
Approximating Tverberg Points in Linear Time for Any Fixed
Dimension?

Wolfgang Mulzer1 and Daniel Werner2??

1 Institut für Informatik, Freie Universität Berlin, Germany, mulzer@inf.fu-berlin.de,
http://page.mi.fu-berlin.de/mulzer

2 Institut für Informatik, Freie Universität Berlin, Germany, dwerner@mi.fu-berlin.de,
http://page.mi.fu-berlin.de/dawerner

Abstract. Let P ⊆ Rd be a d-dimensional n-point set. A Tverberg partition is a partition of P into r
sets P1, . . . , Pr such that the convex hulls conv(P1), . . . , conv(Pr) have non-empty intersection. A point
in

⋂r
i=1 conv(Pi) is called a Tverberg point of depth r for P . A classic result by Tverberg shows that

there always exists a Tverberg partition of size dn/(d + 1)e, but it is not known how to find such a
partition in polynomial time. Therefore, approximate solutions are of interest.
We describe a deterministic algorithm that finds a Tverberg partition of size dn/4(d + 1)3e in time
dO(log d)n. This means that for every fixed dimension we can compute an approximate Tverberg point
(and hence also an approximate centerpoint) in linear time. Our algorithm is obtained by combining a
novel lifting approach with a recent result by Miller and Sheehy [13].
Keywords. discrete geometry, Tverberg theorem, centerpoint, approximation, high dimension

1 Introduction

In many applications (such as statistical analysis or finding sparse geometric separators in meshes)
we would like to have a way to generalize the one-dimensional notion of a median to higher dimen-
sions. A natural way to do this uses the notion of halfspace depth (or Tukey depth).

Definition 1.1. Let P be a finite set of points in Rd, and let c ∈ Rd be a point (not necessarily in
P ). The halfspace depth of c with respect to P is

min
halfspace h, c∈h

|h ∩ P |.

The halfspace depth of P is the maximum halfspace depth that any point c ∈ Rd can achieve.

A classic result in discrete geometry, the Centerpoint Theorem, claims that for every d-dimensional
point set P with n points there exists a centerpoint, i.e., a point c ∈ Rd with halfspace depth at
least n/(d+ 1) [6, 15]. There are point sets where this bound cannot be improved.

However, if we actually want to compute a centerpoint for a given point set efficiently, the
situation becomes more involved. For d = 2, a centerpoint can be found deterministically in linear
time [9]. For general d, we can compute a centerpoint in O(nd) time using linear programming,
since Helly’s theorem implies that the set of all centerpoints can be described as the intersection of
O(nd) halfspaces [7]. Chan [2] shows how to improve this running time to O(nd−1) with the help of
randomization. He actually solves the apparently harder problem of finding a point with maximum

? A preliminary version appeared as W. Mulzer and D. Werner, Approximating Tverberg Points in Linear Time for
Any Fixed Dimension in Proc. 28th SoCG, pp. 303–310, 2012.

?? Funded by Deutsche Forschungsgemeinschaft within the Research Training Group (Graduiertenkolleg) “Methods
for Discrete Structures”.

ar
X

iv
:1

10
7.

01
04

v3
  [

cs
.C

G
] 

 3
0 

Ju
n 

20
20



c

P1

P3

P2
P4

P5

r = 5

Fig. 1. The point c has Tverberg depth r = 5.

halfspace depth. If the dimension is not fixed, a result by Teng shows that it is coNP-hard to check
whether a given point is a centerpoint [17].

However, as d grows, a running time of nΩ(d) is not feasible. Hence, it makes sense to look for
faster approximate solutions. A classic approach uses ε-approximations [3]: in order to obtain a
point of halfspace depth n(1/(d+ 1)− ε), take a random sample A ⊆ P of size O((d/ε2) log(d/ε))
and compute a centerpoint for A via linear-programming. This gives the desired approximation
with constant probability, and the running time after the sampling step is constant for fixed d.
What more could we possibly wish for? For one, the algorithm is Monte-Carlo: with a certain
probability, the reported point fails to be a centerpoint, and we know of no fast algorithm to check
its validity. This problem can be solved by constructing the ε-approximation deterministically [3],
at the expense of a more complicated algorithm. Nonetheless, in either case the resulting running
time grows exponentially with d, an undesirable feature for large dimensions.

This situation motivated Clarkson et al. [4] to look for more efficient randomized algorithms
for approximate centerpoints. They give a simple probabilistic algorithm that computes a point
of halfspace depth Ω(n/(d + 1)2) in time O(d2(d log n + log(1/δ))log(d+2)), where δ is the error
probability. They also describe a more sophisticated algorithm that finds such a point in time
polynomial in n, d, and log(1/δ). Both algorithms are based on a repeated algorithmic application
of Radon’s theorem (see below). Unfortunately, there remains a probability of δ that the result is
not correct, and we do not know how to detect failure efficiently.

