
i n t e r a

62 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

H UM NA

c
o

p
u

e
r

SAUL
GREENBERG

TEACHING

Saul
Cite as:
Greenberg, S. (1996). Teaching Human Computer Interaction to Programmers. ACM Interactions, 3(4), pp. 62-76, July-August, ACM Press.

c t i o n

63

0

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

PROGRAMMERS

T h e C h a l l e n g e

OVER THE LAST DECADE, THE INTERFACE HAS BECOME A CRITICAL COMPONENT OF COMMERCIAL SOFTWARE.

FROM A SYSTEM PERSPECTIVE, THE INTERFACE DIALOG STANDARD HAS SHIFTED AWAY FROM TEXT-BASED

COMMAND LINE SYSTEMS AND FORM-FILLING DIALOGS, TO HIGHLY INTERACTIVE GRAPHICAL USER INTERFACES

(GUIS). FROM A USER PERSPECTIVE, PEOPLE ARE NOW FAMILIAR WITH THE RELATIVELY HIGH INTERFACE DESIGN

STANDARD FOUND IN SHRINK-WRAPPED SOFTWARE, AND THEY ARE LESS TOLERANT OF DIFFICULT-

TO-USE SYSTEMS. FROM A MARKETING PERSPECTIVE, THE CUSTOMER BASE HAS MOVED FROM TRAINED

COMPUTER SPECIALISTS TOWARD A “LAY” COMPUTER–LITERATE AUDIENCE.

a r t i c l e

64 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

As a result, software companies producing
high-volume shrink-wrapped products now
include interface design teams and profession-
als as part of their product development
groups. More recently, companies with mod-
est audiences for their software, such as those
producing in-house software or niche prod-
ucts, now expect that everyday programmers
will design good interfaces as well as good
code. Unfortunately, most programmers are
sadly unprepared for this job. Their tradition-
al computer science training rarely included
human computer interaction (HCI), either
because courses were unavailable in their edu-
cational program or because such a course was
considered esoteric and for specialists.

This situation is changing. Because of job
demands, many computer science students
and professionals now consider HCI a core
skill as marketable as, say, databases and net-
working, and HCI courses are becoming well
attended. For example, the Department of
Computer Science at the University of Cal-
gary has offered an undergraduate HCI course
since 1981, but only recently has it grown
from a “specialist” course with 30 to 40 stu-
dents, to a heavily attended mainstream
course with 100 students (about three-quar-
ters of computer science majors). As well, the
Faculty of Continuing Education biannually
offers an abridged and well-attended version
of this course to software professionals.

The question that I face as an educator is
how to shape students to become program-
mers with the background and skills required
to apply HCI practices to their everyday job
demands. Because Alberta has a large oil and
gas industry with fairly traditional data pro-
cessing departments, I expect most students
will work in groups where the term HCI is
unknown, or at best that their managers have
fairly naive notions of what “good” interface
design is all about; for example, that interface
design is merely knowing how to program
GUIs using Visual Basic. I have to teach stu-
dents not only fundamental HCI principles
and foundations, but also skills that they can
use in a work environment unfamiliar with
the idea of usability engineering [12].

I created a course to teach HCI to comput-
er science students who see it as just another

skill to add to their repertoire and resume. (An
abridged commercial version run over two
days is also taught to industry professionals.)
After taking the course, many of my students
do seem to become reasonably adept at apply-
ing their learning to practical situations. I
believe many educators are in a position simi-
lar to mine, so this article details the course
and offers it to others as a useful starting
point.

The following sections provided an
overview of the course, the major topics cov-
ered and the rationale behind them, and the
practicum. All course materials are available
through the World Wide Web, and include
details that go well beyond this article (see
Sidebar 1).

A Brief Description of the Course
Purpose of the course. Human computer
interaction stresses the importance of good
interfaces and the relationship of interface
design to effective human interaction with
computers. On completion of the course, stu-
dents will have theoretical knowledge and
practical experiences in the fundamental
aspects of designing, implementing, and eval-
uating interfaces. Students will know what is
meant good design, and will have experience
designing systems that are usable by people.
Students will know contemporary techniques
for implementing interfaces, and will have
built applications through prototyping tools,
window-based systems, and toolkits. Students
will know and have practiced a variety of low-
cost methods for evaluating the quality of an
interface. The bottom line is that students
should have sufficient skills to design, imple-
ment, and evaluate reasonable interfaces in
real-life work environments, even when they
may not have a budget or time allowance or
managerial support to do so.

