
A Comparative Study of Parallel Algorithms
for Simulating Continuous Time Markov
Chains

DAVID M. NICOL

The College of William and Mary

and

PHILIP HEIDELBERGER

IBM T. J. Watson Research Center

This article describes methods for simulating continuous time Markov chain models, using

parallel architectures, The basis of our method is the technique of uniformization; within this

framework there are a number of options concerning optimism and aggregation, We describe four

different variations, paying particular attention to an adaptive method that optimistically

assumes upper bounds on the rate at which one processor affects another in simulation time, and

recovers from violations of this assumption using global checkpoints. We descmbe our experi-

ences with these methods on a variety of Intel multiprocessor architectures, including the

Touchstone Delta, where excellent speedups of up to 220 using 256 processors are observed

Categories and Subject Descriptors: 1.6.8 [Simulation and Modeling]: Types of Simulation

discrete event

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Markov chains, simulation

Portions of this paper are reprinted with permission from “Parallel Algorithms for Simulating

Continuous Time Markov Chains,” in Proceedings of the 1993 Workshop on Parallel and

Distrzbzded Stmulatzon, and from “Parallel Simulation of Markovian Queueing Networks Using

Uniformization,” in Proceedings of the 1993 ACM SIGMETRICS Conference, D. M. Nicol’s work

was initiated while he was a visiting scientist at the IBM T. J. Watson Research Center. This

work was also supported in part by NSF grants ASC 8819373 and CCR-920 1195, and NASA

grants NAG-1 -106O and NAG-l-995. This research was also partially supported by NASA

contract NAS 1-19480 while the author was on sabbatical at the Institute for Computer Applica-

tions in Science and Engineering (ICASE), NASA Langley Research Center, Hampton Virginia

23681. P. Heidelberger’s research was partially supported by NASA contract NAS1-19480 while

the author was on sabbatical at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.

Authors’ addresses: D. M. Nicol, Department of Computer Science, The College of William and

Mary, Williamsburg, VA 23185; P. Heidelberger, IBM T. J. Watson Research Center, Hawthorne,

P.O. Box 704, Yorktown Heights, NY 10598.

Permission to make digital/hard copy of all or part of this material without fee is granted

provided that the copies are not made or distributed for profit or commercial advantage, the

ACM copyright/server notice, the title of the publication, and its date appear, and notice is given

that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

@ 1995 ACM 1049-3301/95/1000-0326 $03.50

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995, Pages 326-354

http://crossmark.crossref.org/dialog/?doi=10.1145%2F226275.226278&domain=pdf&date_stamp=1995-10-01


Simulating Continuous lime Markov Chains . 327

1. INTRODUCTION

Discrete-event simulation is an invaluable tool for the design and analysis of

complex systems such as factories, transportation networks, computer sys-

tems, and communication networks. Large scale simulations require a long

time to execute, and because of this many researchers are interested in

parallelizing their execution. One of the key issues is synchronization be-

tween processors, as the synchronization demands are highly variable, de-

pending dynamically on the simulation model’s state. Comprehensive surveys

on the topic are found in Fujimoto [1990], Righter and Walrand [1989], and

Nicol and Fujimoto [1994].

Parallel simulation is difllcult because synchronization between processors

is very dynamic and often unpredictable. Each processor maintains its own

simulation clock, and we require that the end result of the simulation be

consistent with a scenario in which every processor executes its time-stamped

events in monotone increasing order. The problem is that execution of an

event on one processor can cause an event on another processor. Synchroniza-

tion protocols are necessary to either ensure that local clocks increase mono-

tonically, or ensure that the results are the same as if they had. A spectrum

of approaches to parallel simulation have been considered, including parallel

replications, functional decomposition, synchronous time-stepped methods,

conservative methods, optimistic methods, fixed-point methods, and the ap-

plication of parallel prefix algorithms.

In conservative parallel simulations, a logical process (LP) does not execute

an event e at simulation time t until it is sure that the effects of all events

occurring at earlier simulation times s < t that can possible affect e are

known. Thus execution of the event e is guaranteed to be correct. In an

optimistic method (e.g., Time Warp [Jefferson 1985]) an LP may execute e

before it is certain that e is correct. If the LP later discovers it should have

executed an event e’ at time s < t,it must roll back, recover its state at time

s, and undo the effects of all its simulation activity at times greater than s.

This recovery is made possible if the LP frequently saves its state. State-

saving is usually cited as the leading source of overhead; the potential

problem is severe enough that efforts to provide hardware support have been

proposed [Fujimoto et al. 1992].

Optimism can also be employed by periodically checkpointing the entire

simulation state, simulating optimistically between checkpoints, and noting

any errors that occur along the way due to optimism. Should any errors occur

between checkpoints n and n + 1, the first such can be identified, and all

processors restimulate their submodels in such a way that the same sample

path is taken up the point of the error, but then the error is avoided. This sort

of approach is promising when state-saving costs are high, and errors are

very rare; it has proven to be successful in simulating “colliding pucks”

[Lubachevsky 1990] and is the approach we take with one of our methods.

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



328 . D. M. Nicol and P. Heidelberger

In a series of previous papersl we have investigated the idea of using

uniformization as the basis for synchronization in parallel discrete-event

simulation of continuous time Markov chains (C TMCS). CTMC models are

important, appearing frequently in the study of computer and communication

systems. Uniformization exploits the mathematical structure of these models,

making it possible to precompute instants in simulation time where logical

processes ought to synchronize. The decision whether an LP actually influ-

ences another at one of these instants is left until run-time. Conceptually, a

simulation is performed in several phases. In the first phase the simulation

model is partitioned into LPs, which are mapped to processors. All simulation

activity associated with an LP is assumed to be performed by its assigned

processor. In the second phase one randomly generates synchronization

points; in the third phase one simulates a mathematically correct sample

path through those points. We call the general method PUCS, for Parallel

Uniformized Continuous-Time Simulation. This approach generalizes

Lubachevsky’s algorithm [1987] for simulating cellular arrays.

We have developed four different variations of PUCS that differ in their

treatment of LP aggregation, communication management, use of optimism,

and generation of communication schedules. Each of these methods has

strengths and weaknesses that are revealed by problem characteristics. The

objectives and contributions of this article are:

(1) To give an overview of uniformization-based synchronization.

(2) TO describe an adaptive algorithm that dynamically adjusts the rate at
which LPs synchronize.

(3) To empirically examine these different methods on a variety of Intel
multiprocessors, including the iPSC/2 [Rattner 1985], the Intel Touch-

stone Delta [Lillevik 1991], and the Intel Paragon [Intel Corp. 1993].

These studjes show that the adaptive algorithm is the most robust of our

implementations. It is capable of providing good performance over a wider

range of problems than any of our other algorithms.

A description of the adaptive method and a preliminary empirical compari-

son previously appeared only in conference proceedings papers [Nicol and

Heidelberger 1993b, 1993c].

Not all CTMCS are suitable for parallel simulation using our methods. A

key requirement is that one be able to partition the CTMC into loosely

synchronous interacting sub chains. Such partitioning follows intuitively when

the CTMC has a basis in a physical domain, because partitioning the domain
often has the desired effect. Nevertheless, the issue of defining suitable LPs

automatically is one that we have not yet addressed.

The remainder of the article is organized as follows: Section 2 gives an

overview of direct Markovian simulation, uniformization, and different ways

] See Heidelberger and N,col, and Nicol and Heidelberger [ 1993a, 1993b, 1993c].

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995



Simulatmg Continuous Time Markov Chains . 329

we have exploited uniformization for parallel simulation. Section 3 develops

our adaptive method and presents related performance data. Section 4

presents and analyzes our experimental results, and Section 5 gives our

conclusions.

2. UNIFORMIZATION-BASED SYNCHRONIZATION

In this section we describe the basic notions of direct Markovian simulation,

and uniformization. More rigorous and complete mathematical details can be

found in [Heidelberger and Nicol 1993]. Following the descriptions we illus-

trate them concretely with an example.

Let us first review some basic elements of the theory of CTMCS. Readers

unfamiliar with CTMCS are encouraged to consult Ross [1983] for a more

complete and exact introduction to the topic. A CTMC is a stochastic process

{X(t)}, where X(t) is the state of the CTMC at time t. For the purposes of

general description, X(t) is taken to be nonnegative integer; in practice it is

often more natural to describe X(t) as a vector of integers, for example, the

vector of queue lengths in a network, a vector of token markings in a

stochastic Petri net, or a vector of cell states in an Ising spin model. Upon

entering a state N at time t,the CTMC remains in that state for a random

period of time called the holding time, which is an exponential distribution

with state-dependent rate A(N). This is also called the transition rate out of

state N. At the end of the holding time, the CTMC randomly changes state,

jumping to some state N. It is convenient to think of this jump as choosing a

winner among all possible jumps, in the following way. While in state N the

chain is attempting to make a transition to every other state, simultaneously.

It is as though there are a large number of stochastic processes—one for each

state distinct from N—that are all concurrently active. The transition rate

for the process attempting to jump to N’ is some Qm,; note that A(N)

= ~ {NJ. N)QNN- Each Of these processes has an exponentially distributed
holding time; the rate of N”s holding time is just Qm,. We may imagine that

each of these holding times are randomly sampled at the time {X(t)} enters

N. Now the time and nature of {X(t )}’s transition out of N are defined by the

process whose next transition time is least among all possibilities. Thus, the

probability that the exponential associated with a given state N is least

among its peers is just Pm = Q~~/A(N); PN~, is the probability transition

matrix of the embedded discrete time Markov chain associated with the

CTMC.