Thus, more than ten years later, Miller and Sheehy [13] launched a new attack on the prob-
lem. Their goal was to develop a deterministic algorithm for approximating centerpoints whose
running time is subexponential in the dimension. For this, they use a different proof of the cen-
terpoint theorem that is based on a result by Tverberg: any d-dimensional n-point set can be
partitioned into r = dn/(d+ 1)e sets P1, . . . , Pr such that the convex hulls conv(P1), . . . , conv(Pr)
have nonempty intersection. Such a partition is called a Tverberg partition of P . By convexity, any
point in

⋂r
i=1 conv(Pi) must be a centerpoint.

2



More generally, we say that a point c ∈ Rd has Tverberg depth r′ with respect to P if there
is a partition of P into r′ sets such that c lies in the convex hull of each set. We also call c an
approximate Tverberg point (of depth r′); see Figure 1.

Miller and Sheehy describe how to find dn/2(d+ 1)2e disjoint subsets of P and a point c ∈ Rd
such that each subset contains d + 1 points and has c in its convex hull. Hence, c constitutes an
approximate Tverberg point for P (and thus also an approximate centerpoint), and the subsets
provide a certificate for this fact. The algorithm is deterministic and runs in time nO(log d). At the
same time, it is the first algorithm that also finds an approximate Tverberg partition of P . The
running time is subexponential in d, but it is still the case that n is raised to a power that depends
on d, so the parameters n and d are not separated in the running time.

In this paper, we show that the running time for finding approximate Tverberg partitions (and
hence approximate centerpoints) can be improved. In particular, we show how to find a Tverberg
partition with dn/4(d + 1)3e sets in deterministic time dO(log d)n. This is linear in n for any fixed
dimension, and the dependence on d is only quasipolynomial.

1.1 Some Discrete Geometry

We begin by recalling some basic facts and definitions from discrete geometry [11]. A classic fact
about convexity is Radon’s theorem.

Theorem 1.1 (Radon’s theorem) For any P ⊆ Rd with d + 2 points there exists a partition
(P1, P2) of P such that conv(P1) ∩ conv(P2) 6= ∅.

As mentioned above, Tverberg [18] generalized this theorem for larger point sets.

Theorem 1.2 (Tverberg’s theorem) Any set P ⊆ Rd with n = (r− 1)(d+ 1) + 1 points can be
partitioned into r sets P1, . . . , Pr such that

⋂r
i=1 conv(Pi) 6= ∅.

Let P be a set of n points in Rd. We say that x ∈ Rd has Tverberg depth r (with respect to P ) if
there is a partition of P into sets P1, . . . , Pr such that x ∈ ⋂r

i=1 conv(Pi). Tverberg’s theorem thus
states that, for any set P in Rd, there is a point of Tverberg depth at least b(n− 1)/(d+ 1) + 1c =
dn/(d+1)e. Note that every point with Tverberg depth r also has halfspace depth r. Thus, from now
on we will use the term depth as a shorthand for Tverberg depth. As remarked above, Tverberg’s
theorem immediately implies the famous Centerpoint Theorem (see [11]):

Theorem 1.3 (Centerpoint Theorem) For any set P of n points in Rd there is a point c such
that all halfspaces containing c contain at least dn/(d+ 1)e points from P .

Finally, another classic theorem will be useful for us.

Theorem 1.4 (Carathéodory’s theorem) Suppose that P is a set of n points in Rd and x ∈
conv(P ). Then there is a set of d+ 1 points P ′ ⊆ P such that x ∈ conv(P ′).

This means that, in order to describe a Tverberg partition of depth r, we need only r(d + 1)
points from P . This observation is also used by Miller and Sheehy [13]. They further note that it
takes O(d3) time to replace d+ 2 points by d+ 1 points by using Gaussian elimination. We denote
the process of replacing larger sets by sets of size d+ 1 as pruning, see Lemma 2.2.

3



1.2 Our Contribution

We now describe our results in more detail. In Section 2, we present a simple lifting argument which
leads to an easy Tverberg approximation algorithm.

Theorem 1.5 Let P be a set of n points in Rd in general position. One can compute a Tverberg
point of depth dn/2de for P and the corresponding partition in time dO(1)n.

While this does not yet give a good approximation ratio (though constant for any fixed d),
it is a natural approach to the problem: it computes a higher dimensional Tverberg point via
successive median partitions—just as a Tverberg point is a higher dimensional generalization of
the 1-dimensional median.

By collecting several low-depth points and afterwards applying the brute-force algorithm on
small point sets, we get an even higher depth in linear time for any fixed dimension:

Theorem 1.6 Let P be a set of n points in Rd. Then one can find a Tverberg point of depth
dn/2(d + 1)2e and a corresponding partition in time f(2d+1) + dO(1)n, where f(m) is the time to
compute a Tverberg point of depth dm/(d+ 1)e for m points by brute force.