Structure of the course. The course
unfolds by examining design, implementa-
tion, and evaluation as a continual, integrated,
and iterative process (Figure 1). Theoretical
class lectures are augmented by case studies of
interface successes and failures. Students apply
the theoretical knowledge in a series of assign-
ments that bring them through an entire
design, implementation, and evaluation cycle.

Saul Greenberg

Department of

Computer Science

University of Calgary

Calgary, Alberta

Canada T2N 1N4

+1-403-220-6087

saul @cpsc.ucalgary.ca

65

a r t i c l e

S i d e b a r 1 .

A l l c o u r s e m a t e r i a l s , s t r u c t u r e d a s

h t m l a n d p o s t s c r i p t p a g e s , a r e

a v a i l a b l e t h r o u g h t h e W o r l d W i d e

W e b : h t t p : / / w w w . c p s c . u c a l g a r y . c a /

p r o j e c t s / g r o u p l a b / 4 8 1 / 4 8 1 . h t m l

Pages formatted as html Pages formatted as postscript

• all overheads • all overheads

• descriptions of each topic • copies of all handouts

• associated readings from the text • details on all assignments

• relevant videos that I show in class • notes for teaching assistants.

• in-class teaching tips

• major sources I use to prepare lecture material

THE HCI
PROCESS

design

implementationevaluation

Figure 1. The course rests upon a scaffold of considering

HCI as the integrated process of design, implementation,

and evaluation.

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

66

S i d e b a r 2 .

M a j o r t o p i c s c o v e r e d i n t h e c o u r s e .

Section Topic

OVERVIEW Introduction to the course and to HCI

UNDERSTANDING DESIGN Psychology of everyday things

History of Human Computer
Interaction

DESIGNING WITH THE USER Evaluating Interfaces with Users

quantitative evaluation methods*

qualitative evaluation methods

Involving the User in the Design Process

DESIGNING WITHOUT THE USER Task-centered system design

High-Level Models of Human Behavior*

Design Principles and Usability
Heuristics

Creativity and Metaphors in Interface
Design

Graphical Screen Design

IMPLEMENTING GUIs Windowing Systems and Toolkits*

The Tcl/Tk language*

THE FUTURE Visions of the future

*not covered in the two-day industrial workshop

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

67i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

The course also introduces students to novel
interfaces (illustrated on video) that go far
beyond today’s standard graphical user inter-
faces.

Course text. The course text is the recent
book Readings in Human Computer Interac-
tion: Towards the Year 2000 (2nd Edition)[2].
Aside from being one of its authors, I chose
this book because it contains a huge amount
of material related to HCI, structured into 14
chapters. Each chapter introduces and briefly
surveys a fundamental topic in HCI, includes
important papers written by original authors,
and has many pointers to other literature and
technical video sources. Because of its rich-
ness, I can design the course around the book,
rather than have the book force me down a
particular curriculum path. I also feel that its
breadth and depth make it an excellent
resource for students to continue reading on
particular topics.

The student. Two types of students take
the course: university undergraduates, and
professional software practitioners. Students
are typically undergraduates pursuing a com-
puter science major at the University of Cal-
gary, and are usually in the third or last year of
their degree program. They already have basic
computer science skills (programming, data
structures, software engineering), but only a
few have taken an introductory psychology or
a statistics course as one of their options. Most
take the course because they see it as a mar-
ketable skill, and very few would describe

themselves as interested in pursuing a special-
ist path in HCI.

An abridged version of this course has also
been taught as a two-day intensive workshop to
industry. Students here are typically software
system practitioners (not necessarily program-
mers), who are responsible in one way or
another for the interface component of a major
project. They take the course because they feel
they do not have the skills to tackle their pro-
ject in anything but an ad hoc manner.

The Topics
The topics taught, summarized in Sidebar 2,
are structured in several major sections.
Understanding design applies the design of
everyday things to GUIs, and introduces the
historical roots of HCI. Designing with the user
includes methodologies for both designing
and evaluating interfaces with direct user
involvement. Designing without the user con-
siders strategies for design when users are not
available. Implementing GUIs gives students
the programming foundations for building
systems. Finally, The future guesses at the
shape of things to come.

Introduction to the Course
I present students with an overview of HCI,
based on the taxonomy found in the ACM
SIGCHI Curriculum [4], and indicate what
this course will cover and what it will leave
out. Videos are used in the first few classes to
show futuristic and visionary interfaces. They

Figures 2 and 3.