Observe that we can also interpret a transition in terms of {X(t )} simulta-

neously attempting jumps in one of a number of sets of transitions. For

example, we might partition transitions into two sets A and B, and interpret

the transition as a competition among all transitions in A and all transitions

in B. This interpretation will be particularly useful in a parallel simulation

setting when A is the set of transitions that affects only one processor’s state
and B is the set of transitions that affects the states of multiple processors.

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



330 . D. M. Nicol and P. Heidelberger

A direct simulation of a CTMC involves sampling holding times, and

choosing transitions, as follows. Upon entering state N, one advances time by

sampling an exponential with rate A(N), essentially simulating the duration

of time the CTMC remains in state N. To choose a transition it is not

necessary to choose the least of a large number of exponential. It suffices to

construct the transition distribution by computing the rates Qm,, and then

sampling from the distribution {Pm. QNNI/A(N)}.

Uniformization of a CTMC is a mathematical device (originally used to

simplify numerical solution [Gross and Miller 1984] designed so that every

holding time is drawn from the same distribution. The basic idea is to find a

uniformization rate Am.X such that for every state N, A(N) < A~. X. All

holding times are sampled from the exponential distribution with rate Am,,,

However, to make the uniformized chain stochastically identical to the origi-

nal chain, we introduce transitions back to the same state. In the uniformized

chain, the probability of making a transition from N to N’ ( # N) is Qm,/A~,X.

The probability of making a transition back to N is 1 – NN)/&.X. Transi-

tions of the latter form are known as pseudo transitions, as they do not affect

the state of the Markov chain. The mathematical basis for uniformization is

simply that a geometrically distributed sum (with mean I/p) of i.i.d. expo-

nential random variables (with mean l/LL) is itself an exponential, with

mean 1/( pp). Whenever the original chain is in state N, its holding time is

exponential with rate A(N). Now suppose the uniformized chain (at rate A~.X )

enters state N; the number of pseudo transitions that occur before actually

leaving N is geometrically distributed with mean A~~X/A(N), and the distri-

bution of time spent in N before leaving is that of a geometrically distributed

sum of exponential, each with mean l/A~,X. The effective distribution of

time the uniformized chain spends in state N is exponential with mean

l/A(N), just as in the original chain.

For the case of parallelized simulation we assume that the model is

partitioned into submodels, with one submodel assigned to each processor

(although some of our methods assume multiple distinct submodels for each

processor). We also assume that the model has the characteristic that a state

change in one such submodel may instantaneously affect the state in at most

one other submodel (this too may be relaxed to include more submodels, but

it is important that the set of affected submodels be small). Finally, we

assume that the model can be analyzed to determine, for every pair of

processors P, and P~, an upper bound A,l on the rate at which Pi’s submodel

makes transitions affecting P~’s submodel. For instance, in a queueing net-

work Aij would bound the rate at which P, routes jobs to PJ. P, and Pj then

agree ahead of time to synchronize as though P,’s submodel continuously

affects PI’s at rate hl~ in a Poisson stream, and presample the simulation

instants at which these synchronizations occur. During the simulation run P,

randomly decides at each such prechosen synchronization point whether to

actually make a transition that affects Pj, in effect “thinning” (see Lewis and

Shedler [1979]) the Poisson process. The probability of making such a transi-
tion depends on the state of PC’S submodel at that instant. P, must send a

message to PJ indicating either that the threatened transition occurred, or

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995



Simulating Continuous Time Markov Chains . 331

that the communication event is a pseudo. Using uniformization in this way

permits processors to identify all synchronization times, in advance of actu-

ally running the simulation. A variety of synchronization protocols that

exploits this knowledge can then be devised.

Experiments have shown that uniformization-based methods work well

when the model can be partitioned so that workload is balanced, and there is

an adequate number of events processed between successive synchronization

events. Performance degradation is observed, however, when A,j is much

larger than the actual average rate at which P, makes transitions affecting

Pj. In such cases most of the communications are pseudos—which do not

occur in an optimized serial simulation—and hence are overheads that lower

speedup. This problem is inescapable for all uniformization-based methods

that require that each A,l be a true upper bound. The adaptiue method
highlighted in the article reduces overheads by dynamically altering A,l in an

effort to find lower rates that effectively serve as upper bounds, even if there

is a small change of violating the bound. Our experiments show that the

method may raise poor performance to acceptable levels, in some cases more

than doubling the execution rate. We also observe significant speedups; in

one experiment a speedup of over 220 was obtained on 256 nodes of the Intel

Touchstone Delta.

We first use an example of a distributed computing system to explain

uniformization, and then illustrate its use in parallel simulation of Marko-

vian queueing networks. This example is also used as a test model for our

experiments. Finally we identify model characteristics that may lead to

excessive pseudo events.

2.1 Example

The model consists of a number P of computing clusters. The model is a

closed queueing network with J X P jobs. Each cluster is a central server

model (see Buzen [1973]) with a single CPU and K 1/0 devices. All queueing

disciplines are FCFS (an assumption that is not necessary for uniformization

to work). The service times at the CPU are assumed to be exponentially

distributed with rate p,. When a job leaves the CPU it goes to one of the 1/0

devices, which is selected uniformly. The service times at the 1/0 devices are

assumed to have a hyperexponential distribution with two phases; with

probability p~ a fast phase is chosen that has rate ~f, and with probability

1 – p~ a slow phase is chosen that has rate W, ( pf > p,). When a job leaves

an 1/0 device, it returns to the CPU in the cluster with probability PC;

otherwise it selects another cluster according to a uniform distribution and

enters the CPU queue in the selected cluster. The state of such a system can

be described by a multidimensional vector N = (NP,..., NP ) where N, de-

scribes the state of cluster i. Specifically, let Nt = (n,O, n,l, . . . ,n, ~, lJI, . . . ,1,~)

where n,0 is the total number of jobs at the CPU, n,~ is the total number of

jobs at 1/0 device j, and 1,1 is an indicator variable indicating whether the
jth 1/0 device is serving in the fast or slow phase. Let M,(f) (alternatively,

M,(s)) denote the total number of cluster i I/OJ devices serving in the fast

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



332 . D. M. Nicol and P. Heidelberger

(slow) phase and let M,(c) = 1 if the CPU in cluster i is busy. The total rate
of events in cluster z is then simply given by

A,(N, ) = /LciWL(c) + ~f~i(f) + &L~M,(S). (1)

The system remains in a given state N for an exponentially distributed

period of time with rate A(N) = x~= ~ A,(N, ). After the holding time, the chain

makes one of several possible transitions, chosen randomly. A transition due

to a cluster z CPU completion is chosen with probability p, M,(c)/A(N). An

1/0 completion from a fast phase 1/0 server on cluster i is chosen with

probability Pf Mi( f)/A(N), and an 1/0 completion from a slow phase 1/0
server on cluster i is chosen with probability ~~ M, ( s)/ A(N). Following simu-

lation of the chosen transition and its effect on N, a new holding time is

chosen based on the new state, and the simulation process continues. Note

that this way of generating sample paths is quite different from the usual

event list approach used in most discrete-event simulations.

Uniformization provides a different way to simulate this chain. The maxi-

mum possible rate for any state is A~~X = PpC + PKp~ which is obtained by

assuming that all servers are busy serving in their fastest phases. In the

uniformized chain all transitions occur at rate &~X. In the uniformized chain,

the transition is a cluster i CPU departure with probability MZ(c)~C/A~~X, a

cluster i fast phase 1/0 completion with probability LLflft ( f)/IA~,X, a cluster

i slow phase 1/0 completion with probability ~~ M, (s)/ A~~X, and a pseudo-

transition back to the same state with probability 1 – A(N)/&,X.

2.2 Application to Parallel Simulation

We now apply uniformization to the parallel simulation of the model just

described. We assume that queue m has a finite number of servers S., and

that a job’s routing probability is independent of both the identity of the job’s

specific server in the queue and its service rate. More complex situations can

be handled by uniformization; once the basic idea is understood the means to

such extensions are readily apparent.
Suppose that the queueing network has been partitioned among processors.

Let Ai denote the set of queues assigned to processor P,. Let jl~ be the

maximum service rate a job receives at queue m and let p~h be the

probability that a job departing queue m is routed to queue k.
The behavior of the submodel assigned to a processor P, (which we treat as

a single LP) can be viewed as the merging (superposition) of a number of

different event streams. An “internal” stream is comprised of entirely on-

processor events, namely, service completions whose jobs are routed to other

queues assigned to P,. For every F“ with queues receiving jobs from P, (j # i)

there is also a stream of “external” events, which we may uniformize with

rate

(2)

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No 4, October 1995



Simulating Continuous Time Markov Chains . 333

The maximum rate defined by Equation (2) is obtained by assuming that

every server is busy in its fastest phase. For the example system of clustered

central server models, Equation (2) becomes A,j = K X Kf X (1 – pC)/( P – 1),

which reflects the rate at which P, sends jobs to Pj provided all 1/0 devices

are busy in the fast phase. (The total rate of off-processor events is simply

K x Wf x (1 – p.).)

