated into an old SDM along
with the integration of the corresponding artifact
model.

Benefit: It is often easier to integrate an existing
representation than to invent a new one. The
representation to be integrated is often already
well known and has generally been evaluated as
a vehicle for expressing the integrated artifact
model. For example, the data flow diagram has
been adapted into many SDMs which incorporate
the data flow model.

Note: This may cause conflicts between the represen-
tations. However, normally, SDM authors sepa-
rate the new model from the old models. Thus,
the new model represented in the new represen-
tation can hardly have conflicts with the old rep-
resentation. For example, OMT integrates the
data flow and state transition models, and sepa-
rates them from the object model. Each of these
models has its own set of notations. For exam-
ple, the object model uses the object diagram;
the dynamic model uses the state diagram; al-
though both representations employ the rounded
box notation, the semantics of the rounded boxes
depend on the representation within which they
are used, and thus can be distinguished clearly.

3.1.2 Low- l eve l I n t e g r a t i o n

As indicated earlier, we have shown that how the
framework is constructed to understand HLDMI. In
this section, we will show how the framework is con-
structed to understand LLDMI. Using our standard
SDM mode, we view that LLDMI integrates the low-
level components as shown in the left part of Fig. 1.

Model Component Integration:

Motivation: SDM comparisons illustrate the compar-
ative weaknesses of an SDM. This often motivates
the SDM authors to add new model components
into the SDM. One approach to achieving this is
to integrate the model components used in other
SDMs into the old SDM.

Benefit: The SDM will be able to support the model-
ing of the additional aspects of application prob-
lem and software system.

Note: There might be reasons for the components
were not provided originally in the old SDM. For

example, most modeling formalisms for object
oriented analysis do not support specification of
the visibility of an object because specifying the
visibility is often not required until the design
phase. Thus, one should ensure that the added
features are consistent with the ways in which the
model will be used.

Criteria/Guideline/Action/Measure
Integration:

Motivation: Model component integration can lead
to integrations of criteria, guidelines, actions, and
measures. As illustrated by Fig. 1, actions will
use the corresponding criteria to decide artifacts
which are instances of the added model compo-
nents. The actions will use the guidelines to spec-
ify these artifacts, and use the measures to eval-
uate these artifacts.

Notation I n t e g r a t i o n :

Motivation:) Model component integration some-
times leads to notation integration.

Benefit: The SDM can have a more expressive and
complete representation.

Note: This may cause conflicts as an integrated no-
tation might be same with an old notation which
denotes the different model component. For ex-
ample, box represents different meanings in O M T
and BOOD. This kind of conflict must be resolved
before a notation can be adopted.

3.2 Quality-driven integration

The quality-driven integration does not incorporate
any new components into the artifact model to model
additional characteristics of the problem and system.
Instead, the quality-driven integration is aimed at im-
proving SDMs' quality and usability in supporting
their existing features.

3.2.1 The H i g h - L e v e l I n t e g r a t i o n

Because not incorporating any new artifact model and
not supporting any new property, the quality-driven
integration does not integrate any new design princi-
ples. Thus, the high-level, quality-driven integration
can be made only in the process and representation
aspects (see Fig. 1). However, since all artifact model
constrain its process and representation, the artifact
model constrains the quality-driven integration in the
process and representation. We believe that , the most

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 53

possible quality-driven integrations at the high-level
are representation integrations, adopting more expres-
sive notation.

R e p r e s e n t a t i o n I n t e g r a t i o n :

Motivation: I) An SDM may adopt other SDMs' rep-
resentations to express a part or all of its artifact
model. 2) An artifact model may need to be ex-
pressed in another kind of formality. For example,
an SDM author may integrate a mathematical
representation to express an artifact model (e.g.,
integrate the notations defined in [PM91] to ex-
press system functions).

Benefit: Increase the expressiveness, understandabil-
ity, and formality of the representation.

3 . 2 . 2 L o w - L e v e l I n t e g r a t i o n

SDM books (e.g., [Boo91]) often include many low-
level, quality-driven integrations. The SDM authors
adopt examples, guidelines, measures, and actions
from some other SDMs to improve the usability of
their own SDMs.

