
Object-oriented techniques promise to improve the
software design and programming process by provid-
ing an application-oriented view of programming
while facilitating modification and reuse. Since the
software design crisis is particularly acute in parallel
computation, these techniques have stirred the inter-
est of the scientific parallel computing community.
Large-scale applications of ever-growing complexity,
particularly in the physical sciences and engineering,
require parallel processing for efficiency. Since its
introduction in the 1970s, Fortran 77 has been the
language of choice to model these problems, due to
its efficiency, its numerical stability, and the body of
existing Fortran codes. However, the introduction of
object-oriented languages provides new alternatives

for parallel software development. Fortran 90 adds
modern extensions (including object-oriented con-
cepts) to the established methods of Fortran 77.
Alternatively, object-oriented methodologies can be
explored through languages such as C++, Eiffel,
Smalltalk, and many others. Our selection among
these required a language that was widespread and
supported across multiple platforms (particularly
supercomputers) with strong compiler optimizations.
C++, while not a “pure” object-oriented language, was
our choice, since it meets these criteria.

Currently, the most promising technique for parallel
programming combines a standard high-level language
with an explicit message-passing library for interproces-
sor communication. However, languages can also be

88 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

Object-Oriented
Parallel
Computation
for Plasma
Simulation

Charles D. Norton, Boleslaw K. Szymanski, and Viktor K. Decyk

http://crossmark.crossref.org/dialog/?doi=10.1145%2F226239.226257&domain=pdf&date_stamp=1995-10-01


experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

extended with new constructs in direct support of par-
allelism. The principal explicitly parallel Fortran-based
language is High Performance Fortran (HPF), which
introduces directives for data placement and align-
ment. Additional research languages include Fortran
D, Fortran 90D/HPF, Fortran M, Opus, and Vienna
Fortran. Some of these languages support operations
on virtual processors,   which separate the problem par-
titioning and mapping from the physical processors.
Research activities in object-oriented parallel languages
include ACT++, C**, Charm++, Compositional C++,
Concert, Concurrent Aggregates, Concurrent C++,
COOL, DC++, DCE++, HPC++, Mentat, Parallel C++,
pC++, POOL-T, and µC++. These languages support
shared memory (address space is common to all proces-
sors), distributed memory (address space is local to
each processor) and/or workstation cluster parallel
environments.   Each language adds extensions, typi-
cally to C++ and often with complex runtime systems, to
support task and/or data parallel computation.

Many of the research-based modifications for paral-
lelizing Fortran and C++ have very promising ideas, yet
the proposed techniques may not receive overwhelm-
ing support unless clear, empirical, and measurable
evidence establishes their benefits. Although valuable
progress continues, until these methods become com-
monplace, as demonstrated by supercomputer manu-
facturer support and standards committees, most
developers may remain apprehensive about adopting
new languages. Thus, the future of scientific program-
ming will depend on establishing standards and recogniz-
ing educational trends in software design. Even though

Fortran 77 remains the most popular language in sci-
entific computing, larger codes and generalization of
computational kernels for reuse create an incentive to
consider languages that support abstractions and mod-
ularity. Many of the new features of Fortran 90 can sup-
port object-oriented programming methodology. C++
has become an informal standard, as evidenced by
widespread training programs in academia and indus-
try.   As a result, we believe that standard Fortran 90 and
C++ with standard message-passing libraries provide an
attractive basis for parallel programming.

We evaluate object-oriented programming meth-
ods in high-performance computing by discussing
our software development experiences with plasma
Particle in Cell (PIC) simulation skeleton codes.
Beginning with the paral-
lel Fortran 77 version, we
convert the application
into an object-oriented
form using the Intel
Paragon, IBM SP1/SP2,
and Cray T3D distributed
memory parallel comput-
ers. We also show how
Fortran 90 supports
object-oriented program-
ming by mirroring every
language feature used in
the sequential C++ pro-
gram. Our objective is to
determine if the object-
oriented paradigm is

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 89

Figure 1.
Particle/Field interac-
tion in the plasma PIC
algorithm (two-dimen-
sional illustration). Red
arrows indicate nonlo-
cal charge/force data
operations. Blue arrow
operations are local
due to the slab parti-
tioning. Orange
arrows show the new
particle positions.



actually beneficial in high-performance scientific
computation. Our study focuses on the practical
issues encountered in software development on par-
allel machines, including programming abstractions,
modifiability, portability (across message-passing
libraries, machines, and compilers), numerical accu-
racy, and computational efficiency.

Overview of Plasma PIC Simulation
When a material is subjected to conditions under which
the electrons are stripped from the atoms, acquiring
free motion, the mixture of heavy positively charged
ions and fast electrons forms an ionized gas called a
plasma. Ionization can be introduced by extreme heat,
pressure, or electrical   discharges. Fusion energy is an
important application area of plasma physics research,
but more familiar examples of plasmas include the
Aurora Borealis, neon signs, the ionosphere, and solar
winds. The plasma Particle in Cell simulation model
[1] integrates in time the trajectories of millions of
charged particles in their self-consistent electromagnet-
ic fields. The method assumes that particles interact
with each other not directly, but through the fields
they produce. Particles can be located anywhere in the
spatial domain; however, the field quantities are calcu-
lated on a fixed grid. In our example application, only
the electrostatic (coulomb) interactions are included.

The General Concurrent Particle in Cell (GCPIC)
algorithm [8] partitions the particles and grid points
among the processors of the multiple-instruction, mul-
tiple-data (MIMD) distributed-memory machine. The

particles are evenly distributed among processors in the
primary decomposition, which makes advancing parti-
cle positions and velocities in space efficient. A sec-
ondary decomposition partitions the simulation space
evenly among processors, which makes solving the field
equations on the grid efficient. As particles move
among partitioned regions, they are passed to the
processor responsible for the new region. For compu-
tational efficiency, field/grid data on the border of par-
titions are replicated on the neighboring processor to
avoid frequent off-processor references. We illustrate
the interaction between the particles and the field/grid
in Figure 1 to show the data dependency that must be
modeled in our class design. Particles scatter charge
and gather force data to/from their nearest grid points.
Force components from each dimension are required
to advance particles to new positions.

