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A signature file organization, called the weight-partitioned signature file, for supporting
documentranking is proposed.It employsmultiple signature tiles, each of which corresponds
to one term frequency, to represent terms with different term frequencies. Words with the
same term frequency in a documentare grouped together and hashed into the signature tile
correspondingto that term frequency.This eliminates the need to record the term frequency
explicitly for each word. We investigate the effect of false drops on retrieval effectivenessif
they are not eliminated in the search process. We have shown that false drops introduce
insignificant degradationon precision and recall when the false-drop probability is below a
certain threshold.This is an important result since false-drop elimination could become the
bottleneck in systems using fast signature file search techniques.We perform an analytical
study on the performance of the weight-partitioned signature file under different search
strategies and configurations.An optimal formula is obtained to determine for a fixed total
storageoverheadthe storageto be allocatedto each partitionin order to minimizethe effect of
false drops on documentranks. Experimentswere performed using a documentcollection to
supportthe analytical results.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—
access methods; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval-retrieual models; H.3.6 [Information Storage and Retrieval]: Library Automa-
tion

OeneralTerms: Design, Experimentation,Performance

AdditionalKey Words and Phrases:Access method,documentretrieval, informationretrieval,
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1. INTRODUCTION

The signature file approach has been investigated quite extensively in the
last decade. It has been applied to a large variety of applications, including
textual databases such as news databases [Stanfill and Kahle 1986],

Part of this research was done while the first author was on sabbatical at the Online
ComputerLibrary Center (OCLC),Dublin, Ohio, from September,1992, to May, 1993.
Authors’ address:Departmentof Computerand InformationScience,The Ohio State Univer-
sity, 2036 Neil Avenue, Columbus,OH 43210-1277;email: {dlee; renl@cis.ohio-state.edu,
Permissionto make digital/hard copy of part or all of this work for personalor claasroomuse
is granted without fee provided that the copies are not made or distributed for profit or
commercialadvantage,the copyright notice, the title of the publication,and ita date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.
@ 1996ACM 1046-818W96/0400-O109$03.50

ACMTransactionson InformationSystems,Vol. 14,No. 2, April 1996,Pages109-137.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F226163.226164&domain=pdf&date_stamp=1996-04-01


110 ● D. L. Lee and L. Ren

text block ] . . . text . . . . ..databaae . . . I

word signatures:
text 001000110010

database 000010101001
block signature(V) 001010111011

Queries Query Signatures Results
1) retrieval 010001000011 ~ no match
2) database 000010101001 + match
3) information 001000111000 + false drop

Fig. 1. Signaturegenerationand comparisonbased on superimposedcoding.

multiattribute retrieval in relational databases [Aho and Unman 1979; Lee
and Leng 19901, multimedia office filing [Christodoulakis et al. 19861, and
chemical databases for DNA matching [Lipman and Pearson 1985].

Superimposed coding is the most common way for generating signatures
from a text. In superimposed coding, a text is divided into text blocks
containing the same number of unique, nontrivial words. Each word in a
text block is hashed into a word signature. A block signature is generated
by superimposing all word signatures generated from the block. In a query,
the query terms are hashed and superimposed into a query signature in a
similar way. Then the query signature is matched against each signature
in the signature file. Figure 1 is an example showing the generation of the
block signature from a text block.

The signature file is a filtering mechanism that will eliminate most, but
not all, of the text blocks that will not match the query. The first case
shown in Figure 1 illustrates this point. The query signature does not
“match” with the text signature in that some of the bits in the text
signature are zero while the corresponding bits in the query signature are
set to one. If the query term “retrieval” is indeed in the text, the query
signature would be one of the word signatures forming the text signature;
thus, every bit set in the query signature will be set in the text signature.
The second case shows a match, where for each bit in the query signature
set to one the corresponding bit in the block signature is also set to one.
The third case is a false drop. False drops are text blocks that the signature
file identifies as containing the query terms (i.e., a match), but indeed they
do not. They can be eliminated by further comparing the query terms with
the text blocks.

Compared to inverted files, the signature file approach has two major
advantages:

(1) lts storage overhead can be controlled easily and, in general, is very
low. Therefore, if only a limited space for indexes is available, the
signature length can be set so that the whole signature file will fit into
the given space.

(2) Its structure is wry simple. ‘Thus, it has low processing overhead on
insertion. Since signatures are conceptually organized as a sequential
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file, it is easy to partition a signature file for parallel processing

[Stanfill and Kahle 19861.

The signature file approach also has the following drawbacks:

(1) Its search speed is low compared to inverted files, since the signature
file has to be searched exhaustively if signatures are organized in a
single sequential file.

(2) A signature encodes the presence of terms in a text. Therefore, it can
easily support the Boolean retrieval model. However, in order to
support document ranking, term frequencies must be stored; this is
difficult to do on signatures, which are simple bit vectors.

(3) Signature files introduce false drops that are expensive to eliminate.

Recent research on signature files has addressed the improvement of
search speed, as exemplified by the partitioned signature file approach [Lee
and Leng 1989; 1990; Zezula et al. 1991]. This article addresses the last
two drawbacks of signature files listed above. We first present a technique,
called the weight-partitioned signature file, for implementing document
ranking with signature files. The technique we propose does not represent
term frequency values explicitly. Furthermore, it also avoids exhaustive
search on the signature file. An analytical study is performed on various
performance issues of the weight-partitioned signature file. We also present an
extensive evaluation on the degradation of retrieval effectiveness for the case
when false drops are not eliminated from the signature file.

Section 2 discusses the problem of false drops in signature tiles and the
motivation of this study. Section 3 defines the term weights and the
similarity formula under the vector-space model, The design of the signa-
ture file for supporting document ranking is outlined in Section 4. Section 5
presents an analytical study and the experimental results on the perfor-
mance of the weight-partitioned signature file under different search
strategies and storage configurations. Section 6 presents the conclusions
and outlines some problems for future research.