Screen shots of a student

project on a dinosaur

information system

a r t i c l e

68 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

not only inspire and motivate students, but
also illustrate how many major problems in
Computer Science (outside of HCI) must be
solved before these visions can be realized.
This is important for drawing the attention of
“hard core” students who believe that HCI is
not a central part of Computer Science. For
example, I show the Apple 2020 video [1],
and afterward students submit and list on the
board all the innovations displayed and relate
them to computer science problems. They
tend to be surprised at how many hard prob-
lems must be solved before these visions can
be realized; for example, AI, natural language
processing, hardware design, fuzzy database
queries, gesture recognition, and so on.

Understanding Design
This section of the course gives students a fun-
damental appreciation of good design, and an
understanding of how contemporary inter-
faces have evolved from ideas presented over
30 years ago.

The design of everyday things. The stu-
dent’s first look into design does not even con-
sider computers. I first show them many
examples of bad design in everyday things.
The goal is to have students realize that
human problems and errors when dealing
with technology are usually a result of design
failure, and that good design accounts for
human capabilities. I then introduce Don
Norman’s principles that help us analyze bad
design and create good designs [13]. I often
bring to class a bagful of everyday things,
including staplers, scissors, tape dispensers,
alarm clocks, digital watches, floppy disks,
CD cases, and anything else I find lying
around my office. When the discussion turns
to design principles of everyday things (for
example, visual affordances, constraints, and
so on.), we consider how well the items in my
bag work. Students bring their own encoun-
ters of bad design into the discussion, and
often propose fixes to them. The feeling after-
ward is that they have acquired a new way of
looking at the objects in the world around
them. The discussion then moves toward the
visual components of GUIs. I use the video
“All the Widgets” [11] to illustrate how early
scrollbars evolved from atrocious widgets with

few visual affordances and arcane mappings
into reasonable “everyday” computer objects
that contain features similar to well-designed
everyday things.

History of HCI. I introduce students to
the intellectual and historical foundations of
human computer interaction by presenting a
brief history of the early major breakthroughs
in HCI. I show many historical videos that the
students greatly enjoy, for example, Sketchpad
[19], NLS [3], and the Xerox Star [20]. Some
are flabbergasted that many so-called modern
ideas were implemented before they were
born!

Designing with the User
The course moves into the design process by
considering how an end user can be involved
in the usability engineering life cycle. It begins
by teaching and applying both qualitative and
quantitative methods for evaluating interfaces
with users, and continues by showing how
programmers can involve the user as an active
member in the design process.

Evaluating interfaces with users. An excel-
lent way of evaluating an interface is by
watching users try it out. There are many ways
to do this, and I teach a series of qualitative
and quantitative methods. Major techniques
covered include observational usability meth-
ods (for example., think-aloud, constructive
interaction, post-session interviews), and con-
trolled experimentation (experimental design,
hypothesis formation, statistical testing, inter-
pretation). This topic has a heavy hands-on
component (described later), where students
apply both quantitative and qualitative
methodologies to analyze selected interfaces.

Because I strongly believe that evaluation
should occur continually through the design
and implementation process, the various
methods are presented as choices that would
be selected to fit particular problems and
stages during the engineering life cycle. I also
stress that a good evaluation process means
that designers will catch major problems (and
successes!) early on, with lesser problems
being ironed out as the interface is being
refined.

I have found that performing usability
studies in class hammers home the relevance

69

a r t i c l e

Figure 4.

The first and

subsequent screens

of the Cheap Shop

interface, its inter-

face specification,

and example task

descriptions.

SPECIFICATION
1. Screen 1 is the start-up screen displayed when a person approaches the ter-
minal.
2. Shoppers enter all their personal information and their first order on Screen 1
via mouse and keyboard—the mouse is used to go between fields.
3. Shoppers enter further orders by going to successive copies of Screen 2.
4. Shoppers indicate their order is complete by selecting “Trigger Invoice:” The
system automatically tells the shipping and billing departments about the
order, and returns to a blank screen 1.
5. As described in the front of the catalog, shoppers cancel their order by
pressing Alt-Q, or by walking away. The system automatically returns to an
empty main screen after 30 seconds of inactivity.

Example Task Descriptions for “Cheap Shop”

A man caring for a demanding toddler buys an umbrella stroller (red is preferred, but blue is

acceptable), pays for it in cash, and uses it immediately.