We perform a Beam-Plasma instability experiment
in which a weak low-density electron beam is injected
into a stationary background plasma of high density,
driving plasma waves to instability. Beam-Plasma
interactions cause particle bunching, forming poten-
tial wells that are self-enhanced. This leads to particle
trapping, creating vortices in phase space. The ions
are modeled as a fixed neutralizing background.
Although the number of particles per processor will
vary during this simulation, the load remains suffi-
ciently well balanced. This is not the case for all kinds
of plasma simulations, where dynamic load balancing
may be required [4]. (Our codes that support dynam-
ic load balancing of the particles by rebuilding the

90 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

Figure 2.
Plasma PIC
computation
loop overview:
Diagnostic
operations and
extensions for
load balancing
are not shown

Figure 3.
Object-oriented
class hierarchy
version 1: The
classes utilize
inheritance in
the definition
of specific
particles and
use-relationships
to support
interaction
among
abstractions



experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

primary decomposition will not be discussed in this
article.) An experiment such as this can be used to
verify plasma theories and to study the time evolution
of macroscopic quantities such as potential and veloc-
ity distributions. The GCPIC method can model a
variety of sophisticated plasma simulations.

The Fortran 77 program is organized into two major
sections, referred to as the initialization section and the
loop section, as shown in Figure 2. The initialization sec-
tion builds the particle and field partitions, constructs
tables, and creates the initial particle distribution and
charge density deposition. The loop section calculates
the electric field forces using the Fast Fourier Trans-
form (FFT) and Poisson’s Equation, advances the par-
ticles under these forces, and finds the new charge
density for the field at the grid points. Each loop rep-
resents a simulated time step during which diagnostics
such as field, kinetic, and total energy are monitored.

Object-Oriented Simulation in C++ and Fortran 90
Various object-oriented designs have been proposed
in plasma simulation [5, 10]. The following issues
motivated our design:

• The impact of Fortran 77 program structure on
class design.

• The interdependence between efficiency and
class design.

• Numerical reliability compared to Fortran 77.
• The appropriate usage of C++ features and their

expressibility in Fortran 90.

Plasma simulation inherently depends upon interac-
tions between particles and fields. We seek to model
this relationship from a physical and computational
perspective with object-oriented methods. Although
the Fortran 77 version is well organized, non-object
oriented languages do not establish a relationship
between the data and characteristic operations. We
discuss how this relationship was captured in our C++
and Fortran 90 programs.

Analysis of the application and the Fortran 77
source identifies the field/grid, particles (individual-
ly and collectively), and diagnostics as potential mod-

eling abstractions. However, organization of the class-
es requires consideration of their interaction (use-rela-
tionship) and commonality (inheritance).

Figure 3 shows the class hierarchy for the initial ver-
sion of the one-dimensional C++ program. The Parti-
cle class, through its public methods (access
functions), provides the interface for position and veloc-
ity information used by derived classes such as Elec-
tron. Inheritance implies that the Electron class has
all the properties of the Particle class in addition to
the specific features that define an electron. The Plas-
ma class provides operations on the collection of elec-
tron objects that make up the plasma. Therefore, the
Plasma class uses objects from the Electron, Grid,
EnergyDiagnostic, and VirtualParallelMa-
chine (VPMachine) classes. The Grid class provides
operations to deposit charge and solve Poisson’s Equa-
tion for the electric field, which requires an interaction
with the Plasma class. The EnergyDiagnostic class
is used by both the Plasma and Grid classes to record
this diagnostic. Additionally, there is a need for classes
that provide specialized services such as random num-
bers and timing measurements.

Although the original object-oriented version mod-
els the PIC simulation accurately, refinements and
extensions can be introduced to ease the transition to
higher dimensional codes. Furthermore, the original
version makes salient assumptions regarding the sim-
ulation, such as fixed particle and field partitions,
which may not hold in more general experiments that
require dynamic load balancing. Hence, we designed
an alternative class hierarchy in which the definition
of a particle and the design
of the simulation space have
been reorganized. The new
design reused much of the
original code. We believe
that such a refinement
process is a necessary part of
proper class hierarchy design
for software generalization
and modification.

Figure 4 shows the modi-
fied class hierarchy, which

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 91

Figure 4. Object-
oriented class hier-
archy version 2:
This alternative
model generalizes
particles and fields
by extending the
original model with
template classes



uses templates to operate on a vector space of parti-
cles. A particle is generalized by a vector that repre-
sents the position/velocity components in the
corresponding dimensions. These vectors are inherit-
ed into a ChargedParticle class, which enhances
the physical description of a particle. The plasma is
modeled as a vector space of charged particles by the
Vector<ChargedParticle> template class, which
allows for vector operations on the collective group of
particles. (Templates allow classes to be parameter-
ized by an object type.) The Species class maintains
specific information about the collective initial distri-
bution conditions of particles, such as their thermal
and drift velocities. The EnergyDiagnostic class
collects and monitors plasma parameters associated
with system energy. The VPMachine class aids in
portability by parameterizing and encapsulating all of
the machine-specific features.

The Field consists of computational grid points
of Grid<T> template class objects, which unify
force/charge data in multiple dimensions. A Parti-
tionRegion object maintains field partitioning
information across the processors. Operations associ-

ated with depositing charge and cal-
culating the background ion density
are members of the Field class,
since they modify the field. The
Plasma class performs collective

operations on the vector space of particles. These
include specifying spatial/velocity distributions,
advancing particles under field forces,   and redis-
tributing particles when processor domain bound-
aries are crossed. Another PartitionRegion
object specifies plasma partitions, since particles may
be distributed differently from the field across
processors. The initialization and loop sections of the
program are shown in Figures 5 and 6, respectively.
Note that the vector space of electrons is specified
using two separate objects. Since mathematical vector
operations on electron velocities (such as scalar mul-
tiplication) must not influence position components,
this distinction is necessary.