1.1 Problems of False Drops

False drops are an inherent property of signature files. The fake-drop
probability, defined as the ratio of false drops to the number of unqualified
signatures, is dependent on the size of the signatures and, thus, on the
storage overhead. The false-drop probability can be reduced arbitrarily by
using a longer signature length while keeping the number of distinct
keywords in a text block the same. However, to eliminate false drops
completely, it is necessary to retrieve the text and to perform pattern
matching between the query term(s) and the text after matching the
signature file. This process imposes a great penalty on the speed of
signature files. The cost of false-drop elimination is particularly acute for
large collections, since the number of false drops is proportional to the
number of signatures and, thus, to the size of the collection. Furthermore,
when queries are not highly selective, a large number of matches will be
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returned, and each of the matches has to be verified with pattern matching.
The high cost raises a serious concern that it will become the bottleneck in
retrieval, especially in systems employing fast signature search techniques
[Lee et al. 1994]. In other words, the search speed will be slow no matter
how fast the signature file itself can be searched.

This article investigates the feasibility of retaining the false drops
generated by the signature file. For Boolean retrieval, it is problematic,
since users are accustomed to the semantics of Boolean retrieval where
each document retrieved will satisfy the Boolean condition that the user
specifies. Compared to the Boolean model, retrieval in statistical models is
less predictable in that documents are retrieved based on their relative
ranking rather than on their absolute scores. Therefore, given a query, it is
difficult to tell why a document is retrieved without examining the other
documents. This makes the effect of false drops less observable to the user,
even if the document ranks are slightly perturbed by the false drops. This
article is based on the conjecture that, since document ranking is not a
precise process (i.e., only some of the retrieved documents are relevant to
the users), the addition of some “noise” or perturbation, due to false drops,
to the resulting document set should have a small impact on retrieval
effectiveness. If the conjecture is true, then the signature file approach will
become a very attractive technique for implementing document ranking.

2. TERM WEIGHTS AND SIMILARITY MEASURE

Term weights are determined by the tf X idf strategy [Salton and Buckley
1988]. (Table I summarizes the important symbols in this article. ) Pre-
cisely, the weight of term j in document i is defined as

U)i,j = tfi,j X idfi,

where tfij is the frequency of occurrence of term j in document i, and idfi is
the inverse document frequency of term j in the entire collection. The
similarity between a document and a query is based on the cosine measure,

(1)

where V is the vocabulary size, and i#Q~ is the weight of term j in the query,
defined in the same way as document term weights.

It is clear from Eq. (1) that the factor ~~.l w ~,j in the denominator is a
constant for each document, so it only affects the absolute scores but not
the ranks of the documents. Therefore, this factor is not used in our study.
The factor ~~.l w~j is very expensive to compute, because the weight of
every term in a document has to be computed, not just for the terms
specified in the query. Note that this factor cannot be precomputed for each
document because the weight depends on idf, which changes as documents
are inserted into and deleted from a collection. Therefore, we approximate
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Table I. Major Symbols

c
D
D,
d
d,
1,
I,(D)
idf,
1,
I,(D)
m
m,

:
n

p(rn, w, s)
P,
Q
9,
s
St
~~
SF,
(“)( D,,Q)

w
w,
i
z~’,.,

Total storageconstraint
A document
ith documentin the database
Numberof terms in documentD
Numberof terms in document D,
Average numberof terms in a documentwith term frequencyi
Numberof terms in D with term frequency i
Inversedocumentfrequencyof term j in the database
Total number of signatures in SF,
Number of signatures in SF, for document D
Signature length
Signature length in SF,
Abbreviation for m ~, , m.
Total numberof documents
Numberof tf groups
False-drop probability given m, w, and s
False-dropprobabilityof a signatureof file tfi
Query
False-drop probability of a signature against file tf,
Number of words hashed into a signature
Number of words hashed into a signature in SF,
Abbreviation for s,, , s.
Signature fiIe corresponding to term frequency i
Similaritybetween documentD, and query Q
Term frequencyof term j in document z
Size of the document vocabulary
Weight of a word signature (number of bits set to 1)
Weight of a word signature in tfi (number of bits set to 1)
Abbreviation for w~, ., Wn
Weight of term j in document i
Weight of term j in query Q
General term ranking weight

the normalization factor with the square root of the number of terms in a
document (i.e., the term weights are set to one when the normalization
factor is computed). The effect of the approximation has been shown to be
negligible compared to the exact normalization factor [Lee and Chuang
1994]. In summary, the similarity is computed as

(2)

where d{ is the number of terms in document Di.

3. WEIGHT-PARTITIONED SIGNATURE FILE

One problem of signature files is the difficulty in encoding term fre-
quency information. Croft and Savino [19881 evaluated several ap-
proaches, which range from not representing term frequencies at all to
approximating term frequencies with the number of text blocks contain-
ing the term. None of the approaches allow exact representation of term
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frequencies. Wong and Lee [19901 proposed a method to represent the
exact values of term frequencies by using a separate signature file for
terms with the same term frequency. It is done by first grouping terms
with the same term frequency in a document. Then, signatures are
generated from each group and stored in the signature file correspond-
ing to that term frequency. In this article we follow a similar approach.
The main difference is that our approach uses superimposed coding,
whereas Wong and Lee use an encoding scheme that, unlike superim-
posed codes, does not introduce any false drops.

Figure 2 is an example of the signature generation process, and Figure 3
illustrates the general design of the retrieval system. A document first goes
through a preprocessing stage where common words are removed and
keywords stemmed. Then, the keywords of a document are grouped accord-
ing to term frequency. Signatures are generated from keywords in each
group as in a traditional signature file, but signatures generated from
different groups are stored in different signature files. The group corre-
sponding to term frequency i is denoted by tfi,and the corresponding
signature file is denoted by SFi. During a search, the query signature is
compared to every SFi. If a match is found in SFI, the term frequency of the
term producing the match has a term frequency equal to i, which can be
used in computing the document score.

The algorithms for generating and searching the signature files are given
in Algorithms 1 and 2, where n and N denote, respectively, the number of
tf-groups and the number of documents in the collection. They are shown at
the conceptual level for the purpose of illustration only and are not
necessarily implemented as described in real implementations:

Algorithm 1. Signature File Generation.

1. sort keywords and tabulate term frequencies of keywords;
2. fori=l tondo
3. for every s keywords in tf-group i do
4. generate signature and insert into SFi;
5. end (for}
6. end {for)

Algorithm 2. Signature File Search.