An elderly arthritic woman is price-comparing the cost of a childís bedroom set, consist-

ing of a wooden desk, a chair, a single bed, a mattress, a bedspread, and a pillow. She takes

the description and total cost away with her, to check against other stores. Two hours later,

she returns and decides to buy everything but the chair.

A “Cheap Shop” clerk, who is the sole salesperson in the store, is given a list of 10 items

to order by a customer who does not want to use the computer. After seeing the total, the

customer decides to take all but the fourth and sixth items, and adds a new one to the list.

The customer changes his mind about paying by credit card, and decides to pay cash. The

customer wants the items delivered to his home the day after tomorrow. While this is occur-

ring, six other customers are waiting for the salesperson.

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

70 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

Figure 5.

Wizard of Oz experiment

of evaluation. For example, I have a student
think aloud as he or she tries to display a slide
on an overhead projector rigged with a burnt
bulb. It typically takes the student ten minutes
to discover the problem and realize that the
projector has a spare bulb that he or she can
switch to. I also have the student try to change
the bulb, and it generally takes another ten
minutes (if the student succeeds!) to figure out
how to open the projector to reach the bulb.
The rest of the students, who are taking notes,
then critically analyze the design of the over-
head projector, relate them to Norman’s
design principles of everyday things, and sug-
gest improvements.
They notice that
most recommenda-
tions are simple
changes to the plastic
overhead case, and
that a better projector
could probably be
built for the exact
same price. The class
often wonders why
the manufacturer
never bothered doing this simple exercise!
Other in-class evaluations have included:

• using constructive interaction to reveal
conceptual model formation and prob-
lems in the controls and labels of a high-
end fax machine (its control panel is
presented as an overhead);

• using think-aloud to expose difficulties
that even technically proficient people
have when performing fairly simple tasks
in the Windows ‘95 File Manager;

• an in-class quantitative controlled
experiment.

Involving the user in the design process. A
fundamental tenant of HCI is that end users
should play an integral role in the design
process. After briefly introducing user-cen-
tered system design and a (simplified) version
of participatory design, I walk students
through a variety of methods that involve
users in the design of low- and high-fidelity
prototypes. Methods starts as simple verbal
exercises, but rapidly go through paper and
pen sketches, storyboards, Pictive, scripted
simulations, and so on, each getting slightly

more sophisticated. I stress in class that early
versions of prototypes should be low-fidelity
and low-cost (paper, pencil, and sticky note
technology), and that its purpose should be to
garner high-level reaction and input from the
user. As the design progresses, prototypes
become higher-fidelity and more refined, and
the user’s input should reflect smaller, but still
important, design and usability decisions.

Most techniques are demonstrated live. For
example, I do a walk-through of a storyboard
design. I then introduce an interface as a Pic-
tive design based on sticky notes, and a volun-
teer interacts with it. The volunteer and class

identify problems,
and we redesign the
system on the fly by
having people recon-
struct its compo-
nents on sticky notes.
I have also devoted a
class to a live Wizard
of Oz demonstration
[7].

Students apply
these techniques to

their interface design projects (discussed
later). They use storyboarding and horizontal
prototypes to garner user reaction, and a ver-
tical prototype that serves as a proof of con-
cept. Because of class size, some groups use
others as “simulated” end users. However,
there are always a few groups who find a real
user audience, and who go to great lengths to
involve them in the ongoing design of the
application.

Designing without the User
Graduating students may find themselves
employed in an environment in which they
have either no access or irregular access to end
users. Yet design must continue. This section
of the course presents several topics on how to
design interfaces without the user.

Task-centered system design. Task-cen-
tered system design is a technique that allows
developers to design and evaluate interfaces
based on users’ real-world tasks [6]. It does
require some user involvement, at least at the
beginning, to solicit good task descriptions.
As part of the design, it becomes a require-

71

a r t i c l e

Practicum: The Assignments

In three course assignments, students practice and apply what they have learned in class.

They pursue a controlled experiment and quantitative evaluation in Assignment 1, a usabili-

ty study and qualitative evaluation in Assignment 2, and a major project on interface design

and implementation in Assignment 3.

ASSIGNMENT 1: Quantitative evaluation. The purpose of this hands-on exercise is to give stu-

dents experience conducting a controlled experiment, performing a simple statistical analy-

sis, interpreting the results, and considering its implications to design. I do not expect

students to become behavioral scientists or to be able to run controlled experiments when

they get into the work force, but I want them to have enough knowledge of the experi-

mental process to help them understand, appreciate, and criticize the HCI literature that uses

this methodology.

