
ar
X

iv
:1

10
7.

29
49

v2
 [

cs
.C

G
]

 2
9

N
ov

 2
01

1

Geometric Packing under Non-uniform Constraints∗

Alina Ene† Sariel Har-Peled‡ Benjamin Raichel§

September 26, 2018

Abstract

We study the problem of discrete geometric packing. Here, given weighted regions
(say in the plane) and points (with capacities), one has to pick a maximum weight
subset of the regions such that no point is covered more than its capacity. We provide a
general framework and an algorithm for approximating the optimal solution for packing
in hypergraphs arising out of such geometric settings. Using this framework we get
a flotilla of results on this problem (and also on its dual, where one wants to pick a
maximum weight subset of the points when the regions have capacities). For example,
for the case of fat triangles of similar size, we show an O(1)-approximation and prove
that no PTAS is possible.

1 Introduction

Motivation and examples. Consider the problem of obnoxious facility location

[Tam91, Cap99]; that is, you have to place several facilities, but these facilities are undesired
(i.e., obnoxious). Facilities of this type include nuclear reactors, wind farms, airports, power
plants, factories, prisons, universities, etc. Facilities can also be semi-desirable – a customer
might want to have supermarkets close to their home, but they do not want to have too
many of them close by as they increase traffic, noise, etc. One natural way to model this
geometrically is to associate each obnoxious facility with its region of undesirability. We
also have customers (modeled as points), and each customer has a threshold of how many
obnoxious facilities it is willing to accept covering it. Different customers may have different
thresholds, for example because more affluent people have stronger political power and it is
harder to place obnoxious facilities near their homes.

∗The full version of the paper is available from the arxiv [EHR11].
†Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,

USA; ene1@uiuc.edu; http://www.cs.uiuc.edu/~ene1/. Work on this paper was partially supported by
NSF grants CCF-0728782 and CCF-1016684.

‡Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,
USA; sariel@uiuc.edu; http://www.uiuc.edu/~sariel/. Work on this paper was partially supported by
a NSF AF award CCF-0915984.

§Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,
USA; raichel2@uiuc.edu; http://www.cs.uiuc.edu/~raichel2. Work on this paper was partially sup-
ported by a NSF AF award CCF-0915984.

1

http://arxiv.org/abs/1107.2949v2
http://www.cs.uiuc.edu/~ene1/
http://www.uiuc.edu/~sariel/
http://www.cs.uiuc.edu/~raichel2

Naturally, if you allow only a single region to cover each customer, then this is a classical
packing problem, and much work has been done on packing disks/balls [SMC+07]. However,
there are many cases where allowing limited interaction between the packed regions is allowed
(after all, these facilities are required for modern existence). As a concrete example of this
type of problem, consider the placement of radio stations/cellphone towers. While airports
allow only very limited levels of interference4, higher levels of such interference is acceptable
in residential neighborhoods. However, at a certain point there is going to be resistance to
placing more wireless towers in residential areas, as these towers are viewed as causing cancer
(this fear might be baseless, but it does not change the political reality of the difficulty of
placing such towers). On the other hand, there is little resistance to placing such towers
along highways in sparsely populated areas.

In this paper, we are interested in the modeling of such problems and in the computation
of an efficient approximation to the optimal solution of such problems.

Modeling.

As hinted by the above, perhaps the most natural way to model this problem is as a gener-
alization of the well known independent set problem.

Independent set is a fundamental discrete optimization problem. Unfortunately, it is
not only computationally hard, but it is even hard to approximate to within a factor of
n1−ε, for any constant ε [Has99] (under the assumption that NP 6= P). Surprisingly, the
problem is considerably easier in some geometric settings. For example, there is a PTAS5

[Cha03, EJS05] for the following problem: Given a set of unit disks in the plane, find a
maximum cardinality subset of the disks whose interiors are disjoint. Furthermore, a simple
local search algorithm yields the desired approximation: For any ε > 0, the local search
algorithm that tries to swap subsets of size O(1/ε2) yields a (1−ε)-approximation in nO(1/ε2)

time [CH09, CH11].

The discrete independent set problem. In this paper, we consider packing problems
in geometric settings that are natural extensions of the geometric independent set problem
described above. As a starting point, motivated by practical applications, we consider the
discrete version of the geometric independent set problem in which, in addition to a set of
weighted regions, we are given a set of points, and the goal is to select a maximum weight
subset of the regions so that each point is contained in at most one of the selected regions.
We refer to this problem as the discrete independent set problem. Chan and Har-Peled
[CH11] studied this discrete variant and proved that one can get a good approximation if
the union complexity of the regions is small.

4See http://tinyurl.com/7td67v3 for a story of an airport closing down because of radio interference.
5Polynomial time approximation scheme.

2

http://tinyurl.com/7td67v3

Note that the discrete independent set problem captures the
continuous version of the independent set problem, since we can
place a point in each face of the induced arrangement of the given
regions. In fact, the discrete version is considerably harder (in
some cases) than the continuous variant. The difficulty lies in
that several regions forming a valid solution to an instance of a
discrete independent set problem may contain a common point
that is not part of the set of points given as input; the figure on
the right shows an example in which the middle point, marked
as a square, is covered twice by the given valid solution.

To illustrate the difference in difficulty, consider the case when the
input consists of a set S of segments (in general position) with their
endpoints on a circle, such that every pair of segments intersect. Clearly,
in the continuous version, the maximum independent set of segments is
a single segment. However, in this case, the discrete version captures
the graph independent set problem. More precisely, we can encode any
instance of independent set (i.e., a graph G = (V,E)) as an instance
of this problem as follows. Every vertex v ∈ V is mapped to a segment sv of S, and every
edge uv ∈ E, is mapped to the point su ∩ sv (which is added to a set of points P). Clearly,
an independent set of segments of S (in relation to the point set P) corresponds to an
independent set in G. That is, the geometric discrete version is sometimes as hard as the
graph independent set problem. For example, the figure on the right depicts the resulting
instance encoding independent set for K3,3.

The packing problem. In this paper, we are interested in the natural extension of the
discrete independent set problem to the case where every point has a capacity and might be
covered several times (but not exceeding its capacity). The resulting problem has a flavor
of a packing problem, and is defined formally as follows.

Problem 1.1 (PackRegions.) Given a set D of regions and a set P of points such that
each region r has a weight w(r) and each point p has a capacity #(p), find a maximum weight
subset X of the regions such that, for each point p, the number of regions in X that contain
p is at most its capacity #(p).

We emphasize that different points might have different capacities, which makes the
problem considerably more challenging to solve than the unit capacities case (i.e., the discrete
independent set problem). We also consider the following dual problem in which the points
have weights and the regions have capacities.

Problem 1.2 (PackPoints.) Given a set D of regions and a set P of points such that each
region r has a capacity #(r) and each point p has a weight w(p), find a maximum weight
subset X of the points such that each region r contains at most #(r) points of X.

3

Hypergraph framework. These two problems can be stated in a unified way in the
language of hypergraphs6. Given an instance of PackRegions, we construct a hypergraph
as follows: Each weighted region is a vertex, and all the regions containing a given point of
capacity k become a hyperedge (consisting of these regions) of capacity k. A similar reduction
works for PackPoints, where the given weighted points are the vertices, and each region
of capacity k becomes a hyperedge of capacity k consisting of all of the points contained in
this region. Therefore the previous two problems are special cases of the following problem.

Problem 1.3 (HGraphPacking.) Given a hypergraph G = (V,E) with a weight function
w(·) on the vertices and a capacity function #(·) on the hyperedges, find a maximum weight
subset X ⊆ V, such that ∀f ∈ E we have |X ∩ f | ≤ #(f).

We will be interested primarily in hypergraphs with certain hereditary properties. A
hypergraph property is hereditary if the sub-hypergraph induced by any subset of the vertices
has the property; an example of a hereditary property of hypergraphs is having bounded
VC dimension. Roughly, we are interested in hypergraphs having the bounded growth

property : For any induced sub-hypergraph on t vertices the number of its hyperedges that
contain exactly k vertices is near linear in t and its dependency on k is bounded by 2O(k), see
Definition 2.1. Such hypergraphs arise naturally when considering points and “nice” regions
in the plane.

Our results.

• Main result. Our main result is an algorithm that provides a good approximation for
HGraphPacking as a function of the growth of the hypergraph, see Theorem 3.11. Our
result can be viewed as an extension of the work of Chan and Har-Peled [CH11] to these
considerably more general and intricate settings.

• Regions with low union complexity. In Section 4, we apply our main result to regions that
have low union complexity, and we get the following results:
(A) If the union complexity of n regions isO(nu(n)) then we get anO

(
u(n)1/ν

)
-approximation

for PackRegions, where ν is the minimum capacity of any point in the given in-
stance. (That is, the problem becomes easier as the minimum capacity increases.) For
the case where all the capacities are one, this is the discrete independent set problem,
and our algorithm specializes to the algorithm of Chan and Har-Peled [CH11], which
gives an O(u(n))-approximation.

(B) More specifically, we get a constant factor approximation for PackRegions if the
union complexity of the regions is linear. This holds for (i) fat-triangles of similar
size, (ii) unit axis-parallel cubes in 3d, and (iii) pseudo-disks. See Corollary 4.3.

(C) Similarly, since the union complexity of fat triangles in the plane is O(n log∗ n)

[EAS11, AdBES11b], we get an O
(

(log∗ n)1/ν
)

approximation for such instances of

PackRegions.

6A hypergraph G is a pair (V,E), where V is a set of vertices and E is a collection of subsets of V which
are called hyperedges.

4

• Bi-criteria approximation. Our main result also implies a bi-criteria approximation algo-
rithm. That is, we can improve the quality of the solution, at the cost of potentially
violating low capacity regions. Formally, if the input instance G = (V,E) of HGraph-

Packing has at most Fk(t) = 2O(k)F (t) edges of size k when restricted to any subset
of t vertices, then for any integer φ ≥ 1, our algorithm yields an

(
O
(
(F (n)/n)1/φ

)
, φ
)
-

approximation to the given instance G of HGraphPacking. Specifically, the value of the
generated solution X is at least Ω

(
opt/(F (n)/n)1/φ

)
, where opt is the value of the optimal

solution, and for every hyperedge f ∈ E, we have |f ∩X| ≤ max(φ,#(f)).
As an example, for any set of n regions in the plane such that the boundaries of any
pair of them intersects O(1) times, the above implies that one can get an

(
O
(
n1/φ

)
, φ
)
-

approximation for PackRegions.

• Axis-parallel boxes. The union complexity of axis-parallel rectangles can be as high as
quadratic, and therefore we cannot immediately apply our main result to get a good
approximation. Instead, we decompose the union of axis-parallel rectangles into regions
of low union complexity, and this decomposition together with our main result gives us
an O(logn) approximation for instances of PackRegions in which the regions are axis-
parallel rectangles in the plane(see Lemma 4.9).
A more involved analysis also applies to the three dimensional case, where we get an
O(log3 n) approximation for PackRegions for axis parallel boxes (see Lemma 4.11).

• Dual problem. We show in Section 4.2 that, by standard lifting techniques, we can apply
our result for PackRegions, where the regions are disks, to the dual problem of Pack-
PointsInDisks. However, for other regions, the dual problem PackPoints seems to be
more challenging. Specifically, this is true for the case of axis-parallel rectangles. For this
case, we first provide a constant factor approximation for skyline instances of the problem;
a skyline instance is a set of rectangles that lie on the x-axis. Interestingly, if the set of
rectangles are defined in relation to a set of points (and each rectangles contains only a few
points), then one can define a near-linear (in the number of points) sized set of rectangles
such that each original rectangle is the union of two new rectangles. Combining this with
the skyline result and a sparsifying technique, we get an(O(logn), 2)-approximation; that
is, every rectangle b contains at most max(2,#(b)) points of the solution constructed, and
the total weight of the solution is Ω(opt/ logn)(see Theorem 4.21). (Note that, by applying
our general framework directly to this setting, we only get an

(
O
(
n1/φ

)
, φ
)
-approximation,

for any integer φ > 0.)

• Packing points into fat triangles. We provide a polylog bi-criteria approximation for the
problem of packing points into fat triangles. This requires proving that one can compute,
for a given point set, a small number of canonical subsets, such that the point set covered
by any fat-triangle (if the set is sufficiently small), is the union of constant number of these
canonical subsets. Proving this requires non-trivial modifications of the result of Aronov
et al. [AES10]. In addition, we show that a measure defined over a fat triangle can be
covered by a few fat triangles, each one of them containing only a constant fraction of
the original measure. We believe these two results are of independent interest. Plugging
this into the machinery, previously developed for axis parallel rectangles, yields the new
approximation algorithm. See Section 5 for details.

• PTAS for disks and planes. We adapt the techniques of Mustafa and Ray [MR10] in order

5

to get a PTAS for instances consisting of unweighted disks and unit-capacity points: we
lift the problem to 3d, we construct an approximate conflict graph (as done by Mustafa
and Ray), and we use a local search algorithm. This result also implies a PTAS for
PackPoints for unweighted points and uniform capacity halfspaces in IR3. See Section 6
for the details.

• Hardness. We show some hardness results for our problems. In particular, we show that
PackPoints for fat triangles in the plane is as hard as independent set in general graphs
(see Lemma 7.2). We also show that PackRegions is APX-hard (and thus there is
no PTAS) for similarly sized fat triangles in the plane (thus “matching” the result of
Corollary 4.3).