The parallel simulation algorithm basically views the simulation as the

superposition of internal and external processes. Internal processes are simu-

lated directly, whereas external processes are simulated using uniformiza-

tion. A parallelized simulation can be done in two phases. In the first, each

processor Pi randomly samples transition times for Poisson streams {N,J(t))
with rates A,j (i #~). The events in {NiJ(t)} represent the potential times that

jobs are sent from Pi to Pj. Next, in a communications phase, each processor

is made aware of all the potential external event times that affect it.

Specifically, P, receives all the events in {N~,(t)} for all p]. (Nternatively, by

appropriate synchronization of random number generator seeds, P, and PJ

can both compute the times in {N~L(t )} thereby avoiding the communications

phase.) Each Pc then merges these event times to produce a list

{( Tt(n),Cz(n)),n > O} of its external events where T,(n) is the time of the nth
event and C,(n) is the type of the nth event, that is, C,(n) = (i ,j) or (j,i) for

some j, reflecting a Pi - P] or Pj -+ P, message, respectively.

Uniformization gives the ability to completely precompute a set of times

guaranteed to include the transitions at which jobs actually move between

processors. This ability, which is called “lookahead” in the parallel simulation

literature, greatly simplifies the interprocessor synchronization problem. Of

course, it remains still for the simulation to determine which of these

transitions are real.

As we simulate in parallel, each processor will execute independently of the

others, except for synchronization at the prearranged instants in time. For

example, suppose that the state of Pi’s submodel is N~, that the last event on

P, occurred at time t,, and that T,(n,) is the time of the next (potential)

external event. Let A,,(N, ) denote the total internal (i.e., on-processor) event

rate on processor P,. (For the example model, A~~(NL) is the rate of CPU

completions plus 1/0 completions that are routed back to the CPU on the

same cluster; A,i(N), ) = MZ(C)I.LC + (Mi(f)Wf + ~i(s)P,)P~.) Note that the

total rate of events initiated on processor Pi is given by Ai(N,) = E;. ~ A,,(N,).

An exponential holding time R, with mean l\ Ai,(Nf ) is generated. If

t, + E, < Ti(ni), then the next event to occur on Pi is an internal event. In

this case, among all possible internal transitions, P, chooses one with proba-

bility propo~tional to its transition rate, simulates, and updates its clock to

time t, + E,. (For instance, in the example model, an internal fast phase 1/0

completion is selected with probability Mi( f)pf P./A,,(N,). After that, one of

the 1/0 queues serving in the fast phase is randomly selected as the queue

on which the completion occurs.)

If t, + E, > T,(n,), then the next event to occur on P, is an external event.

Suppose then that C,(n) = (i, j) and let &(N,) denote the current actual rate

of transitions from P, to PJ. (For the example model, Aij(NZ) = (M,( f)~f +

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



334 . D, M. Nicol and P. Heidelberger

M, ( s)p~)(l – pC)/( P – l).) P, decides whether the transition is pseudo or

real by selecting a real transition with probability AI~(N, )/A,j and a pseudo

transition with probability 1 – A,~(N, )/A, ~. In the case of a real transition, P,

selects the job whose service completes according to a probability proportional

to the rate at which that job is departing for a processor PJ queue. In either

case, P, sends a message to P~ specifying the job transfer (including the

identity of the target queue), or a pseudo transition and continues. Alterna-

tively, if C,(n) = (j,i), then P, waits for a message from Pj, simulating the

specified arrival (or pseudo event) depending on the message contents. Fol-

lowing simulation of C,(n), P, advances its clock to time 7’,( n, ). A new

holding time for the internal process is selected, and the procedure continues.

We have explored a number of logical and implementation issues for

uniformization-based synchronization. As we report on the performance of

each, we first briefly cover their salient points.

2.3 Conservative Aggregated PUCS

CA-PUCS (identified simply as PUCS in Heidelberger and Nicol, and Nicol

and Heidelberger [1993a, 1993 b]) was one of the first methods we developed.

In implementation it is almost identical to the description given in the last

section. It has the additional characteristics that the entire submodel as-

signed to a processor is considered to be one LP, and that synchronization

lists are generated and simulated on a window-by-window basis. The latter

feature is needed for the simple reason that computers’ memories can retain

only a finite number of external transition descriptions, and very long runs

will require very long transition lists.

The rationale for aggregating all coassigned workload into one LP is

two-fold. First, a one-LP-per-processor implementation is much easier to

develop than one that allows multiple LPs. The architecture used in our

studies—the Intel family of multiprocessors—supports interprocessor com-

munication via explicit sends and receives. Receives may be either asyn-

chronous (post a receive and periodically check on whether the anticipated

message arrived yet) or synchronous (block until the anticipated message

arrives). Furthermore, the Intel iPSC/860 and Touchstone Delta operating

system, NX, support only one process per processor. Any multitasking—such

as switching between LPs—has to be done at the application layer. By

aggregating all of a processor’s workload into one LP we avoid scheduling

issues; furthermore, there is no need to buffer incoming communication at

the application layer. When the processor expects message m at time t from
processor j, it simply does a synchronous receive, and blocks until that

message materializes. One cannot use synchronous receives if switching

between LPs is necessary. Secondly, massive aggregation avoids internal

pseudo events that may occur when multiple LPs are assigned to one proces-

sor. The problem here is that if uniformization is applied at the LP level, then

two LPs on the same processor synchronize with each other just as though

they were assigned to separate processors. We surely can develop the code so

that the communication between coresident LPs is cheap, but we cannot

ACM Transactions on Modeling and Computer Simulation, Vol 5, No. 4, October 1995,



Simulating Continuous Time Markov Chains . 335

easily avoid the overhead of generating, communicating, and synchronizing

upon a pseudo event. An important rationale for massive aggregation is to

eliminate the possibility of internal uniformization.

2.3.1 Conservative Partitioned PUCS. The other side of the aggregation

issue is that massive aggregation can cause artificial blocking. Events on a

processor under CA-PUCS are executed in increasing monotonic order. If any

piece of a processor’s submodel needs a message at time t and if that message

is not yet present, the entire processor blocks. However, it may be that

another piece of the submodel is free to continue past time t.To block at time

t is to cheat oneself of some potential parallelism.

CP-PUCS (identified as PUCSThreads in Nicol and Heidelberger [1993a])

allows multiple LPs per processor, and also strives to reduce the communica-

tion overhead of list generation. The principal features of the method are as

follows.

—LP independence: A processor may manage any number of distinct

LPs. In addition, by appropriate assignment of random number generator

seeds, the sample path that is executed can be made independent of the

way in which LPs are assigned to processors.

—Scheduling At any time, each LP is classified as being ready or blocked,

depending on whether it is free to execute or its waiting for an incoming

message. Scheduling consists of selecting the ready LP with least time-

stamp, performing a communication (either a send or a receive) and

simulating until it reaches its next communication instant. If an LP blocks

waiting for a message, a description for that message is stored in a binary

search tree. Between LP activations we probe for any newly received

messages, accepting all such and storing them in the application space. As

each new message is processed we examine the search tree to see if some

LP is blocked on this message. If so, the LP is unblocked and placed on the

list of ready LPs.

—List Generation: Every pair of LPs i and j maintain a synchronized

random number generator. This means that LP i can compute for itself the

same transition times that j computes for the LP j to LP i external

stream. Although each LP now executes more work by duplicating the

generation of external stream transition times, we avoid having to commu-

nicate and merge the lists. There is an additional advantage in that no

window is needed now to limit the memory usage of external transition

times. We simply generate the “next” transition time for a stream when it

is needed.

Somewhat to our surprise, our previous empirical studies found no real

benefit of CP-PUCS over CA-PUCS. Those studies examined situations in

which the deleterious effect of internal pseudos was the dominant bottleneck

to achieving good performance, and thus the benefit of avoiding them out-

weighed the benefit of more parallelism. However, data in the present article
show that this is not always the case and there are situations in which

CP-PUCS outperforms CA-PUCS. We comment more on this in Section 4.

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



336 . D. M. Nicol and P. Heidelberger

2.4 Optimistic PUCS

Opt-P17CS (identified in Nicol and HeideIberger [1993a] as OptAll) endows

CP-PUCS with optimism. This comes into play when an LP reaches an

incoming communication instant, and the message it is to receive is not yet

present. The LP can optimistically assume that the message will report a

pseudo-transition, and hence there is no need to wait for it. When the

message does finally arrive, if the receiving LP’s guess was correct, then

there is no need to roll back. This is an application of the idea of “lazy

reevaluation” explored first in West [ 1988]. Otherwise, as with standard

optimistic algorithms such as Time Warp [Jefferson 1985], the receiving LP is

rolled back to the time of the late message.

PUCS’ general framework makes possible some unique optimizations.

State Certainty: In a general-purpose optimistic environment, one can

never be certain whether the next event processed will end up being commit-

ted, or will be discarded as a result of rollback. In Opt-PUCS an LP can

sometimes know that its state is sure, that it will not be rolled back past its

present point. The key to this determination is that we know all instants in

simulation time where messages may arrive. If LP i knows it will not receive

any message between times s and t, and it knows that its present state is

sure (all LPs are initially sure), then its state remains sure while processing

all internal events up to time t.Furthermore, if LP j sends the message at t

and was also sure at the time the message was sent, then the message may

be received and LP z remains sure. However, if either LP j was unsure at

time t,or if the LP i decides to optimistically bypass that communication,

then LP i becomes unsure. In Nicol and Heidelberger [1993a] we show how

every LP can maintain a Least Sure Time (LST) that describes the last

instant in simulation time when the LP was sure. By simply appending

sure/unsure tags to messages and analyzing these, every LP’s LST ad-

vances without extra calculation. Because we may release any state saved at

a time less then the LST, the LST calculation gives us the benefits of the

usual GVT calculation, without the additional overhead of actually perform-

ing a GVT calculation.