The scenario is that a company is designing a portable computer that does not have a key-

board. Most of the interaction will be through the mouse, but occasional text input will be

needed as well. The company has already ruled out handwriting recognition due to poor

recognition rates. Typing will be done by integrating a simulated keyboard on the screen, and

by selecting keys with the mouse (this is called mouse-typing). Because the simulated key-

board can take any shape and key arrangement, the company wishes to consider layouts

other than the standard Qwerty.

In the experiment, which changes slightly every year, students compare people’s mouse-

typing abilities on different keyboard layouts. Some of the layouts considered over the years

are illustrated in Figure 6.

Students, who work in groups of three, use each other as subjects and collect typing

times plus comments. The instructor collects and compiles the data from all groups and

hands it back to the students. Groups then use an unpaired t-test to check for speed differ-

ences between the keyboards. The deliverable is a substantial technical report that presents

Figure 6.

A few of the

mouseboards

contrasted over the

years. The circular

mouseboard has

frequent letter

pairs placed as

large keys near the

center. Other

mouseboards

include the

Dvorak keyboard,

and an alphabetic

keyboard in

column order.

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

72

the experiment, collects and interprets the results, and discusses its implications to keyboard

use.

ASSIGNMENT 2: Qualitative evaluation. This exercise gives students experience conducting

usability studies on a real product. Methods used in this study mirror those taught in class,

and include conceptual model discovery, strict observation, think-aloud, constructive interac-

tion, questionnaires, and interviews. All are economical methods, and students are encour-

aged to apply them in actual work practices.

Groups pretend they are working for a company developing the system. With each other

and volunteers as subjects, they examine a system for usability problems. Systems investigat-

ed over the years include:

• Dobis, a very large library catalog system used by the University’s library;

• a CD-ROM booking system also used by the library; and

• XWAIS, a front end to the WAIS text indexing system that is used locally to access the

HCI Bibliography [17].

Groups deliver a substantial technical report oriented toward a vice president of their com-

pany. It includes observations made, the major problems detected, and some design recom-

mendations. The report also contrasts the methods used, recommending those that should be

adapted in future system evaluations.

ASSIGNMENT 3: Design and implementation project. The term project is a major portion of

the course. Its main purpose is to give students hands-on experience applying the design con-

cepts learned in class. Each student is free to define his or her own project area, as long as it

is conducive to creating an interesting interactive application. Students can generate an appli-

cation from scratch, they may decide to remodel an existing application to make it more effec-

tive, or they may go to an actual user group and design a system that fits their needs (the

preferred path).

The project and its deliverables are incremental. In the first phase, students create an ini-

tial paper prototype and design rationale that is presented in lab time and critiqued by other

students and by the teaching assistant. In the second phase, they produce screen snapshots

of a horizontal prototype (via a GUI toolkit) and a redesign rationale (also critiqued in lab

time). They then implement a high-fidelity vertical prototype to give a good feel for the sys-

tem. They concentrate on interface design, simulating back-end functionality when necessary.

The final deliverables are a reasonably robust working prototype, a minimalist manual, and a

short design critique of the final system. I then meet with each group for a half-hour, see their

system in action, and evaluate it immediately via heuristic evaluation techniques [12].

I am always impressed with what the students do. Although they are given only a month

for all design stages and programming, most of the projects are very good, and some are out-

standing. The projects indicate the success of the course, because students apply their HCI

learning as they iterate through their system designs.

i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

73i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

ments analysis, with the requirements being
the major tasks that need to be satisfied. As
part of evaluation, the evaluator can do a
walk-through of the prototype, using the tasks
to generate a step-by-step scenario of what a
user would have to do with the system. Each
step in the walk-through asks the questions:

• Is it believable that a person would do
this?

• Does the person have the knowledge to
do it?

If not, then a bug has been found. The bug is
noted and assumed solved, and the process
continues.

In class, I develop an example of a task-cen-
tered system design by using an imaginary
client called Cheap Shop, a catalog-based
store. The situation is that Cheap Shop’s cus-
tomers now browse through paper catalogs
and then place their orders by filling in a form
and giving it to the clerk. Cheap Shop is con-
sidering replacing the paper forms by the
computer interface proposed in Figure 2. As a
home exercise, students try to identify inter-
face problems using their own intuition. In
class, specific task examples are then used to
develop usage scenarios (three are listed in the
figure), and the class evaluates the design by
walking a user through the example tasks step
by step. Of course, many deficiencies are dis-
covered that go far beyond those noticed in
the home exercise, simply because the task and
user situation bring out factors that are not
normally considered.