Main technical contribution. Besides the results mentioned above, our work further de-
velops and extends the techniques for rounding LPs that rise out of low dimensional geometric
constraints. Such work relies on finding the right order of making decisions about regions
as they are being added, usually initially picking the elements to be considered randomly
according to the value assigned to them by the associated LP. Such work in the context of
LP rounding in geometric settings includes [Var10, CH09, CCH09]. The basic idea is to build
a conflict graph, on the appropriate random sample, and argue that there exists a vertex
of low degree that can be added without throwing away too many conflicting vertices. Our
work extends this approach to more involved settings where conflicts are not just whether
two regions intersect or not (i.e., independent set in a graph), but rather involve a larger
number of regions. To this end, we prove a combinatorial bound on the expected number of
conflicts realized if we round the associated LP. A special easier case of this was addressed
by Chan and Har-Peled [CH09] when the LP is an independent set LP. Naturally, in our case
the analysis is considerably more involved.

Previous work. Fox and Pach [FP11] presented an nε approximation for independent set
for segments in the plane. The usage of LP relaxations for approximating such problems is
becoming more popular. In particular, Chalermsook and Chuzhoy [CC09] use a natural LP
relaxation to get anO(log logm)-approximation for independent set of axis parallel rectangles
in the plane. The geometric set cover problem and the more general problem, the geometric
set multi-cover problem, have approximation algorithms that use ε-nets to round the natural
LP relaxation; see [CCH09] and references therein. Chan and Har-Peled [CH09] used local
search to get a PTAS for independent set of pseudo-disks. Independently, Mustafa and Ray
[MR10] used similar ideas to get a PTAS for hitting set of pseudo-disks in the plane. There
is not much work on the hardness of optimization problems in the geometric settings we
are interested in. [CC07] shows that the problem of independent set of axis-parallel boxes
in three dimensions is APX-hard (the problem is known to be NP-Hard in the plane). See
also [GC11, Har09] and references therein for some recent hardness results. Naturally, in
non-geometric settings, there is a vast literature on the problems and techniques we use, see
[WS11]. Our algorithms use the randomized rounding with alteration technique to round
a fractional solution. This technique was used in [Sri01] to find an approximate solution
to packing integer programs (PIPs) of the form {maxwx : Ax ≤ b, x ∈ Z

n
+}, where A is

a matrix whose entries are either 0 or 1. The approximation guarantee given in [Sri01] is

6

O(n1/B), where B = mini bi.

Organization. In Section 2 we define the problem and the associated LP relaxation, and
describe some basic tools used throughout the paper. In Section 3 we present the approxi-
mation algorithm for the hypergraph case. In Section 4 we present various applications of
our main result. In Section 5 we present the algorithm for packing points into fat triangles.
In Section 6 we present a PTAS for some restricted cases. In Section 7 we present some
hardness results. We conclude in Section 8.

2 Preliminaries

For a maximization problem, an algorithm provides an α-approximation if it outputs a
solution of value at least opt/α, where opt is the value of the optimal solution. An (α, β)-
approximation algorithm forHGraphPacking is an algorithm that returns a (potentially
infeasible) solution of value at least opt/α such that each hyperedge f contains at most
max(#(f), β) vertices of the solution.

α-fat triangles. For α ≥ 1, a triangle △ is α-fat if the ratio between its longest edge
and its height on this edge is bounded by α (there are several equivalent definitions of this
concept). A set of triangles is α-fat if all the triangles in the set are α-fat. The union
complexity of n α-fat triangles is O(n log∗ n) [EAS11, AdBES11b] (the constant in the O
depends on α, which is assumed to be a constant).

2.1 LP Relaxation and the Rounding Scheme

We consider the following natural LP relaxation for the HGraphPacking problem. For
each vertex v, we have a variable xv with the interpretation that xv is 1 if v is selected, and
0 otherwise. For each hyperedge f , we have a constraint that enforces that the number of
vertices of f that are selected is at most the capacity of f .

Hypergraph-LP : max
∑

v∈V

wvxv

∑

v∈f

xv ≤ #(f) ∀f ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V.

The energy of a subset X ⊆ V is E(X) =
∑

v∈X

xv. In the following, E denotes the energy of

the LP solution; that is E = E(V) =
∑

v∈V xv. Note that the energy is at most the number
of vertices of the hypergraph. Also, we assume that E ≥ 1 (which is always true since all the
capacities are at least one).

7

Definition 2.1 Let G = (V,E) be a hypergraph. For any integer k, let Fk(·) denote the
function

Fk(t) = max
X⊆V,|X|≤t

∣
∣
∣

{

f
∣
∣
∣ f ∈ E and |X ∩ f | = k + 1

}∣
∣
∣ ;

that is, Fk(t) is the maximum number of hyperedges of size k + 1 of a sub-hypergraph of G
that is induced by a subset of at most t vertices. We say that G has bounded growth if
the following conditions are satisfied:

(A) There exists a non-decreasing function γ(·) such that Fk(t) ≤ 2O(k)tγ(t) for any k
and t.

(B) There exists a constant c such that Fk(xt) ≤ cFk(t) for any t, k and x such that
1 ≤ x ≤ 2.

This notion of bounded growth is a hereditary property of the hypergraph, and it is somewhat
similar to the bounds on the size of set systems with bounded VC dimension. Hypergraphs
with bounded growth arise naturally in geometric settings.

The minimum capacity of a packing instance is a useful measure of how hard the instance
is; formally, the minimum capacity of a given instance G is

ν = ν(G) = min
f∈E

#(f). (1)

2.2 Basic tools

Let G = (V,E) be a hypergraph, and let X ⊆ V be a subset of its vertices. The sub-

hypergraph of G induced by X is GX =
(

X,
{

f ∩X
∣
∣
∣ f ∈ E

})

.

The following lemma testifies that the packing problem can be solved in a straightforward
fashion if all the capacities are the same (i.e., uniform capacities). This is done by repeatedly
applying a procedure to find and remove an independent set in the remaining induced sub-
hypergraph (for example the procedure in [CH11]).

Lemma 2.2 Let G be a hypergraph for which there is a polynomial time algorithm alg that
takes as input a fractional solution to Hypergraph-LP for an HGraphPacking instance
on G, or any induced subgraph of G, with unit capacities — i.e., an independent set instance
— and it constructs an integral solution whose value is at least an α fraction of the value
of the fractional solution. Then one can compute in polynomial time a 2α-approximation
for any instance of HGraphPacking on G with uniform capacities (i.e., all the hyperedges
have the same capacity, say k).

Proof : Let G = (V,E) be an instance of HGraphPacking in which all hyperedges have
the same capacity, say k. Let G0 = G, and in the ith iteration, for i = 1, . . . , k, compute
a maximum weight independent set Yi in Gi−1 using alg, and let Gi = GX\Ui

, where Ui =
Y1 ∪ . . . ∪ Yi. We claim that Uk is the required approximation.

Clearly, no hyperedge of G contains more than k vertices of Uk as it is the union of k
independent sets, and as such it is a valid solution. Now, let Vopt be the optimal solution.
If w(Vopt ∩ Uk) ≥ w(Vopt)/2 then we are done. Otherwise, consider the hypergraph Gi−1,

8

and observe that Vopt \ Ui−1 is a valid solution for HGraphPacking for this graph (with
uniform capacities k). Interpreting this integral solution as a solution to the LP, and scaling
it down by k, we get a factional solution to the independent set LP of this hypergraph of
value w(Vopt \Ui−1)/k. Since Yi was constructed using alg on the optimal fractional solution
to the independent set LP of this hypergraph, we have that

w(Yi) ≥ optLP(Gi−1)/α ≥ w(Vopt \ Ui−1)/kα ≥ w(Vopt \ Uk)/kα ≥ w(Vopt)/2kα.

Which implies that w(Uk) ≥ w(Vopt)/2α.

A hypergraph G = (V,E) shatters X ⊆ V if the number of hyperedges in GX is 2|X|.
The VC dimension of G is the size of the largest set of vertices it shatters.

The following is a “sparsification” lemma. Here we get better bounds than the standard
technique, as we are using stronger sampling results known for spaces with bounded VC

dimension.

Lemma 2.3 Let G = (V,E) be an instance of HGraphPacking with VC dimension d, and
consider its fractional LP solution of value opt and with energy E. Then, one can compute,
in polynomial time, a valid fractional solution for the LP of G such that:
(A) The value of the new fractional solution is ≥ opt/12.
(B) The number of vertices with non-zero value is O(dE logE).
(C) The value of each non-zero variable is equal to i/M for some integer i ≤ M , where

M = O(d logE).
(D) The total energy in the new solution is Θ(E).

Proof :Let ε = 1/E, where E =
∑

v xv, and xv is the value the LP assigns to v ∈ V in the
optimal LP solution. Let T = O(d logE) and R be a random sample of V of (expected) size
τ = ET = O((d/ε) log(1/ε)), created by picking each vertex v independently with probability
xv · T 7. This sample is a relative (ε, 1/2)-approximation [Har11, HS11], with probability of
failure ≤ ρ1 = εO(d). That implies that for any hyperedge f ∈ E such that x(f) =

∑

v∈f xv
we have

|R ∩ f |
|R| ≤ (1 + 1/2)

(
x(f)

E
+ ε

)

.

To interpret the above, observe that E
[
|R ∩ f |

]
= x(f)T and E

[
|R|
]
= ET , as such, a rough

estimate of the expectation of |R ∩ f | / |R| is x(f)/E. Thus, the above states (somewhat
opaquely) that no hyperedge is being over-sampled by R.

Since the expected size of R is τ , by Chernoff’s inequality, we know that |R| ≤ 2τ with
probability at least 1 − ρ2, where ρ2 = εO(dE) (as E ≥ 1). Now, consider a hyperedge f
with capacity k, and observe that x(f) ≤ k. As such, |R ∩ f | ≤ (1 + 1/2)(x(f)/E+ ε) |R| ≤
(3/2)(k + 1)ε2τ ≤ 6kT . In particular, if v appears tv times in R (R is a multiset), then we
assign it the fractional value yv = tv/6T . We then have that y(f) =

∑

v∈f yv ≤ |R ∩ f | /6T ≤
7A minor technicality is that xvT might be larger than one. In this case, we put ⌊xvT ⌋ copies of v into

R, and we put an extra copy of v into R with probability xvT − ⌊xvT ⌋. It is straightforward to verify that
our argumentation goes through in this case. Observe that such large values work in our favor by decreasing
the probability of failure.

9

k (and this holds for all hyperedges with probability ≥ 1−ρ1). As such, the fractional solution
defined by the y’s is valid.

As for the value of this fractional solution, consider the random variable Z =
∑

v yvw(v),
which is a function of the random sample R. Observe that

E
[

Z
]

=
∑

v

w(v)E

[
tv
6T

]

=
∑

v

w(v)

6T
E
[

tv

]

=
∑

v

w(v)

6T
xvT =

1

6

∑

v

w(v)xv =
optLP
6

,

as optLP =
∑

v w(v)xv. In particular, since no vertex can have w(v) > optLP (otherwise, we
would choose it as the solution), it follows that

Z =
∑

v

yvw(v) ≤ optLP
∑

v

tv
6T
≤ optLP

|R|
6T
≤ optLP

2τ

6T
= optLP

2ET

6T
≤ E

3
optLP.

This implies that Pr
[
Z ≥ optLP/12

]
≥ 1/4E = ε/4. Indeed, if not,

E
[
Z
]
≤ optLP

12
Pr

[

Z ≤ optLP
12

]

+Pr

[

Z ≥ optLP
12

]
E

3
optLP

<
optLP
12

+
1

4E
· E
3
optLP ≤

optLP
6

,

a contradiction. As such, a random sample R corresponds to a valid assignment with value
at least optLP/12 with probability at least Pr[Z ≥ optLP/12] − ρ1 − ρ2 ≥ ε/8, as ρ1 + ρ2
is an upper bound on the sample R failing to have the desired properties. As such, taking
u = O(E logE) independent random samples one of them is the required assignment, with
probability ≥ 1 − (1 − ε/8)u ≥ 1 − 1/EO(1). We take this good sample together with its
associated LP values as the desired fractional solution to the LP. Also, note that the total
energy of the new solution is Θ(E), since by Chernoff’s inequality τ/2 ≤ |R| ≤ 2τ with
probability at least 1− 2ρ2.

3 Approximate packing for hypergraphs

In this section, we present the algorithm for computing a packing for a given hypergraph
G = (V,E). We assume that |E| is polynomial in |V| and that G has the bounded growth
property introduced in Definition 2.1 (properties which both hold for hypergraphs arising
out natural geometric settings). Let x be a solution to the Hypergraph-LP relaxation
described in Section 2.1.

3.1 The algorithm

We round the fractional solution to an integral solution using a standard randomized round-
ing with alteration approach. The first step is to choose an appropriate ordering of the
vertices. We will see later how to choose a good ordering; for now, we assume that we are
given the ordering. The rounding then proceeds in two phases, the selection phase and
the alteration phase. In the selection phase, we pick a random sample C of the vertices

10

by picking each vertex v independently at random with probability xv/∆, where ∆ is a
parameter that we will determine later. In the alteration phase, we pick a subset of C as
follows: We consider the sampled vertices in the order chosen and we add the current vertex
to our solution if the resulting solution remains feasible. We say that a vertex is selected

if it is present in the sample, and we say that it is accepted if it is present in the solution.
The main insight is that we can take advantage of the bounded growth property of the hy-
pergraph to show that there is an ordering such that each vertex is accepted with constant
probability, provided that it is selected. This will immediately imply that the algorithm
achieves a O(∆)-approximation.