State-Sauing: Optimistic simulations generally save state prior to every

event, because as far as the LP knows, the simulation can in theory be rolled

back to any point in simulation time ahead of the last known GVT. Within

the PUGS framework, a rollback can occur only at some communication

instant, hence there is no advantage to saving state before an internal event.

The only time state must be saved is at a communication instant, and then

only if the receiving LP is either unsure or becomes unsure by either

receiving an unsure message or by optimistically bypassing it.

Scheduling: Our ability to ascertain whether an LP’s state is sure per-

mits smarter scheduling than is usually possible under Time Warp because

we may give highest priority to an LP with some work to do that we know is

sure, and cannot be rolled back. In fact, our studies in Nicol and Heidel-

berger [1993a] found that a very effective scheduling strategy is one that is

averse to state-saving, as follows. An LPs execution slice is delimited at

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No 4, October 1995.



Simulating Continuous Time Markov Chains . 337

either end by an external communication (either incoming or outgoing); the

execution slice begins by performing a communication, then all internal work

up to (but not including) the next communication is performed. Whether we

perform a state-save at the initial communication depends on the present

sure/unsure state of the LP, whether the communication is outgoing or

incoming, and whether a communication is present or unsure. We define the

following scheduling classes, listed in decreasing order of priority.

(1) sure LPs that will not save state because the first communication is

either an incoming message from a sure LP, or is an outgoing message.

(2) unsure LPs whose first communication is either an incoming message
from a sure LP, or is an outgoing message. The LP need not save its

state.

(3) sure LPs that must save state on the first communication, because that
communication (necessarily incoming) is either not yet present, or was

sent by an unsure LP.

(4) unsure LPs that must save state on the first communication, because

that communication (necessarily incoming) is either not yet present, or

was sent by an unsure LP.

One of our aspirations for Opt-PUCS was tlhat it would reduce the cost of

pseudo transitions. Although pseudos would still appear logically in the

external event streams, the hope was that not having to communicate them

from unsure LPs would lead to some savings. Our initial experiments

showed that this intuition held true, provided that the fraction of pseudo

events was very high. For lesser fractions of pseudos, the overheads of

optimism largely concealed the benefits of optimism. This observation is also

borne out in the data we present in this article. Clne should also bear in mind

that the version we study here is highly optimized. Our previous study

suggested that its performance is as large as a factor of 2 better than

standard Time-Warp style algorithms.

2.5 The Problem of Pseudos

Parallel simulation based on uniformization yields excellent speedups when

communication costs are the minimum possible (i.e., when the percentage of

pseudos is low), and the overall computation/communication ratio is favor-

able. However, our experiments bear out the intuition that performance can

suffer when the percentage of pseudos is high. This happens when the

external streams’ actual transition rates are much lower than their uniform-

ization rates in situations where communication dominates performance. For

queueing networks, situations where this can occur include the following.

—Large variations in service rates: Consider the example model with hyper-
exponential service times in which fast 1/0 service (at rate Wf) is given

with low probability ( pf ) and slow service (at rate w.) is given with high

probability. Even though fast service is rare, a strict uniformization bound

must assume that the job in service is fast. If pf s> p,, then the strict

uniformization bound will be much too high. Another example in which

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



338 . D. M. NICOIand P, Heidelberger

there may be a large variation in the service rates is when there are

multiple priority levels that receive service at different rates.

—Low utilizations: Uniformization bounds generally need to assume that

all servers are always busy. If instead a server is almost always idle, then

the uniformization bound will not be tight.

—State-dependent routing: Imagine a queue that routes a job as a function

of its queue length L. If some processor receives a job from this queue only

from rarely achieved values of L, then the actual transition rate for such

transfers is very low, whereas the uniformized rate must assume that all

jobs are sent to that processor.

It is not difficult to construct scenarios where the uniformization rate is

orders of magnitude larger than the actual transition rate. Hyperexponen-

tials that choose rate 1000 with probability 0.001 and choose rate 1 otherwise

are one example: a 100-server queue with utilizations less than 1% is

another. Such situations induce uniformized communication costs that are

orders of magnitude larger than the ones induced by actual job transfer.

Overly high uniformized rates have also been observed in a parallel simula-

tion of a wireless network [Greenberg et al. 1994] when extended to include

handoffs. Here the rate at which one transmitting tower a hands calls off to

another tower b (due to movement) depends on a’s instantaneous load, which

depends on b’s load, which depends in turn on a’s load! Although we could

uniformize handoff events assuming each tower has its maximum load, this

uniformized rate is much much higher than the normal handoff rate.

As the problem of excessive pseudos is common and the effects may

degrade performance severely, we have investigated the approach of uniform-

izing based on much lower estimated bounds, which may turn out to be

incorrect. Our hope is that we can observe the simulation to determine what

maximal transition rates appear to be, and uniformize at rates only slightly

greater than these. This idea is explored more fully in the next section.

3. ADAPTIVE UNIFORMIZATION

In this section we present our algorithm for adaptive uniformization (which

we call Adaptive PUCS, or APUCS). Before describing the algorithm, we note

that the uniformization approach is valid even if one thins a nonhomogenous

Poisson process (NHPP) with nonconstant rate (see Lewis and Shedler [ 1979]

and Shanthikumar [1986]). More specifically, samples from NHPP {lV~( t)}

with rate A(t) can be generated by thinning a NHPP {Np (t)} with rate

~(t)(~(t) < ~(t) for all t), that is, an event at time T in ND(t) is accepted as
an event in {iV~(.t )} with probability A(T)/~(T). (The case that ~(t) is a

constant corresponds to uniformization.) The adaptive uniformization algo-

rithm that we describe next uses this idea of thinning a NHPP.

3.1 Algorithm

The basic idea behind adaptive uniformization is to estimate upper bounds

A,j on the off-processor event rates, and adapt them as a function of the

observed behavior of the external event streams. We permit the estimates to

ACM Transactions on Modeling and Computer Simulatl on, Vol 5, No. 4, October 1995



Simulating Continuous Time Markov Chains . 339

be incorrect, but continuously monitor the actual P, -+ Pj transition rates

and so detect whether the actual transition rate ever exceeds the presumed

bound, an occurrence called a rate fault. A rate fault causes resimulation,

and appropriate reuniformization to avoid a repeat of that fault.

We hope and expect that rate faults are rare, and so desire that the scheme

for dealing with them be as simple and inexpensive as possible. We adopt the

strategy of checkpointing the simulation state periodically in simulation time,

for example, every 250 simulation time units. The period between two

checkpoints is called a window. Processors synchronize globally at the begin-

ning of a window; then each processor Pt chooses a new uniformization rate

~,j for every processor Pj whose submodel it may affect. The processors

generate and exchange all communication events for the next window’s worth

of simulation time, and proceed as before. Given A,J, we adopt a conservative

parallel simulation policy within a window, that is, processors wait at all

incoming external event times until that incoming event arrives. However,

the overall algorithm is optimistic in the sense that we are optimistically

assuming that rate faults will not occur. If the end of the window is reached

without a rate fault on any processor, then the simulation of that window is

valid, and the next window is simulated. IFIowever, if a rate fault occurs, the

simulation is rolled back to the beginning of the window (which is the time of

the last checkpoint), and every processor restimulates the window, regardless

of whether it experienced a rate fault. Contrast this approach with Time

Warp, where only processors that experience temporal faults restimulate. The

disadvantage of our approach as compared to Time Warp is the very high cost

of restimulation; the advantage of our approach as compared to Time Warp is

the very low cost of state-saving—only once per window.

Suppose at least one rate fault occurs on some stream during the ~ourse of

simulating one window, and suppose that t is the time of the earliest fault.

The simulation state past time t is potentially invalid. In order to correct the

error without biasing the sample paths, we must restimulate the window so

that every processor follows precisely the same sample path as before up to

time t. Just prior to t, the faulting streams (several may simultaneously

fault) must be uniformized at new rates, at least as large as the actual rates

that caused the fault. We support this correction mechanism with the notion

of a uniformization schedule, maintained for every stream. The schedule

specifies uniformization levels, and simulation times at which they take

effect. For instance, the schedule might specify that the stream be uniform-

ized at rate 10 for the first 50 time units, then be raised to 17 for 150 units,

and finally be raised to 21 for the remainder of the window. When the

processor geaerates communication events for the steam, it samples with one

holding time distribution for the first 50 time units, then samples from

another for the next 150 time units, and so on. In effect, a NHPP with

piece-wise constant rates is used for uniformization of external events.

Each rate fault on a stream causes a new entry in its uniformization list, as

follows. A parallel global or-reduction on processors’ “rate fault occurre~ flag
detects whether any steams faulted during the window. If a fault is detected,

we use a global rein-reduction to determine the time, say t,of the earliest

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



340 . D. M. Nicol and P. Heidelberger

ones to occur. The processor holding the stream(s) faulting at t is thus able to

recognize that its first fault was first in the system, and adds new entries to

the streams’ uniformization schedule. An entry specifies time t, and a uni-

formization level at least as large as the actual transition rate that caused

the fault. Those streams’ communication events are regenerated and sent to

their target processors. All processors recover their checkpointed states (which

include random seeds so that the same behavior is generated up to t),and

attempt to simulate the window again.