1. for all term j in Q do
2. obtain idf of term j;
3. generate signature for term j;
4. end {for}

fori=l toNdo
:: forj = 1 ton do
7. for ail term k in Q do
8. if term k’s signature matches D~s signature in the jth partition then
9. increment Di’s score by i by j x idfk x Wo,k
10. break;
11. end {ifl
12. end {for}
13. end {for}
14. end (for}
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Fig. 2, Example of weight-partitioned signature files,

m00CUMENT
COLLECTION

I PARSER I
i

I SIGNATUREGENERATORI

SF,

SF2

SF3

SCORE MATCH

i I ( I ( QUERY
1 RANKINGI t t

SIGNATURES

B
I

[
SIGNATUREGENERATOR1

E&El+
QUERY

Fig. 3, Retrieval system based on weight-partitioned signature files.

In the weight-partitioned signature file, multiple occurrences of the same
keyword in a document will generate only one word signature and, thus,
are represented in the signature file only once. This is different from the
traditional method where a keyword will be represented as many times as
the number of text blocks containing it (although multiple occurrences of a
keyword within the same text block will be collapsed). This collapsing of
multiple occurrences into a single representation in the signature file
significantly reduces the storage overhead for long documents; on the other
hand, the distribution of a document’s signatures into several signature
files causes additional overhead. Furthermore, this method does not always
search all of the signatures in the signature tile; whenever a match is
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Fig. 4. Effects of search strategies.

found, the search can proceed to the next document, since a query signa-
ture will find at most one match (ignoring false drops) within a document,
This explains the break statement in step 10 of Algorithm 2.

Since the signature file is partitioned, the partitions can be searched in
different orders and may have different signature lengths. The effects of
different choices are explained in Sections 3.1 and 3.2.

3.1 Search Strategies

A search can start from the signature file with the highest term frequency
and move toward the signature file with the lowest term frequency, or vice
versa. We refer to these two approaches, respectively, as the HL (high to
low) and LH (low to high) methods. There are two contradicting factors
affecting the merits of these two search orders, as shown in Figure 4.
Suppose signatures x and z are false drops matching the query term being
searched. If the search starts from the highest term frequency, z will be
identified as a match. In this case, the effect of the false drop on the
document score will be very high since z has a high term frequency. On the
contrary, if the search starts from the lowest term frequency, the false drop
x will have a small effect on the document score, since the term frequency is
low. This suggests that LH is better than HL. However, there is a
contradicting factor due to the fact that the number of signatures at high
term frequencies is much less than that at low term frequencies, owing to
the Zipfian distribution of terms among term frequencies. If we further
assume that the probability that a true match occurs at SFi is the same for
all i, then, on the average, the chance of encountering a false drop before a
true match is found is smaller in the HL approach than in the LH
approach. In Figure 4, if y is a true match, then there will be much fewer
signatures to the ‘right” than to the “left” of y. Consequently, the probabil-
ity that the search will arrive at y without hitting any false drops is higher
if the search starts from the “right” (i.e., high term frequency). Further-
more, the search speed is improved, since once a match is found the search
can proceed immediately to the next query term. This factor is magnified if
the user has a tendency to specify query terms that have high term
frequencies (i.e., true matches tend to skew toward high term frequencies).
This suggests that the search should start from the highest term frequency.
The performance of these two search strategies is studied in Section 4.
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3.2 Optimal Signature File Configuration

When the signatures are partitioned among several files, it is possible to
use different signature configurations for different partitions. Since a false
match at high term frequencies affects the document scores more than
those at low term frequencies, it is desirable to reduce the false-drop
probabilities at high term frequencies. On the other hand, if we set lower
false-drop probabilities for the signatures with low term frequencies, the
absolute number of false drops will be large, since there are more signa-
tures at the low-frequency end. Therefore, there are conflicting factors
affecting the determination of the signature lengths for the partitions. For
a given storage overhead (i.e., a fixed total size for all of the signature
partitions), we want to obtain an optimal way of allocating the storage to
the partitions so as to minimize the effect of false drops on precision and
recall. This is investigated in Section 4.

4. ANALYTICAL RESULTS

In superimposed coding, there are four major parameters related by the
following formula [Roberts 1979]:

p = (1 – (1 – w/m)8)W,

where p is the false-drop probability; w is the weight of a word signature
(number of bits set by a word); m is the signature length; and s is the
number of words hashed into a block signature. It has been shown that, in
order to minimize the false-drop probability for a given storage overhead,
the number of bits set in a block signature must be equal to half of the
signature length, and

w = (1/in 2)2s(1 – 2-1’S)ln(l/p), (3)

m = (1/in 2)2s ln(l/p). (4)

Formula (3) can be approximated by

w = (1/ in 2)log, (l/p), (5)

when s = 5. These formulas are used later in this article to determine the
values of m, s, and w when two of these parameters are given.

To improve clarity, we sometimes use p(m, w, s) instead of p to indicate
the relationship between p, w, m, and s. With this notation, the false-drop
probability for signatures in partition SFi is given by p(mi, wi, si), or pi.

In the experiment, p is a variable that is varied for each experiment run.
The signature length, m, is a design parameter that is fixed for each test
collection. Choosing a length that fits into the native word length of the
machine is most efficient, but the native word length is short and, thus,
will limit the achievable minimum false-drop probability. Furthermore, a
low false-drop probability with a short signature length entails an ex-
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tremely small number of words to be hashed in a signature, resulting in a
large number of signatures and disk accesses (if buffering is not used). On
the other hand, a long signature length is less efficient to manipulate and
will generate underutilized signatures for short documents.

4.1 HL versus LH Search Strategies

In this section we analyze the performance of the HL and LH search
strategies. The performance of these two strategies depends on the distri-
butions of false and true drops. The distribution of false drops further
depends on the signature lengths of the partitions. In order to compare
these two methods, we assume that the distributions and the signature
lengths are uniform.

In the search algorithm, a signature file SFi is treated as a single unit. A
match with any signature in SFi results in t~ equal to i. We need to find the
probability of a false match when we compare a random signature with all
of the signatures in SFi. We denote the false-drop probability against SFi
as qi to distinguish it from the usual false-drop probability, which is the
probability for two signatures to match combinatorially.

LEMMA 4.1.1. The false-drop probability against tfi is given by

qi= 1 – (1 ‘~(77Zi, Wit Si))J’=l#(7?2i, Wi, Si),

where li is the number of signatures in SFti

PROOF. This is clear. ❑

We may use different mi, wiy and si for different tf-groups. AS long as

we have

Osl–pls. ..spnslsl.