The low-level, quality-driven integration can also be
seen in the practice. Designers adopt examples, guide-
lines, measures, and actions from some other SDMs to
customize the SDM that is to be used.

G u i d e l i n e I n t e g r a t i o n :

Motivation: 1) Some other SDMs provide additional,
useful and complete guidelines. 2) Examples pro-
vided in some other SDMs are more comprehen-
sive and/or close to the application domain of
tile project to which the SDM is applied to (e.g.,
banking systems). 3) Examples provided in other
SDMs use an implementation mechanism (e.g.,
programming language) which is similar to the
mechanism that the SDM users use. These inte-
grated guidelines are more directly helpful for the
designers.

Note: Similar components in the different artifact
models may still have differences. These differ-
ences may cause it inappropriate for designers to
directly borrow and apply the guidelines and ex-
amples from other SDMs.

M e a s u r e I n t e g r a t i o n :

Motivation: An SDM may not provide any mea-
sure for evaluating the quality of an artifact (e.g.,
how well the interface of an object is defined).
However, other SDMs may provide the measures

for evaluating the similar artifacts. For example,
Booch adopted measures coupling and cohesion
of Structured Design into BOOD to measure the
quality of objects.

A c t i o n I n t e g r a t i o n :

Motivation: Specifying all artifact entails designers
to perform various kinds of actions (e.g., mod-
eling, selection, as indicated by our decompo-
sition (page 4)). However, an SDM may not
define all these kinds of actions. For exam-
ple, the Shlaer/Mellor Object-Oriented Analysis
method(SMOOA) does not define a class/object
selection process. However, users of SMOOA
could adopt such a process from BOOD or some
other SDMs (e.g., JSD) to improve the usability
of SMOOA. This provides more detailed and com-
plete design procedures for specifying artifacts.

N o t a t i o n I n t e g r a t i o n :

Motivation: An SDM may not provide a notation for
expressing a component of its artifact model. For
example, BOOD defines what a derived object is,
however, does not provide a notation for express-
ing the derived object. Integrating a new nota-
tion helps in expressing the model component and
thus making the representation more complete.

A c k n o w l e d g e m e n t s

The work described in this paper was carried out
at Information and Computer Science Department of
Univ. of California at Irvine. The author is very grate-
ful to Prof. Leon Osterweil for reviewing an early ver-
sion of this paper.

References

[Abb83]

[AlaS81

[BC91]

[Boo91]

[CAB+94]

R. Abbott. Program design by informal English de-
scriptions. Comm. o] ACM, 26(11), 1983.
B. Alabiso. Transformation of data flow analysis
models to object oriented design. In oopsla88, pages
335-353, San Diego, CA, Spet. 1988.
A. Birchenough and J. Cameron. JSD and object-
oriented design. In J. Cameron, editor, JSP and
JSD: The Jackson Approach ~o Software Develop-
ment, pages 293-303. IEEE Computer Society, 1991.
G. Booch. Object-Oriented Deson with Applica-
tions. The Benjamin/Commings Publishing Corn-
patty. Inc., 1991.
D. Coleman, P. Arnold, S. Bodoff, C. Dollin,
H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The FUSION method.
Prentice Hail, 1994.

ACM SIGSOFT Software Engineering Notes vol 20 no 1 January 1995 Page 54

[ConS9]

[Fre83]

[Hei87]

[itMs92]

[Jac83]

[Jac87]

[Jal89]

[Kun83]

fOrT77]

[PC86]

[PM91]

[Pot89]

[RBP+91]

[SGME92]

[Shug0]

[Shu91]

[SM88]

[SMC74]

L. L. Constantine. Object-oriented and structured
methods: Towards integration. American Program-
mar, 7(2), August 1989.

P. Freeman. Fundamentals of design. In Tntoral:
Software Design Techniques. IEEE Computer Soci-
ety Press, Waslfington, DC, 1983.