The preceding scheme makes no special effort to detect and react to a rate

fault quickly. We experimented with schemes that did, and found that

performance did not improve. All our experiments suggest that rate faults are

so costly (even when detected more quickly), that we should strive to avoid

them. All fast fault detection mechanisms have their own additional costs

suffered when looking for a possible fault. It is better not to suffer those costs,

and better yet not to rate fault.

The issue of choosing a stream’s initial uniformization rate for each window

is important. Rate faults may result from choosing too low a value; excessive

communication may result from choosing too high a value. The fundamental

requirement is that we find a uniformization rate that is at least as large as

the maximum transition rate that will be achieved by the stream during the

next window. Because we cannot know the maximum ahead of time, the

problem is to estimate an upper bound on it.

We have investigated a number of schemes involving a base rate Ab and a

multiplier ~. The base rate estimates the anticipated maximum rate as a

function of observed behavior, and the multiplier is “insurance,” as the

uniformization rate chosen is Ab ~. The schemes vary in their definition and

evolution of A~ ~. Among the methods we considered, an intuitively simple

two-phase scheme achieved the best performance, sometimes markedly. Re-

call that at any time s, A,~(N,( s)) gives the transition rate of jobs from P, to

PJ, where N,(s) is the state of P,’s submodel at time s. Define

In the first phase, for a window beginning at time t, we use the maximum

rate seen so far, A~x (t),as the base rate for the next window. Similarly, if a
rate fault occurs at time u > t, A~x (u) is the base rate for the rest of the
window. The second phase begins at the first time t’such that if N is the

number of {NLJ(t)} transitions made by time t‘,then A~ax(s) remains un-

changed throughout the 0.01 Nth to N external transitions. During the
second phase we fix A~ = A~x (t’), with a provision to increase it in the
presence of too frequent (e.g., 5%) additional rate faults. Of course, we never

permit the uniformization rate to be set higher than its maximum possible

rate. (An implicit assumption is that large rates are rare and that the model

is not initialized in such a way as to artificially introduce a large rate at the

beginning of the simulation.)
The selection of the parameter ~ is an important issue, which we address

experimentally (we have also addressed it theoretically in Nicol and Heidel-

ACM TransactIons on Modeling and Compute, Simulation, Vol 5, No. 4, October 1995,



Simulating Continuous Time Markov Chains . 341

berger [ 1993b]). Our intuition is that in many models ~~x(~) Will grOW S1OW1Y

after an initial warm-up period, and therefore picking a modest value of /3

will both protect against rate faults and keep the level of interprocessor

communication reasonable. In our experiments, we have observed that /3 = 2

has yielded consistently good results. Although it might seem that the

uniformization level produced by such a scheme is high, some inflation

is unavoidable. In the subsection to follow we examine this issue, identi-

fying conditions under which adaptive uniformization can be expected to

achieve good performance while nonadaptive uniformation does not. We

also give some insight as to why P = 2 can be expected to work well in

many situations.

3.2 Empirical Studies of APUCS

In this subsection we present experimental results obtained from simulations

of the system with clusters of central server models as described in Section

2.1 on both nodes of the Intel Paragon and (up to) 256 nodes of the Intel

Touchstone Delta machine. Models of this structure were also used for

experimentation in Heidelberger and Nicol [1993] and Nicol and Heidelberger

[1993a]. The model has a few simple parameters that can be varied to study

the effect on speedup. For example, if each cluster is assigned to its own

processor (as is done here), then pC can be used to control the computation to

communication ratio; increasing pC means that more on-processor events are

executed between each off-processor (communications) event.

For the purposes of studying adaptive uniformization, we performed the

following types of simple experiments, both of which led to poor PUCS

performance.

(1) The service distributions are phase-type and there is a large discrepancy

between the phase rates.

Keeping all other parameters fixed, increasing J-Lf has the effect of

increasing the maximum possible off-processor uniformization rate. As

described before, if p~ is small but I-Lf is large, then most (busy) I/o

devices will be in the slow phase and the typical instantaneous off-

processor rate is much less than this maximum possible rate.

(2) The model consists of a large number of servers, most of which are idle.

With all other parameters fixed, increasing the number of 1/0 devices K

has the effect of increasing the number of idle servers which again leads

to a large difference between the typical instantaneous off-processor rate

and the maximum possible rate.

In all experiments, the model parameters were set so that good parallel

performance was achievable if enough external pseudo event communications

could be eliminated. Speedups were calculated relative to an eficient serial

simulator similar to the one described in Hei delberger and Nicol [1993] and

Nicol and Heidelberger [1993a]. The models were run for a sufilciently long

time that stable estimates of the event processing rate (the number of real

events executed per unit of real time) were obtained. For these experiments,

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



342 . D, M Nicol and P. Heidelberger

we used a window of size T = 250; we comment more on the choice of window

size later.

Although simple, the model we study presents a challenge to any

performance-oriented study, especially of a conservative synchronization

algorithm. There is virtually no locality; every cluster communicates with

every other cluster—there are approximately P 2 distinct communication

paths to manage when using P processors. In addition, every time a commu-

nication occurs there is a (P – 1)/P chance that the communication is

between different processors. Furthermore, the model uniformization is con-

sistent with a queueing policy where newly arriving fast jobs preempt slow

jobs, a situation that is known to cause problems for conservative simula-

tions. The only benign assumption made is that pC = 0.99, an assumption

needed to ensure a sufficient computation/communication ratio. With p, =

0.99, there is a healthy computation/ communication ratio proportional to

200 (an average of 100 visits to the CPU and some 1/0 device before exiting

the cluster)—but only in an “optimal” parallel simulation whose only commu-

nication costs are those of moving jobs. The actual ratio will be degraded from

this level by uniformization. Because of the relatively high cost of message-

passing, any application running on machines such as the Paragon and Delta

must have a respectable computation/communication ratio to achieve re-

spectable speedups. Finally, the maximal processor size P = 256 is signifi-

cantly larger than that used in most studies, and may be as large as any

previous study using MIMD processors. The fact that we do achieve signifi-

cant perform ante over optimized serial execution on a difficult problem

proves the validity of our methods.

In the experiments, our primary metric of interest is the euent execution

rate, which measures the rate at which useful events are executed (per

second). We specifically exclude from this rate pseudo events and, for Opt-

PUCS, optimistically executed events that are later rolled back. The rates we

present are from single runs; this is justified, as in our experience there is

very little variation (perhaps l%) in these execution rates between runs of

the same model.

We ran a number of experiments to determine a good value for the

uniformization multiplier ~. We considered two models with parameter set-

tings chosen so as to observe the two different kinds of behavior previously

described. In parameter Set I, pC = 0.99, UC = 1000, J = 10000, K = 20,

P. = L pf = o.o1, and ~f = 128, corresponding to situation 1. In Parameter
Set H, pC = 0.99, p, = 10, J = 50, K = 1024, and ~~ = ~f = 1, corresponding
to Situation 2.

Table 1 gives both the event execution rate and a measure of the number of

rate faults as a function of ~. The rate fault activity is measured by the

percentage of extra window simulated compared to the number of windows

(assuming no rate faults) that need to be simulated to complete the run.

These experiments were run on 16 nodes of the Intel Paragon, with a window

size of T = 250. On this machine, our best sequential simulator runs at about

12,000 ~ 4%events/second for both Sets I and II, depending on the particu-

ACM Transactions on Modeling and Computer Simulation, Vol 5, No. 4, October 1995



Simulating Continuous Time Markov Chains . 343

Table I. Event Processing Rates and Rate Fault Activity as a Function of

/3 on 16 Paragon Nodes

Set I: Fast Jobs Set II: Idle 1/0 Devices

P 7. Extra Windows Events/Second % Extra Windows Events/Second

1.00
1.25
1.50
1.75

2.00
2.25

2.50
2.75
3.00

33
33
38
12
0
0
0
0
0

76,591
70,081
55,427
57,973

88,987
86,191
80,890
77,800
74,130

18

0

0

0

0

0

0

0

0

115,411

144,416

141,573

138,597

135,793

133,791

130,737

129,858

126,816

lar parameter settings. (We implemented several sequential simulators; see

Section 4 for a further discussion.)

For these experiments, low values of /3 results in a significant number of

rate faults. (It is worth noting that, if fl is too low, we can expect the

percentage of windows restimulated to increase significantly as the number of

processors increases, inasmuch as only one rate fault in one processor is

required to cause resimrdation.) Once rate faults are eliminated, the process-

ing rate falls rather slowly as ~ increases. Observations on data not pre-

sented here show that increasing the window size amplifies the cost of

choosing @ too small. However, if ~, is chosen appropriately so as to

eliminate most rate faults, then the performance is little affected by the

window size. For example, with a window size of 1000 and j3 = 1.25, the Set I

execution rate is about 45,000 events/second; with /? = 2.00 no rate faults

occur and the execution rate is about 80,000 events/second. These observa-

tions (and the analysis in Nicol and Heidelberger [ 1993b]) suggest that B

should be set rather conservatively. Setting f? = 2 permits up to double the

number of occurrences of whatever phenomenon defined the base rate with-

out incurring a rate fault. For example, in parameter Set I, the base rate

corresponds to one (or two) fast jobs in service; f? = 2 permits two (or four)

simultaneous fast jobs without a rate fault. Similarly, in parameter Set II,

/3 = 2 permits double the maximum number of busy servers that are likely to
occur in a window without a rate fault.