The main challenge is to prove that a good ordering for the alteration phase exists, that
is an ordering such that we accept each selected vertex with constant probability. We now
proceed to give such a proof. This proof will suggest a natural O(nC+O(1)) time brute force
algorithm to actually compute this good ordering, where C is the maximum capacity of an
edge in the given instance. In Section 3.3 we show how one can remove this exponential
dependence on C.

Running Example 3.1 To keep the presentation accessible, we interpret this algorithm
for instances of PackRegions in which the regions are disks. Specifically, we are given a
weighted set of disks D and set of points P with capacities. The disks of D form the set of
vertices of the hypergraph and every point p ∈ P forms a hyperedge; that is the hyperedge fp
is the set of all disks of D that contain p.

In this case, the mysterious quantity Fk(t) (see Definition 2.1) is bounded by the number
of faces in an arrangement of t disks that are of depth exactly k + 1. Since the union
complexity of t disks is linear, standard application of the Clarkson technique implies that
Fk(t) = O(kt). In particular, for this case γ(t) = O(1).

3.1.1 Constructing a good ordering

Before we describe how to construct a good ordering of the vertices, it is useful to understand
what will force a vertex to be rejected in the alteration phase. With this goal in mind,
consider an ordering of the vertices. Let C be a sample of the vertices in V such that each
vertex v is in C independently at random with probability xv/∆. Let v be a vertex in C.
When we consider v in the alteration phase, we will reject v iff there exists a hyperedge f
of capacity #(f) such that f contains v and we have already accepted #(f) vertices of f .
The event that we already accepted #(f) vertices of f is difficult to analyze. However, as
we will see, we can settle for a more conservative analysis that upper bounds the probability
that v is rejected, given that all of the vertices in C that appear before v in the ordering are
accepted. (In the alteration phase, it is possible that not all vertices in C that appear before
v will be accepted, but this can only help us.) Since we are only interested in the event that
C contains k + 1 vertices — the vertex v and k other vertices that appear before v in the
ordering — that are contained in a hyperedge of capacity k, only the set of vertices that
appear before v in the sample matter, and not the actual ordering of the vertices. With this
observation in mind, we define a k-conflict to be a set of k + 1 vertices that are contained
in a hyperedge of capacity k. In the following, Hk denotes the set of all k-conflicts, and
H = ∪kHk denotes the set of all conflicts. We are interested in the probability of the event

11

that all of the vertices of a k-conflict, h, are present in the sample, and we refer to this
probability as the ∆-potential of the conflict, ρ∆(h). For the analysis it will also be useful
to define the unscaled version of this quantity, that is the probability that all the vertices of
a conflict are present given that we sampled each vertex with probability xv and not xv/∆.
We refer to this quantity as simply the potential of the conflict, ρ(h). Formally we have,

ρ∆(h) =
∏

v∈h

xv
∆

and ρ(h) =
∏

v∈h

xv.

Another quantity of interest is the expected number of conflicts in which a vertex v partic-
ipates, given that v is in the sample. We refer to this quantity as the ∆-resistance of a
vertex v in a set of vertices X ⊆ V, and we use η∆(v,X) to denote it:

η∆(v,X) =
∆

xv

∑

h∈H,h⊆X,v∈h

ρ∆(h) .

The ordering. Note that, if the ∆-resistance of v with respect to the set X of vertices
that come before it in the ordering is small, the probability of rejecting v is also small. This
suggests that the vertex with least resistance (with respect to V) should be the last vertex
in the ordering. This gives us the following algorithm for constructing an ordering: We
compute the vertex of least resistance and put it last in our ordering (i.e., it is vn). We then
recursively consider the remaining vertices and we compute an ordering for them. In the
following, we assume for simplicity that the resulting ordering is v1, . . . , vn.

Note that computing the resistance of a vertex by brute force takes O
(
nC+O(1)

)
time,

where C is the maximum capacity of a hyperedge, and therefore this algorithm is not efficient.
We give a polynomial time algorithm for constructing the ordering in Section 3.3.

3.2 Analysis

Our main insight is that, if the hypergraph satisfies the bounded growth property defined in
Definition 2.1, then for any set X ⊆ V there exists a vertex v ∈ X such that η∆(v,X) ≤ 1/4.
We prove this below in Section 3.2.2 (see Lemma 3.9). This proof requires that we set
∆ = αγ(E)1/ν, where α is some sufficiently large constant. As such, in the remainder of this
section we assume ∆ = αγ(E)1/ν .

We now show that given η∆(v,X) ≤ 1/4, proving the quality of approximation of the
algorithm is straightforward.

Lemma 3.2 Let C and O be the set of vertices that were selected and accepted by the algo-

rithm, respectively. For each i, we have Pr
[

vi ∈ O
∣
∣
∣ vi ∈ C

]

≥ 3/4.

Proof : Let Xi = 〈v1, . . . , vi〉. Note that, if we selected vi, we rejected vi in the alteration
phase only if vi participates in a conflict with some of the vertices in {v1, . . . , vi−1} ∩ C. Let
Zi be the number of conflicts of Xi that contain vi and are realized in C, i.e., h ⊆ C. In the
following, we show that the probability that Zi is non-zero is at most 1/4, which implies the
lemma.

12

Consider a k-conflict h = {vj1 , . . . , vjk , vi}, where each vertex of h is in Xi and h contains
vi. The probability that all of the vertices of h are selected, given that vi is selected, is equal

to
xj1
∆
· xj2
∆
· · · xjk

∆
=

∆

xi
ρ∆(h). Therefore we have

E
[

Zi

∣
∣
∣ vi ∈ C

]

=
∑

h∈H,h⊆Xi,vi∈h

∆

xi
ρ∆(h) = η∆(vi, Xi) ≤

1

4
,

where the last inequality follows from Lemma 3.9 and the fact that vi is the vertex of
minimum resistance in Xi. Thus

Pr
[

vi /∈ O
∣
∣
∣ vi ∈ C

]

≤ Pr
[

Zi > 0
∣
∣
∣ vi ∈ C

]

≤ E
[

Zi

∣
∣
∣ vi ∈ C

]

≤ 1

4
.

Therefore, if vi is selected, it is accepted with probability at least 3/4.

Corollary 3.3 The total expected weight of the set of vertices output by the algorithm is
Ω
(
opt/γ(E)1/ν

)
, where opt is the weight of the optimal solution, and ν is the minimum

capacity of the given instance.

Proof : By Lemma 3.2, for each vertex v ∈ V, we have

Pr
[
v ∈ O

]
= Pr

[
(v ∈ O) ∩(v ∈ C)

]
= Pr

[

v ∈ O
∣
∣
∣ v ∈ C

]

Pr
[
v ∈ C

]
≥ 3

4
Pr
[
v ∈ C

]

≥ 3xv
4∆

,

where ∆ = O
(
γ(E)1/ν

)
. By linearity of expectation, we have that the expected weight of the

generated solution is at least

∑

v∈V

3xv
4∆

wv = Ω

(∑

v xvwv

γ(E)1/ν

)

= Ω

(
opt

γ(E)1/ν

)

,

as
∑

v xvwv is the value of the fractional LP solution, which is bigger than (or equal to) the
weight of the optimal solution.

3.2.1 On the expected number of conflicts being realized

To analyze the algorithm we need to understand how conflicts might form during its exe-
cution, and show that the damage of such conflicts to the generated solution is limited. To
this end, consider the quantity

Fk(t) = max
A⊆X,|A|≤t

∣
∣
∣

{

f
∣
∣
∣ f ∈ E and |A ∩ f | = k + 1

}∣
∣
∣ .

This is the maximum number of k-conflicts that can be realized for a set of t vertices. The
quantity of interest in the following is

∑

h∈Hk
ρ(h), as it is the expected number of conflicts

that would be realized if we sample according to the LP solution. Our purpose is to prove

13

that this quantity is bounded by a function of the energy of the LP (the bound would involve
the function Fk(·) defined above).

With this goal in mind, we let R be a random sample of X such that each vertex v ∈ X
is in R independently at random with probability xv/2. We stress that R is a random sample
that we use for the purposes of defining a quantity M (i.e., the expected number of conflicts
realized in R), and it should not be confused with the random sample C that is used by
the algorithm. In the following, we bound M from above in Lemma 3.4 and from below in
Lemma 3.5. Putting these two bounds together imply the desired bound on

∑

h∈Hk
ρ(h).

A conflict h ∈ H is realized in R if there is a hyperedge f ∈ E such that h = f ∩ R and
|h| = #(f) + 1.

The following is similar in spirit to the Clarkson technique (a similar but simpler argument
was used by Chan and Har-Peled [CH11]).

Lemma 3.4 The expected number of k-conflicts realized in R is M = O(Fk(E(X))), where
R is a random sample of X such that each vertex v ∈ X is in R independently at random
with probability xv/2.

Proof : Each k-conflict h that is realized corresponds to a hyperedge f with capacity k such
that h = f ∩ R. Additionally, two realized conflicts that are distinct correspond to different
hyperedges. Therefore the number of k-conflicts that are realized in R is at most the number
of hyperedges f such that the capacity of f is k and |f ∩ R| = k + 1. It follows from the
definition of Fk(·) that the number of k-conflicts is at most Fk(|R|). Therefore it suffices to
upper bound the expected value of Fk(|R|).

Note that E[|R|] = E(X)/2. We have

E
[

Fk(|R|)
]

≤
∞∑

t=0

Pr

[

|R| ≥ t
E(X)

2

]

Fk

(

(t + 1)
E(X)

2

)

≤
∞∑

t=0

2−(t+1)/2Fk

(

(t + 1)
E(X)

2

)

≤
∞∑

t=0

2−(t+1)/2cO(log t) Fk

(
E(X)

)
= O

(

Fk(E(X))
)

,

since G has the bounded growth property (see Definition 2.1), and by the Chernoff inequality
(we use here implicitly that E(X) ≥ 1).

Lemma 3.5 For each k-conflict h, the probability that h is realized in R is at least ρ(h) /2(2e)k.

Therefore the expected number of k-conflicts realized in R is M = Ω
((
∑

h∈Hk,h⊆X
ρ(h)

)

/(2e)k
)

.

Proof : Let f ∈ E be a hyperedge with capacity k that generated the conflict h. Since x is
a feasible solution for the LP, we have that

∑

v∈f−h xv ≤
∑

v∈f xv ≤ #(f) = k. Clearly, the
conflict h is realized if we pick all the vertices of h, and none of the vertices of f − h, and
the probability of that event is

∏

v∈h

xv
2

∏

v∈f−h

(

1− xv
2

)

≥ 1

2k+1

∏

v∈h

xv
∏

v∈f−h

exp(−xv)

=
ρ(h)

2k+1
· exp

(

−
∑

v∈f−h

xv

)

≥ ρ(h)

2(2e)k
,

In the first line we used the inequality 1− xv/2 ≥ exp(−xv), which holds since xv ≤ 1.

14

Putting the above two lemmas together, we get the following.

Lemma 3.6 For any non-negative integer k we have
∑

h∈Hk,h⊆X

ρ(h) = O
(

(2e)kFk(E(X))
)

.

Running Example 3.7 In our running example, we have that the expected number of k-
conflicts that are being realized by a random sample (sampling more or less according to the

LP values) is
∑

h∈Hk
ρ(h) = O

(

(2e)kkE
)

. This is a hefty quantity, but the key observation

is that if we sample according to the LP values scaled down by a large enough constant, then
the probability of such a conflict to be realized drops exponentially with k. In particular, for a
sufficiently large constant, the expected number of realized k-conflicts in such a smple is going
to be ≤ E/

(
10 · 2k

)
. Intuitively, this implies that such conflicts can only cause the algorithm

to drop very few vertices during the rounding stage, thus guaranteeing a good solution.

3.2.2 Resistance is futile, if you pick the right vertex

In the following, we consider a subset X of the vertices and we show that there exists a
vertex v ∈ X whose ∆-resistance η∆(v,X) is at most 1/4. Recall that Hk is the set of all
k-conflicts involving vertices in V. We can rewrite the ∆-resistance of v in X as

η∆(v,X) =
∆

xv

∑

h∈H,h⊆X,v∈h

ρ∆(h) =
1

xv

∞∑

k=ν

1

∆k

∑

h∈Hk,h⊆X,v∈h

ρ(h) .

As shown in Lemma 3.6, we can relate the total potential of the conflicts of Hk that are
contained in X to the maximum number of k-conflicts contained in a set of at most E(X)
vertices, where E(X) =

∑

v∈X xv.
Recall that the hypergraph has the bounded growth property (see Definition 2.1) and

this property is hereditary. Therefore the function Fk(·) in the lemma above has the two
properties described in Definition 2.1 and we get the following corollary.

Corollary 3.8 We have
∑

h∈Hk,h⊆X
ρ(h) = O

(
2ckE(X)γ(E(X)

)
), where c is a constant.

We can use Corollary 3.8 to complete the proof of Lemma 3.9 as follows.

Lemma 3.9 Suppose that the hypergraph G satisfies the bounded growth property (see Def-
inition 2.1). Let ∆ = α γ(E)1/ν, where α > 0 is a sufficiently large constant and ν is the
minimum capacity of the given instance (see Eq. (1)). Then, for any set X ⊆ V, there exists
a vertex v ∈ X such that η∆(v,X) ≤ 1/4.