High level models of user behavior. There
are very few theories in HCI, and most tend
to deal with low-level phenomena such as
selection accuracy and speed (Fitts Law), or
ways of modeling human goals into low-level
actions and predicting performance outcomes
(GOMS). Unfortunately, most students do
not find these particularly relevant to the jobs
they would likely acquire. As an alternative, I
provide students with two high-level cognitive
models of human behavior that help them
understand how people interact with
machines. These are Ben Shneiderman’s syn-
tactic/semantic model [18], and Don Nor-
man’s stages of interaction [13]. Both are
chosen because they profile in general the

major steps and bottlenecks in human-com-
puter interaction. These models can be used
both to guide design, and as a simple way to
identify problems.

Design guidelines and usability heuristics.
Guidelines to design have a long tradition in
HCI. There are literally thousands of guide-
lines now available, in many forms and varia-
tions. These tend to fall in the categories of:
motherhoods (or general guidelines); specific
guidelines that say exactly what should be
done in a given situation; style guides that are
particular to a look and feel; and widget-level
guidelines that are embedded within an actu-
al toolkit.

I concentrate on general design guidelines
catalogued by Nielsen [12], detailing what
they mean and how the interface should cater
to them. The ones I use are:

• Use a simple and natural dialog
• Speak the users’ language
• Minimize user memory load
• Be consistent
• Provide feedback
• Provide clearly marked exits
• Provide shortcuts
• Deal with errors in positive and helpful

manner
• Provide help and documentation

I also show how these guidelines can be
used as a low-cost evaluation technique via
usability heuristics, where the guidelines
become a way to structure their analysis of the
interface. Nielsen [12] suggests that several
evaluators using these guidelines can capture
many of the major usability problems.

Each guideline is in itself a rich topic, and
we cover about two of them per class. I also do
a heuristic evaluation of several interfaces as
guidelines are presented. This includes the
Cheap Shop system mentioned in Figure 2,
which exposes additional problems not caught
by task-centered system design.

There is also a hands-on component, dur-
ing which the usability heuristics are used to
evaluate the students’ final projects. Students
receive a marking sheet ahead of time con-
taining the guidelines, and they are expected
to review their designs for problems through
it. I conduct a heuristic evaluation of each of

a r t i c l e

74 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

Figure 7.

Student project on a

home-finding system

their systems, discussing the results with
them.

Creativity and metaphors in interface
design. Interface design is an art as well as an
engineering and science discipline. This
makes it worth exploring how creativity can
be applied to interface design, and how appro-
priate metaphors can be chosen. While there
is no recipe for creativity, I use Mountford’s
[8] tips for creative design to show how good
ideas can be “borrowed” from other fields and
how metaphors can be reshaped. Seeing spe-
cific examples of innovations is a strong moti-
vator, and I use videos drawn mostly from the
SIGCHI Technical Video Proceedings to
illustrate novel and creative interface designs
and metaphors. Students tend to be impressed
by the ideas presented in the videos, particu-
larly those dealing with information visualiza-
tion.

Graphical screen design. One small but
still essential component of graphical user
interface design concerns the actual layout of
elements on the screen. This is the realm of
graphical design, and this topic presents stu-
dents with some (but by no means all) rudi-
ments of screen layout. I use many examples
of actual screen snapshots to illustrate graphi-
cal design principles. Most screens come from
the book Designing Visual Interfaces [10],
but virtually any screen can be analyzed and
even redesigned during class time.

Windowing Systems and Toolkits
Computer scientists must know how to trans-
late their designs into working systems. As in
any craft, the tools available to implementors
have a profound effect on the end system, both
in the style of the interface and the way origi-
nal designs are translated into working ones.

Before students can use the tools of their
trade, they first must understand what the
tools can offer. They learn about windowing
system technology, the offerings of graphical
user interface toolkits, and interface builders.
They are introduced to features that probably
will appear in the next-generation toolkit,
such as constraint management and program-
ming by demonstration.

Students are given hands-on experience in
the third assignment (described later)
Through a GUI toolkit, students translate
their paper prototypes into horizontal and
vertical prototypes—often finding out that
some of their ideas are not easily imple-
mentable—and then turn their prototypes
into working systems. We use the Tcl/Tk lan-
guage [14] because it is freely available, has a
very rapid learning time (compared to other
toolkits), and is reasonably robust. It is also
available on Linux, which many students have
installed on their home machines. Other lan-
guages could work as well if they have a mod-
est learning curve, but most do not! We have
had successful experiences with SUIT [15]
and Microsoft’s Visual Basic.