Based on these results, the remaining experiments used ~ = 2 for both

phases. Nevertheless, although this policy performed well in all the experi-

ments we conducted, there is still a danger that our /3 = 2 selection is

application dependent. If this approach were used in production runs, either

pilot runs or a different policy that tried to optimize /3 might be required.

The next experiment was also performed on 16 nodes of the Intel Paragon

(with 16 clusters). We fixed pC = 0.99, PC = 1000, J = 10000, K = 20, IL, = 1,

Pf = 0.01, and increased pf from 2 to 1024. With these settings) the I/o
devices are busy nearly all the time in the slow phase. In this experiment, a

window of size T = 250 contains (on average) approximately 50 outgoing real

external transitions per processor. Figure 1 shows the speedup as a function

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



344 . D. M. NICOIand P, Heidelberger

Performance on 16 Paragon Nodes

— — —-- ,192364

+’%\
‘Q,

\\ \ APUGS 1144406

96448

\ ‘b 48490

\\
‘\

\ ‘k‘
‘\

\
\b

o J

o 2 4 6 8 10 12

Log (1/0 Dewce Service Rate)

Fig, 1. Speedups on161ntel Paragon nodes asafunctionof pf.

of I.Lf for both PUCS and APUCS. As expected, the PUCS performance drops

rapidly as I..Lf increases due to excessive pseudo event synchronizations. The

performance of APUCS is less sensitive to pf; efficiencies greater than 0.5

(speedups greater than 8) are maintained even when Pf is two orders of
magnitude larger than p,. At a three orders of magnitude difference ( pf =

1024), the APUCS speedup is 2.2 whereas the PUCS speedup (slowdown) is

only 0.3. Earlier experiments on a 16-node Intel iPSC/2 hypercube showed

that the APUCS speedup drops off more slowly; the speedups at Pf = 16 and

pf = 1024 were approximately 14 and 6, respectively. This difference in

speedup reflects the different balance between computation and communica-

tions speeds on the machines. The 386-based processor on the hypercube is

relatively slow compared to its communications network; our sequential

simulator runs at only about 800 events/second on the hypercube. On the
other hand, the Paragon has a (relatively) faster 50 MHz processor and high

bandwidth interconnection network, although the software overhead to send

and receive messages is fairly high.

The third experiment (also performed on 16 Paragon nodes) studied the

effect of increasing the number of idle servers. lVe fixed PC = 0.99, PC = 10,

J = 50, ~, = pf = 1, and increased K from 32 to 2048. With these settings,

the fraction of idle 1/0 devices increases as K increases. Figure 2 shows the

speedup as a function of K for both PUCS and APUCS. Again, the PUCS

ACM TransactIons on Modeling and Computer Simulation, Vol 5, No. 4, October 1995,



Simulating Continuous Time Markov Chains . 345

Performance on 16 Paragon Nodes

—

\

\

92003

43862

95721

I47579

“4 6 6 10 12

Log (Number of 1/0 Dewces)

Fig. 2. Speedups on 16 Intel Paragon nodes as a function of the number of 1/0 devices in a

cluster.

performance drops as K increases; however, the APUCS performance is little

affected by K with all speedups in excess of 11. In this experiment, the

maximum observed off-processor rate is closer to the average off-processor

rate than it was in the previous experiment. Thus APUCS is more efficient in

this case.

The next experiment was designed to test how well APUCS scales for large

models and a large number of processors. This experiment was run on the

Intel Touchstone Delta machine with from 32 to 256 processors. The number

of clusters was set equal to the number of processors, so that the model size

scaled proportionally to the number of processors. We fixed pC = 0.99, WC=

1000, J = 10000, p~ = 0.01, p, = 1, pf = 64, and K = 20. Again, with these

settings, most 1/0 devices are busy in the slow phase. Figure 3 shows the

speedup as a function of the number of processors for both PUCS and

APUCS. Both PUCS and APUCS performance increase as the number of

processors increases. The APUCS speedup stays at about 1.9 times the PUCS

speedup throughout these runs. For 256 processors, the APUCS speedup is

155.9, whereas the PUCS speedup is 75.5 corresponding the efficiencies of

0.61 and 0.29. With 256 processors, APUCS processed about 973,000 (real)

events/second while PUCS processes about 471,000 events/second.

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



346 . D. M. Nicol and P. Heidelberger

Speedups on Intel Touchstone DELTA
170 I

160

150

140
130

120

110

~loo
: 9(J

a) 80

g 70

60

50

40

30
20
10

0

L

16 32 64 128 256

Number of Processors

❑ APUCS ❑ PUCS

Fig. 3, Speedups on the Intel Touchstone Delta

As mentioned in Section 2 we implemented two versions of ordinary PUCS;

one that aggregates all coresident workload into a single LP, and another

that permits coresident submodels to be handled separately. The same dis-

tinction could, and has, been applied to APUCS. Experiments conducted on

the Intel Touchstone Delta showed no advantage to the “partitioned” case

(although some experiments conducted on the Intel iPSC/2 do show an
advantage). In the remainder we speak only of the “aggregated APUCS

algorithm as presented, with the understanding that an alternative parti-

tioned form is feasible.

4. EXPERIMENTS COMPARING ALTERNATIVE ALGORITHMS

In this section we present the results of experiments performed on the Intel

Touchstone Delta multiprocessor [Lillevik 1991], using 16, 64, and 256

processors, as well as results using 16, 32, and 64 nodes of the Intel Paragon.

The purpose of these experiments is to compare the performance achieved by

the various algorithms described in Section 2.

We continue to study the fully connected network of central server queue-
ing clusters with a hyperexponential 1/0 service time distribution as previ-

ously described. For these experiments we fix the number of 1/0 servers in

each cluster at 20 and fix the probability of a fast job ( pf ) to be 0.01. Our

study fixed the number of central server clusters at 256. This selection gives

us a moderately large simulation model, and also enables us to examine the

effects of managing many LPs (up to 16) on a processor, Finally, we set the

CPU service rate to 20, and the slow 1/0 job rate of 1. This ensures that in

ACM Transactions on Modehng and Computer Simulation, Vol 5, No 4, October 1995,



Simulating Continuous Time Markov Chains . 347

steady-state the distribution of jobs will be more or less uniform among all

queues.

The parameters we vary are as follows.

—Number ofjobs: We examine lightly loaded scenarios, where there are 10
jobs per cluster (about 0.5 jobs/queue), and heavily loaded scenarios

where there are 1000 jobs per cluster (about 50 jobs\ queue).

—p.f: We examine a fast job rate of 1 (so there is no distinction between fast

and slow jobs), and a fast job rate of 8. The latter selection, coupled with

p~ = 0.01, induces moderately high rates of uniformization relative to

actual stream transition rates.

—Number of processors: We study our models on 4 x 4, 8 x 8, and 16 x 16

submeshes of the Delta.

Every experiment was run long enough so that every processor executed

approximately 0.5 million events.

Before analyzing the results of our experiments, we address the issue of

“speedup.” Speedup is intended to measure the user’s benefit of running the

parallel algorithm. For this reason, one ought to compare parallel perfor-

mance to that of an optimized serial algorithm. Some difficulties arise,

however, when the serial algorithm which is optimal changes as the problem

parameters of interest change. To illustrate the point, Table II gives serial

execution rates (on the Delta) as a function of problem characteristics, for an

optimized serial direct Markovian simulation, and CP-PUCS run on one

processor. Although PUCS on one processor is faster by almost 209% on one

set of parameters, it is slower by 33% on another. By comparison, the

optimized serial algorithm varies by only a few percent over these problems.

A user is far more likely to choose a serial algorithm that is consistently good

over one whose performance varies so widely.

Table III presents the results of our experiments. Simulation is executed on

16, 64, and 256 processors of the Intel Delta. Without resorting to a definition

of speedup, we can say that on the heavily loaded problem with pf = 1 using

256 processors, CP-PUCS is 260 times faster than the particular serial

simulator we used, and is 221 times faster than its own one-processor

implementation (and 14 times faster than its 16-processor implementation).

In either case, it is clear that a very substantial improvement over serial

execution is being achieved. As an additional point of comparison, we mea-

sured the execution rate of the commercial queueing network simulator

RESQ [Gordon et al. 1991], executing on an IBM 3090 mainframe. The model

simulated by RESQ is actually substantially smaller than this one, having

only 16 clusters (due to memory constraints). The RESQ execution rate is

only 1,781 events/second compared to PUCS execution rates in excess of

1,500,000 events/second. Of course, one must take into account that RESQ is

an industrial quality simulator able to handle a wide range of problems,

whereas the PUCS code is handcrafted and optimized, with a much more
restrictive domain. Nevertheless, this comparison illustrates parallel simula-

tion’s tremendous potential for accelerating solution times.