From Zipf’s Law, we know that 11 2 12 s - “ . a 1..1 and 11 > 1.. This
implies that

(1 –p~)~’s ..- s (1 –pn_J/’-’ and (1 -p,)~’s (1 -pn)~’,

or, equivalently, ql 2 . . . z q.. 1 and ql 2 q.. These relations among the qi
imply that false-drop probabilities are higher at the low tf end than at the
high tfend. This turns out to be very important in our analysis. One thing
we want to point out is that pl 2 . . . z p. does not necessarily mean that
ml ?... = mm (neither does the other direction hold), since there are other
parameters such as si and wi involved.

LEMMA4.1.2. Given a random word signature, the expected tf at which a
match is found can be obtained by S?) for HL and @l”) for LH, where the
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definitions of S~n~and T~n) are given as follows:

(1) For HL: S’;’ = qii + (1 – qi)S~.* for i=n, .e .,2,

Sy’=ql.

(2) For Ill.’ T~n’= iql + (1 – q,)T~~)l for i=l, . . ..1. l,

Tf’ = nq..

Furthermore, S: ~? T~’.

PROOF. In the HL method, the probability that there is a match in tf~ is

qn. If there is a match in tf., the expected tf value is n. Otherwise, we have
to check the next lower tf group. Therefore, we get the following recurrence
relation:

S:)= q.n + (1 – qJS$!l.

For t/’l, there is no lower tf group; the expected tf value is given by ql. T$ )
for the LH method can be derived in a similar way. That S: )2 T~ ) is clear
from the definitions of S~) and T?). ❑

LEMMA 4.1.3. Suppose a word appears in a document with tf = j; then
HL yields the following expected tfi

j + ((?l ‘J)qn+ (n ‘j– l)q. -l+ “ . “ ‘qj+l);

and LH yields

j– ((j– l)ql+ (j – 2)~z+ . . . ‘qj-~),

when high-order terms such as qiqj and qlqJqk are dropped.

PROOF. We will use the formulas in Lemma 4.1.2. The key in Lemma
4.1.3 is that the search will stop at tfk, where k 2 j for HL and k s J for LH.

(1) For HL: S~i = q~i + (1 – q~)s~-l for i=n, ...,2,

Sy’=ql.

By eliminating S$”) for i = n – 1, ~. ~, j from the above equations, we have

S:’ =q.n + (n – l)qn. ~(l ‘q. ) + . . . + (j+ l)q, +*(l ‘q. ) . . . (1 ‘qj+z)

+j(l ‘qn)(l – q,.-l) . . . (1 ‘qj+~).

Multiplying out everything and dropping small high-order terms, we get

s;) =nq R+... +(j+l)q~+l +j–j(q. +.. .+q, +l)

=j+((n– j)q”+(n –j–l)q~.l +.. .+qj+l).
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120 ● D. L. Lee and L. Ren

(2) For LH: As in HL, we have

T~)=j– ((j– l)q~+ (j–2)q~+ --- +qj-~).

Since false drops exist, it is clear that in the above two expressions S:) zzj
is an overestimation and that T~) s j is an underestimation. El

Since we know that the exact tf value is j, we can check the errors
introduced by these two methods:

lS$)-jl ‘(?Z ‘j)q. + (?2 -j- l)q..~+ . . . +qj+~,

/T$)-~/ ‘(~- 1)9, + (j- 2)9, + . . . +~j-.~.

It is easy to see that IS:) –jls IT~) –jl, provided n –j=j – 1. Therefore, S:)
is a better approximation of the true tf value ifj z (n + 1)/2.

The number (n + 1)/2 is a very conservative estimation. In fact, since q ~
(the false-drop probability for SFI) is typically much larger than q. (the
false-drop probability for SFJ, the tf value above which the HL approach
yields better results than the LH method is much smaller than (n + 1)/2,
owing to the Zipfian distribution of terms among term frequencies. In the
following discussion, l@) is used to denote the number of terms in D with
term frequency i, and ii(D) is used to denote the number of signatures in
SFi for document D. Given a document D and the parameters mi, si, and wi
for each tfi, we have the relation ii(D) = Ii(D)/si. Zipf’s Law can be
mathematically approximated as [Salton 19891

2
Ii(D) = II(D) for

i(i+l)

From formula (6), we can get

For simplicity, we will use 1. to denote l=..

Lmmm 4.1.4. Suppose Zipf’s Law holds for
n=30 and

i>l. (6)

(7)

our document collection,

(8)

Then for any term occurring in the document with tf ? 4, St) is a better
approximation of the tf value than T?’.

~OOF. Without loss of generality, we assume that the average number of
terms in tflfor our document collection is II and that tf = j. Then, using (6)
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and (7), we have

IS:’ ‘jl = (n - j)l~. + (n -j - 1)1.-lp.-, + . . ~ + l,+~j+~

2(n– J)llpn +..,+_ 2z~
=x .— --.– !?&!

n sn (j + l)(j + 2) Sj+,

. P,/2(n–j) 2(n–j–1) 2

121

si, -— ----
\

+- —–—--—+ ...+
‘J n (n - l)n )(j+ l)(j+ 2) ‘

]T~’-jl= (j-l) q,+(j-2)qz +.. ”+q,.1

P]

(

2(j – 2)
2 11

)
(j–l)+-lxx- +.. .+ti121z ,

s,

Note that Ilpj /sj is a common factor in both formulas. A simple computa-
tion will show that \S~’–jl=lT~)–j] for anyj = 4. ❑

Condition (8) is not restrictive. Clearly, it is true when the signature
lengths are uniform. We will show later that this condition also holds for
our optimal signature configurations. From the proof, we can see that tf >4
is still a conservative result. In our experiment with the TREC subset, HL
is better than LH for j > 2 using the configuration n = 30, m = 29, s = 2,
and w = 10. Lemma 4.1.3 can be used to find the exact j when the
statistical data about the document collection are available.

Lemma 4.1.3 considers the situation where the query term indeed exists
in the documents. We now consider the case when there is no such word in
the document (i.e., the match is a false drop).