The program classes directly represent physical
and computational constructs through an organiza-
tion that allows for interaction via use-relationships.
Properly designed classes and objects allow straight-
forward modifications and extensions to the basic
model. Additionally, the design of proper abstrac-
tions aids in the readability of the code. Readability in
Fortran 77 can be difficult, since the underlying data
is not bound to the associated routine and hence

92 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

// Program Objects are Created
VPMachine vpm;
Vector < ChargedParticle > elec_pos( PTMAXNP ), elec_vel( PTMAXNP );
Species backgnd( N_BKELE_X, N_BKELE_Y, BKTHERMAL_VEL_X, BKTHERMAL_VEL_Y,

BKDRIFT_VEL_X, BKDRIFT_VEL_Y );
Species beam( N_BMELE_X, BMELE_Y, BMTHERMAL_VEL_X, BMTHERMAL_VEL_Y,

BMDRIFT_VEL_X, BMDRIFT_VEL_Y );
Plasma plasma;
EnergyDiag energy;
Field field( vpm, energy );

// Object Methods Partition the Plasma and Field, Distribute Particles and Deposit Charge
vpm.ParInit();
vpm.startclk();
plasma.Partition( vpm );
field.Partition( vpm );
plasma.UniformSpcMaxwellVelDist( elec_pos, elec_vel, backgnd, vpm );
plasma.UniformSpcMaxwellVelDist( elec_pos, elec_vel, beam, vpm );
field.ChargeDeposition( elec_pos, plasma, ChargedParticle ::e_charge );
field.BackgroundIonDensity();

// Calculate Electric Field and Exchange Field Border Force/Charge
field.CalcEField( vpm, energy );
field.InitChargeDensity();
energy.ke( 0.0 );

// Push Particles and Update to New Partitions
plasma.Advance( elec_pos, elec_vel, field, energy, vpm );
plasma.UpdateDistribution( elec_pos, elec_vel, vpm );
// Deposit Charge and Ion Background with Energy Diagnostic
field.ChargeDeposition( elec_pos, plasma, ChargedParticle ::e_charge );
field.BackgroundIonDensity();
energy.tote( energy.pe() +  energy.ke() );
vpm.endclk( curOFile );

Figure 5. C++ initialization
section sketch (two-dimensional
program)

Figure 6. C++ loop section
sketch: Method arguments
illustrate use-relationships
among classes



experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

large parameter lists are often required. The trade-off
in using C++ involves the complex interdependence
between class abstraction and its impact on efficiency;
nevertheless, appropriate usage of language features
can achieve satisfactory efficiency.

The new features of Fortran 90 provide support
for the object-oriented methodology. An initial inves-
tigation modeled a curve-fitting application [3]. Our
goal was to determine whether more extensive scien-
tific computations could be represented. To address
this issue, we have rewritten the initial sequential ver-
sion of the one-dimensional C++ plasma PIC simula-
tion code in Fortran 90 based on the C++ class
hierarchy of Figure 3. We give examples of the For-
tran 90 statements that can support object-oriented
programming.

Figure 7 compares the C++ Particle class to an
equivalent Fortran 90 module that allows for the
encapsulation of data with associated operations.
Access to the position and velocity data can be
restricted to the functions defined as part of the class
or module by using the protected and private
qualifiers. Function overloading (which allows func-
tions to share the same name but perform different
operations based on the arguments) is modeled
using the optional qualifier with the present
statement in Fortran 90. Operator overloading is also
supported.

Typically, the Fortran 90 use statement makes the
public part of a module accessible to subprograms.
However, inheritance can be supported through the

use statement, which permits all or part of a module
to be used in another module. C++ classes also have
special member functions called constructors and
destructors, which allow the automatic initialization
and destruction of objects. Inheritance complicates
the definition of constructors and destructors. For-
tran 90 does not support the automatic initialization
of module variables; however, this can be simulated
by calling a user-defined Create routine once a vari-
able is declared. Destructors would be more cumber-
some to simulate through subroutine calls, since they
would have to be provided in every context under
which a module variable could be destroyed. There-
fore, we did not model this concept in our Fortran 90
simulation. C++ static class variables can be modeled
in Fortran 90 by using the save qualifier in a mod-
ule; thus, only one copy of the module data will be
used across multiple module instances. A snapshot of
inheritance and static variables is shown in Figure 8.

The friend construct in C++ gives a class direct
access to the private area of another class, usually for
reasons of efficiency. Although Fortran 90 does not
support friends, this property can be emulated using
the use only statement, which selects specific parts
of the module for usage. For instance, the particle
advance routine is very time consuming, requiring
field/grid information to update particle positions.
By using C++ friends, Grid class data becomes direct-
ly accessible to the Plasma class advance routine,
improving efficiency. The Fortran 90 Plasma_m
module definition (not shown) uses the use only

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 93

class Particle {
     protected:
          float xpos, xvel;
     public:
          void pos_x( float pos ) { xpos =pos; }
          float pos_x() const { return xpos; }
};

// C++ Object Creation and Usage Example
Particle part;
part.pos_x(10.4);
val = part.pos_x();

! Fortran 90 Object Creation and Usage Example
type (particle) part
void = pos_x(part. 10.4)
val = pos_x(part)

module Particle_m
     type particle
         private
         real xpos, xvel
     end type particle
     contains
     real  function pos_x(part,pos)
     type (particle) part
     real, optional::pos
     if (present(pos)) then
          part%xpos = pos
          pos_x = 0.
     else
          pos_x = part%xpos
     endif
     end function pos_x
end module Particle_m

class Electron : public Particle {
     public:
          static const float charge;
};

module Electron_m
        use Particle_m
        real,  parameter :: CHARGE = –1.0
        save
end module Electron_m

Figure 7. C++ parti-
cle class and Fortran
90 particle module
sketch: Data can be
encapsulated in For-
tran 90 by using the
derived type within
a module. The module
acts as a class, provid-
ing an interface to
member data through
routines defined with-
in the contains
statement

Figure 8. Sketch of
inheritance and static
data usage in C++ and
Fortran 90



statement on the Grid_m module field data, simulat-
ing C++ friends. However, in contexts where the
Grid_m module field data should not be accessible,
any other module routines of interest must be used
explicitly via the use only statement. Modeling the
friend construct of C++ in this way was the only awk-
ward construct encountered.