Proof : Let T =
∑

v∈X xvη∆(v,X). The quantity T/E(X) is the weighted average of the
resistances of the vertices in X , where the weight of a vertex v is xv/E(X). Therefore it
suffices to show that T ≤ E(X)/4, since the minimum resistance is at most the weighted

15

average. We have

T =

∞∑

k=ν

1

∆k

∑

v∈X

∑

h∈Hk
h⊆X
v∈h

ρ(h) =

∞∑

k=ν

k + 1

∆k

∑

h∈Hk
h⊆X

ρ(h) =

∞∑

k=ν

k + 1

∆k

∑

h∈Hk
h⊆X

ρ(h)

=
∞∑

k=ν

k + 1

∆k
O
(

2ckE(X)γ(E(X))
)

≤ E(X) · β
∞∑

k=ν

(
2c

∆

)k

(k + 1)γ(E(X))

︸ ︷︷ ︸

=S

,

by Corollary 3.8, where β is some constant. Since ∆ = αγ(E)1/ν , we have

S =
∞∑

k=ν

β

(
2c

α

)k

(k + 1)

(
1

γ(E)

)k/ν

γ(E(X)) ≤
∞∑

k=ν

β

(
2c

α

)k

(k + 1)

(
1

γ(E)

)k/ν

γ(E) ≤ 1

4
,

In the second to last inequality, we have used the fact that γ(·) is non-decreasing. The last
inequality follows if we pick α to be a sufficiently large constant. Therefore T ≤ E(X)/4,
and the lemma follows.

3.3 Improving the running time

In Section 3, we described an algorithm that constructs an ordering of the vertices by re-
peatedly finding the vertex of least resistance with respect to the set of remaining vertices.
Computing the resistance of a vertex by brute force takes O(nC+O(1)) time, where C is the
maximum capacity of an edge in E. However, for our analysis to go through, we only need
to find a vertex that is safe with respect to the set of remaining vertices; informally, a vertex
v is safe if the probability that it participates in a conflict with a random sample of the
remaining vertices is smaller than some constant (that is strictly smaller than one), where
each remaining vertex u is included in the sample with probability xu/∆. In this section we
show that there is a sampling algorithm that finds a safe vertex with high probability and
its running time is polynomial in the maximum capacity C.

Lemma 3.10 Computing a good ordering of the vertices can be done in polynomial time.
Namely, the algorithm of Section 3 can be implemented in polynomial time.

Proof : To get the same quality of approximation we do not need to take the vertex of least
resistance in each round (of computing the ordering), but merely a vertex that is “safe.”
More precisely, let X be the current set of vertices, let v be a vertex of this set, and let R
be a random sample of X in which each vertex u is included with probability xu/∆ (also we
force v to be in R). We say that v is violated in R if v is contained in a hyperedge f such
that the number of vertices of f that are in R is larger than its capacity #(f). Let µ(v,X)
denote the probability that v is violated in R. Note that µ(v,X) is a (conservative) upper
bound on the probability that v is rejected by our rounding algorithm if we started with an
ordering in which X \ {v} is the set of all vertices that come before v. Therefore, in order
for our rounding to succeed, in each round we only need to find a vertex v for which the

16

probability µ(v,X) is low, where X is the set of all vertices that still need to be ordered at
the beginning of the round. (We remark that it follows from the argument of Lemma 3.9
that, for any set X , there is a vertex v for which µ(v,X) ≤ 1/4.)

Now we are ready to describe how to construct an ordering for our algorithm. Let X
be the set of vertices that still need to be ordered. As we will see shortly, for each vertex
v ∈ X , we can compute an estimate µ(v,X) of the probability µ(v,X). We pick the vertex
v with minimum estimated probability µ(v,X), we make v the last vertex (in the ordering
of X) and we recursively order X \ {v}.

We can compute the estimates µ(v,X) in polynomial time as follows. Fix a vertex v.
Let ψ be a sufficiently large polynomial in n. We pick ψ independent random samples of X
(again, forcing v to be in each of these samples); in each random sample, each vertex u is
included with probability xu/∆. We set µ(v,X) to be the fraction of the samples in which
the vertex v is violated. Using a standard argument based on the Chernoff inequality, we
can show that our estimates are very close with high probability, and therefore our rounding
algorithm achieves the required approximation with high probability as well; we omit the
easy but tedious details.

3.4 The result

Theorem 3.11 Let G = (V,E) be a hypergraph with a weight function w(·) on the vertices
and a capacity function #(·) on the edges, such that |E| is polynomial in |V| and G satisfies
the bounded growth property (see Definition 2.1); that is, Fk(t) = 2O(k)tγ(t). Then we can
compute in polynomial time a subset X ⊆ V of vertices such that no hyperedge f contains
more than its capacity #(f) vertices of X. Furthermore, in expectation, the total weight of
the output set is Ω

(
opt/γ(E)1/ν

)
, where opt is the weight of the optimal solution, and ν is

the minimum capacity of the given instance.

Consider an integer constant φ > 0, and observe that one can always relax the capacity
constraints of a given instance of HGraphPacking by replacing all capacities smaller than
φ by φ. Theorem 3.11 thus implies the following.

Corollary 3.12 Given an instance of HGraphPacking, with the bounded growth prop-
erty, one can compute in polynomial time a

(
O
(
γ(E)1/φ

)
, φ
)
-approximation to the optimal

solution.

3.5 Contention resolution schemes

Chekuri et al. [CVZ11] considered a broad class of rounding schemes, which they called
contention resolution schemes (CR schemes). Informally, the family of all CR schemes
consists of all rounding strategies based on randomized rounding with alteration. The precise
definition of a CR scheme is the following.

Let N be a finite ground set of size n, and let f : 2N → R+ be a submodular8 set
function over N . Let I ⊆ 2N be a downward-closed9 family of subsets of N . The problem of

8A function f : 2N → R is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for any two subsets A,B
of N . Additionally, f is monotone if f(A) ≤ f(B) for all subsets A,B such that A ⊆ B.

9A family I of subsets of N is downward-closed if B ∈ I and A ⊆ B then A ∈ I.

17

maximizing f(X) subject to the constraint that X ∈ I generalizes the hypergraph packing
problem: the function f satisfies f(X) =

∑

v∈X wv, and the family I is the family of all
subsets X ⊆ V such that, for each hyperedge f , |f ∩ X| ≤ #(f). Let PI ⊆ [0, 1]n be a
convex relaxation10 of the constraints imposed by I; the set of all feasible fractional solutions
to the Hypergraph-LP relaxation described in Section 2.1 is a convex relaxation for the
family of all feasible solutions to the hypergraph packing problem. Let F be the multilinear
extension11 of f . Let x be a feasible solution to the relaxation {maxF (x) : x ∈ PI}. The
definition of the multilinear extension F suggests the following natural rounding strategy:
given x, we construct a random set R(x) by picking each i ∈ N independently at random
with probability xi. The expected value of f(R(x)) is equal to F (x), but it is unlikely that
R(x) is in I. To address this, we want to remove some elements from R(x) in order to get
a subset I ⊆ R(x) such that I ∈ I. We want this step to have the property that, for each
i ∈ N , the probability that i is in I is at least cxi, for some parameter c > 0. Chekuri et al.
[CVZ11] call such a rounding strategy a c-balanced CR scheme for PI . In certain settings it
is convenient to scale the fractional solution; the rounding strategy described above for the
hypergraph packing problem is one such example. This motivates the following more general
CR scheme.

Definition 3.13 ([CVZ11]) A (b, c)-balanced CR scheme for PI is a scheme such that for
any x ∈ PI, the scheme selects an independent subset I ⊆ R(bx) with the following property:
Pr[i ∈ I | i ∈ R(bx)] ≥ c for every element i ∈ N . The scheme is said to be monotone if
Pr[i ∈ I | R(bx) = R1] ≥ Pr[i ∈ I | R(bx) = R2] whenever i ∈ R1 ⊆ R2. A scheme is said to
be strict if Pr[i ∈ I | i ∈ R(bx)] = c for every i.

Chekuri et al. showed that, if I is the output of a monotone (b, c)-balanced CR scheme, the
expected value of I is at least cE[F (bx)].

Theorem 3.14 Let f : 2N → R+ be a non-negative submodular function and let x be a
point in PI, where PI is a convex relaxation for I ⊆ 2N . Let I(x) ∈ I be the random output
of a monotone (b, c)-balanced CR scheme on x ∈ PI . If f is non-monotone, let us assume
in addition that the CR scheme is strict. Then E[f(I(x))] ≥ cE[F (bx)].

The rounding scheme described in Section 3.1 is a monotone (∆, 1/4)-balanced CR scheme
on x ∈ PI , where PI is the set of all feasible solutions to the Hypergraph-LP relaxation.
Therefore Theorem 3.11 extends to the setting in which the total weight of a set of vertices
is a monotone submodular function instead of a linear function.

Corollary 3.15 Let G = (V,E) be a hypergraph. Let w : 2V → R+ be a weight function on
the vertices that is non-negative, monotone, and submodular. Let #(·) be a capacity function
on the edges such that |E| is polynomial in |V| and G satisfies the bounded growth property (see
Definition 2.1); that is, Fk(t) = 2O(k)tγ(t). Then we can compute in polynomial time a subset
X ⊆ V of vertices such that no hyperedge f contains more than its capacity #(f) vertices
of X. Furthermore, in expectation, the total weight of the output set is Ω

(
opt/γ(E)1/ν

)
,

10PI is the closure of the set of characteristic vectors of the sets in I under convex combinations.
11The multilinear extension F : [0, 1]|N | → R of a function f : 2N → R is the function F (x) =

∑

S⊆N f(S)
∏

i∈S xi

∏

j /∈S(1− xj)

18

where opt is the weight of the optimal solution, and ν is the minimum capacity of the given
instance.

4 Applications

Using our main result (Theorem 3.11), we get several approximation algorithms for the
packing problems mentioned in the introduction. We present some of these results here.

4.1 Packing regions with low union complexity

Let D be a set of n weighted regions in the plane, and let the maximum union complexity
of m ≤ n objects of D be U(m) = mu(m). We assume that (i) U(n) /n = u(n) is a non-
decreasing function, and (ii) there exists a constant c, such that U(xr) ≤ cU(r), for any r
and 1 ≤ x ≤ 2. We are also given a set of points P, where each point p ∈ P is assigned a
positive integer #(p) which is the capacity of p.

We are interested in solving PackRegions (Problem 1.1) for D and P. Consider the
hypergraph G obtained by creating a vertex for each region and a hyperedge for each subset
of regions containing a given point of P. Here, Fk(t) is bounded by the number of faces in the
arrangement of t regions of depth exactly k + 1. The number of such faces can be bounded
by the union complexity by a standard application of the Clarkson technique [Cla88, CS89].

Lemma 4.1 Consider a set of regions in the plane such that the boundary of every pair
intersects a constant number of times. The number of faces of depth at most k + 1 in the
arrangement of any subset of these regions of size t is O(k2U(t/k)).

Plugging this bound into Theorem 3.11 yields the following result.

Theorem 4.2 Let D be a set of m weighted regions in the plane such that the union com-
plexity of any t of them is U(t) = tu(t). Let P be a set of n points in the plane, where there
is a capacity #(p) associated with each point p ∈ P. There is a polynomial time algorithm
that computes a subset O ⊆ D of regions such that no point p ∈ P is contained in more
than #(p) regions of O. Furthermore, in expectation, the total weight of the output set is

Ω
(

opt/u(E)1/ν
)

, where opt is the weight of the optimal solution, E is the energy of the LP

solution and ν is the minimum capacity of the given instance.

Alternatively, for any integer constant φ, one can get a
(

O
(

u(E)1/φ
)

, φ
)

-approximation

to the optimal solution for the given instance.

The following results follow from the theorem above.

Corollary 4.3 (A) The union complexity of pseudo-disks and fat triangles of similar size is
linear; that is, U(t) = O(t). Therefore we get an O(1)-approximation for PackRegions if
the regions are fat triangles of similar size, disks, or pseudo-disks.

(B) The union complexity of fat triangles is O(n log∗ n) [AdBES11a]. Therefore we get
an O(log∗ n)-approximation for PackRegions if the regions are (arbitrary) fat triangles.

(C) Consider a set of regions in the plane such that any pair of them intersects a constant
number of times (e.g., a set of arbitrary triangles). In this case, U(t) = O(t2) and u(t) =

19

O(t). Therefore, for any integer constant φ > 0, we get an
(
O
(
E
1/φ
)
, φ
)
-approximation for

instances of PackRegions on such regions.

4.2 Packing halfspaces, rays and disks

Problem 4.4 (A) PackHalfspaces: Given a weighted set of halfspaces S and a set of
points P with capacities in IR3, find a maximum weight subset O of S so that, for each point
p, the number of halfspaces of O that contains p is at most #(p).

(B) PackRaysInPlanes: Given a weighted set of vertical rays R and a set of planes H
with capacities in IR3, find a maximum weight subset O of R so that, for each plane h, the
number of rays of O that intersect h is at most #(h).

(C) PackPointsInDisks: Given a set D of disks with capacities and a weighted set P
of points, find a maximum weight subset O of the points so that each disk r ∈ D contains at
most #(r) points of O.

Since the union complexity of halfspaces in three dimensions is linear, we get the following
from Theorem 3.11 (and the 3d analogue of Lemma 4.1).

Corollary 4.5 One can compute, in polynomial time, a constant factor approximation to
the optimal solution of the PackHalfspaces problem.

Standard point/plane duality implies that the same result holds for the dual problem.
Namely, a point (a, b, c) gets mapped to the plane z = ax+by−c and a plane z = ax+by+c
gets mapped to the point (a, b,−c). Also, a point lies below a given plane if and only if
the dual point of the plane lies below the dual plane of the point. As such, the dual of an
instance of PackHalfspaces is an instance of PackRaysInPlanes (and vice versa).