LEMMA 4.1.5,

S~’ and T?) all
In the case of a false drop, the expected tf value given by
have the form

~ iq, + high-order terms.
~=1

PROOF. Eliminating all S~n) for i = n – 1,..~,1 from part (1) of Lemma
4.1.2, we get

S~) = ~ iq, + high-order terms.
1=1

Similarly, we can obtain the expression for T~’. ❑
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THEOREM4.1.6. If the false-drop probabilities pi and terms per signature
Si satisfy

then the HL search strategy is superior than the LH method.

PROOF. From Lemma 4.1.4, we can see that, for true matches, HL
produces tf values that are closer to the true values than LH does on the
average.

On the other hand, Lemma 4.1.5 indicates that the expected errors
created by these two methods on a false match all have the form ~ p=~iqi +
high-order terms. The difference between the errors introduced by the two
methods is negligible, considering that the normal value of qi is typically
very small, Combining these two facts, we can claim that HL is better than
LH. ❑

We will see in Section 4.2 that, in the optimal signature configuration,
(1) the signature lengths of the partitions are increasing and (2) the
false-drop probabilities are decreasing from low to high term frequencies.
Under this condition, it is clear that HL is even more desirable than LH.

4.2 Optimal Signature Configuration

We have implicitly assumed so far that every signature partition uses the
same signature length m, the same w, and the same s. However, for the
weight-partitioned signature file, different partitions may be assigned
different signature lengths, different signature weights, etc. This impliee
that, for a given total storage overhead, we can control the amount of
storage allocated to each partition by changing the configuration of that
partition. Thus, for a fixed total storage overhead, there is an optimal way
of assigning signature lengths (or storage) to each partition to minimize the
impact of false drops on precision and recall. This section derives the
optimal signature configurations.

Since different SFi may have different signature configurations and,
hence, different false-drop probabilities, the weighted average of the false-
drop probabilities of all SFi is used to characterize the false-drop probabil-
ity of the whole signature file. The effective false-drop probability can be
written as

(9)
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where m denotes ml, m2, . . . , m~. In this formula, l@) and Ii(D), for i =
1, ... n, are document-dependent variables. We will use Zipf’s Law to
eliminate them. Applying (6) and (7) to (9), we get a formula for the
document-independent, effective false-drop probability:

When ml=. .=m.,sl=. ... s., andwl=. ..=wn(e.,al lSF,usese the
same signature configuration), we can easily check that

p(fi, fi, ~)=p(ml, wl, sl) =’. -=p(mn, wn, sn).

In other words, the uniform signature structure is just a special case of the
nonuniform signature structure. We now present a result about the rela-
tion between the uniform signature length and the nonuniform signature
length approaches.

LEMMA 4.2.1. FOF-a signature file with parameters m, s, and w, reducing
s by a factor of A has the same effect on false-drop probability as increasing
m by a factor of A, where A > 1. Furthermore, increasing or decreasing m
and s by the same factor does not change the fake-drop probability.

PROOF. We will use the false-drop probability formula

P(m, W, S)=(l – (1 – wlm)s)k.

In fact, for small w and s (relative to m), we have

(,-;)s=[(l_;G]m’w]u’’’m= w,wm/m

Thus, we have p(m, w, s) = (1 – e-u’’’m)w. Now increasing m by a factor of
A, we get

p(Am, W, s) = (1 - e-w~’k~)uc

Reducing s by a factor of A, we get

P (m , w , s/A) = (1 – e-wi’l’)lm)’ = (1 _ e-ws/Am)w,

We can reach the second conclusion in a similar way. •l

To obtain formulas to determine the optimal signature configurations for
the partitions, we first obtain a formula for the general case, where each
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partition is associated with a general ranking weight W.1 Then, we can
apply the formula to the case where t~ is used as the ranking weight (we
called this the TF-partitioned signature file). Theorem 4.2.4 determines the
optimal signature configurations for the signature partitions to minimize
the effect of false drops on retrieval effectiveness. The condition under
which the theorem applies is similar to that for the false-drop probability
formula [Roberts 1979] (i.e., when Wi, Si, and li are small relative to mi,
which is true for most applications).

It is well known that for the signature file approach the space needed is
proportional to ln( I/p). Given the space constraint, we first compute the
optimal false-drop probabilities for all SFi. From the false-drop probabili-
ties, we can compute the other parameters, such as signature lengths, bits
per word, etc.

We assume that document terms are partitioned into different groups,
say, Gl, G2, . “ . , G., and that each term in Gi carries a weight Wi. Without
loss of generality, we can assume that WI s .0. s W.. The corresponding
signature files are denoted as SF1, SF2, “ “ “ , SF., as before. Under these

assumptions, the storage overhead for a document is ~ ~=~li m i, where li is
the number of signatures in SFi, and mi is the length of signatures in SFi.

LEMMA 4.2.2. For false matches, the expected weights given by S?) and
T~) all have the form

~ Wiqi + high-order terms.
icl

PROOF. Similar to Lemma 4.1.5. •l

LEMMA4.2.3. Suppose the storage constraint is ~ ~=1limi = C. In order to
minimize the effect of false drops, the relations between different false-drop
probabilities pi are

Wi
~p(ml, Wiy S1) = ~P(mj9 wj, sj) for I<i<j Sn,

1 J

( C(ln 2)2+ ~;=l sJ~ ln(W.sk/W~J
p(mn, Wn, s.) =exp –

z:=, 1,s, )

PROOF. We know from the previous result that the expected tf value is

1In order to distinguishthis weight, which is used ta determinethe importanceof a match in
the vector-space model, from the signature weight, which is the number of onesin a signature,
the former is hereatler called ranking weight.

ACMTransactionson InformationSystems,Vol. 14,No. 2, April 199S.



Document Ranking on Weight-Partitioned Signature Files . 125

for a false drop. We will minimize the function ~ f-l Wiq ~under the storage

constraint ~ ~=~11ml = C.
The existence of a minimum value is clear, since (1) the constraint

defines a compact set in space R“ and (2) the function is continuous. It is
also not difficult to see that the minimum value cannot be achieved on
boundaries. First, from Lemma 4.1.1, we have

i=l i=l

There are too many variables to handle. We first eliminate all mi. From
formula (4), we have

ml = (1/in 2)2S~10g,(l/P*).