Visions of the Future
The course closes with video presentations of
several visions of the future of human com-
puter interaction. I expect students to realize
that today’s graphical user interfaces are an
artifact of today’s technology, and that the
affordances of future technology will have a
profound effect on the designs they create.

I also introduce the notion of ethics for
programmers, as future systems can have a
ruinous effect on society. For example, the
video on the Active Badges personal locator
system [5] is a great one for discussing the
ethics of privacy, and asks students to consid-
er what they would do if they were hired to
implement a system that could act as a sur-
veillance device.

75i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

Comparison with other HCI Educational
Pedagogy
The ACM SIGCHI Curriculum [4] is an
obvious source and inspiration to HCI educa-
tors. The document is at its best when consid-
ering how HCI can be introduced throughout
the curriculum within various disciplines to
produce HCI specialists. It also provides out-
lines of several courses that could be offered in
different departments. The course described
in this article, designed to be used as an
abridged industrial workshop as well as a
university course, contain parts of Computer
Science CS1: User Interface Design and
Development, and CS2: Phenomena and
Theories of Human-Computer Interaction.

From an NSF-funded workshop, Strong
and many other HCI professionals produced
the report “New Directions in Human-Com-
puter Interaction” [21]. The report promotes
the importance of HCI in education, research,
and practice. In education, Strong suggests
that computer science must be transformed to
include HCI, perhaps through one or two
specialty courses:

• The integration of interface design and
development processes into the comput-
er science curriculum should be focused
on creating an undergraduate capstone
experience (such as a senior project).

• Universities should be encouraged to
perceive HCI as a “critical technology”
and the accompanying skills and knowl-
edge as fundamental to a student’s edu-
cation and preparation for jobs in the
information age [21].

The course I offer meet these criteria to
some extent. The assignments, especially the
final project, do become capstone experiences.
Similarly, the course is intended to prepare
students for their jobs by concentrating on
fundamental skills that should be applicable
in environments that do not fully incorporate
HCI practices.

There are, of course, many other courses
on HCI, each as unique as the instructor who
teaches it. Most include core aspects of HCI,
but they vary considerably in their focus and
the topics covered. Strong’s report contains, as
an appendix, outlines of 24 different HCI

courses offered at various universities. The
ACM Curriculum also includes a course as a
case study. The HCI Education Survey [17]
contains information about programs, faculty,
and courses with an emphasis on Human-
Computer Interaction.

Conclusion
Over the next decade, we will see HCI gain
prominence as a valid stream both within
Computer Science and other disciplines. We
will also see all levels of the software industry
accept the relevance of good interface design
and embrace the practice of usability engi-
neering. The course described here is some-
what of a stopgap that gives programmers
enough of a foundation to introduce design
and usability engineering in their everyday
jobs. The trade-off I chose was to concentrate
on simple techniques that are immediately
applicable in conventional work environ-
ments, rather than on sophisticated and per-
haps more accurate techniques that would be
difficult or costly to introduce in software
shops with little knowledge of HCI.

This article is really only the first part—an
overview—of a two-part article on teaching
HCI to programmers. The second part, avail-
able through the World Wide Web (Sidebar
1), contains all its details, including over-
heads, handouts, and assignments.

References

[1] Apple Computers Inc. 2020. Distributed as part of

the video set from the Apple Developer’s Conference.

Videotape, 1992.

[2] Baecker, R., Grudin, J., Buxton, W., and Greenberg,

S. Readings in Human Computer Interaction: Towards the

Year 2000 (2nd Edition), 950 pages, Morgan Kauf-

mann Publishers, California, 1995.

[3] Engelbart, D. and English, W. A Research Center

for Augmenting Human Intellect. SIGGRAPH Video

Review, 106, Videotape, 1994.

[4] Hewett, T., Baecker, R., Card, S., Carey, T., Gasen,

J., Mantei, M., Perlman, G., Strong, G., and Verplank,

W. ACM SIGCHI Curricula for Human-Computer Inter-

action, Report of the ACM SIGCHI Curriculum Devel-

opment Group, ACM, 1992.