M. Heitz. HOOD: Hierarchical Object-Oriented De-
sign for development of large technical and realtime
software. CISI Ingenierie, November 1987.

Discussions in the MetaCASE session. In The 5th
international workshop on computer-aided software
engineering, July 1992.

M. Jackson. Jackson System Development.
Prentice-Hall International, 1983.

Ivar Jacobson. Object. oriented development, in an
industrial environment. In OOPSLA 87, pages 181-
191, Oct. 1987.

P. Jalote. Functional refinement, and nested objects
for object-oriented design. IEEE Transaction on
Software Engineering, 15(3):264-270, March 1989.

C. H. Kung. An analysis of three conceptual mod-
els with t ime perspective. In T. W. Olle, H. G.
Sol, and C. J. Tully, editors, Information Systems
Design Methodologies: A Feature Analysis, pages
141-168. Elsevier Science Publishers, B. V. (North-
Holland). IFIP., 1983.

K. T. Orr. Using Structured System Design. Your-
don Press, NY, 1977.

D.L. Parnas and P.C. Clements. A rational design
process: How and why to fake it. IEEE Transactions
on Software Engineering, 12(2):251-257, February
1986.

D. L. Parnas and Jan Madey. Functional documen-
tat ion for computer system engineering. Technical
Report. CRL Report No. 237, Communications Re-
search Laboratory, McMaster Univ., Sept. 1991.

C. Potts. A generic model for representing design
methods. In Proceedings of l l t h International Con-
ference on SE, pages 217-226, 1989.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, N J, 1991.

B. Selic, G. Gullekson, J im McGee, and I. Engel-
berg. Room, an object-oriented methodology for de-
veloping real-time systems. In Proc. of 5th Interna-
tional Workshop on Computer-Aidied Software En-
gineering. IEEE CS, July 1992.

Ken Shumate. Software specification and design:
Structured analysis, object-oriented design and the
transition. In Tutorial of Tri-Ada 1990 - Software
Specification and Design in Ada, Tri-Ada Confer-
ence, Baltimore, MD, December 1990.

Ken Shumate. Structured analysis and object-
oriented design are compatible. Ada Letters,
6(4):78-90, May / June 1991.

Sally Shlaer and Stephen. J. Mellor. Object- Oriented
System Analysis--Modeling the World in Data.
Prentice-Hall, Inc., Englewood Cliffs, N J, 1988.

W. P. Stevens, G. J. Myers, and L. L. Constan-
tine. Structured design. I B M System Journals,
13(2):115-139, 1974.

[SO92a]

[SO92b]

[SO94]

[war76]

[War89]

[Wie91]

[WM85]

[WPM90]

[YT90]

X. Song and b. J. Osterweil. A framework for clas-
sifying parts of software design methodologies. In
R. W. Selby, editor, Proceedings of the ~nd Irvine
Software Symposium, pages 49-68. IRUS, March
1992.

X. Song and L. J. Osterweil. Towards objective, sys-
tematic design-method comparison. IEEE Software,
pages 43-53, May 1992.

X. Song and L. J. Osterweil. Using meta-modeling
to systematically compare and integrate modeling
techniques. Available from the authors upon re-
quest, March 1994.

J.D. Warnier. Logical Construction of Programs.
Van Nostrand Reinhold, New York, 1976.

Paul T. Ward. How to integrate object or ientat ion
with structured analysis and design. IEEE Software,
March 1989.

R. J. Wieringa. Object-oriented analysis, Structured
analysis, and Jackson system development. In Proc.
of IFIP working conf. on the object oriented ap-
proach in information systems, Quebec City, Oct.
1991.

P. T. Ward and S. J. Mellor. Structured Develop-
ment for Real-Time Systems. Yourdon Press, New
York, 1985.

A. I. VCasserman, P. A. Pircher, and R. J. Muller.
The object-oriented s t ructured design nota t ion for
software design representation. Computer, (3),
March 1990.

W. L. Yeung and G. Topping. Implementing jsd
design in ada - a tutorial. 15(3):25-32, July 1990.