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995



348 . D. M. Nicol and P, Heidelberger

Table II. Execution Rates (events\sec) of Optimized Serial Algorithm and

PUCS Running on One Intel Delta Processor

Opt~mized Ser~al PUGS on

(load, pf) Algorlthm One Processor

(light, 1) 6211 7014

(heavy, 1) 6563 7706

(light, 8) 6219 4166

(heavy, 8) 6554 6469

Table III. Execution Rates (events/second) of Fully Connected Model of

256 Central Server Clusters With PC = 0.99, p~ = 0.01

16 Processors 64 Processors 256 Processors

light heavy light heauy light heavy

Fast Job Rate = 1

CA-PUCS 80,032 102,504 301,765 411,362 985,327 1,575,146

CP-PUCS 109,585 122,186 378,329 393,418 1,043,609 1,709,567

opt-Puts 103,707 121,609 343,510 353,873 874,617 855,737

APucs 79,711 102,329 311,168 403,380 989,351 1,567,038

Fast Job Rate = 8

CA-PUCS 53,339 76>580 181,785 299,660 668,323 1,147,282

CP-PUCS 58,753 90,708 202,205 311,920 457,252 934,120

opt-Puts 57,314 89,642 167,382 328,711 445,880 802,732
APucs 74,580 90,857 258,018 352,763 851,204 1,304,502

Fast job service rate is varied between 1 and 8; average number of jobs per cluster is varied from

10 (light) to 1000 (heavy). Simulation is executed on 16, 64, and 256 processors of the Intel Delta.

We also ran this model on 16, 32, and 64 nodes of the Paragon. For the

heavily loaded case with pf = 1, the APUCS execution rates were approxi-

mately 168,000, 315,000, and 615,000 events/second, respectively, whereas

with pf = 8, the APUCS execution rates were approximately 154,000,

304,000, and 590,000 events/second, respectively.

We next analyze the Delta data with an eye towards addressing the issues

of aggregation, communication costs, optimism, and adaptiveness.

4.1 CP-PUCS Versus CA-PUCS

Our earlier studies of CA-PUCS and CP-PUCS (on an Intel iPCS/2) indi-

cated that the CP-PUCS overheads of managing multiple LPs and of internal

pseudos between on-processors clusters outweighed the advantages of in-
creased opportunity for parallelism and avoidance of synchronous appoint-

ment generation. Yet the data in the present study shows that this is not

always true. Consider Table IV which gives the ratio of CP-PUCS rates to

CA-PUCS rates, as a function of problem characteristics and architecture

size.
The overall trend is for CP-PUCS to outperform CA-PUCS, but there are

still instances where the reverse is true.

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995,



Simulating Continuous Time Markov Chains . 349

Table IV. Ratio of CP-PUCS /CA-PUCS Execution Rates

(load, Pf) 16 Processors 64 Processors 256 Processors

(light, 1) 1.37 1.25 1.05

(heavy, 1) 1.19 0.95 1.08

(light, 8) 1.10 1.11 0.68

(heavy, 8) 1.18 1.35 0.81

CP-PUCS and CA-PUCS differ both with respect to aggregation, and with

respect to message handling. As such, it is difficult to separate the influences

of aggregation and communication costs. Furthermore, the communication

costs will depend on the underlying architecture, as well as the operating

system. There are at least four factors to take into consideration, which

sometimes interact in a complex manner.

—An LP’s execution time-slice is delimited by communication instants. When

~f = 8 the uniformization rate is eight times larger, so that there are eight
times as many communication instants per unit time. An LP’s execution

time-slice is much shorter, so that the overhead of switching between LPs

is suffered eight times as often.

—In the lightly loaded experiments (and those where Kf = 8), most commu-

nications report pseudo events. Thus, when CA-PUCS blocks, it usually

waits for a communication that does not affect its state. There is thus no

useful purpose gained by blocking, other than the assurance of logical

correctness. CP-PUCS is better able to find and execute useful work, when

such work exists.

—As we increase the number of processors we decrease the number of

clusters on a processor. This increasingly limits CP-PUCS’ ability to find

useful work that CA-PUCS cannot find. Of course, at 265 processors, both

CP-PUCS and CA-PUCS each have one cluster per processor, and thus

behave identically with respect to synchronization.

—CA-PUCS has a global step where synchronization appointments are gen-

erated and exchanged. Its performance will thus be affected by the effi-

ciency with which an all-to-all exchange can be performed, and by the

frequency of this exchange. CP-PUCS has no corresponding cost.

Let us examine performance with these factors in mind. On these experi-

ments CP-PUCS tends to perform better. Apparently, on this model, the

scheduling and appointment generation advantages outweigh CA-PUCS ad-

vantages. The difference between the two tends to diminish as the number of

processors increases, which is consistent with the fact that (i) the CP-PUCS

scheduling advantage gets smaller as a processor has fewer and fewer

clusters, and (ii) in a CA-PUCS appointments exchange, essentially the same

communication workload is spread over more network hardware, reducing
the frequency of collisions and blocking. Thus, as the number of processors

increases, the CA-PUCS advantage diminishes and the CP-PUCS disadvan-

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



350 . D. M. Nicol and P. Heidelberger

tage diminishes. However, there are clearly other factors at work, as the

performance differences change neither smoothly nor monotonically as the

number of processors increases.

Our earlier comparison of CP-PUCS and CA-PUGS found CA-PUCS to be

clearly superior. One explanation is that the models studied are different in

an important way. The earlier model appends 10 “local clusters” of queues to

every central server queue. In those studies, pC = 0.0, and a job leaving an

1/0 device can be routed either to another central server cluster (with

probability pCC) or to one of its local clusters. Upon leaving the local cluster

the job returns to the same central server. This model provides another way

of boosting the computation/communication ratio, because a local cluster is

always mapped to the same processor as its parent central server cluster, Our

previous study varied the probability pcc of routing a job from one central

server to another one, on a different processor. As pCC increases, CP-PUCS

performance drops faster than that of CA-PUCS, because CP-PUCS suffers

increasingly from internal pseudo transitions between a central server and

its local clusters. The present set of experiments is somewhat kinder to

CP-PUCS, as the level of interaction between coresident LPs is much lower.

It seems then that the level of internal uniformization is the deciding factor

between CA-PUCS and CP-PUCS. This implies that close attention must be

paid when partitioning a simulation model into LPs for PUCS, perhaps

deciding which style of synchronization to use as a function of uniformization

rates.

4.2 Whither Optimism?

These experiments offer clear insight into the potential of exploiting opti-

mism in PUCS, because the only substantive difference between CP-PUCS

and Opt-PUCS is the optimistic processing. Towards this end, Table V

computes the ratio of CP-PUCS to Opt-PUCS execution rates.

The first thing we notice is that CP-PUCS tends to do a little better than

Opt-PUCS. Next we notice that the degree to which CP-PUCS does better

tends to increase as the number of processors increases. Indeed, for all

practical purposes, the performance on 16 processors is identical; yet, at 256

processors, on one case CP-PUCS was nearly twice as fast as Opt-PUCS.

Explanations for this behavior are found by looking at the cost suffered by

executing optimistically, primarily event re-execution and state-saving. Table

VI computes the ratio of the number of total events (excluding pseudos)

executed to the number of events (excluding pseudos) committed. One can

also view this as the average number of times a nonpseudo event is executed.

The table also computes the average number of state-saves per committed

nonpseudo event.

One thing clearly shown is that, in this example, the cost of saving the

state of one central server cluster (about 3,000 bytes) is usually amortized

over many events, Its effect on performance must be negligible. Any signifi-

cant differences between CP-PUCS and Opt-PUCS are related to the cost of

ACM TransactIons on Modeling and Computer Slmulat,on. Vol 5, No. 4, October 1995



Simulating Continuous Time Markov Chains . 351

Table V. Ratio of CP-PUCS /Opt-PUCS Execution Rates

(load, I+) 16 Processors 64 Processors 256 Processors

(light, 1) 1.05 1.10 1.19

(heavy, 1) 1.00 1.10

(light, 8)

1.99

1.02 1.20

(heavy, 8)

1.02
1.01 0.90 1.16

Table VI. Overheads Associated With Opt-PUCS

Total/Committed Events Average State Saves/Event

16 64 256 16 64 256

(load, I+) Processors Processors Processors Processors Processors Processors

(light, 1) 1.11 1.19 1.68 0.008 0.010 0.027

(heavy, 1) 1.03 1.40 2.10 0.001

(light, 8)

0.002 0.007

1.01 1.06 1.34 0.060 0.100 0.017
(heavy, 8) 1.01 1.04 1.27 0.004 0.015 0.041

rolling back and re-executing events. Indeed, there is a direct correlation

between high event execution ratios and significant gaps between CP-PUCS

and Opt-PUCS.

Because re-execution costs define the difference between CP-PUCS and

Opt-PUCS, it is simple to explain why the gap between them increases as the

number of processors increases. On only 16 processors, many LPs are as-

signed to the same processor, and thus Opt-PUCS has a good chance of being

able to schedule a sure cluster. However, for a large number of processors

there are relatively few LPs on a processor. Without a large number of LPs, a

processor quickly executes its sure workload and is left to forge ahead
optimistically. Apparently its optimism is frequently misplaced, and signifi-

cant fractions of events end up being restimulated. This effect is somewhat

lessened when there are many pseudo events, as in such cases the optimistic

assumption that the event is a pseudo event is, in fact, correct.

4.3 Adaptivity

Pseudo events are the largest source of performance degradation in all

versions of PUCS. Many CTMC models have characteristics that cause the

best upper bound on an external event stream’s transition rate to be very far

from the stream’s average transition rate. In our experiments fast jobs

appear infrequently, and one almost never sees more than three simultane-

ous fast jobs in a central server cluster. Yet the uniformization bound must be

based on the assumption that all servers are busy with fast jobs.