Thus, Corollary 4.5 implies the following.

Corollary 4.6 One can compute, in polynomial time, a constant factor approximation to
the optimal solution of the PackRaysInPlanes problem.

Finally, observe that an instance of PackPointsInDisks can be lifted into an instance
of PackRaysInPlanes, by the standard lifting f(x, y) = (x, y, x2+y2), which maps points
and disks in the plane to halfspaces and points in three dimensions [dBCvKO08].

Corollary 4.7 One can compute, in polynomial time, a constant factor approximation to
the optimal solution to the PackPointsInDisks problem.

4.3 Axis Parallel Rectangles/Boxes

4.3.1 Packing rectangles (2d)

Problem 4.8 (PackRectsInPoints.) Given a weighted set B of axis-parallel rectangles
in the plane, and a point set P with capacities, find a maximum weight subset O ⊆ B, such
that, for any p ∈ P, the number of rectangles of O containing p is at most #(p).

20

Note that the union complexity of a set of rectangles can be quadratic. Hence we cannot
simply use Theorem 4.2 to get a meaningful approximation. However, by using the standard
approach for approximating the independent set of rectangles, one can get a reasonable
approximation as the following lemma testifies.

Lemma 4.9 Given an instance (B,P) of PackRectsInPoints with m rectangles, one
can compute, in polynomial time, a subset O ⊆ B of total weight Ω(opt/ logm) such that no
capacity constraint of P is violated, where opt is the weight of the optimal solution.

Proof : It is straightforward to verify that a set of rectangles that intersect a common line
have linear union complexity. Therefore it follows from Theorem 4.2 that we can get a
constant factor approximation for such instances. Given an arbitrary set of axis-parallel
rectangles, we can reduce it to the case in which all rectangles intersect a common line as
follows.

We construct an interval tree on B. Let b ∈ B be the median rectangle of B when
sorted by left edges. Let ℓ denote the vertical line which passes through the left edge of b,
and let Bℓ denote the set of rectangles it intersects. We associate Bℓ with the root of our
tree, and then recursively build left and right subtrees for the rectangles in B \ Bℓ that lie
to the left or right of ℓ, respectively. The recursion bottoms out once every rectangle has
been stabbed by a line. Clearly the depth of the tree is O(logm), since each time we choose
the median line and only recursively continue on those rectangles that do not intersect it.
Therefore there exists a level of the range tree that has a solution of weight Ω(opt/ logm).
The algorithm now considers each level of the tree separately, and for each node at the
given level, it constructs an approximate solution for the rectangles associated with the node
using the constant factor approximation algorithm guaranteed by Theorem 4.2. Next, the
algorithm considers the union of all these solutions to form the solution for this level. Since
two rectangles associated with two different nodes at the same depth in the range tree do
not intersect, the resulting set is a valid solution.

The algorithm returns the best solution found among all the levels. Clearly, its weight is
Ω(opt/ logm).

4.3.2 Packing axis-parallel boxes (3d)

The union complexity of axis-parallel boxes in IR3 that contain a common point is also linear,
and therefore a similar approach as above will enable us to solve the following problem.

Problem 4.10 (PackBoxesInPoints.) Given a weighted set B of axis-parallel boxes in
IR3, and a point set P with capacities, find a maximum weight subset O ⊆ B, such that, for
any p ∈ P, the number of boxes of O containing p is at most #(p).

Lemma 4.11 Given an instance (B,P) of PackBoxesInPoints with m boxes, one can
compute, in polynomial time, a subset O ⊆ B of total weight Ω(opt/ log3m) such that no
capacity constraint of P is violated, where opt is the weight of the optimal solution.

Proof : We build a multi-layer interval tree on the boxes. On the top layer, we build a
balanced tree on the x-axis projection of the boxes, where a node vx′ stores all boxes inter-
secting the plane x = x′. Next, we build for each such node a secondary interval tree on the

21

y-axis projections, and for each node on this secondary data-structure we build a third layer
data-structure on the z-axis projections. All the boxes are stored in the nodes of the third
layer data-structure.

First, observe that the boxes stored in a node on the third layer, vx′y′z′, all contain the
point (x′, y′, z′). Now, the union complexity of axis parallel boxes all sharing a common point
is linear. As such, we can apply Theorem 3.11 to compute a packing that does not violate
the capacities and is a constant factor approximation to the optimal (on this restricted set
of boxes). Now, for each third layer tree, we find the level that contains the best possible
combined solution (taking the union of the solutions at a level is valid since there is no point
in common to two boxes that are stored in two different nodes at the same level). This
assigns values for each node in the secondary tree. Again, we choose for each secondary tree
the level with the maximum total weight solution. We assign this value to the corresponding
node in the first layer data-structure. Again, we choose the level with the highest possible
value. This corresponds to a valid solution that complies with the capacity constraints.

As for the quality of approximation, observe that for a tree at a given layer, at least a
logarithmic factor of the remaining weight of the optimal solution is contained in some level
of the tree. As such, each time we go down one layer in this data-structure we lose at most
a logarithmic factor of the optimal solution, and hence the quality of approximation of this
algorithm is Ω(log3m).

Remark 4.12 (A) It is natural to ask if this result can be extended to higher dimensions.
However, it is easy to see that the union complexity of n axis-parallel boxes in four dimen-
sions that all contain a common point can be quadratic. As such, this approach would fail
miserably. We leave the problem of getting a better approximation for this case as an open
problem for further research.

(B) The continuous version seems to be considerably easier. For the weighted case (with
unit capacities; that is, the independent set variant) an O(logd−1m/ log logm) approximation
is known [CH09] by solving the two dimensional case, and then using the above interval
tree technique to apply it for higher dimensions. For the unweighted continuous case, an
O(log logm logd−2m) approximation is known [CC09].

The discrete version is different than the continuous version because, for example, if
considering boxes in IR3 that all intersect the xy-plane, the induced two dimensional instance
fails to encode the capacity constraints, as they rises from points in three dimensions that do
not lie on this plane (while in the continuous case, it is enough to solve the induced problem
in this plane).

4.3.3 Packing points into rectangles

Problem 4.13 (PackPntsInRects.) Given a weighted set P of points and a set B of
axis-parallel rectangles with capacities in the plane, find a maximum weight subset O ⊆ P,
such that, for any b ∈ B, the number of points of O contained in b is at most #(b).

We first observe that the hypergraph that arises from a instance G = (P,B) of PackP-
ntsInRects, might not have the bounded growth property for any reasonable growth func-
tion. To see this consider the following example.

22

Consider two parallel lines in the plane with posi-
tive slope. Place n/2 points on each line such that all
the points on the top line lie above and to the left of
all the points on the bottom line. Let the set of rect-
angles for this instance of PackPntsInRects be all
the rectangles which have a point on the top line as
their upper left corner and a point on the bottom line
as their lower right corner. In this case any subset of
O(t) points from the top line and O(t) points from
the bottom line induce a set ofO(t2) hyperedges, each
of size 2. Therefore, F1(t) = Ω(t2), and hence Theo-
rem 3.11 only gives an O(E) approximation.

Since we cannot hope to apply our main result to the case of PackPntsInRects, we will
instead seek a bi-criterion approximation. Our algorithm here is inspired by the work of Ezra
et al. [AES10] on ε-nets for rectangles. Before tackling this problem, we will first consider
an easier variant, which will be useful later in obtaining a bi-criterion approximation. In the
following, we call a set of rectangles such that all their (say) bottom edges lies on a common
line a skyline.

Problem 4.14 (PackPntsInSkyline.) Given a weighted set P of points and a set B of
skyline rectangles with capacities in the plane, find a maximum weight subset O ⊆ P, such
that, for any b ∈ B, the number of points of O contained in b is at most #(b).

Lemma 4.15 Let P be a set of n points in the plane all placed above the x-axis. Let Fk(n)
be the maximum number of different subsets of P of size k that are realized by intersecting P

with a rectangle whose bottom edge lies on the x-axis. We have that Fk(n) = O(nk2).

Proof : Consider a rectangle b with its bottom edge lying on the x-axis, and which contains
k points of P. Lower its top edge till it passes through a point of P, and let p denote this
point. Similarly, move its left and right edges till they pass through points of P. Let b′ be
this new canonical rectangle. Now, let ileft (resp. iright) be the number of points of P inside b′

that are to the left (resp. right) of p. Clearly, (p, ileft, iright) uniquely identifies this canonical
rectangle. This implies the claim as p ∈ P, ileft ≤ k and iright ≤ k, and hence the numbers of
such triples is O(|P| k2).

Lemma 4.16 Given an instance of PackPntsInSkyline, one can compute, in polynomial
time, an O(1)-approximation to the optimal solution.

Proof : Consider the associated hypergraph G = (V,E). By Lemma 4.15, this hypergraph has
the bounded growth property with Fk(t) = tO(k2) (here γ(t) = 1). Therefore, the algorithm
of Theorem 3.11 provides the required approximation.

Lemma 4.17 Given a set P of n points in the plane, and a parameter k, one can compute
a set D of O(k2n logn) axis-parallel rectangles, such that for any axis-parallel rectangle b, if
|b ∩ P| ≤ k, then there exists two rectangles b1, b2 ∈ D such that (b1 ∪ b2) ∩ P = b ∩ P.

Furthermore, consider the graph where two points of P are connected if they belong to the
same rectangle in D. Then the number of edges in this graph is O(nk logn).

23

Proof : Find a horizontal line ℓ that splits P equally, and compute all the skyline rectangles
that contain at most k points of P (that is, compute both the rectangle above and below the
line). By Lemma 4.15, the number of such rectangles is O(nk2). Now, recursively compute
the rectangle set for the points above ℓ, and for the points below ℓ. Clearly, the number of
rectangles generated is O(k2n logn), and let D denote the resulting set of rectangles.

Now, consider any axis-parallel rectangle b such that |b ∩ P| ≤ k. If it is does not intersect
ℓ then by induction it has the desired property. Otherwise, if b intersects ℓ, then it can be
decomposed into two skyline rectangles, each one of them contains at most k points of P.
By construction, for each of these rectangles there is a rectangle in D that contains exactly
the same set of points.

As for the second claim, we apply a similar argument. Consider an edge pq in this graph
that arise because of a top skyline rectangle of ℓ. Furthermore, assume that p is higher than
q and to its right. Clearly, there are at most k such edges emanating from p, as the skyline
rectangle having p as its top right corner and having its left edge through q contains at most
k points, and each such rectangle corresponds to a unique edge. As such, we get that the
number of edges in the graph is E(n) = O(nk) + 2T (n/2) = O(nk log n).

Remark 4.18 A slightly more careful analysis shows that the number of rectangles in the
set computed by Lemma 4.17 that contain exactly k points is O(nk log n). This will not be
needed for our analysis.

Remark 4.19 Consider an instance G = (P,B) of PackPntsInRects. Let G′ = (P,D) be
a modified instance of PackPntsInRects where D is obtained from B by replacing each
rectangle by two new rectangles whose union covers that same set of points. Lemma 4.17
guarantees that this can be done such that |D| = O(n3 log n). One might be tempted to
believe that we can plug G′ into Theorem 3.11 in order to get a bi-criteria approximation for
G. Unfortunately, this does not work since (as the following example shows) the hypergraph
does not have the bounded growth property for any meaningful growth function.

6132755223 111

Consider two parallel lines in the plane with
positive slope. Place Θ(log n) points of P on each
line (or close to the line) such that the points on
(or close to) the top line all lie above and to the
left of those on the bottom line. The remaining
points of P will all lie below the points on the
diagonals. Let T be the interval tree of P (using
vertical split lines). Specifically, the remaining
points of P will be placed such that each point
on the top line lies in a different level of T , and all
the points on the bottom line lie in the same node
as the rightmost point on the top line. More
specifically, the leftmost point on the top line will
correspond to the root and the points in order
from the left to right on the top line will correspond to continually walking down in the tree.
(A u© in the figure represents a cluster of u points close together.) Now let X be the subset
of P which consists of the two set of Θ(logn) points on the diagonal lines. Consider the

24

intersection sub-hypergraph induced by X . Suppose that B has rectangle for every pair of
points in P that can be obtained as the intersection of a rectangle with P. Then any pair
of points from the top and bottom diagonals will correspond to a hyperedge in this induced
sub-hypergraph. Therefore, F1(logn) = Ω

(
log2 n

)
, and hence Theorem 3.11 only gives an

O(E) approximation.

Since (as the above remark demonstrates) we cannot directly apply Lemma 4.17, our
approach will be more roundabout. We first show how to solve the independent set variant
of our problem (i.e., unit capacities). Next, we slice the rectangles of the given instance
with non-uniform capacities case into subrectangles with unit capacities, and plug it into the
above algorithm to get a meaningful approximation.

Lemma 4.20 Given an instance of G = (V,B) of PackPntsInRects with unit capacities,
one can compute a subset X ⊆ V, such that the total weight of X is Ω(opt/ logE) and each
rectangle of B contains at most 2 points of P, where n = |P|.

Proof : We first use Lemma 2.3 to sparsify the given instance. We now have a set of P ⊆ V of
t = Θ(E logE) points, and an associated fractional solution, such that none of the constraints
are violated. The value of the fractional solution on GP is Ω(opt), and as such we restrict
our search for a solution to P.