Finally, by combining our approach with that of Miller and Sheehy, we can improve the running
time to be quasipolynomial in d:

Theorem 1.7 Let P be a set of n points in Rd. Then one can compute a Tverberg point of depth
dn/4(d+ 1)3e and a corresponding pruned partition in time dO(log d)n.

In Section 4, we compare these results to the Miller-Sheehy algorithm and its extensions.

2 A Simple Fixed-Parameter Algorithm

We now present a simple algorithm that runs in linear time for any fixed dimension and computes
a point of depth dn/2de. For this, we show how to compute a Tverberg point by recursion on the
dimension. As a byproduct, we obtain a quick proof of a weaker version of Tverberg’s theorem.
First, however, we give a few more details about the basic operations performed by our algorithm.

2.1 Basic Operations

Our algorithm builds a Tverberg partition for a d-dimensional point set P by recursion on the
dimension. In each step, we store a Tverberg partition for some point set, together with an ap-
proximate Tverberg point c. We have for each set Pi in the partition a convex combination that
witnesses c ∈ conv(Pi). All the points that arise during our algorithms are obtained by repeatedly
taking convex combinations of the input points, so the following simple observation lets us maintain
this invariant.

Observation 2.1 If xi =
∑

p∈Pi
αpp and y =

∑
i βixi are convex combinations, then

y =
∑
i

∑
p∈Pi

βiαpp

is a convex combination of the set
⋃
Pi for y. ut

4



By Carathéodory’s theorem (Theorem 1.4), a Tverberg partition of depth r can be described by
r(d+ 1) points from P . In order to achieve running time O(n), we need the following observation,
also used by Miller and Sheehy [13].

Lemma 2.2 Let Q ⊆ Rd be a set of m ≥ d + 2 points with c ∈ conv(Q), and suppose we have
a convex combination of Q for c. Then we can find a subset Q′ ⊂ Q with d + 1 points such that
c ∈ conv(Q′), together with a corresponding convex combination, in time O(d3m).

Proof. Miller and Sheehy observe that replacing d+ 2 points by d+ 1 points takes O(d3) time by
finding an affine dependency through Gaussian elimination, see Grötschel, Lovász, and Schrijver [8,
Chapter 1]. The choice of affine dependencies does not matter. Thus, in order to eliminate a point
from Q, we can take any subset of size d+ 2, resolve one of the affine dependencies, and update the
convex combination accordingly. Repeating this process, we can replace m points by d + 1 points
in time (m− (d+ 1))O(d3) = O(d3m). ut

The process in Lemma 2.2 is called pruning, and we call a partition of a d-dimensional point
set in which all sets have size at most d + 1 a pruned partition. This will enable us to bound the
cost of many operations in terms of the dimension d, instead of the number of points n.

2.2 The Lifting Argument and a Simple Algorithm

Let P be a d-dimensional point set. As a Tverberg point is a higher dimensional version of the
median, a natural way to compute a Tverberg point for P is to first project P to some lower-
dimensional space, then to recursively compute a good Tverberg point for this projection, and to
use this point to find a solution in the higher-dimensional space. Surprisingly, we are not aware of
any such argument having appeared in the literature so far.

In what follows, we will describe how to lift a lower-dimensional Tverberg point into some
higher dimension. Unfortunately, this process will come at the cost of a decreased depth for the
lifted Tverberg point. For clarity of presentation, we first explain the lifting lemma in its simplest
form. In Section 3.1, we then state the lemma in its full generality.

Lemma 2.3 Let P be a set of n points in Rd, and let h be a hyperplane in Rd. Let c′ ∈ h be a
Tverberg point of depth r for the projection of P onto h, with pruned partition P1, . . . , Pr. Then we
can find a Tverberg point c ∈ Rd of depth dr/2e for P and a corresponding Tverberg partition in
time O(dn).

Proof. For every point p ∈ P , let pr(p) denote the projection of p onto h, and for every Q ⊆ P , let
pr(Q) be the projections of all the points in Q. Let P1, . . . , Pr ⊆ P such that pr(P1), . . . ,pr(Pr) is
a pruned partition for pr(P ) with Tverberg point c′. Let ` be the line through c′ orthogonal to h.

Since our assumption implies c′ ∈ conv(pr(Pi)) for i = 1, . . . , r, it follows that ` intersects
each conv(Pi) at some point xi ∈ Rd. More precisely, as we have a convex combination c′ =∑

p∈Pi
αp pr(p) for each Pi, we simply get xi =

∑
p∈Pi

αpp.