[5] Hopper A. The Active Badge System. In SIG-

GRAPH Video Review, 89, Videotape, 1993.

a r t i c l e

Permission to copy without

fee, all or part of this

material is granted provided

that the copies are not

made or distributed for

direct commercial

advantage, the ACM copy-

right notice and the title

of the publication and its

date appear, and notice is

given that copying is by

permission of the Associa-

tion for Computing

Machinery. To copy

otherwise, or publish,

requires a fee/and or

specific permission

© ACM 1072-5520/96/0700

$3.50

I n d e x t o A d v e r t i s e r s

P l e a s e c o n t a c t t h e a d v e r t i s e r s d i r e c t l y f o r
m o r e p r o d u c t i n f o r m a t i o n

A C M C H I ’ 9 7

h t t p : / / w w w. a c m . o r g / s i g c h i / c h i 9 7

+ 1 4 1 0 2 6 3 5 3 8 2

A n d e r s e n C o n s u l t i n g

h t t p : / / w w w. a c . c o m

A p p l e C o m p u t e r , I n c .

h t t p : / / w w w. a p l e . c o m / e m p l o y m e n t /

f a x + 1 4 0 8 9 7 4 5 6 9 1

H u m a n Fa c t o r s I n t e r n a t i o n a l

+ 1 5 1 5 4 7 2 4 4 8 0

e m a i l : 7 2 2 6 3 . 1 4 5 5 @ c o m p u s e r v e . c o m

T o a d v e r t i s e i n i n t e r a c t i o n s c o n t a c t :

Wa l t e r A n d r z e j e w s k i

A C M , 1 5 1 5 B r o a d w a y, 1 7 t h F l o o r,

Ne w Yo r k , Ny 1 0 0 3 9

+ 1 - 2 1 2 - 6 2 6 - 0 6 2 5

f a x : + 1 - 2 1 2 - 8 6 9 - 0 4 8 1

a n d r z e j e w s k i @ a c m . o r g

76 i n t e r a c t i o n s . . . j u l y + a u g u s t 1 9 9 6

[6] Lewis, C. and Rieman, J. Task-Centered User Inter-

face Design, 1993. Shareware book available via anony-

mous ftp from ftp.cs.colorado.edu

[7] Maulsby, D., Greenberg, S., and Mander, R.. Proto-

typing an intelligent agent through Wizard of Oz. In

Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems, pp. 277-284, Amsterdam,

The Netherlands, May, ACM Press, 1993.

[8] Mountford, J. Tools and techniques for creative

design. In Laurel, B. (Ed.), The Art of Human Computer

Interface Design. Addison-Wesley, pp. 17-30, 1990.

[9] Muller, M. J. PICTIVE:- An Exploration in Partici-

patory Design. In Proceedings of ACM CHI’91 Confer-

ence on Human Factors in Computing Systems, pp.

225-231, 1991.

[10] Mullet, K. & Sano, D. Designing Visual Interfaces.

Prentice Hall, 1995.

[11] Myers, B.) All the Widgets. SIGGRAPH Video

Review, 57, Videotape, 1990.

[12] Nielsen J. Usability Engineering, Academic Press,

1003.

[13] Norman, D. The Psychology of Everyday Things.

(The Design of Everyday Things in paperback). Basic

Books, 1988.

[14] Ousterhout, J. An Introduction to Tcl and Tk.

Addison-Wesley, 1994.

[15] Pausch, R., Conway, M., and Deline, R. Lessons

learned from SUIT, the Simple User Interface Toolkit.

ACM Transactions on Office Information Systems 10(4),

320-344, 1992.

[16] Perlman G. The HCI Bibliography: Past, Present,

and Future. In Proceedings of ACM CHI’94 Conference

on Human Factors in Computing Systems, Volume 2, pp.

71-72, 1994.

[17] Perlman, G. and Gasen, J. HCI Education Survey.

Available from http://www.cis.ohio-state.edu/~perl-

man/educhi.html.

[18] Shneiderman B. Designing the User Interface: Strate-

gies for Effective Human-Computer Interaction (2nd Edi-

tion), Addison-Wesley, 1992.

[19] Sutherland, I. Sketchpad. SIGGRAPH Video

Review, 13, Videotape,1993.

[20] Smith, D. and Irby, C. Xerox Star User Interface,

SIGGRAPH Video Review, 56, Videotape, 1983.

[21] Strong, G. and many others. New Directions in

Human-Computer Interaction Education, Research,

and Practice. Drexel University, 1994. Available from

http://www.sei.cmu.edu/arpa/hci/directions/