The constraint can be rewritten as

C = ~ .limi = ~ (1/in 2)2S~l[10g~(l/PJ).
1=1 1=1

Lagrange’s method can be used to obtain the minimum. Let

i )F(A, ii, ti , 3) = A ~ (1/in 2)2sililog~(l/Pi) – C + ~ Wll~l.
\i=, I ,=]

The partial derivatives with respect to pi and A are

aF 1,S1
-– A—+Wili— i=l, . . ..n.

ap 1 Pi

aF n
;~ = Z (Inn 2)25il,10g~(l/p,) - C.

,=1

Now set all of the partial derivatives to zero, and cancel li from the ith
equation for i = 1, . ~“ , n. We have

W,
~pi+A=O i=l, . . ..n.

1

~ (1/in 2)2S11110g,(Pl) + C = O
1=1

(11)

(12)
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Eliminating A from the ith and jth equations, we get

W,
~p(m,, Wi, S, ) = ~P(mj, ‘j, ‘j)

1 J

for 1 S i 5 j 5 n. Settingj = n, we get

WnSi

‘i = WiS~ ‘n”

Substituting these equations into Eq. (12), we have

Solving for p., we get

I ()Wnsk
C(ln 2)2 + ~ sJ~ln —

w&sn
k=l

p. = exp –
12!=, lks, “ •1

There are several things worth pointing out. First, since WI s . . . s Wn,
we have

These relations ensure that HL is better than LH from Lemma 4.1.4.
Second, it is a little surprising that the signature file size li disappeared
in

WI
;P(mi7 ‘i, Si) = 5p(T71j, Wj, Sj).

k Sj

This can be explained intuitively by the fact that there are two conflicting
factors: large 11 means more false drops, thus requiring more storage to be
assigned to tfl; on the other hand, with a fixed space, we cannot assign too
much storage to tfl. The optimal method we are presenting will give us an
optimal way of allocating storage among all tf-groups.

THEOREM 4.2.4. Under the same assumption as in the previous lemma, to
minimize the effect of false drops, the signature length mi, bits per word wi,
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and words per signature si must satisfy

. 127

(13)

where i=l, . . ..n.

PROOF. From Lemma 4.2.3, we know for 1< i s j < n that

I

(1

wns~
C(ln 2)2 + ~ s~~hln ‘—

Wi W] W#~
k=l

;: p, = “s: P,, p. = exp –
1 J --1~:=’ 1,s, ‘- .

If we let j = n, we get pi = (W.Si / Wis.)p.. This implies that

-1

()
C(ln 2)2 + ~ SililIl ~~

Wns, k=l

“ = W@~ ‘Xp – )~~z~ 1$3, “

From formulas (3), (4), and (15), we arrive at

[

n

(---)Wnsk
C(hi 2)2 + ~ sk~khi

1 11 HWiS”
Wksn

rn,=- —-siln —=—
k=l

ln2 2
S~ in — + ——

p, ln2 2 W=SI )zi=, lhsh ‘

1 1
w,= --–-- si(l – 2-1/sl)ln —

in 2 Pi

with some simple algebraic operations. •l
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In order to use Theorem 4.2.4, we need to decide on C, si, and li. Note that
only C’ and Si are design parameters, since .?i = rIi /sil, which is determined
by the document collection. C can be determined from the storage overhead
desired. When C is fixed, the other parameters, namely, si, need to be
determined. The selection of si needs some consideration. Suppose in a
document collection that each document has on the average Ii terms with
term frequency i. Then, a factor of ZI should be used as SI to make sure we
hash approximately the same number of words into a signature. For
example, the TREC subset has on the average 105 terms in 11. Then, SI = 5
is a good choice since each signature in SFI will contain 5 terms. On the
other hand, SI = 8 will be a bad choice since one of the signatures will
contain only one word. After we select s ~ = s, si = rmin(s, Zi)l is the logical
choice for SF’i, where i = 2, . . . , n. Finally, since we have sili = rzil, the
optimal formulas (13) and (14) can be simplified as

(15)I Nwns~
C(ln 2)2 + ~ r~klh—

1

()

WIS” w~s ~
k=l

mi=~ Si in — +
W~S[ 1E;=l m ‘

[
()
W=sk

C(ln 2)2 + ~ r~klh—
1

()

WiS~ Wksn
k=l

“=ln2
‘S1(1 – 2-1”1) in — +

W~Si 1x~=lrzkl “ ’16)

Although it is natural to use different signature lengths in the weight-
partitioned signature file method, it is difficult in practice (e.g., in terms of
programming effort) to use different signature lengths for different SFi
because the signature lengths must be memorized for signature generation.
A better alternative is to use the same signature length for all signature
partitions, but with different si values. The next corollary gives an optimal
signature file configuration in which all signatures have the same length.

COROLLARY4.2.5. Suppose the storage constraint is C. Then the following
signature file configuration will minimize the effect of false drops:

H
m

m=min{fil, o.” , m“}, Si = ‘*ii~ for i=l, . . ..n.
?iiI

1
wi. —

in 2
S1(1 – 2-1’s’)

I ( )]Wnsk
C(h 2)2 + ~ Skzhh —

()WiS~ Wksnk=l
.ln — +

WnSi ~;., lksk
for i=l, . . ..n.
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where li = [Ii /sll and where Wi, rni, and iii satisfy Theorem 4.2.4.

PROOF. We know from Lemma 4.2.1 that increasing or decreasing m and
s by the same factor simultaneously will not change the false-drop proba-
bility. We first use Theorem 4.2.4 to compute all rni and ~i. Then, we select
the shortest signature length (or whichever we prefer) as our new uniform
signature length m and obtain Si by scaling down 3i by the factor m /m,. The
weight of each term, w,, is the same as in Theorem 4.2.4. ❑

We can see that Theorem 4.2.4 and Corollary 4.2.5 both depend on
I . . . In, the sizes of the term frequency groups. These values can be
d~term~ned by taking the averages of the term frequency group sizes over
the document collection. Alternatively, we can use Zipf’s Law to get an
approximation of 12, . . ~, 1. from Il. From (6) and (7), we get

Then, we can use Theorem 4.2.4 to determine mi and W, and to generate the
signature files.

The general result can now be applied to the TF-partitioned signature
file using the term frequencies as the ranking weights. That is, Wi = i in
Eqs. (13 )–( 16). This amounts to assigning weights to a match in proportion
to the term frequencies. Since false drops occurring at high term frequen-
cies will have a large negative impact on the retrieval effectiveness, we
want to allocate more storage to high-term-frequency partitions by increas-
ing their weights.