Assuming an appropriate numbering, let Q̂i = {x2i−1, x2i}, i = 1, . . . , dr/2e, be a Tverberg
partition of x1, . . . , xr. (If r is odd, the set Q̂dr/2e contains only one point, the median.) Since the
points xi lie on the line `, such a Tverberg partition exists and can be computed in time O(r) by

5



h

(a) project

h
c′

(b) find partition

h
c′

`

(c) intersect hulls of the sets with h⊥

h
c′

`

c

(d) find median of intersections and combine

Fig. 2. Illustrating the lifting lemma in the plane: we project the point set P to the line h and find a Tverberg
partition and a Tverberg point c′ for the projection. Then, we construct the line ` through c′ that is perpendicular
to h, and we take the intersection with the lifted convex hulls of the Tverberg partition. We then find the median c
and the corresponding partition for the intersections along `. Finally, we group the points according to this partition.

finding the median c, i.e., the element of rank dr/2e, according to the order along ` (see Cormen et
al. [5, Chapter 9]). We claim that c is a Tverberg point for P of depth dr/2e. Indeed, we have

c ∈ conv(Q̂i) = conv({x2i−1, x2i}) ⊆ conv(P2i−1 ∪ P2i),

for 1 ≤ i ≤ dr/2e. Thus, if we set Qi := P2i−1 ∪ P2i, then Q1, . . . , Qdr/2e is a Tverberg partition
for the point c. The total time to compute c and the Qi is O(n), as claimed. See Figure 2 for a
two-dimensional illustration of the lifting argument. ut

Theorem 1.5 is now a direct consequence of Lemma 2.3.

Theorem 2.4 (Thm 1.5, restated) Let P be a set of n points in Rd in general position. One
can compute a Tverberg point of depth dn/2de for P and the corresponding partition in time dO(1)n.

Proof. If d = 1, we obtain a Tverberg point and a corresponding partition by finding the median
c of P [5] and pairing each point to the left of c with exactly one point to the right of c.

If d > 1, we project P onto the hyperplane xd = 0. This gives an n-point set P ′ ⊆ Rd−1. We
recursively find a point of depth dn/2d−1e and a corresponding pruned partition for P ′. We then
apply Lemma 2.3 to get a point c ∈ Rd of depth r =

⌈
dn/2d−1e/2

⌉
≥ dn/2de for P , together with

a partition. Each set has at most 2d points, so by applying Lemma 2.2 to each set, it takes O(d4r)
time to prune all sets.

This yields a total running time of Td(n) ≤ Td−1(n) + dO(1)n, which implies the result. ut

6



In particular, Theorem 1.5 gives a weak version of Tverberg’s theorem with a simple proof.

Corollary 2.5 (Weak Tverberg theorem) Let P be a set of n points in Rd. Then P can be
partitioned into dn/2de sets P1, . . . , Pdn/2de such that

dn/2de⋂
i=1

conv(Pi) 6= ∅.

ut

2.3 An Improved Approximation Factor

In order to improve the approximation factor, we will now use an easy bootstrapping approach. A
Tverberg partition of depth r in Rd needs only (d + 1)r points. This means that after finding a
point of depth n/2d, we still have n

(
1− (d+ 1)/2d

)
unused points at our disposal. The next lemma

shows how to leverage these points to achieve an even higher Tverberg depth.

Lemma 2.6 Let ρ ≥ 2 and q(m, d) be a function such that for any m-point set Q ⊆ Rd we can
compute a point of depth dm/ρe and a corresponding pruned partition in time q(m, d).

Let P ⊆ Rd with |P | = n, and let β ∈ [2, n/ρ] be a constant. Define the target depth δ as

δ := dn/βρe. Then we can find α := dn(1−1/β)δ(d+1) e disjoint subsets Q1, . . . , Qα of P such that for each
Qi we have a Tverberg point ci of depth δ and a pruned partition Qi. This takes total time

O

(
(β − 1)ρ q(n, d)

d+ 1

)
.

Proof. Let P1 := P . We take an arbitrary subset P ′1 ⊆ P1 with dn/βe points and find a Tverberg
point c1 of depth δ and a corresponding pruned partition Q1 for P ′1. This takes time q(n, d), and
the set Q1 :=

⋃
Z∈P1

Z contains at most δ(d+1) points. Set P2 := P1 \Q1 and repeat. The resulting
sets Qi are pairwise disjoint, and we can repeat this process until

n− iδ(d+ 1) <
n

β
.

This gives

α ≥ i >
⌈
n(1− 1/β)

δ(d+ 1)

⌉
.

Thus, we obtain α points c1, . . . , cα with corresponding Tverberg partitions Q1, . . . ,Qα, each of
depth at least dn/βρe, as desired. ut

For example, by Theorem 1.5 we can find a point of depth dn/2de and a corresponding pruned
partition in time dO(1)n. Thus, by applying Lemma 2.6 with c = 2, ρ = 2d, we can also find
dn/(2dn/2d+1e(d+ 1))e ≈ 2d/(d+ 1) points of depth dn/2d+1e in linear time.

In order to make use of Lemma 2.6, we will also need a lemma that describes how we can
combine these points in order to increase the total depth. This generalizes a similar lemma by
Miller and Sheehy [13, Lemma 4.1].