Dynamic memory allocation allows for flexibility in
data structure design and manipulation. In C++, the
new statement is used to dynamically allocate memo-
ry. In Fortran 90 we can declare a variable to be
allocatable where the allo-
cate statement in a module sub-
routine provides physical memory.
Array operations in Fortran 90
allow mathematical operations on
entire arrays. In C++, the associat-
ed operators must be overloaded
explicitly with boundary checking,
since no effort is made to guard
against illegal indexing of arrays.
An example is shown in Figure 9.

The methods for performing
operations on C++ objects and on
Fortran 90 module variables are
related. In C++, the member func-

tions are bound to the object using the syntax
object.MemberFunction(). In Fortran 90, variables
are created from modules (within the scope of the
use statement) using the type statement; hence they
are not bound to module functions and subroutines.
The module variable must be provided as an argu-
ment to its functions and subroutines using the syntax
call MemberFunction(variable, ...). This resembles
the manner in which the C++ method calls are actual-
ly translated by most compilers. Additionally, Fortran
90 performs type checking on function arguments so

the proper variable type is applied
to a valid associated module mem-
ber. A small illustration of this is
shown in Figure 10 for the C++
and Fortran 90 programs.

It should be noted that certain
important features of C++ have
not been used. In particular, we
did not use virtual func-
tions, which allow the runtime
selection of the routine that will
be called on an object. Fortran 90
can support virtual functions by
the generic subprogram fea-
ture. When an argument is pro-

94 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

class Grid {
     protected:
          float *g, *fx;
     public:
          friend class Plasma;
          Grid() { q = new float[SYSLEN_X];
                      fx = new float[SYSLEN_X];
          }
          void AddIonDensity() {
          for (register int i=0; i<SYSLEN_X; i++}
                        q[ i ] += Ion::qion;
          }
};

module Grid_m
use Ion_m
real, dimension(:), allocatable::q
real, dimension(:), allocatable::fx
save
contains
subroutine  Grid_Create()
     allocate (q(NX),stat=ierr)
     if (ierr.ne.0) void=FreeStoreException()
     q = 0.
     allocate (fx(NX),stat=ierr)
     if (ierr.ne.0) void=FreeStoreException()
     fx = 0.
end subroutine  Grid_Create
real function  Grid_AddIonDensity()
     q = q + qion
     Grid_AddIonDensity = 0.
end function  Grid_AddIonDensity

  end module Grid_m

main()
{
Plasma plasma; Electron elec[NP];
Grid grid; EnergyDiag energy;

plasma.Advance(elec, grid, energy, NP);
grid.depositCharge(elec, Electron::charge, NP);
}

program beps1k
use Electron_m, EnergyDiag_m, Plasma_m
use Grid_m, only: Grid_Create, Grid_Setup,
1Grid_InitChargeDensity, Grid_AddIonDensity,
2Grid_CalcEField, Grid_DepositCharge

type (particle) elec(NP)
type (energy) energ
call Plasma_Advance(elec,energ,NP)
call Grid_DepositCharge(elec,CHARGE,NP)

Figure 9. Dynamic memory
allocation: A portion of the
Grid class is shown with the
corresponding Grid module
illustrating dynamic memory
allocation. Array operations are
also illustrated in the
Grid_AddIonDensity routine

Figure 10. Illustration of C++
object and Fortran 90 variable
creation and usage



experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

vided to a generic subprogram, the appropriate rou-
tine is executed based on the argument’s type.

Program Development Experiences Across Com-
pilers and Machines
Our development environment consists of the Intel
Paragon XP/S, IBM SP1/SP2, and Cray T3D distrib-
uted memory MIMD parallel machines. Each
Paragon node contains two or more i860 computa-
tional processors and a message-passing processor.
Interprocessor communication over the rectangular
mesh uses the NX message-passing library. The SP
series uses RS6000 processors interconnected via a
high-performance switch (as well as Ethernet) with
the MPL communication library. The T3D supports
shared and distributed memory paradigms using
DEC Alpha processors over a three-dimensional
toroidal-wrap topology. Communication on the T3D
uses a modified version of PVM. The Paragon and SP
series (and soon T3D) also support the Message Pass-
ing Interface (MPI) standard. We used GNU g++ and
Intel C++ on the Paragon, IBM xlC on the SP1/SP2,
and Cray C++ on the T3D.

The Fortran 77 versions of the plasma simulations
compiled without difficulty across these machines,
due to the extensive support provided for this lan-
guage in scientific computing. A major goal of our
C++ development effort was to maintain machine-   and
compiler-independent versions of the programs. Modifi-
cations to system files were introduced to support g++
on the Paragon; also, template usage required special
attention in code generation across compilers.

The non-template based one-dimensional PIC pro-
gram performed properly under v2.4.5 of the GNU
g++ compiler on the Paragon, but when recompiled
using v2.5.7, incorrect energy diagnostics were report-
ed. Although porting the two-dimensional template-
based program from the SP1 to the Paragon was
straightforward, numerical errors arose in the tem-
plate references on the Paragon, which disappeared
in v2.6.1 of g++. These compiler inconsistencies result-
ed in five months of lost development time. The Intel
C++ compiler performed well in our two-dimensional
and three-dimensional template-based programs.