4.3 Effect of False Drops on Document Ranks

Another application of Lemma 4.2.3 is on false-drop elimination. False-drop
elimination is expensive to perform. When false-drop elimination is not
performed, we want to verify analytically that reducing the number of false
drops beyond a certain threshold yields no gain in precision and recall.
Furthermore, if p denotes the exact value of a parameter, then p‘ denotes
the approximate value of the parameter derived from the weight-parti-
tioned signature file (i.e., with false drops). For example, tf’ (t ) denotes the
tf value of term t obtained in the search process, and tf(t) denotes the true
tf value oft in the document; @‘(D, Q) denotes the similarity obtained from
the weight-partitioned signature file, and WI, Q) denotes the actual
similarity if no false drops exist. @’(D, Q) is also used to denote the
expected value of O(D, Q), for simplicity. The expected 8’(D, Q) is a
theoretical representation of@ ‘(D, Q), on the average.

LEMMA4.3.1. Given a query Q, the difference between the true similarity
and the expected similarity of a document D, obtained using the weight-
partitioned signature file, is a linear combination of qi.
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PROOF. We divide the query terms into two groups: Q = QI U Q2, where
Q, = D fl Q and Qz = Q \D. The true similarity between document D and
query Q is given by

and the expected
file method is

~,Q, tf(t) x idf(t)
@(D, Q) =

&
9

similarity obtained by the weight-partitioned signature

~,EQ,tf’ (t) x idf(t) + ~t=Q2tf’ (t) x idf(t)
@’(LI,Q)= rd

Due to errors caused by false drops, the tf-value obtained by the HL
method may be larger than the true tf-value, although the difference is
typically small. The formula for the expected tf values of the terms in QI is
given by Lemma 4.1.3, that is,

tf’ (t) – tf(t) = ((n – tf(t))qn + (n – tf(t) – l)qn-~ + . . . + qtf(t)+l).

And the expected tf-value for elements of Qz is given by

tf’ (t) = ~ iq~.
i=l

The right-hand sides of these two expectations are linear combinations of qi
for a fixed query Q and document D. From the above formulas, we have

@’(n, Q) – @(~, Q)

~tGQI (~f’ (t) - ~~(t)) x ~~~(~) + ~,EQ2 (~f’ (~)) x W(t)
.

r d r d

=2
idf(t)
~ (tf’ (t) - tf(t)) + ~

idf(t)

r
~ (tf’ (t)),

tEQl tEQz r

which is clearly a linear combination of qi since tf ‘(t) – tflt) for t E QI and
tf’(t) for t E Qz are for every term t in Q. ❑

From Lemma 4.3.1, we can see that the expected @’(D, Q) approaches
G(D, Q) as qi approach zero. For query Q, the vector-space model assigns a
score @(D, Q) to each document. For simplicity, assume that no two
documents receive the same score. In this way, a complete ranking of all
the documents in !3 is produced. Under this assumption, the following
theorem can be obtained:
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THEOREM 4.3.2. For a document collection 9 and a set of queries 9, there
is a constant E such that, when the false-drop probabilities for all SFi are
smaller than E, the expected precision and recall resulting from searching
the weight-partitioned signature file for Q E 9 will be the same as that
without false drops. In other words, reducing the false-drop probabilities
beyond this Eyields no gain in precision and recall.

PROOF. For each query Q E 9, the vector-space model assigns a unique
score @(n, Q) to each document ~. Sorting all documents by decreasing
order of their scores, we obtain a complete ranking. Use ~~ to denote the
minimum difference between two adjacent documents. In other words,

SQ = min{@(Di, Q) – @(.Di+l, Q) I i 2 1},

Finally, let 8 = min{~~ I Q G 9]. Since no two documents receive the same
score, 8 is a positive number. From Lemma 4.3.1, for each document D and
query Q, we have

lim (@’(D, Q) – 8(D, Q)) = O.
q,-o

Thus, there must be a positive number ● such that, when all of the
false-drop probabilities are less than ●,

Os @’(D, Q) – O(D, Q) <8.

This means that the expected ranking order given by 6)’(D, Q) will be
identical to the ranking order given by WI, Q). Reducing false-drop
probabilities beyond this ● will not alter the precision and recall values. •l

It is not always the case that no two documents receive the same score,
but we can modify Theorem 4.3.2 to imply there is a number ● such that, if
all false-drop probabilities are less than .s,

@l(D1, Q)>@(D2, Q) + @’(Dl, Q)>@ ’(D2, Q).

Theorem 4.3.2 does not give any method to compute the threshold ● . The
main dit%culty is that we do not have a prior collection of queries. Even
with this knowledge, obtaining this number is not simple. Constant update
of the collection makes it even more complicated to predict. Sampling or
experimentation may be a practical method to obtain this threshold ●.

5. EXPERIMENTAL RESULTS

The criteria for retrieval effectiveness are precision and recall. The goal of
the experiments is

(1) to observe the extent to which false drops can be tolerated without
causing unacceptable degradation to recall and precision,
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Table II. Assignmentof SignatureLengths

Term frequency Multiplying factor

1 1
2 2

3-29 4
30 8

(2) toconfim theanalfiical results ontheeffectiveness of the LHand HL
search strategies, and

(3) to observe the performance of various signature length assignment “
methods.

Experiments were performed with a document subset extracted from the
TREC collection [Harman 1993a]. The full TREC collection supplied by
NIST consists of about 2GB worth of articles. Since the fill collection
exceeded the resource of our computing environment, a subset, hereafter
called the TREC subset, of 10,000 Wall Street JournaZ articles from 1987,
with a raw size of about 27MB, was used.2

In the experiments, a set of 25 standard queries was used; each of the
queries came with a standard relevance judgment. The precision and recall
values are obtained as follows, First, the standard queries are run on the
collections. The ranked outputs of the queries are then compared to their
respective list of relevant documents. Finally, the precision and recall
values are calculated and averaged over all of the queries. In the computa-
tion, the recall values are rounded to the nearest 0.05 increment, and
interpolation is used to obtain the precision values for all 21 recall points
(from O to 1, at 0.05 increments). Note that, owing to interpolation, the
precision at the zero recall point is actually the precision of the recall point
that is nearest to zero. The 21 pairs of values can then be plotted in a
precision and recall graph. This procedure is commonly used in evaluating
text retrieval methods [Harman 1993b; Salton and McGill 1983]. For
clarity and conciseness, we further average the 21 precision values to
obtain the average precision for each set of parameters used in the
experiments. In order to observe the effects of false drops on precision,
recall, and storage overhead, we used a very wide range of false-drop
probabilities in the experiments. In practice, the false-drop probability is
typically below 1%.