7



Lemma 2.7 Let P be a set of n points in Rd, and let P =
⊎α
i=1 Pi be a partition of P . Furthermore,

suppose that for each Pi we have a Tverberg point ci ∈ Rd of depth r, together with a corresponding
pruned partition Pi. Let C := {ci | 1 ≤ i ≤ α} and c be a point of depth r′ for C, with corresponding
pruned partition C. Then c is a point of depth rr′ for P . Furthermore, we can find a corresponding
pruned partition in time dO(1)n.

Proof. For i = 1, . . . , α, write Pi = {Qi1, . . . , Qir}, and write C = {D1, . . . , Dr′}. For a = 1, . . . , r′,
b = 1, . . . , r, we define sets Zab as

Zab :=
⋃

ci∈Da

Qib.

We claim that the set Z := {Zab | a = 1, . . . , r′; b = 1, . . . , r} is a Tverberg partition of depth rr′ for
P with Tverberg point c. By definition, Z is a partition with the appropriate number of elements.
It only remains to check that c ∈ conv(Zab) for each Zab. Indeed, we have

c ∈ conv(Da) = conv

 ⋃
ci∈Da

{ci}

 ⊆ conv
( ⋃
ci∈Da

conv (Qib)
)

= conv
( ⋃
ci∈Da

Qib

)
= conv(Zab),

for a = 1 . . . r′, b = 1 . . . r.
As the partitions Pi and C were pruned, each Zab consists of at most (d+ 1)2 points. Thus, by

Lemma 2.2, each Zab can be pruned in time O(d5). Since |Z| ≤ n, the lemma follows. ut

Combining Lemmas 2.6 and 2.7, we can now prove Theorem 1.6.

Theorem 2.1 (Thm 1.6, restated). Let P be a set of n points in Rd. Then one can find a
Tverberg point of depth dn/2(d + 1)2e and a corresponding partition in time f(2d+1) + dO(1)n,
where f(m) is the time to compute a Tverberg point of depth dm/(d + 1)e for m points by brute
force, together with an associated Tverberg partition.

Proof. If n ≤ 2d+1, we solve the problem by brute-force in f(2d+1) time. Otherwise, we apply
Lemma 2.6 with c = 2 and ρ = 2d to obtain a set C of

|C| =
⌈

n

2dn/2d+1e(d+ 1)

⌉
points of depth dn/2d+1e for P with corresponding pruned partitions in time dO(1)n. We then use
the brute-force algorithm to get a Tverberg point for C with depth d|C|/(d+1)e and a corresponding
partition, in time f(|C|). Finally, we apply Lemma 2.7 to obtain a Tverberg point and corresponding
partition in time dO(1)n. Using that dadbee ≥ dabe and daedbe ≥ dadbee for a, b ≥ 0, we get that the
resulting depth is⌈ n

2d+1

⌉
·
⌈ |C|
d+ 1

⌉
≥
⌈⌈ n

2d+1

⌉ n

2dn/2d+1e(d+ 1)2

⌉
=

⌈
n

2(d+ 1)2

⌉
,

and the total running time is f(2d+1) + dO(1)n, as desired. ut

Instead of brute force, we can also use the algorithm by Miller and Sheehy to find a point among
the deep points. This gives a worse depth, but it is slightly faster.

8



Theorem 2.2. Let P be a set of n points in Rd. Then one can compute a Tverberg point of depth
dn/4(d+ 1)3e and a corresponding partition in time 2O(d log d) + dO(1)n.

Proof. For n ≤ 2d+1 we use the Miller-Sheehy algorithm to get a point of depth dn/2(d + 1)2e in
time 2O(d log d). Otherwise, we proceed as in the proof of Theorem 1.6 to obtain a set C of

|C| =
⌈

n

2dn/2d+1e(d+ 1)

⌉
Tverberg points of depth dn/2d+1e and corresponding pruned partitions in time dO(1)n. The Miller-
Sheehy algorithm then gives a Tverberg point for C of depth d|C|/2(d+ 1)2e in time |C|O(log d) =
2O(d log d). Finally, we apply Lemma 2.7. This takes time dO(1)n and yields a Tverberg point and
pruned partition of depth⌈ n

2d+1

⌉
·
⌈ |C|

2(d+ 1)2

⌉
≥
⌈⌈ n

2d+1

⌉ n

4dn/2d+1e(d+ 1)3

⌉
=

⌈
n

4(d+ 1)3

⌉
,

as claimed. ut

3 An Improved Running Time

The algorithm from the previous section runs in linear time for any fixed dimension, but the
constants are huge. In this section, we show how to speed up our approach through an improved
recursion, and we obtain an algorithm with running time dO(log d)n while losing a depth factor of
1/2(d+ 1).