Table VII illustrates the sensitivity of each method to increased uniform-

ization, by computing the ratio of its execution rate using pf = 1 to its rate
using ~f = 8. TheSeC&&ishow clearly that APUCS is more tolerant of

increased uniformization than are the other methods. Similar observations

held in our previous study of APUCS that varied Kf more widely, UP to

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 4, October 1995.



352 . D. M. Nicol and P. Heldelberger

Table VII. Ratio of Wf = 1 to ~f = 8 Execution Rates

Light Load Heavy Load

16 64 256 16 64 256

Algorlthm Processors Processors Processors Processors Processors Processors

CA-PUCS 1.50 1.66 1.47 1.34 1.37 1.37

CP-PUCS 1.86 1.87 2.28 1.34 1.25 1.83

opt-Puts 1.80 2.05 1.96 1.35 1.07 1.06

APucs 1.07 1.20 1,16 1.12 1.14 1.20

~f = 1024. Even at levels of P~ = 2567 APUCS gives a respectable Perfor-

mance whereas CA-PUCS performance has thoroughly degenerated. We be-

lieve that any standardized version of PUCS must include adaptivity if it is to

work on a wide range of problems.

5. CONCLUSIONS

This paper looked at the problem of parallelizing the simulation of continuous

time Markov chains. We showed how the notion of uniformization can be

applied so that the simulation can be conducted by essentially precomputing

an inter-LP synchronization schedule, and then simulating a mathematically

correct sample path through that schedule. This basic method is called PUGS.

We described four different PUGS variations, and examined performance on a

parameterized model designed to illustrate their respective strengths and

weaknesses. The experiments were conducted on a variety of Intel multi-

processors, including the Intel Touchstone Delta using 16, 64, and 256

processors.

The results of these experiments, taken in conjunction with others previ-

ously conducted, imply that an optimized PUGS algorithm ought to incorpo-

rate conservative synchronization and adaptive uniformization rates. On the

issue of aggregation, although partitioned PUGS sometimes runs faster than

the aggregated PUGS, it rarely runs faster than the adaptive, aggregated

PUGS. Thus, if the workload is well balanced, there seems to be little
advantage in partitioning the submodel assigned to a processor into multiple

LPs. The performance we observe can often be quite good, depending on the

problem characteristics. However, PUGS performance is inescapably depen-

dent on the number of pseudo events, and every effort must be made to

reduce these.

Although our experiments prove the promise of PU(2S, some important

issues remain open. In particular, we have not addressed automated parti-

tioning, automated load balancing, or the effect one has on the other. There

are several interesting fronts of future research. The class of models for

which a PUCS-style approach is valid is broader than just CTMCS (e.g.,

strictly internal processes need not be Markovian and the exponential distri-

bution assumption can be relaxed for external events provided the hazard

rate of the distribution is bounded). An interesting problem is to incorporate

and take advantage of uniformization-based synchronization within other

ACM TransactIons on Modeling and Computer Simulation, Vol. 5, No, 4, October 1995



Simulating Continuous Time Markov Chains . 353

synchronization protocols for supporting models in which only some of the

external processes can be uniformized. The requirement for such a protocol

would arise for a model in which some service time distributions are Coxian

phase type, whereas others are constant, discrete, or uniform. Another inter-

esting problem is making the results of uniformization-based synchronization

practically available to a simulation modeler, in the context of a general-

purpose simulation tool. We are dealing with both these issues in the context

of a tool we call the Utilitarian Parallel Simulator (U. P.S.). U.P.S. extends

parallel processing to an existing serial simulator, CSIM [Schwetman 1986],

through libraries used in conjunction with CSIM models. A preliminary

report appears in Nicol and Heidelberger [1995]. We hope to address parti-

tioning and load-balancing problems in U.P.S. as well.

ACKNOWLEDGMENTS

This research was performed in part using the Intel Touchstone Delta

System operated by Cal. Tech. On behalf of the Concurrent Supercomputing

Consortium. Access to this facility and to the Intel Paragon was provided by

the NASA Langley Research Center.

REFERENCES

BUZEN, J. P. 1973. Computational algorithms for closed queueing networks with exponential

servers. Commun. ACM 16, 9 (Sept.), 527–531.
FUJIMOTO, R. M. 1990. Parallel discrete event simulation. Commun. ACM 33, 10, 31-53.

FUJIMOTO, R. M., TSAI, J.-J., AND GOPALAKRISHNAN, G. C. 1992. Design and evaluation of the

rollback chip: Special purpose hardware for Time Warp. IEEE Trans. Comput. 41, 1 (Jan.),
68–82.

GORDON, K. J., GORDON,R. F., KUROSE J. F., AND MACNAIR, E. A. 1991. An extensible visual

environment for construction and analysis of hierarchically-structured models of resource

contention systems. Manage. Sci. 37, 6 (June), 714–732.

GREENBERG,A., LUBACHEVSKY, B., NICOL, D., AND WRIGHT, P. 1994. Eficient massively parallel
simulation of dynamic channel assignment schemes for wireless cellular communications. In
Proceedings of the 1994 Workshop on Parallel and Distributed Simulaton (Edinborough,

Scotland), 187-194.

GROSS, D., AND MILLER, D. R. 1984. The randomization technique as a modeling tool and

solution procedure for transient Markov processes. Oper. Res. 32, 2 (March–April), 343–361.
HEIDELBERGER, P. AND NICOL, D. M. 1993. Conservative parallel simulation of continuous time

Markov chains using uniformization. IEEE Trans. Parallel Distrib. Syst. 4, 8906-921.

INTEL CORP. 1993. Paragon User’s Gzude, Order Number 312489-002. Oct.
JEFFERSON, D. R. 1985. Virtual Time. ACM Trans. Program. Lang. Syst. 7, 3 (July), 404-425.
LEWIS, P. A. W. AND SHEDLER, G. S. 1979. Simulation of nonhomogeneous Poisson processes by

thinning. Naval Res. Logistics Q. 26, 3 (Sept.) 403-413.
LILLEVIK, S. L. 1991. The Touchstone 30 gigaflop DELTA prototype. In Proceedings of the

1991 Distributed Memory Computer Conference (April), IEEE Press, Piscataway, NJ, 671-677.
LUBACHEVSKY, B. D. 1990. Simulating colliding rigid disks in parallel using bounded lag

without Time Warp. Distri. Simul. 1990, 22, 2. (Simulation Series), (Jan.), 194–204.

LUBACHEVSKY, B. D. 1987. Efficient parallel simulations of asynchronous cellular arrays.

Complex Sys. 1, 1099-1123.
NICOL, D. M. 1988. Parallel discrete-even simulation of FCFS stochastic queueing networks,

In Proceedings of the ACM/SIGPLAN PPEALS 1988. Parallel Programming: Experiences

with Applications, Languages and Systems. ACM Press, New York, 124–137.

ACM Transactions on Modeling and Computer Simulation, Vol. 5, No 4, October 1995.



354 . D. M, Nicol and P. Heidelberger

NICOL, D. M. AND FUJIMOTO, R. 1994. Parallel simulation today. Ann. Oper. Res. (Dec.),
249-286.

NICOL, D. M. mm HEIDELBERGER P. 1995, On extending parallelism to serial simulators. In

Proceedings of the Ninth Workshop on Parallel and Distributed Slmulatlon (PADS95) (Lake

Placid, NY, June 14-16), IEEE Computer Society Press, Los Alamitos, CA, 60-67,

NICOL, D. M. AND HEIDELBERGER, P. 1993a. Optimistic parallel simulation of continuous time

Markov chains using uniformization. J Parallel Dwtrib. Comput. 18, 4 (Aug.), 395-410.

NICOL, D. M. AND HEIDELBERGER, P. 1993b. Parallel simulation of Markovian queueing net-

works. In Proceedings of the 1993 ACM SIGMETRICS Conference, ACM Press, New York,

135-145.

NICOL, D. M. AND HEIDLEBERGER, P. 1993c. Parallel algorithms for simulating continuous time

Markov chains. In Proceedings of the Seventh Workshop on Parallel and Dzstrlbuted Simula-

tion (PADS93 ), IEEE Computer Society Press, Los Alamitosj CA, 11-18.
RATTNER, J. 1985. Concurrent processing a new direction in scientific computing In AFIPS

Conference Proceedings, Nat~onal Computer Conference, vol. 54, 157-166,
RIGHTER, R. AND WALRAND, J. V. 1989. Distributed simulation of discrete event systems. Proc.

IEEE 77, 1 (Jan.), 99-113.

SCHWETMAN H. 1986. CSIM: A C-based, process-oriented simulation language. In Proceedings

of the 1986 Winter Simulation Conference, 387–396.

ROSS, S. 1983. Stochastic Processes. John Wiley and Sons, New York.

SHANTHIKUMAR, J. G. 1986. Uniformization and hybrid simulation/analytic models of renewal

processes Oper. Res. 34, 4 (July-Aug.), 573-580.

WEST D. 1988. Lazy rollback and lazy reevaluation, Umv. of Calgary, M.S. Thesis, Jan.

Received May 1994; revised June 1995; accepted July 1995,

ACM TransactIons on Modeling and Computer Slmulat,on, Vol 5, No. 4, October 1995