The IBM SP1/SP2 and xlC C++ compiler per-
formed extremely well; however, the SP1 would hang
indefinitely, failing to release the processors, after
large simulations executed to completion. Although
this issue could not be experimentally characterized,
IBM representatives stated that recent system software
releases have resolved this problem. In fact, this issue
did not occur on the SP2. Template instantiation and
usage were never a problem with the xlC compiler.

The Cray T3D C++ 1.0 compiler could not instantiate
template classes used across multiple files. Interestingly
enough, the identical program did compile correctly on
the Cray Y-MP. Cray responded to our difficulty and
installed Cray C++ 1.0.3.1 in December 1994. The tem-
plate class instantiation problem was corrected, yet
problems with the creation of template functions still

persisted. We removed the template functions from the
source program to force compilation, but the exe-
cutable would not run on the T3D. The identical pro-
gram works correctly on the Paragon and the SP series.
Our difficulties with the C++ compiler on the T3D
remain unresolved as of June 1995. Software problem
reports have been filed and are under investigation.

Experiences in Portability
The VPMachine class provides a standard interface to
the machine-specific message-passing environment
and system calls. Utility routines, such as timing and
processor communication routing operations, are
also provided with facilities to allow object-based inter-
processor communication. Thus, rather than per-
forming a send/receive on an array of floating-point
numbers representing particle positions, we actually
transmit full Particle objects. This preserves the
object-oriented nature of the simulation environ-
ment. As MPI becomes more widespread, we expect
machine-specific classes will decrease in importance;
yet the ability to perform message-passing on objects
should remain valuable. We maintain MPI versions of
our programs, as well as an MPI virtual machine class.

Program design and testing evolved simultaneous-
ly across multiple compilers and machines using the
VPMachine class; hence, our codes were easily port-
ed among machines. This was particularly useful in
finding and reporting bugs in the GNU and Cray
compilers. Without this capability, a C++ code devel-
oped on one machine with a single compiler would
have required organizational changes for portability.

Experiences with Efficiency
Fortran is well known for its efficiency, while C++ has
a reputation (perhaps unjustified) for being much
less efficient. Designing efficient and portable C++
codes is difficult due to differences in compiler
implementations. Inlining is touted as “the solution”
to the overhead associated with calling methods on
objects. Programmers must note that compilers are
free to ignore the inline directive. One major
source of inefficiency results from the casual use of
the mathematical operations. Our initial sequential
C++ plasma simulations executed five times slower
than the sequential Fortran 77 versions due to ineffi-
ciencies in the standard C++ pow() routine. We real-
ized that Fortran could optimize this routine based
on the arguments to the function, so we overloaded
the pow() routine in C++ to include this distinction.
This change reduced the total time used for expo-
nentiation from 65% of the total computation time to
less than 1% for the sequential C++ programs.

Memory overhead and data access time also con-
tribute to inefficiency. Many plasma simulation mod-
els represent particles by dynamic lists, which severely
restricts the size of the simulations due to the memo-
ry consumed by pointers. Our particle representa-
tions use object arrays, which require special
algorithms to maintain data structure consistency

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 95



when particles cross processor partitions. This
approach allows for larger simulations, since arrays
use memory more productively than lists. Static class
variables also optimize memory, since data, such as
the electron charge, is not replicated over millions of
electron objects; only a single copy is stored.

Active object creation or usage results in an over-
head that is larger for inheritance relationships in
class design than in use-relationships. Consequently,
whenever possible, we defined use-relationships in
such a way as to increase the efficiency of interaction
among class abstractions. Finally, when writing
numerical routines in an object-oriented framework,
mathematical functions should be designed to work
within an object class structure; they do not need to
be object-oriented themselves. The FFTs and Poisson
solver do not belong to mathematical classes; howev-
er, they do operate on simulation class objects.

The Fortran programs have been tuned for effi-
ciency in ways that can be awkward for C++ programs.
For example, in Fortran, arrays can be used directly in
message-passing parameters, eliminating the need for
temporary buffers and data copying involved in user
send/receive calls. The C++ versions do not make data
directly accessible to communication routines, often
due to template-related issues; hence buffers are
required. These buffers collect the transmitted data,
which are then assigned to the associated object using
its interface, to preserve encapsulation and protect
nonpublic data. Although direct access to protected
data by the message-passing routines would violate
encapsulation, this may be appropriate for efficiency
reasons, as with usage of the C++ friend statement.
However, our field model consists of grid template
points that maintain both the charge and multidimen-
sional force data. The interprocessor data-flow require-
ments in the GCPIC algorithm require transmission of
charge data and force data as separate operations. 

Transmission of charge (force) data directly to the
template field will overwrite the force 
(charge) data, since the memory for each grid template
point is allocated contiguously. The derived
datatype feature of MPI, which allows transmission of
noncontiguous data, can address this issue. Neverthe-
less, this illustrates how the program abstraction fea-
tures of C++ can influence efficiency in accessing data.

Reliability Issues
Many useful features for programming abstraction are

provided by C++; nevertheless,
the reliability of existing compil-
ers must be considered. Reliabil-
ity issues are noticed most clearly
during the compilation process.
Valid C++ programs that com-
piled correctly under one com-
piler could not be moved
verbatim to other compilers. Dif-
ficulties with memory alignment
and problems with linkers not

resolving every external constant reference also arose.
These issues cannot be detected at compile-time,
requiring extensive run-time analysis followed by
minor alternative implementation techniques.

In general, C++ can be stable, but as more sophis-
ticated programming techniques are used, compiler
bugs can severely restrict development. Often pro-
gram development on the parallel machines was
delayed while compiler issues were being resolved. In
such circumstances, the ability to continue develop-
ment using simulators or sequential machines is of
great importance.