3.1 A More General Version of the Lifting Argument

We first present a more general version of the lifting argument in Lemma 2.3. For this, we need
some more notation. Let P ⊆ Rd be finite. A k-dimensional flat F ⊆ Rd (often abbreviated as
k-flat) is defined as a k-dimensional affine subspace of Rd (or, equivalently, as the affine hull of
k + 1 affinely independent points in Rd). We call a k-dimensional flat F ⊆ Rd a Tverberg k-flat of
depth r for P if there is a partition of P into sets P1, . . . , Pr such that conv(Pi) ∩ F 6= ∅ for all
i = 1, . . . , r. This generalizes the notion of a Tverberg point.

Lemma 3.1 Let P be a set of n points in Rd, and let h ⊆ Rd be a k-flat. Suppose we have a
Tverberg point c ∈ h of depth r for pr(P ) := prh(P ), as well as a corresponding Tverberg partition.
Let h⊥c be the (d− k)-flat orthogonal to h that passes through c. Then h⊥c is a Tverberg (d− k)-flat
for P of depth r, with the same Tverberg partition.

Proof. Let pr(P1), . . . ,pr(Pr) be the Tverberg partition for the projection pr(P ). It suffices to show
that conv(Pi) intersects h⊥c for i = 1, . . . , r. Indeed, for Pi = {pi1, . . . , pili} let c =

∑li
j=1 λj pr(pij) be

a convex combination that witnesses c ∈ conv(pr(Pi)). We now write each pij = pr(pij) + pr⊥(pij),
where pr⊥(·) denotes the projection onto the orthogonal complement h⊥ of h. Then,

li∑
j=1

λjpij =

li∑
j=1

λj pr(pij) +

li∑
j=1

λj pr⊥(pij) ∈ c+ h⊥ = h⊥c ,

as claimed. ut

9



Lemma 3.1 lets us use a good algorithm for any fixed dimension to improve the general case.

Lemma 3.2 Let δ ≥ 1 be a fixed integer. Suppose we have an algorithm A with the following
property: for every point set Q ⊆ Rδ, the algorithm A constructs a Tverberg point of depth d|Q|/ρe
for Q as well as a corresponding pruned partition in time f(|Q|).

Then, for any n-point set P ⊆ Rd and for any d ≥ δ, we can find a Tverberg point of depth
dn/ρdd/δee and a corresponding pruned partition in time dd/δef(n) + dO(1)n.

Proof. Set k := dd/δe. We use induction on k to show that such an algorithm exists with running
time k(f(n) + dO(1)n). If k = 1, we can just use algorithm A, and there is nothing to show.

Now suppose k > 1. Let h ⊆ Rd be a δ-flat in Rd, and let pr(P ) be the projection of P onto h.
We use algorithm A to find a Tverberg point c of depth dn/ρe for pr(P ) as well as a corresponding
pruned partition pr(P1), . . . ,pr(Pdn/ρe). This takes time f(n). By Lemma 3.1, the (d− δ)-flat h⊥c is
a Tverberg flat of depth dn/ρe for P , with corresponding pruned partition P1, . . . , Pdn/ρe. For each

i, we can thus find a point qi in conv(Pi) ∩ h⊥c in time dO(1).
Now consider the point set Q = {q1, . . . , qdn/ρe} ⊆ h⊥c . The set Q is (d− δ)-dimensional. Since

d(d − δ)/δe = k − 1, we can inductively find a Tverberg point c′ for Q of depth d|Q|/ρdd/δe−1e ≥
dn/ρdd/δee and a corresponding pruned partition Q in total time (k − 1)(f(n) + dO(1)n). Now, c′

is a Tverberg point of depth n/ρdd/δe for P : a corresponding Tverberg partition is obtained by
replacing each point qi in the partition Q by the corresponding subset Pi. The resulting partition
can be pruned in time dO(1)n. Thus, the total running time is

(k − 1)(f(n) + dO(1)n) + f(n) + dO(1)n = k(f(n) + dO(1)n),

and since k = O(d), the claim follows. ut

In the journal version of this paper, we claimed an example application of Lemma 3.2 to obtain
a point of depth n/4dd/3e in time O(n log n + dO(1)n). However, this example was based on an
incorrect citation and the conclusion does not follow as claimed.

3.2 An Improved Algorithm

Finally, we show how to combine the above techniques to obtain an algorithm with a better running
time. The idea is as follows: using Lemma 3.2, we can reduce one d-dimensional instance to two
instances of dimension d/2. We would like to proceed recursively, but unfortunately, this reduces
the depth of the partition. To fix this, we apply Lemmas 2.6, 2.7 and the Miller-Sheehy algorithm.

Theorem 3.3 (Thm. 1.7, restated) Let P be a set of n points in Rd. Then one can compute a
Tverberg point of depth dn/4(d+ 1)3e and a corresponding pruned partition in time dO(log d)n.

Proof. We prove the theorem by induction on d. As usual, for d = 1 the problem reduces to median
computation, and the result is immediate.

Now let d ≥ 2. By induction, for any at most dd/2e-dimensional point set Q ⊆ Rdd/2e there
exists an algorithm that returns a Tverberg point of depth d|Q|/4(dd/2e+1)3e and a corresponding
pruned partition in time dα logdd/2en, for some sufficiently large constant α > 0.