Furthermore, we can assume that the value assigned to each point of P by this fractional
solution is exactly 1/M (we replicate a point i times if it is assigned value i/M), where
M = O(logE). Note, that none of the rectangles of B contains more than M points of P.
In particular, by Lemma 4.17, one can build a set of rectangles D of size O(M2t log t), such
that every rectangle of B can be covered by the union of two rectangles of D; formally, for
every b ∈ B there exists b1, b2 ∈ D such that b∩P = (b1 ∪ b2)∩P. We build a conflict graph
G over P connecting two points if (i) they are both contained in a rectangle of B, and (ii)
there is a rectangle of D that contains them both. By Lemma 4.17 this graph has at most
O(Mt log t) = O(E log3 E) edges and t = Θ(E logE) vertices.

We further add edges to G making a clique out of each group of duplicated points that
arose from a single given point of P (this is needed since when duplicating the points we per-
turbed them in order to maintain the implicit general position assumptions of Lemma 4.17,
and one needs to guarantee that at most one of these copies is picked to the independent
set). Now for a point p ∈ P with LP value xp, the number of duplicated points is xpM .
Hence the number of edges added for these cliques is

∑

p∈P

(
xpM

2

)

≤
∑

p∈P

x2pM
2 ≤M2

∑

p∈P

xp ≤M2
E = O

(
E log2 E

)
,

and hence the number of edges in G overall is O(E log3 E).
It is easy to verify that G has average degree O(log2 E), and the total weight of the

vertices is Θ(opt log E), as such, by Turán’s theorem, one can compute an independent set
of vertices in this graph of weight Ω(w(P)/(average degree + 1)) = Ω(opt/ logE).

Now, it is easy to verify that any rectangle in B contains at most two points of this
independent set.

25

Theorem 4.21 Given an instance of (V,B) of PackPntsInRects (with arbitrary ca-
pacities), one can compute in polynomial time a subset X ⊆ V that is an (O(logE), 2)-
approximation to the optimal solution.

Proof : Compute a fractional solution to the given instance. Split each rectangle b with
capacity #(b) into ⌈#(b)/3⌉ rectangles, each one containing at most value 4 from the frac-
tional solution (this can be done by sweeping the rectangle from left to right, and splitting it
whenever the fractional solution inside the current portion exceeds 3). Consider now a unit
capacity instance on the same point set but with these new rectangles. We use Lemma 4.20
in order to get an (O(logE), 2)-approximation for this new instance.

We now show that this solution we obtained for the unit capacity instance is also an
(O(logE), 2)-approximation to the original instance. First observe that the LP value on this
new instance is Ω(opt) (where opt is the LP value of the original instance) since scaling
down the fractional solution to original instance by a factor of 4 would be a valid solution
to the LP for the new instance (since these newly created rectangles each contained at most
4 from the fractional solution), and hence the weight of the approximation is Ω(opt/ logE).
Furthermore, we know every rectangle b ∈ B contains at most 2 ⌈#(b)/3⌉ ≤ max(2,#(b))
points from this solution, since in the new instance each rectangle from B was replaced with
⌈#(b)/3⌉ rectangles each of which contains at most two points from the computed solution.
(Note that the inequality holds since #(b) has integral value.)

5 Packing points into fat triangles

In this section, we give a bi-criterion approximation for packing points into a set of α-fat
triangles. More precisely, we consider the following problem.

Problem 5.1 (PackPntsInFatTriangs.) Given a weighted set P of points and a set T of
α-fat triangles in the plane such that each triangle △ has a capacity #(△), find a maximum
weight subset O ⊆ P, such that, for each △ ∈ T, the number of points of O contained in △
is at most #(△).

The approximation algorithm uses the following building blocks:
(A) We prove that, for a given point set, there exists a small number of canonical sets

such that for any fat triangle that covers at most k points, there exists a constant
number of these canonical sets whose union covers exactly the same points. Showing
this result is quite technical and requires non-trivial modifications of the work of
Aronov et al. [AES10] (in particular, their work does not imply this result). This is
delegated to Section 5.4, see Theorem 5.6 for the exact result.

(B) An algorithm for approximating the unit capacity case. This follows by an algorithm
similar to the one in Lemma 4.20, see Lemma 5.2 for details. Note that this uses the
result from (A) to get the required approximation.

(C) A partition scheme that shows that a fat triangle (with a measure defined over it)
can be “partitioned” into O(k) triangles such that any triangle in this partition has
measure at most 1/k; see Lemma 5.3.

26

Putting these components together yields the approximation algorithm; see Theorem 5.5
for details.

5.1 The unit capacity case

Lemma 5.2 Given an instance G = (V,T) of PackPntsInFatTriangs with unit capaci-
ties, one can compute a subset X ⊆ V such that the total weight of X is Ω

(
opt/ log6 E

)
and

each triangle of T contains at most 9 points of P.

Proof : We follow the proof of Lemma 4.20. We first use Lemma 2.3 to sparsify the given
instance. We now have a set of P ⊆ V of t = Θ(E logE) points and a corresponding fractional
solution that is feasible. The value of the fractional solution on GP is Ω(opt), and as such
we restrict our search for a solution to P.

Furthermore, we can assume that the value assigned to each point of P by this fractional
solution is exactly 1/M — we replicate a point i times if it is assigned value i/M — where
M = O(logE). Note that none of the triangles of T contains more than M points of P. In
particular, by Theorem 5.6, one can construct a set Z of regions of size O

(
M3t log2 t

)
such

that, for every triangle of △ ∈ T, there exists a subset {z1, . . . , zk} ⊆ Z of at most 9 regions
(i.e. k ≤ 9) such that P ∩△ = P ∩

(
∪ki=1zi

)
. We build a conflict graph G over P connecting

two points if (i) they are both contained in a triangle of T, and (ii) there is a set of Z that
contains both of them. Since the number of sets in Z is O

(
M3t log2 t

)
, and each such set has

size at mostM , it follows that the number of edges in the resulting graph G is O
(
M5t log2 t

)
,

and the number of vertices is t = Θ(E logE) vertices. As in the proof of Lemma 4.20, we
also add edges between replicated points (since these edges do not affect our analysis, we
ignore them for the sake of simplicity of exposition).

The graph G has average degree O
(
M5 log2 t

)
= O

(
log7 E

)
, and the total weight of the

vertices is Θ(opt log E). Therefore, by Turán’s theorem, one can compute an independent
set of vertices in this graph of weight Ω(w(P)/(average degree + 1)) = Ω(opt/ log6 E).

Finally, it is easy to verify that any triangle in T contains at most 9 points of this
independent set.

5.2 Covering a measure on a fat triangle

At this point we would like to use Lemma 5.2 in order to get a bi-criteria approximation for
the case in which the capacities are arbitrary, as we did in Theorem 4.21. However, doing
so directly proves more challenging for fat triangles than axis parallel rectangles. This is
because our general procedure requires that, given an object x of a given type such that the
total fractional value of the points in x is non-zero, we need to be able to decompose x into
O(#(x)) smaller objects of the same type such that, for each smaller object, the fractional
value of the points in the object is only a constant. This can easily be done for axis parallel
rectangles by using vertical splitting lines (as was done in Theorem 4.21), but it is more
challenging for fat triangles. However, the following lemma shows that such a decomposition
is still possible for fat triangles.

27

Lemma 5.3 Let µ be a measure defined over the plane, and consider a fat triangle △. Then,
for any integer k, one can cover △ by at most 18k fat triangles, such that the measure of
each of these triangles is at most µ(△)/k.

Proof : To simplify the presentation we assume that µ(△) = 1. We recursively build a tree
on △ by partitioning the original triangle △ into 4 similar triangles as shown in Figure 1.
Each node of this tree corresponds to a triangle from this recursive construction. We stop
the recursive partition for a node v as soon as the measure of the triangle △v associated
with it is at most 1/k.

Figure 1:

Once we have the tree, we select a set S of nodes of the tree as
follows. We find the lowest node v in the tree such that the measure of
its corresponding triangle is at least 1/k. We add the node v to S and
we treat the measure inside the triangle corresponding to v as being 0.
We repeat this process until the measure left uncovered is smaller than
1/k, at which point we take the lowest node covering the remaining measure and we add it
to S. We also add the root of the tree to S. Note that the set S contains at most k + 1
nodes: since the initial measure is one, we added at most k nodes to S that are not the root.

Figure 2:

We also add all the nodes in this tree that are the least common
ancestor (LCA) of a pair of nodes in S. Let S ′ be the resulting set
of nodes. Now we can show that, for any tree T and any subset R
of nodes of T , the set of all LCA nodes of all of the pairs of nodes
in R has size at most |R| − 112. Therefore there are at most |S| − 1
nodes in S ′ − S and thus the size of S ′ is at most 2|S| ≤ 2(k + 1).
Let T be the set of triangles induced by the triangles corresponding
to the children of the nodes of S ′ (i.e., every node of S ′ gives rise to four triangles). Consider
the partition of the original triangle formed by T. It is easy to verify that every face in this
arrangement has measure at most 1/k, and the number of faces of this arrangement, denoted
by n, is at most 8k (observe that since the triangles arise out of a recursive partition, a pair
of such triangles is either disjoint or contained in each other). Furthermore, each face of this
arrangement is either a triangle (which is a scaled and rotated copy of the original triangle),
or the difference of two triangles where one contains the other (having this property is why
we took the children of every LCA). We will refer to a face which is the difference of two
triangles as an annulus face. Let n′ be the number of annulus faces in this arrangement.
Clearly, n′ ≤ |S ′| = 2k, as one can charge an annulus face to the node of S ′ that induced the
hole in this face.

12Let u, v be the pair of nodes in R whose LCA has maximum depth. Let z be the LCA of u and v, and
let R′ = R− {u, v} ∪ {z}. The pairs in R and the pairs in R′ have the same set of LCA nodes and thus the
number of LCA nodes of a set of size r satisfies the recurrence f(r) ≤ f(r − 1) + 1 and f(2) = 1.

28

Figure 3:

We claim that an annulus face can be covered by the union of six
translated and rotated copies of the original triangle. The easy case,
is when the hole is a scaled and translated reflection of the outside
triangle, see Figure 2, where three triangles are sufficient. The
other case is when the hole is a scaled translated copy of the outer
triangle, which by attaching to the hole three translated and rotated
copies of the hole, gets reduced to the other case, see Figure 3. (The
property used here implicitly is that the outer triangle of the annulus can be partitioned into
translated and rotated copies of the hole triangle, as the hole arises out of a recursive partition
of the outer triangle.)

As such, there are n−n′ triangular faces in this arrangement and n′ annulus faces. Thus,
the original triangle can be covered by (n− n′) + 6n′ = n+5n′ ≤ 8k+10k ≤ 18k translated
and scaled copies of the original triangle that cover it completely, and no triangle in this
collection has measure that exceeds 1/k.

Remark 5.4 Given a weighted set of n points defining the measure inside the given fat
triangle, the cover of Lemma 5.3 can be computed in O(n logn) time. This requires using
known techniques used in constructing compressed quadtrees, see [Har11] for details.

5.3 The result

Theorem 5.5 Given an instance of (V,T) of PackPntsInFatTriangs (with arbitrary
capacities), one can compute, in polynomial time, a subset X ⊆ V that is

(
O
(
log6 E

)
, 9
)
-

approximation to the optimal solution.

Proof : Compute a fractional solution to the given instance. For any triangle △ in the
plane, we denote by E(△) =

∑

p∈V∩△ xp the total mass of the fractional solution inside △.
Next, we get a constant capacity instance out of (V,T) by replacing each triangle of T by
a “few” triangles covering it, such that the total mass of the fractional solution inside each
of these new triangles is at most c = 4 · 18 · 9. Formally, consider a triangle △ ∈ T, and
let k = ⌈#(△)/c⌉. If #(△) ≤ c then there is nothing to do (as E(△) ≤ #(△) ≤ c), so we
assume that #(△) > c. Applying the algorithmic version of Lemma 5.3, see Remark 5.4, we
cover △ with at most

18k = 18

⌈
#(△)

c

⌉

= 18

⌈
#(△)

4 · 18 · 9

⌉

≤
⌈
#(△)

2 · 9

⌉

triangles, where the total mass of the fractional solution inside each of them is at most
E(△) /k ≤ #(△)/ ⌈#(△)/c⌉ ≤ c.

Now, consider the generated instance with these new triangles, where each such triangle
has capacity one. To this end, scale down the solution of the LP by a factor of c. Clearly, we
now have a uniform capacity instance with an associated (valid) fractional solution having
value Ω(opt) (where opt is the optimal LP value for the original instance). Furthermore, any
solution to this unit capacity instance, would correspond to a solution to the original instance

(since we covered each original triangle with at most 18k ≤
⌈
#(△)
2·9

⌉

≤ #(△) new unit

capacity triangles). Plugging this instance into Lemma 5.2 yields the required approximation.

29

Specifically, every triangle △ ∈ T contains at most 9 ⌈#(△)/(2 · 9)⌉ ≤ max(9,#(△)) points
of the computed set of points.

5.4 Canonical decomposition for fat triangles

In this section, we show that given a set P of n points in the plane, and a parameter k, one can
compute a set S of O

(
k3n log2 n

)
regions, such that for any α-fat triangle △, if |△ ∩ P| ≤ k,

then there exists (at most) 9 regions in S whose union has the same intersection with P as
△ does.

Our construction follows closely the argumentation of Aronov et al. [AES10]. However,
our construction is (somewhat) different and (arguably) simpler since we are considering a
“dual” problem to theirs. In particular, since modifying Aronov et al. [AES10] to get our
result is not obvious, we present it here in detail.

5.4.1 Initial setup

To construct the set of regions, S, we will use an approach similar to that of Lemma 4.17. As
was observed in [AES10], we can restrict our attention to axis aligned right triangles whose
hypotenuse differs by no more than say one degree from −45◦, as measured from the positive
x-axis (i.e. it is near isosceles and faces to the right). In the following, let △ be an arbitrary
such triangle that contains at most k points.