Comparisons Among Programming Paradigms
Developing the plasma PIC simulation in Fortran 77,
C++, and Fortran 90 allows comparisons among the
paradigms. Although Fortran 77 remains robust across
compilers and machines, increasingly extensive work
in simulation continues to strain the capabilities of this
language. Grand Challenge-type   problems require
new approaches and methodologies, which must be
supported by the implementation language. Repre-
senting abstractions is a prominent issue causing
object-oriented methods to gain acceptance as a viable
alternative for high-performance parallel computa-
tion. An unresolved question is whether it is always pos-
sible to decompose a problem into appropriate classes
with communicating objects that interact. We argue
that parallel computation is fundamentally dependent
upon interactions and programming abstractions and
that C++ and Fortran 90 can support these viewpoints
very well. C++ is a young, evolving language that
requires more extensive support by compiler develop-
ers and machine manufacturers before its full poten-
tial in scientific programming can be realized. Fortran
90 provides the robustness of Fortran 77 with pro-
gramming abstractions relevant to the object-oriented
methodology. This is an exciting language, and our
early experience indicates it shows a lot of promise.

The parallelization strategy in our application, par-
titioning data across processors with message passing
for communication, is the same across Fortran 77 and
C++ paradigms. Development and implementation are
where object-oriented methods are beneficial, since
abstractions relevant to the application can be created
to simplify the programming process. The develop-
ment of these abstractions does represent a major por-
tion of the effort involved in rewriting an existing
Fortran 77 program into an object-oriented frame-

96 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

Table 1.  Paragon XP/S, SP2 and T3D Basic System Characteristics
                    (From Specification reports). 

Processor Power

Network Speed

50 MHz

175 MB/sec

66.7 MHz

40/80 MB/sec (switch)

150 MHz

300 MB/sec

Architecture
Features

Intel
Paragon IBM SP2 Cray T3D



experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

work. Construction of the C++ programs required an
in-depth understanding of the design of the Fortran 77
code and the characteristics of the physical applica-
tion. With this understanding, the C++ versions were
written from scratch. In contrast, the object-oriented
features of Fortran 90 were incrementally introduced
into the existing sequential Fortran 77 program (using
the class hierarchy of the sequential C++ program). As
a result, construction of the Fortran 90 program was
achieved in only a few days.

Conceptual abstractions introduced by object-ori-
ented methods can be extended into benefits toward
the programming of parallel distributed memory
machines. Maintaining distributed data requires
mechanisms for preserving consistency across proces-
sor boundaries. Using object-oriented paradigms, the
definition of classes that represent distributed data,
such as the field and particle classes, can provide fea-
tures to maintain consistency. Abstractions, such as the
VPMachine class, support parallel programming with
object methods that transport data using its full object
type. Fortran 77 or C implementation paradigms with
message-passing calls differ from the object paradigm
due to abstraction modeling. Implementation of the
abstractions at the lowest level must be created to work
within the class hierarchy and features of the architec-
ture, but once they are created, many parallel pro-
gramming details can be information-hidden.

The efficiency of Fortran programs is commonly
cited as the major benefit over C++, yet this was not as
important an issue as compiler stability across
machines. Abstraction representation in C++ class
hierarchies must allow for ease of extension. Unfor-
tunately, hierarchies are nearly impossible to design
correctly on the first attempt. Moreover, when the
design is poorly organized, it is difficult to modify it
without triggering something close to a complete
redesign. Reuse of the relevant portions of the early
design is often possible, but if the new class hierarchy
cannot be defined with clean interfaces, the best
approach is to redesign it from the beginning.

The C++ program syntax necessarily caused our pro-
grams to be longer (about 2.5 times) than the equiva-
lent Fortran 77 versions in the plasma simulations. To
design efficient C++ programs, the programmer must
be aware of many “behind the scenes” operations that
take place during execution. The learning curve for
C++ is much longer than that for Fortran 90. Readabil-
ity, while dependent on the style, taste, and experience
of the programmer, can be enhanced through the
object-oriented methodology. Viewing programs in
terms of object types with well-defined operations, such
as particles, fields, and partitions, adds clarity as code is
shared and reused. C++ programs, in general, are nec-
essarily slower than Fortran 77, since optimization is
more limited across pointer structures than across stat-
ic arrays. This issue must be weighed against the costs of
program maintenance, which is a growing concern of
many application programmers.

Our experience indicates that the efficiency of
Fortran 77 and the abstraction modeling capabilities
of C++ are desirable features for scientific program-
ming. The new constructs of Fortran 90 modernize
Fortran 77 with features to represent abstraction.

Parallel Simulation Results and Performance
In our Beam-Plasma instability experiment, we mea-
sure the field, kinetic, and total energies of the system
at each simulated time step. Since the original For-
tran 77 codes have been well benchmarked [2], we
will restrict our performance overview to rather arbi-
trarily selected cases across the machines of interest.
These results are intended only to illustrate how this
code performs in Fortran 77 and C++ with standard
optimization (-O) on various machines using the
same number of processors. Although these architec-
tures differ in technical specifications, we show two
basic parameters, the processor power and the inter-
connection speed, in Table 1. In Table 2 we show
processor simulation results for a few million parti-
cles across various simulation dimension sizes.

Additional simulation comparisons are shown in

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 97

Table 2.  Paragon XP/S, SP1/SP2 Multimillion Particle Parallel Performance Characteristics.

Intel Paragon XP/S

Intel Paragon XP/S

IBM SP1

IBM SP1

IBM SP2

IBM SP2

IBM SP2

IBM SP2

Cray T3D

Cray T3D

  32

  32

  16

  16

  16

  16

  32

  32

  32

256

Machine
Number of
Processors

Language and
MP Library

Fortran 77

C++

Fortran 77

C++

Fortran 77

C++

Fortran 77

C++

Fortran 77

Fortran 77

(NX)

(NX)

(MPL)

(MPL)

(MPL)

(MPL)

(MPL)

(MPI)

(PVM)

(PVM)

    4,505,600    (1D)

    4,505,600    (1D)

    3,571,712    (2D)

    3,571,712    (2D)

    3,571,712    (2D)

    3,571,712    (2D)

    7,962,624    (3D)

    7,962,624    (3D)

    7,962,624    (3D)

127,401,984    (3D)

231.00

377.00

802.00

1228.00

364.00

715.00

1649.00

2797.00

2582.50

5637.10

Number of
Particles

Time
(seconds)



Table 3. Note that the Paragon 3D C++ (MPI) timings
are much larger than the Fortran 77 timings. These
runs were performed with the Intel C++ compiler,
which seemed to “ignore” our more efficient over-
loaded mathematical routines. The remaining
Paragon runs used GNU g++ v2.6.1. Additionally, we
did not make any attempts to manipulate cache usage
in the C++ programs. Results of work performed in
this area for sequential PIC codes indicate up to 90%
of Fortran 77 efficiency [11].