Thus, by Lemma 3.2 (with δ = dd/2e), there exists an algorithm that can compute a Tverberg
point for P of depth dn/16(dd/2e + 1)6e and a corresponding Tverberg partition in total time

10



2dα logdd/2e + dO(1)n. Now we apply Lemma 2.6 with c = 2 and ρ = 16(dd/2e + 1)6. The lemma
shows that we can compute a set C of d16(dd/2e+1)6/(d+1)e points of depth δ = dn/32(dd/2e+1)6e
and corresponding (disjoint) pruned partitions in time dα logdd/2e+O(1)n. Applying the Miller-Sheehy
algorithm, we can find a Tverberg point for C of depth d|C|/2(d+1)2e and a corresponding pruned
partition in time |C|O(log d). Now, Lemma 2.7 shows that in additional dO(1)n time, we obtain a
Tverberg point and a corresponding Tverberg partition for P of size⌈

n

2 · 16(dd/2e+ 1)6

⌉⌈
16(dd/2e+ 1)6

2(d+ 1)2(d+ 1)

⌉
≥
⌈

n

4(d+ 1)3

⌉
,

since daedbe ≥ dabe for all a, b ≥ 0.

It remains to analyze the running time. Adding the various terms, we obtain a time bound of

T (n, d) = dα logdd/2e+O(1)n+ |C|O(log d) + dO(1)n.

Since |C| = dO(1), using logdd/2e ≤ log(d/2) + log(2dd/2e/d) ≤ log(d/2) + log(4/3), we get

T (n, d) ≤ dα logdd/2e+O(1)n+ dO(log d)n

≤ dα log d−α/2n+ dβ log dn,

for α large enough and some β > 0, independent of d. Hence, for large enough α we have

T (n, d) ≤ dα log dn = dO(log d)n,

as claimed. This completes the proof. ut

Thus, we can compute a polynomial approximation to a Tverberg point in time pseudopolyno-
mial in d and linear in n.

4 Comparison to Miller-Sheehy

In the table below, we give a more detailed comparison of our results to the Miller-Sheehy algorithm
and its extensions. In Section 5.2 of their paper, Miller and Sheehy describe a generalization of their
approach that improves the running time for small d by computing higher order Tverberg points of
depth r by brute force. The approximation quality deteriorates by a factor of r/2. No exact bounds
are given, but as far as we can tell, one can achieve a running time of O(f(d)n2) for fixed d by
setting the parameter r = d+ 1, while losing a factor of (d+ 1)/2 in the approximation.

Furthermore, even though it is not explicitly mentioned in their paper, we think that it is
possible to also bootstrap the Miller-Sheehy algorithm (for a better running time in terms of d,
while losing another factor of (d + 1) in the output). This is done by performing the generalized
procedure [13, Section 5.2] with r = d + 1, but using the original Miller-Sheehy algorithm instead
of the brute-force algorithm. Table 4 shows a rough comparison (ceilings omitted) of the different
approaches. Again, f denotes the running time of the brute force algorithm.

11



Algorithm Running time Depth

Theorem 1.5 O(n) n/2d

Miller-Sheehy nO(log d) n/2(d+ 1)2

Theorem 1.6 O
(
f(2d) + dO(1)n

)
n/2(d+ 1)2

Miller-Sheehy generalized (r = d+ 1) O
(
f(d)n2

)
≈ n/(d+ 1)3

Theorem 2.2 O
(
2O(d log d) + n

)
n/4(d+ 1)3

Miller-Sheehy bootstrapped dO(log d)n3 ≈ n/2(d+ 1)4

Theorem 1.7 dO(log d)n n/4(d+ 1)3

We should emphasize that for all dimensions d with 2d ≤ 2(d+1)2, i.e., d ≤ 7, our simplest algo-
rithm outperforms every other approximation algorithm in both running time and approximation
ratio. For example, it gives a 1/2-approximate Tverberg point in 3 dimensions in linear time.

5 Conclusion and Outlook

We have presented a simple algorithm for finding an approximate Tverberg point. It runs in linear
time for any fixed dimension. Using more sophisticated tools and combining our methods with
known results, we managed to improve the running time to dO(log d)n, while getting within a factor
of 1/4(d + 1)2 of the bound from Tverberg’s theorem. Unfortunately, the resulting running time
remains quasipolynomial in d, and we still do not know whether there exists a polynomial algorithm
(in n and d) for finding an approximate Tverberg point of linear depth.