℘

ℓ

△տ

p

△ւ

△→

△

Figure 4: Decomposing △.

We first construct a two level interval tree on P, where the
first level partitions the points based on their x-coordinate, and
the second level based on their y-coordinate (and the splitting
line for each node goes through the median point). Let v be
the highest node in the first level of the interval tree whose
corresponding split line, ℓ, intersects △. Let △← and △→
denote the portion of △ to the left or right of ℓ, respectively.
Also, let u be the highest node in the second level tree rooted at
the left child of v whose corresponding split line, ℘, intersects
△←, and let △տ and △ւ denote the portion of △← above or
below ℘, respectively. (Note that we may assume that there
exists split lines ℓ and ℘ that intersect△ and△←, respectively,
since such regions that contain no points can be skipped). In the following, let p denote the
point of intersection between ℓ and ℘. See Figure 4.

We now construct sets of canonical regions, T→, Tտ, and Tւ such that for any choice of
△ there exists constant number of regions r1, . . . , rm in T→ ∪ Tտ ∪ Tւ, such that △ ∩ P =
⋃

i(ri ∩ P), and m ≤ 9.
We achieve this by showing that in each case (i.e., △տ,△ւ and △→) the region r under

consideration can be transformed into a polygonal region with a constant number of points
of P (or orientations) defining its bounding edges, and whose intersection with P is the same
as r13. We then show that the number of such regions needed for a particular choice ℓ and
℘ is O(nk3).

13For each point on the bounding edges, we will need to specify whether it is inside or outside the canonical
region. This can be encoded by a string of length c, where c is some constant bounding the number of defining

30

In the following, let Pv be the subset of points of P stored in the subtree rooted v, and
let Pu,v be the set of points stored in the subtree rooted at u.

5.4.2 Handling the right portion of the triangle (△→)

ℓ

△→

p1

p2

p3

Figure 5: Handling △→.

For any △, we know that △→ will be a homothet of △,
whose vertical edge lies on ℓ, see Figure 4. We now transform
△→ uniquely such that two points of P lie on its hypotenuse
(or one point and the hypotenuse is at an angle of −46◦) and
one point of P lies on its bottom edge. Start by translating
the hypotenuse towards the lower left corner of △→ (while
clipping it to △→) until it hits a point, p1. Next rotate the
hypotenuse clockwise around p1 until it hits a second point p2,
or its orientation is −46◦ (as we rotate we modify its length so
that one endpoint of the hypotenuse stays on ℓ and the other
on the base of △→). Next translate the base of △→ straight
upwards (while clipping it and the hypotenuse as to maintain
a right triangle) until it hits a third point p3 (which may be
the same as the rightmost point out of p1 and p2). Observe
that the resulting region has the same intersection with P as △→ (except maybe for the
points on the boundary). See Figure 5.

p1

p2

p3

△→

Figure 6:

We now bound the number of such resulting regions. As-
sume that p2 lies to the right of p1 (the other case is handled
similarly). There are nv = |Pv| possible choices for p2. Now
consider the horizontal line segment that connects ℓ and p2.
Rotate this segment clockwise around p2 (while increasing its
length so that the other endpoint stays on ℓ) until it hits p1, see
Figure 6. We know that all the points we hit in this sweeping
process lie in the computed region, and hence we can only have
swept over k points before reaching p1 (i.e. given p2 there are
at most k choices for p1. If p2 does not exist we start with the
triangle formed by ℓ and a horizontal and −46◦ line through
p1). Now imagine translating the horizontal segment connecting p2 and ℓ straight downward
till we hit p3 (while increasing its length so that its right endpoint stays on the hypotenuse
defined by p1 and p2). Again we know that all the points we hit in this sweeping process
must be in our canonical region, and hence we can only have swept over k points before
reaching p3 (i.e. given p2 and p1, there are at most k choices for p3).

Hence there are O(nvk
2) such canonical regions for the node v. Since Pvi ∩ Pvj = ∅ for

any vi, vj at the same level in the top layer tree, summing across a given level gives O(nk2)
canonical regions, where n = |P|. Thus, summing over all nodes in the top layer tree gives
O(nk2 logn) such canonical regions overall.

boundary points. Hence we can specify the inclusion or exclusion of the boundary points while only increasing
the number of canonical regions by a factor of 2c = O(1), and hence we will not need to worry about such
issues.

31

5.4.3 Handling the top left portion of the triangle (△տ)
Here we must consider two cases, based on the possible locations of p. If p /∈ △տ (see
Figure 4), we have a homothet of △ whose bottom edge lies on ℘, and therefore we can
argue as in the △→ case, that this gives rise to O(nu,vk

2) different canonical regions, where
nu,v = |Pu,v|. Summing over all possible nodes u and v gives O

(
nk2 log2 n

)
such canonical

regions overall.

℘

ℓ

△տ

p

△′

Figure 7:

Now suppose that p ∈ △տ, see Figure 7. In this case, we can
extend △տ to get a homothet of △ whose right side was cut off
by l in order to get △տ (△′ in Figure 7). Clearly, we have that
Pu,v ∩△տ = Pu,v ∩△′. We can now generate a canonical region for
△′ in a similar fashion as the △→ case, since it is just a homothet
of △ with its base lying on ℘, and then we can cut off the portion
to the right of l. This would imply that we can generate O(nu,vk

2)
such canonical regions for the nodes u and v, and so overall there
are O

(
nk2 log2 n

)
such canonical regions.

5.4.4 Handling the bottom left portion of the triangle (△ւ)

℘

ℓ

△ւ

△

p

Figure 8:

Again we consider two cases, based on the possible locations of p.
If p ∈ △ւ (see Figure 8), then △ւ is an axis parallel rectangle such
that one of its sides lies on ℓ (and another side lies on ℘). Hence by
the proof of Lemma 4.17, in this case △ւ gives rise to O(k2n logn)
canonical regions overall.

r

r′

new △ւ

ℓ

℘
p

△ւ

Figure 9:

Now we consider (what is by far) the hardest case, when p /∈
△ւ. In order to handle this case we will need to break up △ւ as
follows. Observe that△ւ is a rectangular region whose upper right
corner was cut off by the hypotenuse of △. First, we reduce △ւ
into a homothet of △, by removing rectangles r and r′ from the left
and bottom parts of △ւ, respectively (see Figure 9). This can be
done since we already observed that by the proof of Lemma 4.17
we can construct a set of O

(
nk2 log2 n

)
canonical rectangles such

that any rectangle (with a side on one of the split lines) has the same intersection with P as
one of the canonical rectangles. For simplicity we continue to refer to the remaining part of
△ւ as just △ւ.

△
+

ւ

△
−
ւ

a

β+

β−

c

△
0
ւ

b

d

Figure 10:

We now break up △ւ into three regions. Let β+ and β− denote
the rays emanating from p at angles −140◦ and −130◦, respectively
(again, as measured clockwise from the positive x-axis). These two
lines split △ւ into three regions, which we will denote in their coun-
terclockwise order as △+

ւ, △0
ւ and △−ւ (see Figure 10). Let a and

b denote the intersection of β+ with the hypotenuse and left edge of
△ւ, respectively. Similarly, let c and d denote the intersection of
β− with the hypotenuse and bottom edge of △ւ, respectively.

32

℘

β+

p1

p2

p3

Figure 11:

Handling the top and bottom parts of △ւ (i.e.,
△+
ւ and △−ւ). We now construct the canonical regions

for △+
ւ. The construction is nearly identical to that for

△→ and is included for the sake of completeness. The
construction for △−ւ is omitted as it is symmetric to the

△+
ւ case.
Start by translating the part of the boundary that in-

tersects the hypotenuse of △ towards the lower left corner
of △+

ւ (while clipping it to △+
ւ) until it hits a point, p1.

Next rotate this edge counterclockwise around p1 until it
hits a second point p2, or its orientation is −44◦ (as we
rotate we modify its length so that one endpoint stays on
β+ and the other on the boundary △+

ւ). Next translate

the vertical edge of △+
ւ to the right (while clipping it to △+

ւ) until it hits a third point, p3.
As for the number of such resulting regions, assume that p2 lies to the left of p1 (the other

case is handled similarly). There are nu,v = |Pu,v| possible choices for p2. Now consider the
vertical line segment that connects β+ and p2. Imagine rotating this segment counterclock-
wise around p2 (while increasing its length so that the other endpoint stays on β+) until it
hits p1. We know that all the points we hit in this sweeping process must be in our canonical
region, and hence we can only have swept over k points before reaching p1 (if p2 does not
exist we start with the triangle formed by β+ and a vertical and −44◦ line through p1). Now
imagine translating the vertical segment connecting p2 and β+ to the left until we hit p3
(while increasing its length so that its top endpoint stays on the line defined by p1 and p2
and its bottom endpoint on β+). Again we know that all the points we hit in this sweeping
process must be in our canonical region, and hence we can only have swept over k points
before reaching p3. Hence there are O(nu,vk

2) such canonical regions for a pair nodes u and
v. Thus overall there are O

(
nk2 log2 n

)
such canonical regions.

p1

p2

p3

p4

h

v

β+

β−

h′

v′

p

r

Figure 12:

Handling the middle part of △ւ (i.e.,
△0
ւ). Let P0

u,v denote the subset of Pu,v

that lies in between β+ and β−. Let the in-
tersection of the hypotenuse of △ with △0

ւ

be called the hypotenuse.
Translate the hypotenuse towards p (while

clipping it to △0
ւ) until it hits a point p1.

Then rotate the hypotenuse clockwise around
p1 until it hits a point p2, or it becomes verti-
cal. Without loss of generality, assume that
p1 lies to the right of p2. Let the horizontal
(resp. vertical) line connecting p1 and β+

(resp. β−) be called h (resp. ν). Translate
h downwards (resp. ν to the left), while en-
larging it so that one endpoint stays on β+

(resp. β−), until either it hits the lowest

33

(resp. furthest to the left) point of △0
ւ or a point outside of △0

ւ. Let this point be denoted
p3 (resp. p4), and let h′ (resp. ν ′) be the final translation of h (resp. ν). See Figure 12.

Consider the region, r, bounded by the portion of h′ to the left of p4, the portion of ν ′

below p3 , β+, β−, and the line going through p1 and p2 (this is the red shaded region in
Figure 12). First observe that if both p3 and p4 lie outside of △0

ւ then r will not cover all
the points in △0

ւ ∩P 0
u,v. Namely, the points lying in the rectangle defined by h′, ν ′, and the

vertical and horizontal edges of △0
ւ might not be covered by r (see Figure 12). However,

we already constructed a set of O(k2n logn) canonical rectangles, which we know contains
two canonical rectangles that cover these points, and as such we do not have to worry about
covering these points. Clearly, all the points of △0

ւ ∩P 0
u,v either lie in this rectangle or in r.

Next observe that there are no points of P0
u,v that lie in r that are not in △ւ ∩ P 0

u,v. This
follows from the easily proven fact (i.e. tedious but straightforward arguments) that since
the hypotenuse was within one degree of −45◦, that h ∩ β+ lies to the right of b and ν ∩ β−
lies above d.

We now bound the number of canonical regions of type r. There are
∣
∣P 0

u,v

∣
∣ possible choices

for p1 (which again we assume is to the right of p2). Now consider rotating h clockwise around
p1 until we hit p2. We know from above that all the points we sweep past in this process
must be contained in △0

ւ ∩ P 0
u,v and so given p1 there are at most k possible choices for p2.

Now consider translating h downward (resp. ν to the left) until we hit p3 (resp. p4). Again,
from above we know that all the points we sweep over in this process must be contained in
△0
ւ ∩ P 0

u,v and so given p1 and p2, there are at most k possible choices for p3 (resp. p4).

Hence there are O
(
k3
∣
∣P 0

u,v

∣
∣
)
such canonical regions for a given pair of nodes u and v, and

so overall there are O
(
k3n log2 n

)
such canonical regions.

5.4.5 Putting things together

Summing the above bounds over all choices of the nodes u and v results overall inO
(
k3n log2 n

)

canonical regions. Furthermore, for any choice of △, we showed above that there exists a set
of at most 9 of theses canonical regions whose (union of) intersections with P is the same as
that of △. We thus get the following result.

Theorem 5.6 Given a set P of n points in the plane, and parameters k and α > 0, one can
compute a set S of O

(
k3n log2 n

)
regions, such that for any α-fat triangle △, if |△ ∩ P| ≤ k,

then there exists (at most) 9 regions in S whose union has the same intersection with P as
△ does.

6 PTAS for Unweighted Disks and Points

In this section, we consider instances of the PackRegions problem in which the regions are
disks with unit weights and all points have unit capacities. We now outline a PTAS for such
instances based on the local search technique. The algorithm and proof are an extension of
those of Chan and Har-Peled [CH11, CH09], and Mustafa and Ray [MR10].

The algorithm. Since all of the regions have unit weight, we may assume that no region
is completely contained in another. We say that a subset L of D is b-locally optimal if L

34

is a pointwise independent set and one cannot obtain a larger pointwise independent set by
removing ℓ ≤ b regions of L and inserting ℓ+ 1 regions of D \ L.

Our algorithm constructs a b-locally optimal solution using local search, where b is some
suitable constant. We start with L← ∅. We consider each subset X ⊆ D \ L of size at most
b+1: if X is a pointwise independent set and the set Y ⊆ L of regions pointwise intersecting
the objects of X has size at most |X|−1, we set L← (L\Y)∪X . Every such swap increases
the size of L by at least one, and as such it can happen at most n = |D| times. Therefore the
running time is bounded by O

(
nb+3b |P|

)
, since there are

(
n

b+1

)
subsets X to consider and

for each such subset X it takes O(nb |P|) time to compute Y .