The C++ version appears more competitive as more
processors are used, since the problem size remains
fixed, as illustrated in Figure 11. This shows how per-
formance results can be misleading, since the ratio of
computation to communication dropped with decreas-
ing numbers of particles within critical loop iterations.
Outstanding C++ compiler problems prevented us
from providing simulation results for the Cray T3D.
IBM xlf90 was used for the sequential Fortran 90 pro-

gram, but the lack of compilers for our parallel
machines prevented timing comparisons to the Fortran
77 and C++ codes. We can give some indication of the
performance of the object-oriented sequential Fortran
90 code by comparing it to that of   the Fortran 77 and
C++ one-dimensional sequential codes, as shown in
Table 4. (The original sequential C++ program execut-
ed correctly with GNU g++ v2.6.3 on the Sun SPARC-
stations. When recompiled on the RS6000 under g++
v2.5.8 and IBM xlC, incorrect numerical results in com-
plex arithmetic were detected. Reorganizing the mem-
ory layout of the data structures corrected this
problem). Modeling the C++ technique of invoking a
method to access private data probably contributed a
performance overhead to the Fortran 90 program.

Conclusion and Commentary
We have given an overview of the design of C++ and
Fortran 90 skeleton particle simulation codes based

on existing Fortran 77 codes
and discussed the design con-
cepts involved in reorganizing
the Fortran program into an
object-oriented form. Addition-
ally, we have given perfor-
mance results that indicate that
the execution speed of C++
may be acceptable, given the
organizational advantages. The
codes were designed with both

98 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

Table 3.  Paragon XP/S and SP1/SP2 Fixed Problem Size Parallel Performance Characteristics. 

Processors Paragon 1D Paragon 2D Paragon 3D

Fortran 77 C++

115.52

66.57

42.06

33.11

269.25

140.27

76.55

47.12

392.17

201.57

112.47

70.09

998.19

498.38

259.87

141.15

1,542.64

767.22

393.41

N/A

5,681.90

2,882.84

1,483.62

N/A

4

8

16

32

450,560 PARTICLES

2,048 GRID POINTS

327,680 PARTICLES

8,192 GRID POINTS

294,912 PARTICLES

32,758 GRID POINTS

Fortran 77 C++ Fortran 77 C++ (MPI)

SP1 2D

Fortran 77 C++

175.95

92.82

53.39

Fortran 77 C++ Fortran 77 C++ (MPI)

412.00

205.00

111.00

119.34

71.49

46.55

257.00

133.00

80.00

392.25

164.11

87.05

826.00

400.00

192.00

327,680 PARTICLES

8,192 GRID POINTS

Processors

4

8

16

SP2 2D SP2 3D

294,912 PARTICLES

32,758 GRID POINTS

Execution Time (seconds)

Execution Time (seconds)

Table 4.  One-Dimensional Sequential Performance Characteristics.

IBM RS6000
IBM RS6000
IBM RS6000

Fortran 77
Fortran 90
C++

IBM xlf
IBM xlf90
IBM xlC

450,560
450,560
450,560

245.49
364.25
508.00

Machine Language Compiler
Number of

Particles
Time

(seconds)



experiences
O

b
j
e

c
t

 
T

e
c

h
n

o
l
o

g
y

execution and implementation scalability in mind.
When considering design comparisons between

Fortran 77 and C++, we noticed that the class struc-
ture provides a programming perspective that reflects
the problem domain. Modifications and extensions
to the object-oriented version are straightforward;
however, classes must be carefully designed with
extensions in mind. The object-modeling paradigm
also enhances code readability through well-defined
interfaces enforced by the C++ syntax.

There is a growing interest in the development of
C++ class libraries for parallel simulation of plasma
and other applications. The OOPS C++ class library
[10] defines four main groups of objects for the par-
allel architecture, field, particles, and I/O. High-level
objects hide details of the specific machine in use
from the user, providing an interface that looks data
parallel but which is actually message-passing based.
C++-based libraries have also been developed for VLSI
CAD applications [9], finite-element/finite-volume
computations (DIME++) [12], and materials science
(LPARX) [7]. Generally, library-based approaches try
to preserve existing C++ codes rather than introduc-
ing new languages or language extensions.

We were amazed by the Fortran 90 statements
that   reflect object-oriented statements in C++. The
most general features, such as inheritance and
encapsulation, are covered, as well as certain details,
including static member variables and class friends.
We illustrated how various Fortran 90 statements
compare to the equivalent C++ statements in the
sequential PIC code. In most cases, the mapping was
straightforward and precise, although the imple-
mentation of class friends was somewhat awkward.
Given these new language statements, we believe
that Fortran 90 (and HPF) programmers would ben-
efit from a knowledge of object-oriented methods
when putting these constructs into practice.

Our experience indicates that the object-oriented

programming paradigm is beneficial in scientific
computation when class hierarchy decisions are
made with care. The two-dimensional codes were
designed with modest extensions from the one-
dimensional versions. Our three-dimensional C++
codes were quickly developed from the two-dimen-
sional template versions. This demonstrates the use-
fulness of object-oriented programming methods in
high-performance computing. Simulation extensions
were based on modifying existing abstractions sup-
ported in a parallel environment. Since these abstrac-
tions incorporated the scientists’ view of simulation,
we experienced a rapid increase in the programming
and reliability of new codes in higher dimensions.
Although we described our experiences with object-
oriented methods for an experiment that   does not
require load balancing, we are exploring ways in
which this methodology can enhance the program-
ming of more dynamic problems. Our ongoing
research on using C++ for runtime efficiency of
unstructured and irregular parallel computations, as
in more advanced plasma simulations, is the focus of
our current and future efforts.