However, we are hopeful that our techniques constitute a further step towards a truly polynomial
time algorithm and that such an algorithm will eventually be discovered—maybe even by a more
clever combination of our algorithm with that of Miller and Sheehy. An alternative promising
approach, suggested to us by Don Sheehy, derives from a beautiful proof of Tverberg’s theorem.
It is due to Sarkaria and can be found in Matousek’s book [11, Chapter 8]. It uses the colorful
Carathéodory theorem:

Theorem 5.1 (Colorful Carathéodory) Let C1]· · ·]Cd+1 ⊆ Rd, such that for i = 1, . . . , d+1,
we have 0 ∈ conv(Ci). Then there is a set C of d+ 1 points with 0 ∈ conv(C) and |Ci ∩ C| = 1.

Sarkaria’s proof transforms a d-dimensional instance of n points of the Tverberg point problem to
a Colorful Carathéodory problem in approximately dn dimensions.

The question now is whether such a colorful simplex can be found in time polynomial in both
d and n. This would lead to a polynomial time algorithm for computing a Tverberg point. Observe
that this would not contradict any complexity theoretic assumptions: an algorithm that finds such
a point does not necessarily have to decide whether a given point indeed is a Tverberg point.

The simplest proof of Colorful Carathéodory leads directly to an algorithm for finding such
a colorful simplex and works as follows: take an arbitrary colorful simplex. If the origin is not
contained in it, delete the farthest color and take a point of that color that together with the other
points induces a simplex that is closer to the origin. It is unknown whether this procedure runs in
polynomial time for both d and n. Settling this question would constitute major progress on the
problem (see [12,16] for work in this direction).

12



Yet another approach would be to relax Sarkaria’s proof and to try to formulate it as an
approximation problem, which might be easier to solve. However, it is not clear how to state such
an approximation to the Colorful Carathéodory problem in a way that leads to an approximate
Tverberg point. Perhaps via such a method, our algorithms can be improved further.

It is known that the problem of deciding whether a given point has at least a certain depth
is NP-complete [17]. It is possible to strengthen this result to show that in Rd+1, the problem is
d-Sum hard, using the approach by Knauer et al. [10]. However, this does not tell us anything
about the actual problem of computing a point of depth n/(d + 1). Such a point is guaranteed to
exist, so it is not clear how to prove the problem hard using “standard” NP-completeness theory.
Rather, we think that a hardness proof along the lines of complexity classes such as PPAD or PLS
(see Papadimitriou [14]) should be pursued.

Finally, a common issue with Tverberg point (and centerpoint) algorithms in high dimensions,
also pointed out by Clarkson et al. [4], is that the coefficients arising during the algorithm might
become exponentially large. While this is not a problem in our uniform cost model, for implemen-
tations of the algorithm it seems necessary to bound these. In particular, it would be interesting to
investigate the bit complexity of the intermediate solutions arising during the pruning process. As
an alternative approach, one might try to perturb the points in the process, thereby lowering the
precision of the coefficients. Additionally, one might have to introduce a notion of almost approxi-
mate Tverberg points, where the point that is returned does not have to lie inside all sets, but only
close to them.

Acknowledgments. We would like to thank Nabil Mustafa for suggesting the problem to us. We
also thank him and Don Sheehy for helpful discussions and insightful suggestions.

We would further like to thank the anonymous referees for their helpful and detailed comments.

References

[1] P. K. Agarwal, M. Sharir, and E. Welzl. Algorithms for center and Tverberg points. ACM Trans. Algorithms,
5(1):Art. 5, 20 pp., 2009.

[2] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proc. 15th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages 430–436, 2004.

[3] B. Chazelle. The discrepancy method: randomness and complexity. Cambridge University Press, Cambridge,
2000.

[4] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center points with
iterated Radon points. Internat. J. Comput. Geom. Appl., 6(3):357–377, 1996.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, Cambridge,
MA, third edition, 2009.

[6] L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol.
VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.

[7] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag, Berlin, 1987.

[8] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, second edition, 1993.

[9] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time.
Discrete Comput. Geom., 12(3):291–312, 1994.

[10] C. Knauer, H. R. Tiwary, and D. Werner. On the computational complexity of Ham-Sandwich cuts, Helly sets,
and related problems. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS
2011), volume 9, pages 649–660. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

[11] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

13



[12] F. Meunier and A. Deza. A further generalization of the colourful Carathéodory theorem. arXiv:1107.3380,
2011.

[13] G. L. Miller and D. R. Sheehy. Approximate centerpoints with proofs. Comput. Geom. Theory Appl., 43(8):647–
654, 2010.

[14] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. Journal
of Computer and System Sciences, 48(3):498 – 532, 1994.

[15] R. Rado. A theorem on general measure. J. London Math. Soc., 21:291–300, 1946.
[16] G. Rong. On algorithms for the colourful linear programming feasibility problem. Master’s thesis, McMaster

University, 2012.
[17] S.-H. Teng. Points, spheres, and separators: a unified geometric approach to graph partitioning. PhD thesis,

School of Computer Science, Carnegie Mellon University, 1992.
[18] H. Tverberg. A generalization of Radon’s theorem. J. London Math. Soc., 41:123–128, 1966.

14