Three different signature length assignment methods are tested in the
experiments. The first two are derived from the optimal formulas (Eqs. (13)
and (14)) using (1) term frequencies as ranking weights of the signature
partitions (denoted as TF in Figures 5–7) and (2) uniform weights (denoted
as U). The third method assigns signature lengths based on the data in
Table II.

2The subsetwas extractedat the Online ComputerLibrary Center (OCLC),Dublin, Ohio.
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This method is based on the intuition that longer signature lengths
should be used for higher term frequencies to reduce false drops occurring
at high TF partitions. However, the multiplying factors are arbitrarily
chosen. The inclusion of this method provides a data point with which the
other two methods can compare. This method is denoted as EXP in Figures
5–7.

Note that, in all experiments, the maximum term frequency is set to 30.
For large collections (used in experiments described later), there may be
many terms with term frequencies greater than 30 and thus are mapped to
tf = 30, This may result in a larger number of terms for tf = 30 (or
whatever ceiling was chosen).

The storage overhead is used as the main controlling parameter in the
experiments. Storage overhead is measured by the size of the signature file
divided by the total size of the documents after stemming and common-
word remoual. This measures the true storage overhead attributable to the
signature file mechanism (as opposed to the space reduction achieved by
stemming and common-word removal). When the raw collection size is
used, the storage overhead is much lower. For instance, in the TREC
subset, the storage overhead calculated using the raw collection size is
typically only half of the storage overhead calculated using our method. For
a fixed storage overhead, the signature lengths and the other related
parameters are computed based on the three methods described above.

5.1 Performance of HL and LH Strategies

Figure 5 compares the average precision of the HL and LH search
strategies using the TREC subset. It is clear that the HL method is
consistently better than the LH method, as predicted by our analysis. The
difference is large for high false-drop probabilities (i.e., low storage over-
heads), but narrows down as the false-drop probability decreases. In
general, the gap between the HL and LH methods increases when the
number of false drops increases. This explains the large gap in the EXP
method, because the EXP method produces the largest number of false
drops given a fixed storage overhead. Since the HL method is much better
than the LH method, we will only show the performance of the HL method
in subsequent discussion.

5.2 Comparison of Signature Length Assignment Methods

The performance of the three signature file generation methods for the HL
search strategies is shown in Figure 6. We can see from the figures that the
EXP method is consistently the worst in all of the test runs, whereas the
uniform and optimal methods give much better performance. Furthermore,
the optimal method is the best everywhere. In fact, the LH approach in the
optimal method is as good as the HL method in the uniform method. This
confirms our previous discussion that the optimal method utilizes the space
resource more effectively.
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5.3 Effect of False Drops on Retrieval Effectiveness

We can see from the figures that, although the average precision in general
improves as false-drop probability decreases, there is no observable im-
provement on retrieval effectiveness beyond a certain threshold. For the
TREC subset, the average precision reaches the perfect level (when there
are no false drops) when the storage overhead is about 379o. According to
Figure 7, this corresponds to roughly 0.01’% false-drop probability and
about 150 false drops generated from a query.

5.4 Number of False Drops and False-Drop Probability

Figure 7 shows the average number of false drops produced by a query and
the weighted false-drop probability. The former is obtained by counting the
total number of false drops in each run and then dividing it by the number
of queries in each run. The latter is computed from the analytical formula
(Eq. (9)). We can see that the analytical and experimental data are very
consistent with each other. The uniform and TF methods are almost
identical in the number of false drops, as well as in false drop probability.
The EXP method is much worse than the other two methods.

6. CONCLUSION AND FUTURE WORK

This article presents a general technique for implementing the vector-space
statistical model with signature files. In this technique, terms in a docu-
ment are grouped according to their term frequencies and hashed as a
group into the signature file with the corresponding term frequency. Thus,
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136 . D. L. Lee and L. Ren

z 1e+06
i

FDs EXP -

1

FDs OPT -+---
F S (U =.

FDP EXP * -
(FDP OP -A--

T

$ 1000oo L ---.. \.-
% ------

3 1000 -
~
a 100 - -n..-%.-. 1
g

10 .x.......“.-’-,’-.......*.-..
$ ++.-... .-..-..%.....
IL 1 %%.. ““”%”’””-”’.--’-..............%.-....,--.=-
6 ---- --.’....-.,...- 1*,:.,>,m.-
!

0.1 ..
-.,..--.--.,,-

0.01 -.->.~-.-.,-
2 -*.=...,:-,- I

. ...-..>ml

-w.. ..........___.,<,,-,. .... 4

- %,.-,
0.001I ---::

0.1 0.15 0,2 0.25 0.3 0.35 0.4 0.45
storageoverhead

Fig. 7. Number of false drops (FDs), and weighted false-dropprobability (FDP) (I-IL).

when a match is found, the signature file in which the match occurs will
indicate the term frequency of the matching term. This avoids storing the
term frequency of each term explicitly,

We have presented an analytical study of the performance of two search
strategies, namely, the LH and HL methods, and have obtained an optimal
way of assigning signature lengths, and thus storage, to the signature
partitions to minimize the effect of false drops on precision and recall.
Experiments were performed to support our analytical study.

The work presented in this article is a significant step toward a viable
way of supporting document ranking with signature files. The signature
file technique will become much more competitive in speed if it does not
have to perform false-drop elimination. Another significant observation
from the experiments is that a storage overhead of around 25% gives a
precision that is quite comparable to the ideal case where there is no false
drops. There is little gain in retrieval effectiveness if a larger storage
overhead is used. However, there are still many interesting problems to be
investigated. For instance, we are investigating search heuristics to im-
prove search performance further and to reduce the effect of false drops
[Wong and Lee 19931. We are also investigating methods that use the
signature file to produce a coarse ranking and to apply exact ranking
(without false drops) only to the top-ranked documents, thus obtaining low
storage overhead and high precision [Knaus and Schaube 1993].
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