Analysis. Let opt be the maximum pointwise independent set, and let L be the b-locally
optimal solution returned by our algorithm. If we can show that the pointwise intersection
graph of opt ∪ L is planar then the analysis in [CH11] will directly imply that |L| ≥ (1 −
O(1/

√
b)) |opt|.

We map the disks in opt and L to sets of points Qopt and QL in IR3, respectively, and
we map the points in P to a set of halfspaces HP, by using the lifting of disks to planes and
points to rays, and then dualizing the problem (see Section 4.2). Mustafa and Ray prove that
a range space defined by a set of points and halfspaces in IR3 has the locality condition ,
which is defined as follows.

Definition 6.1 ([MR10]) A range space R = (P,D) satisfies the locality condition if
for any two disjoint subsets R,B ⊆ P, it is possible to construct a planar bipartite graph
G = (R,B,E) with all edges going between R and B such that for any D ∈ D, if D ∩R 6= ∅
and D ∩B 6= ∅, then there exist two vertices u ∈ D∩R and v ∈ D ∩B such that (u, v) ∈ E.

Since opt and L are both pointwise independent sets, we know each point in P can
intersect at most one disk from opt and at most one disk from L. Hence each halfspace in
HP can contain at most one point from Qopt and at most one point from QL. Since points
and halfspaces in IR3 have the locality condition, setting R = L and B = opt immediately
implies that there is a planar graph on the vertex set L ∪ opt such that any vertex from
L and any vertex from opt that are in the same halfspace are adjacent. In particular, the
intersection graph is planar.

Theorem 6.2 Given a set of n unweighted disks and a set of m points in the plane (with
unit capacities), any b-locally optimal pointwise independent set has size ≥ (1−O(1/

√
b))opt,

where opt is the size of the maximum pointwise independent set of the disks. In particular,
one can compute an independent set of size ≥ (1− ε)opt, in time mnO(1/ε2).

Corollary 6.3 There is a PTAS for instances of PackHalfspaces in which each halfspace
has unit weight, and each point has unit capacity.

Corollary 6.4 There is a PTAS for instances of PackRegions in which each region is a
unit-weight disk, and each point has unit capacity.

Corollary 6.5 There is a PTAS for instances of PackPoints in which each region is a
unit-capacity disk, and each point has unit weight.

35

7 Hardness of approximation

7.1 Packing same size fat triangles into points

Here we show that PackRegions (Problem 1.2) does not have a PTAS, even if the regions
have unit weight and their union complexity is linear. We show that the problem is APX-
hard using a reduction from the maximum bounded 3-dimensional matching problem. Since
maximum bounded 3-dimensional matching is APX-complete [Kan91], this will imply the
claim (unless P = NP).

Theorem 7.1 Unless P = NP there is no PTAS for PackRegions (Problem 1.2) even if
the regions are unweighted, in the plane, and have linear union complexity. In particular, this
holds if the regions are fat triangles of similar size. (See Corollary 4.3 (A) for the matching
approximation algorithm.)

Proof : Let T ⊆ A × B × C be the input triples for an instance of maximum bounded 3-
dimensional matching, where A, B, and C are disjoint subsets of some ground set X (for
simplicity we assume X = A ∪ B ∪ C). For each element x ∈ X we make a representative
point vx and place it arbitrarily on the unit circle in the plane and give it unit capacity. Let
VA, VB, and VC be the sets of representatives for A, B, and C (respectively). A triple in T
thus corresponds to a triangle with one vertex in each of VA, VB, and VC . Clearly, finding
a maximum packing of these triangles into these points is an instance of PackRegions.
Moreover, a maximum packing here corresponds to a maximum set of triangles (triples)
such that each point (element of X) is covered by at most one triangle. Therefore a PTAS

for this problem translates to a PTAS for the maximum bounded 3-dimensional matching
problem. (Note that this does not imply that there is no PTAS for other specific types of
regions.)

A

BC

Now we show that we can make the triangles fat and of similar size,
and hence there is no PTAS even in the case of linear union complexity.
Let the range of a set of representative points be the angle around the
circle between the farthest two points of the set, and let the center of a set
be the midpoint on the circle between the farthest two points of the set.
Instead of placing the points arbitrarily, we will place the points so that
the range of each of VA, VB, or VC is less than five degrees. Moreover, we
place the points so that the centers of VA, VB, and VC are 120 degrees apart. In this case the
triangles all have roughly the same size and are nearly equilateral. It is known that such a
set of triangles has linear union complexity [MMP+94]. Hence, by the above reduction, even
in this case where the regions are restricted to have linear union complexity (and even more
specifically when they are restricted to be fat triangles of roughly the same size), we cannot
get a PTAS.

7.2 Packing points into fat triangles

Lemma 7.2 There is an approximation-preserving reduction from the Independent Set

problem in general graphs to the PackPoints problem. In particular, for instances of the

36

problem PackPoints in which the regions are fat triangles with unit capacities and the
points are unweighted, no approximation better than Ω(n1−ε) is possible in polynomial time,
for any constant ε > 0, unless P = NP.

Proof : Consider an instance of the Independent Set problem, namely a graph G = (V,E).
Let n = |V |. Place n distinct points on the unit circle (arbitrarily) and map every vertex of
V to a unique point of the resulting set of points P. For every edge uv ∈ E, consider the
segment pupv, where pu and pv are the points corresponding to u and v in P. We construct
a fat triangle containing pupv by connecting pu, pv, and a third vertex in the interior of the
unit disk; this can always be done so as to achieve roughly 2-fatness. We add this triangle
to our set of regions D, and assign it capacity one.

Clearly, solving the resulting instance (P,D) of PackPoints is equivalent to solving the
Independent Set problem for G. The claim now follows from the hardness results known
for the Independent Set problem [Has99].

8 Conclusions

In this paper, we presented a general framework for approximating geometric packing prob-
lems with non-uniform constraints. We then applied this framework in a systematic fashion
to get improved algorithms for specific instances of this problem, many of which required
additional non-trivial ideas. There are several special cases of this problem for which we
currently do not know any useful approximation; for example, the special case of packing
axis-parallel boxes into points, in which the boxes are in four dimensions is still wide open.
Making some progress on these special cases is an interesting direction for future work.

Acknowledgments

The authors thank Timothy Chan, Chandra Chekuri, and Esther Ezra for several useful
discussions.

References

[AdBES11a] B. Aronov, M. de Berg, E. Ezra, and M. Sharir. Improved bound for the union
complexity of locally fat objects in the plane. manuscript, 2011.

[AdBES11b] B. Aronov, M. de Berg, E. Ezra, and M. Sharir. Improved bound for the union
of fat objects in the plane. manuscript, 2011.

[AES10] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, 2010.

[Cap99] P. Cappanera. A survey on obnoxious facility location problems. Technical
report, University of Pisa, 1999.

37

http://cis.poly.edu/~aronov/
http://www.win.tue.nl/~mdberg/
http://www.math.tau.ac.il/~michas
http://cis.poly.edu/~aronov/
http://www.win.tue.nl/~mdberg/
http://www.math.tau.ac.il/~michas
http://cis.poly.edu/~aronov/
http://www.math.tau.ac.il/~michas

[CC07] M. Chleb́ık and J. Chleb́ıková. The complexity of combinatorial optimization
problems on d-dimensional boxes. SIAM J. Discrete Math., 21(1):158–169,
2007.

[CC09] P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In
Proc. 20th ACM-SIAM Sympos. Discrete Algorithms, pages 892–901, 2009.

[CCH09] C. Chekuri, K. L. Clarkson., and S. Har-Peled. On the set multi-cover problem
in geometric settings. In Proc. 25th Annu. ACM Sympos. Comput. Geom.,
pages 341–350, 2009.

[CH09] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum in-
dependent set of pseudo-disks. In Proc. 25th Annu. ACM Sympos. Comput.
Geom., pages 333–340, 2009. cs.uiuc.edu/~sariel/papers/08/w_indep.

[CH11] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. CoRR, abs/1103.1431, 2011.

[Cha03] T. M. Chan. Polynomial-time approximation schemes for packing and piercing
fat objects. J. Algorithms, 46(2):178–189, 2003.

[Cla88] K. L. Clarkson. Applications of random sampling in computational geometry,
II. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 1–11, 1988.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-
tational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[CVZ11] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In Proc. 43th
Annu. ACM Sympos. Theory Comput., 2011. To appear.

[dBCvKO08] M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[EAS11] E. Ezra, B. Aronov, and M. Sharir. Improved bound for the union of fat
triangles. In Proc. 16th ACM-SIAM Sympos. Discrete Algorithms, pages 1778–
1785, 2011.

[EHR11] A. Ene, S. Har-Peled, and B. Raichel. Geometric packing under non-uniform
constraints. CoRR, abs/1107.2949, 2011.

[EJS05] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005.

[FP11] J. Fox and J. Pach. Computing the independence number of intersection
graphs. In Proc. 22nd ACM-SIAM Sympos. Discrete Algorithms, pages 1161–
1165, 2011.

[GC11] E. Grant and T. M. Chan. Exact algorithms and apx-hardness results for
geometric set cover. In Proc. 23rd Canad. Conf. Comput. Geom., 2011.

38

http://cm.bell-labs.com/who/clarkson/
http://www.uiuc.edu/~sariel
http://www.math.uwaterloo.ca/~tmchan/
http://www.uiuc.edu/~sariel
cs.uiuc.edu/~sariel/papers/08/w_indep
http://www.math.uwaterloo.ca/~tmchan/
http://www.uiuc.edu/~sariel
http://www.math.uwaterloo.ca/~tmchan/
http://cm.bell-labs.com/who/clarkson/
http://cm.bell-labs.com/who/clarkson/
http://link.springer-ny.com/link/service/journals/00454/
http://www.win.tue.nl/~mdberg/
http://www.win.tue.nl/~ocheong
http://www.cs.uu.nl/people/markov/
http://cis.poly.edu/~aronov/
http://www.math.tau.ac.il/~michas
http://www.uiuc.edu/~sariel
http://www.math.nyu.edu/~pach
http://www.math.uwaterloo.ca/~tmchan/

[Har09] S. Har-Peled. Being fat and friendly is not enough. CoRR, abs/0908.2369,
2009.

[Har11] S. Har-Peled. Geometric Approximation Algorithms. Amer. Math. Soc., 2011.

[Has99] J. Hastad. Clique is hard to approximate within n1−ε. Acta Mathematica,
pages 105–142, 1999.

[HS11] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry.
Discrete Comput. Geom., 45(3):462–496, 2011.

[Kan91] V. Kann. Maximum bounded 3-dimensional matching is max snp-complete.
Inform. Process. Lett., 37:27–35, January 1991.

[MMP+94] J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat
triangles determine linearly many holes. SIAM J. Comput., 23(1):154–169,
1994.

[MR10] N. H. Mustafa and S. Ray. Improved results on geometric hitting set problems.
Discrete Comput. Geom., 44(4):883–895, 2010.

[SMC+07] P. G. Szabó, M. Cs. Markót, T. Csendes, E. Specht, L. G. Casado, and
I. Garcãa. New Approaches to Circle Packing in a Square: With Program Codes
(Springer Optimization and Its Applications). Springer-Verlag New York, Inc.,
2007.

[Sri01] A. Srinivasan. New approaches to covering and packing problems. In Proc.
12th ACM-SIAM Sympos. Discrete Algorithms, pages 567–576, 2001.

[Tam91] A. Tamir. Obnoxious facility location on graphs. SIAM J. Discrete Math.,
4(4):550–567, 1991.

[Var10] K. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
Proc. 42nd Annu. ACM Sympos. Theory Comput., pages 641–648, 2010.

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

39

http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel
http://www.math.tau.ac.il/~michas
http://link.springer-ny.com/link/service/journals/00454/
http://kam.mff.cuni.cz/~matousek
http://www.math.nyu.edu/~pach
http://www.math.tau.ac.il/~michas
http://link.springer-ny.com/link/service/journals/00454/

	1 Introduction
	2 Preliminaries
	2.1 LP Relaxation and the Rounding Scheme
	2.2 Basic tools

	3 Approximate packing for hypergraphs
	3.1 The algorithm
	3.1.1 Constructing a good ordering

	3.2 Analysis
	3.2.1 On the expected number of conflicts being realized
	3.2.2 Resistance is futile, if you pick the right vertex

	3.3 Improving the running time
	3.4 The result
	3.5 Contention resolution schemes

	4 Applications
	4.1 Packing regions with low union complexity
	4.2 Packing halfspaces, rays and disks
	4.3 Axis Parallel Rectangles/Boxes
	4.3.1 Packing rectangles (2d)
	4.3.2 Packing axis-parallel boxes (3d)
	4.3.3 Packing points into rectangles

	5 Packing points into fat triangles
	5.1 The unit capacity case
	5.2 Covering a measure on a fat triangle
	5.3 The result
	5.4 Canonical decomposition for fat triangles
	5.4.1 Initial setup
	5.4.2 Handling the right portion of the triangle ()
	5.4.3 Handling the top left portion of the triangle ()
	5.4.4 Handling the bottom left portion of the triangle ()
	5.4.5 Putting things together

	6 PTAS for Unweighted Disks and Points
	7 Hardness of approximation
	7.1 Packing same size fat triangles into points
	7.2 Packing points into fat triangles

	8 Conclusions