The C++ programming language is still evolving;
greater conformance to standards and numerical
computational kernels are needed. Programming in
an object-oriented manner takes practice and
patience. As numerical classes are introduced and as
new techniques are found
to improve the efficiency
of C++ programs, the bene-
fits of object-oriented
design will influence scal-
able high-performance
computing. In assessing
the trade-offs between For-
tran efficiency and object-
oriented design, the
increasing costs of software

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 99

Figure 11.
Paragon and SP2
two-dimensional
Fortran 77 and
C++ execution
profiles for a fixed
problem size

1000

900

800

700

600

500

400

300

200

100

0
4 8 12 16

Number of Processors

T
im

e 
(s

ec
on

ds
)

Paragon w/C++
Paragon w/F77
SP2 w/C++
SP2 w/F77



maintenance must be considered. The ability to reuse
existing software and to develop computation kernels
represents a growing need as high-performance com-
puting becomes more complex. Object-oriented
methods can help to achieve this result.

Acknowledgments
We appreciate the technical assistance of Edith
Huang, Nooshin Meshkaty, and Jack Miller from JPL
and Mark Miller from RPI regarding the compilers
on the parallel machines. We also thank Joyce Brock
and Eva Ma from RPI for their valuable insights dur-
ing the preparation of this article. 

References
1. Birdsall, C.K. and Langdon, A.B. Plasma Physics via Computer

Simulation. Hilger Series on Plasma Physics, Hilger, New York,
1991.

2. Decyk, V.K. Skeleton PIC Codes for Parallel Computers. Com-
puter Physics Commun. 87, 1/2 (May 1995), 87–94, 

3. Dupee, B.J. Object Oriented Methods using Fortran 90. SIG-
PLAN Fortran Forum (Mar. 1994), 21–30. 

4. Ferraro, R.D., Liewer, P.C., and Decyk, V.K.   Dynamic load bal-
ancing for a 2D concurrent plasma PIC code. J. Comput. Physics
109, 2 (Dec. 1993), 329–340. 

5. Haney, S.W. and Crotinger, J.A. C++ proves useful in writing a
Tokamak systems code. J. Computers in Physics 6, 5 (Sept./Oct.
1991), 450–455.

6. High Performance Fortran Forum. High performance Fortran lan-

C

guage specification, version 1.0 ed., May 1993. Tech. Rep. CRPC-
TR92225, Rice University, Houston, January 1993.

7. Kohn, S.R. and Baden, S.B. The parallelization of an adaptive
multigrid Eigenvalue solver with LPARX. In Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scientific Com-
puting (San Francisco, Feb. 15–17, 1995), pp. 552–557. 

8. Liewer, P.C., and Decyk, V.K. A general concurrent algorithm
for plasma particle-in-cell simulation codes. J. Computational
Physics, 85 (1989), 302–322. 

9. Parkes, S., Chandy, J.A., and Banerjee, P. A library-based
approach to portable, parallel, object-oriented programming:
Interface, implementation and application. In Proceeding of
Supercomputing ‘94 (Washington, D.C., Nov. 14–18, 1994) pp.,
69–78. 

10. Reynders, J.V.W. Object-oriented particle simulation on paral-
lel computers. In Proceedings of the Fifteenth International Confer-
ence on the Numerical Simulation of Plasmas (King of Prussia,
Penn., 1994),   pp. 1–4.   

11. Turner, M. Experience with PIC-MCC and C++. In Proceedings
of the Fifteenth International Conference on the Numerical Simulation
of Plasmas (King of Prussia, Penn., 1994).

12. Williams, R.D. DIME++: A parallel language for indirect addressing.
Tech. Rep. CCSF-29, CCSF, California Institute of Technology,
Pasadena, CA, January 1993.

About the Authors:
CHARLES D. NORTON is a Ph.D candidate in the Department of
Computer Science at the Rensselaer Polytechnic Institute. Current
research interests in parallel computation include scientific com-
puting, algorithms, object-oriented methodology and languages,
and visual programming environments. email:
nortonc@cs.rpi.edu; http://www.cs.rpi.edu/~nortonc

BOLESLAW K. SZYMANSKI is a professor of computer science
and a founding member of the Scientific Computation Research
Center (SCOREC) at Rensselaer Polytechnic Institute. Current
research interests include the design and optimization of compil-
ers and algorithms for parallel and distributed processing and the
simulation and modeling of ecological systems. email: szyman-
sk@cs.rpi.edu; http://www.cs.rpi.edu/~szymansk

Authors’ Present Address: Amos Eaton Hall, Rensselaer Polytech-
nic Institute, 110 8th Street, Troy, NY 12180-3590.

VIKTOR K. DECYK is a computational physicist at the UCLA as
well as a member of the technical staff at the Jet Propulsion Labo-
ratory. Current research interests include computational plasma
physics, particularly the use of particle simulation to model fusion
plasmas and basic plasma processes.   

Author’s Present Address: Physics Dept., UCLA, Los Angeles, CA
90024-1547. email:   decyk@physics.ucla.edu

This work is supported by the National Aeronautics and Space Administra-
tion under Grant NASA NGT-70334. The content does not necessarily
reflect the position or policy of the U.S. Government. No   official endorse-
ments should be inferred or implied. Access to the Intel Paragon and Cray
T3D at the Jet Propulsion Laboratory was provided by NASA’s Offices of
Aeronautics, Mission to Planet Earth, and   Space Science. The IBM SP1/SP2
was provided by the Scientific Computation Research Center (SCOREC) at
Rensselaer.

Permission to make digital/hard copy of part or all of this work for person-
al or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permis-
sion and/or a fee.

© ACM 0002-0782/95/1000 $3.50

100 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM


