
A Practical Method for LR and LL Syntactic
Error Diagnosis and Recovery

MICHAEL G. BURKE and GERALD A. FISHER
Thomas J. Watson Research Center

This paper presents a powerful, practical, and essentially language-independent syntactic error
diagnosis and recovery method that is applicable within the frameworks of LR and LL parsing. The
method generally issues accurate diagnoses even where multiple errors occur within close proximity,
yet seldom issues spurious error messages. It employs a new technique, parse action deferral, that
allows the most appropriate recovery in cases where this would ordinarily be precluded by late
detection of the error. The method is practical in that it does not impose substantial space or time
overhead on the parsing of correct programs, and in that its time efficiency in processing an error
allows for its incorporation in a production compiler. The method is language independent, but it
does allow for tuning with respect to particular languages and implementations through the setting
of language-specific parameters.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user
interfaces; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming
Languages]: Processors-compilers; parsing; translator writing systems and compiler genemtors

General Terms: Algorithms, Languages

Additional Key Words and Phrases: LL parser, LR parser, syntactic error diagnosis, syntactic error
recovery, syntactic error repair

1. INTRODUCTION

This paper presents a powerful, practical, and essentially language-independent
syntactic error recovery method that is applicable within the frameworks of LR
and LL parsing. An error recovery method is powerful insofar as it accurately
diagnoses and reports all syntactic errors without reporting errors that are not
actually present. A successful recovery, then, has two components: (1) an accurate
diagnosis of the error, and (2) a recovery action that modifies the text in such a
way as to make possible the diagnosis of any errors occurring in its right context.
An “accurate” diagnosis is one that results in a recovery action that effects the
“correction” that a knowledgeable human reader would choose. This notion of
accuracy agrees with our intuition but cannot be precisely defined. In some
instances, of course, the nature of the error is ambiguous, but at the very least,
the diagnosis and corresponding recovery should not result in an excessive

Authors’ address: Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0164-0925/87/0400-0164 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987, Pages X4-197.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22719.22720&domain=pdf&date_stamp=1987-03-20

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery 165

deletion of tokens or spurious or missed error detections. The development of a
minimum-distance corrector [l] is not the purpose here, although in practice a
minimum-distance correction should almost always be chosen.

The “practicality” requirement imposes certain constraints: Substantial space
or time overhead, in terms of the parsing framework or enhancements of the
grammar, should not be incurred. Thus the time and space costs of parsing a
correct program should not appreciably increase. It is further required that in
practice the average time cost of a recovery should not vary with program length.
Also, this cost should be small enough to allow for incorporation of the method
in a production compiler.

Our method is language independent, but it does allow for tuning with respect
to particular languages and implementations through the setting of language-
specific parameters. Some of these provide the means for heuristically controlling
recovery actions for certain common or troublesome errors; others improve
recoveries for errors involving absent or distorted scope information. The method
does not depend on the presence of these parameters, and an implementation
may ignore them completely.

Our method is described in Section 2. Section 2.1.3 motivates and describes
the technique of parse action deferral. In Section 3 we consider implementation
issues pertaining to time and space efficiency, language-dependent tuning, and
diagnostic messages. Section 4 gives the empirical measurements on which we
base our claim of having developed a powerful and practical method. Section 5
summarizes our results and compares our method with earlier efforts that have
influenced our work.

2. THE METHOD

2.1 Overview

2.1.1 The Parsing Framework. The method assumes a framework in which an
LR or LL parser maintains an input token buffer TOKENS, a state or prediction
stack, and a parse stack. The parse configuration thus has three components: the
configuration of TOKENS, that of the state or prediction stack, and that of the
parse stack. TOKENS is a queue containing part or all of the sequence of
remaining input tokens. The current token, denoted CURTOK, is the front
element of TOKENS. The token immediately preceding CURTOK in the source
program shall be denoted as PREVTOK.

The LR state stack and the LL prediction stack are analogous, and our method
can be applied with essentially equal ease and effectiveness in the presence of
either. For clarity, our discussion will focus primarily on the LR version of our
method. The LL version and the differences between the LR and LL versions
are described in [3].

The parse stack consists of a sequence of recognized nonterminal and terminal
symbols. A recognized nonterminal is one that forms the left-hand side of a rule
whose right-hand side has been completed, and a recognized terminal is one that
has been shifted. In our notation here, a parse stack configuration is represented
as a sequence of terminal and nonterminal symbols, enclosed in brackets. The
first entry in the sequence is the “bottom” item of the stack. Another way of

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

166 l M. G. Burke and G. A. Fisher

viewing the parse stack is that it contains the symbols of the right-hand sides
that have not yet been reduced. In most applications a similar stack is required
for semantic analysis or for constructing an abstract-syntax tree (the parse stack
may be combined with such a “semantic” stack with negligible additional cost).
The application of a reduction to the parse stack consists in the replacement of
the symbols belonging to the completed right-hand side by the left-hand side
symbol of the reduce rule; at the same time, a “semantic action” routine may be
invoked. We make no assumptions about whether semantic actions accompany
reduce actions in this manner or occur in a separate pass. In the latter case, at
least a tree-build or output action must occur.

2.1.2 The Three Phases of Recovery. The error recovery procedure is invoked
when no legal parsing action is possible. In such a circumstance, the current
token is referred to as the error to&n. The error routine adjusts the parse
configuration so as to allow the parse to advance at least a single token beyond
the error token. A fundamental determination of the routine is whether the error
is to be repaired by a single token modification of the source text. This modifi-
cation may take the form of the insertion or deletion of a single token, the
substitution of one token for another, or the merging of two tokens into one.
Such a single token repair shall be referred to as a simple repair, and an error
repaired in this manner as a simple error. If the error is not simple, then a portion
of the program text is to be deleted, new text is to be inserted, or both. The new
text inserted, if any, consists of a sequence of tokens inserted to close one or
more open “scopes.” Scopes are syntactically nested constructs such as proce-
dures, blocks, control structures, and parenthesized expressions. We refer to this
form of recovery as scope recovery. A secondary recovery consists in discarding
text that precedes, follows, or surrounds the error token. The analysis is thus
divided into simple, scope, and secondary recovery.

The determination of whether an error is simple divides into two separate
problems: the generation of the set of simple repair candidates, and the selection
of a single candidate (or rejection of all the candidates) in this set. Our solution
to the selection problem is detailed in Sections 2.2.3 and 3.2.1. Our approach to
the candidate generation problem rests upon the technique of deferring parse
actions. We now motivate our introduction of this technique by considering the
difficulties posed by this problem.

2.1.3 Deferring Parse Actions. The error token is not necessarily the token
that is in error. Consider the following Pascal declaration:

(P.1)
PROCEDURE FACZ’ORZAL(X INTEGER; VAR FACT: INTEGER): INTEGER,

In this example (drawn from the sample in [IS]) the keyword “PROCEDURE”
is used where “FUNCTION” seems to be intended. Whatever the intention of
the programmer, a simple repair can be effected by substituting “FUNCTION”
for “PROCEDURE.” The error token is the colon following the right parenthesis.
In this case, then, the point of error detection follows the occurrence of the error
by 12 tokens. One may assume that the prefix (i.e., the portion of the program
preceding the error token) is good and let simple recovery efforts fail in a case
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 167

such as this one. Recovery then consists of discarding the error token and tokens
immediately succeeding it in the right context until the prefix can be extended
by the remaining text. In this case the discarding of the error token (the colon)
and the token following it (“INTEGER”) would allow the prefix to be extended
and result in a reasonable recovery. But this approach sometimes results in the
deletion of many tokens of right context where a simple repair would suffice; it
is also possible that the prefix cannot be extended by the right context at all
without deleting some portion of the prefix itself. To undertake simple recovery
in a generally effective manner, the possibility that the prefix is not correct must
be taken into account.

By backing down the parse stack and considering the possible simple repairs
at each of its elements, one can effect a simple repair at a point in the prefix.
The hope is that the erroneous tokens are still present on the parse stack, but it
cannot in general be guaranteed that an erroneous token will not have been
absorbed into a nonterminal before detection of the error. Also, undesirable
reduce actions may have been induced by its presence, as in Example P.2, also
drawn from the sample in [161.

(P.2)
1 PROGRAM P;
2 VAR X: INTEGER,
3 BEGIN

it
x:=20;
IFX=lTHEN

6 IFX=lTHEN

i
x:= 1

ELSE
9 WRITELN(‘ ‘);

10 ELSE
11 x:= 2
12 END.

The error token is the “ELSE” that follows the semicolon. Prior to shifting
the semicolon, the sequence of tokens succeeding “BEGIN” and preceding the
semicolon (given a typical grammar for Pascal) is reduced to [stmt-list “;” IF
expression THEN statement ELSE statement], then to [stmftlist “;” statement],
and finally to [stmt-list]. The conditional statement has been absorbed into the
stmtht. The semicolon is then shifted. Thus, upon entry to the error recovery
routine, the parse stack contains the suffix [stmt-list “;“I. Deleting the error
token “ELSE” on line 10 renders a syntactically correct program, but deleting
the semicolon is more likely to yield what the programmer intended: The role in
Pascal of the semicolon as a statement separator rather than a statement
terminator is a common source of confusion. It is not our aim to guess the intent
of the programmer, but this is the repair that a human reader would choose in
that it best leaves the sense of the program intact. In any case it is the generation
of repair candidates, rather than the selection process, that is under consideration
here. The semicolon is still present on the parse stack, so deletion of it should at
least be recognizable as a viable repair candidate. But this deletion will not at
this point result in a correct program, because the nonterminal stmt-list cannot
legally be followed by the symbol “ELSE.”

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

168 l M. G. Burke and G. A. Fisher

In an LL, LALR, or SLR implementation, or in an LR implementation that
utilizes default reductions, reductions may occur when the current token is not
shiftable. In these contexts, then, the erroneous token may induce undesirable
reduce actions even if it is not shifted. In such a case, the erroneous token is the
error token, but late detection has occurred in that the prefix (as represented by
the parse stack) is incorrect.

The difficulties posed by unwanted reduce actions can be accommodated by
“unparsing” while backing down the parse stack-that is, undoing reduce actions
and recovering the terminal symbols spanned by nonterminals on the parse stack.
But unparsing is time consuming, and a full unparsing mechanism requires that
a full derivation tree be maintained on the parse stack. Building this syntax tree
would add to both the space and time cost of parsing a correct program. Where
syntactic and semantic analyses are performed in a single pass, unparsing would
also require the introduction of a costly mechanism for “undoing” semantic
actions.

The effect of some limited degree of unparsing can be achieved, however, by
deferring the application of shift and reduce actions to the parse stack. This
approach is compatible with generating an abstract-syntax tree and/or perform-
ing semantic actions as parse stack reductions occur. In [4] we have already
described, within both the LR and LL frameworks, mechanisms for deferring
parse stack reductions until a shift is about to occur. These mechanisms were
specifically developed as a solution to the problem of premature reductions. But
they may be understood as unparsing mechanisms in that they allow the parse
to be restored to the configuration that obtained after shifting the token previous
to the error token.

Regarding this mechanism as a one-token deferral of reduce actions, it may be
generalized to a k-token deferral mechanism. That is, the deferring of a single
sequence of reduce actions may be generalized to the deferring of k sequences of
reduce actions and the k - 1 shift actions occurring between them. The tokens
for which shift actions have been deferred shall be referred to as deferred tokens.

Let us reconsider Example P.2, supposing that a two-token deferral mechanism
is in effect (i.e., two sequences of reduce actions and the shift occurring between
them are deferred). In this case the most recent action applied to the parse stack
at the point of error detection has been the shifting of the right parenthesis on
line 9. If the parse stack is used to restore the state stack to the configuration
corresponding to this point of the parse, then the undesired reductions would in
effect not have taken place, and so the desired degree of unparsing is achieved.

Token deferral may also be viewed as double parsing. One parser simply checks
for syntactic correctness and performs no real reduce actions. The second parser
is always k - 1 tokens behind, always has correct input, and performs reduce
actions on the parse stack. In our implementation the deferred tokens and
sequences of reductions are maintained in a deferred tokens queue and a deferred
rules queue, respectively.

We regard the generation of simple repair candidates at points in the left
context of the error token, then, as having two dimensions: backing down the
parse stack and deferring parse actions. But recall the constraint that no
appreciable overhead be incurred for the parsing of correct programs. The degree
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 169

to which deferring parse actions incurs overhead is quantitatively described in
Section 4.2. The measurements given indicate the degree to which we have
succeeded in developing a high-quality, low-cost error recovery method. Of course,
it is ultimately the specific needs of a particular implementation that determine
whether the overhead is “appreciable” or even prohibitive. In Sections 2 and
3.1.3, we describe versions of our method that limit its general form by excluding
one or both dimensions of simple candidate generation. Measurements given in
Section 4.2 provide an accurate description of the performance and efficiency
trade-offs that obtain between these different versions. Our fundamental claim
is that the method offers an implementor a range of choices, one of whose
endpoints is excellent performance with reasonable efficiency, and the other,
reasonable performance with excellent efficiency.

2.2 Simple Recovery

2.2.1 The Parse Configuration. As stated in Section 2.1.1, an LR parse con-
figuration has three components: a sequence of tokens [TOKi = CURTOK
TOK2 . . . TOKusr], a state stack [SSiSSr . . . S&p], and a parse stack
[PSiPS2 . . . PSTOP]. Additionally, where the level of parse action deferral is
k + 1 (Section 2.1.3), our parser maintains a sequence of deferred tokens
[DTlDTz . . . DTk] for which state but not parse stack actions have been applied.
(The deferred token buffer does not always contain the full k tokens: At the start
of the parse, it is empty, and we shall see that it is emptied when a syntactic
error is detected.) When a syntactic error is detected at CURTOK (which is then
regarded as the error token ET for this recovery), the sequence of reduce actions
immediately preceding the shifting of DTi has not yet been applied to the parse
stack (thus the element PSTO~ is a terminal symbol). The state stack can then
be regenerated to correspond to the parse stack, in effect “unparsing” to that
point.

We now introduce terminology that will enable a precise statement of the
simple recovery phase of our algorithm. For expository purposes, here we regard
the parse stack and deferred token sequence as concatenated into the single tuple

[LC, = Psi . . . LCmp = PSTOPLC~TO~+~) = DT1 . . . LC(TOP+~) = DTk].

We denote this tuple as LEFT-CONTEXT: It represents the portion of the
program preceding the error token. We define the left context point LCP,,
corresponding to an element LC,, of LEFT-CONTEXT as the point in the parse
immediately following the shifting of LC(,-i, (a nonterminal symbol NT is
thought of as being “shifted” here when GOTO(NT, SSTop) is applied, yielding a
value that is pushed onto the state stack).

A simple recovery trial is a testing of all the simple repairs possible at a given
left context point LCPr (we refer to this trial as the one taking place at T). The
most straightforward approach to simple recovery would be to perform a trial at
each parse stack element and deferred token, as well as the error token. The
number of trials that are in fact performed is a question of efficiency. We have
developed a technique, described in Section 3.1.1, that limits the number of trials
by recognizing when it is impossible for a trial to the left of some point in the
left context to yield a successful simple repair.

ACM Tfansactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

170 l M. G. Burke and G. A. Fisher

In general, then, in simple recovery a trial takes place at the error token and
at each of a consecutive sequence of one or more (possibly all) deferred tokens
immediately preceding it. If a trial is held at every deferred token, then in the
general version of our method a trial is also held for each element of some
(possibly empty) suffix of the parse stack. In the deferred uersion, trials are held
only at deferred tokens (none are held at parse stack elements). The tokens and
parse stack elements at which trials are to take place shall be referred to as trial
tokens (in the general version, a trial “token” may be a nonterminal, as it may
be a parse stack element).

For an efficient progression from one trial to the next, in our implementation
trials are performed in succession from the leftmost trial point LCL to the
rightmost (the error token). Prior to performing the first trial, the parse config-
uration is set to correspond to the point LCPL. If LCL is a parse stack element,
then the suffix [PSL . . . Ps~op] is removed from the parse stack (see Figure la);
if LCL is a deferred token, then the actions associated with the sequence
[DTI . . . DT, = LQ1)] are applied to the parse stack (see Figure lb).

In either case the state stack is then rebuilt to correspond to the parse stack.
In the course of this generation, a terminal symbol is parsed as always; a
nonterminal symbol is simply shifted by applying GOZ’O(NT, SSTop) as indicated
above (we assume that a nonterminal symbol can be recognized as such). The
suffix of LEFT-CONTEXT beginning with LCL is then concatenated to the
front of TOKENS (thus the deferred token queue has been emptied). This is the
parse configuration as the first trial commences. It may remain intact until the
error repair is chosen and applied (or until secondary recovery commences), since
only the state stack and TOKENS are needed in testing simple and scope repair
candidates, and STATE-STACK-COPY and TOKENS-COPY can be used for
this purpose (after being set to the state stack and TOKENS, respectively, prior
to the first simple recovery trial). For clarity, we assume that these copies are
used during the repair trials, but this is an implementation choice: The original
structures could be manipulated instead, so long as they are restored appropriately
prior to the application of the chosen simple or scope repair or to secondary
recovery.

2.2.2 The Simple Recovery Trials. We now consider the trial taking place at
LC,. Simple recovery has advanced from the trial at LC+1, to this trial by
removing LCe-lj from TOKENS-COPY and applying the sequence of reduce
actions immediately preceding LC,, as well as the shifting of LC,, to STATE-
STACK-COPY. At the beginning of this trial, the configuration of TOKENS-
COPY is [LC, . . . ET . . . TOKLAST]. In the course of the trial, a set of repair
candidates is generated, including token insertions prior to the current trial
token LC,, token substitutions for LC,, and deletion of LC,. (If LC, is a non-
terminal, we do not generate its deletion or any substitutions for it as repair
candidates). Each terminal symbol is considered as a candidate for both inser-
tion and substitution. Where a terminal symbol T is considered as a candi-
date for insertion, T is appended to the front of TOKENS-COPY, resulting
in [T LC,, . . . TOKLA~r]. Where T is considered for substitution, it replaces
LC!, in TOKENS-COPY, resulting in [T LCt,+n . . . TOKU~T]. A substitution
is regarded as a misspelling candidate if it indicates the substitution of a
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery 171

Parse stack Tokens

mps, PSLt . . . PSmp DT, . . . DTK ET . . .

Fig. la. First trial configuration, where the leftmost trial token was a parse stack element upon
entrance to error recovery. The state stack configuration corresponds to that of the parse stack.

Parse stack Tokens

jps: DTM+I DTM+~ . . . DTx ET . . .
4

Fig. lb. First trial configuration, where the leftmost trial token was a deferred token upon entrance
to error recovery. The parse and state stacks have been advanced to configurations corresponding to
the left context point of DTM+~.

reserved word for an identifier and the reserved word and identifier pass a
string proximity test. For the deletion candidate, TOKENS-COPY is set to
[LC(s+l, * * * TOKLAST]. The other simple repair mode is merging. In the trials
that take place at the error token and at the token immediately preceding it,
the merging of the current trial token with the next token is tried if such
a merge yields a keyword of the language (e.g., “GO” and “TO” may be merged
to “GOTO”).

Given the TOKENS-COPY configuration corresponding to a candidate, and
the STATE-STACK-COPY configuration corresponding to the current trial, a
parse check determines how many tokens in the right context of the error token
can be consumed before blocking on an error. A candidate must allow the parse
to advance at least MIN-ADVANCE (one in our implementation) tokens into
the right context of the error token to remain in consideration. It is the task of
the repair trials to generate the set CANDIDATES of those candidates that parse
check the farthest distance into the right context.

The fundamental criterion by which a candidate is judged, then, is the distance
it enables the parse to advance without blocking on an error. The parse check
criterion is a simple one, and yet we have found that, combined with the selection
process described below, it achieves the end of generally choosing the most
appropriate repair. Its effectiveness is reflected in the measurements provided in
Section 4.1.

2.2.3 Evaluation of Simple Repair Candidates. At the conclusion of the simple
recovery trials, CANDIDATES is evaluated to determine whether a simple repair
is to take place. First it may be pruned through the application of heuristic
criteria, such as the ones we describe in Section 3.2.1. We have arrived at these
criteria largely through experimentation with erroneous Pascal and Ada’ pro-
grams, developing general strategies by identifying the general character of
particular examples.

After CANDIDATES has been pruned, the selection of a candidate (or rejection
of all candidates) takes place. If one or more repair modes have a single remaining

‘Ada [2] is a registered trademark of the United States Government (Ada Joint Program Office).

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

172 l M. G. Burke and G. A. Fisher

candidate, then a candidate from one of these is chosen using the heuristic
preference order: merge, misspellng, insertion, deletion, substitution. The success
of a merge or misspelling is unlikely to be accidental, and so these are given top
preference. A substitution involves inserting one token and deleting another, and
so is the least desirable mode of repair insofar as the goal is to alter the original
text as little as possible. We found that, where both an insertion and a deletion
succeed, the insertion is usually more appropriate. This ordering, like the other
heuristic criteria we employ, was arrived at largely through experimenting with
our error samples. Apart from the natural preference given to merge and misspell
candidates, it should not be construed as a hard and fast order and may be tuned
to suit an implementor’s taste. In any case, such tuning has very little effect on
the performance of our method (see Section 3.2.2).

If no mode has a single candidate but the farthest parse check distance equals
or exceeds a threshold value (MINADVANCE + 3 in our implementation), then
a mode is chosen by applying the same preference order as above. In this case
the chosen mode has more than one candidate: One is chosen arbitrarily as the
repair, but all are reported in the diagnostic. If neither of the above conditions is
met, then no simple repair is made.

We illustrate simple recovery by tracing the action of our error recovery routine,
with the level of deferral set to two, on Example P.2 of Section 2.1.3. The parse
error is detected at “ELSE” on line 10, and so the deferred token buffer contains
the preceding semicolon. The number of trials to be held is determined to be two.
The first trial is attempted at the deferred semicolon: No insertion, substitution,
or merge candidate parse checks successfully into the right context. Deletion of
the semicolon parse checks through the end of the program. The second trial is
attempted at the error token “ELSE.” No insertion or merge candidate checks
into the right context. The substitution of “BEGIN” for “ELSE” checks four
advance tokens (through “END”); the substitution of “REPEAT” and “FOR” for
“ELSE” checks three advance tokens (through “2”); substituting the semicolon
for “ELSE” and deleting “ELSE” check all the way. Thus, after all simple
recovery trials have been conducted, three candidates remain: the substitution of
the semicolon for “ELSE,” the deletion of the semicolon, and the deletion of
“ELSE.” Preference criteria are then applied in accordance with the heuristic
rules described in Section 3.2, and deleting the semicolon is the chosen candidate
(the other two candidates are disfavored because they involve the deletion of a
keyword). This simple recovery, then, results in the following diagnostic:

1 PROGRAM P;
2 VAR X: INTEGER;
3 BEGIN

ii
x:= 20;
IFX=lTHEN

6 IFX=lTHEN
7 x:= 1
8 ELSE
9 WRITELN(‘ ‘);

t
* * + Syntax Error: Unexpected “;” ignored
10 ELSE
11 x:=2
12 END.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 173

2.3 Scope Recovery

The scope recovery phase only takes place if simple recovery efforts fail. This
mode of repair stands apart from the simple recovery modes in that it can and
typically does involve a multiple insertion of tokens. This phase involves scope
completion efforts: that is, the closing of one or more open syntactic scopes by
means of the insertion of appropriate closer token sequences. Typical examples
of closer token sequences are the right parenthesis, “),” and “END;.” In Ada
“END IF;” and “END RECORD;” are further examples of such sequences. In an
implementation they are specified for the given language by the set CLOSERS.
In that the choice of scope closer sequences used to control scope recovery is
language dependent, this phase of our algorithm (unlike simple and secondary
recovery) cannot be performed without the specification of language-dependent
parameters. Insofar as this specification is optional, so is this entire phase.
However, the specification of scope closer token sequences for a particular
language is straightforward, and in the case of a block structured and syntactically
complex language such as Ada, scope recovery significantly enhances the per-
formance of our algorithm on errors that result in absent or distorted scope
information.

In this section we confine the discussion to what our scope recovery algorithm
essentially entails. This algorithm assumes a somewhat more complicated form-
described in Section 3.1.2-as we implemented it, but the additional features
described there pertain only to its time efficiency. A scope recouery trial is held
at each point where a simple recovery trial takes place. Successful scope recovery
generally occurs at or near the error token, but not always. The advance from
one trial to the next takes place in the same manner as with simple recovery.

Each closer sequence is parse checked as a multiple token insertion just prior
to the current token. If the parse cannot advance through the candidate sequence,
the candidate is rejected. If the parse advances through the candidate and a token
beyond the error token, the candidate is accepted as the recovery. Where the
parse advances through the candidate but not far enough for acceptance, the
scope recovery procedure is invoked recursively in an effort to close multiple
openers. The candidate sequence is extended in turn by each closer sequence,
and each new candidate is then processed in the same manner as above. Even-
tually either all candidates fail, or one succeeds and recovery consists of insertion
of the entire sequence.

We illustrate our scope recovery technique with the following Ada example:

1 PROCEDURE P IS
2 BEGIN
3 LOOP
4 IFX>OTHEN Y:=2;
5 IFY<OTHENZ:=3;
6 END LOOP;
7 ENDP;

The error token is “LOOP” on line six. During the scope recovery trial taking
place at the preceding “END,” the insertion prior to “END” of the closer token
sequence “END IF;” is checked. This check does not parse into the right context,
but does advance through the candidate itself. When the scope recovery routine
is recursively invoked, the candidate sequence is eventually extended by “END

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

174 l M. G. Burke and G. A. Fisher

IF;,” resulting in the candidate “END IF; END IF;.” (In Section 3.1.2 we discuss
how, for efficiency, the openers on the parse stack and in the deferred token
sequence-in this case “LOOP” and the two “IF” tokens-are used to guide the
generation of closer token candidates.) This candidate checks successfully to the
end of the procedure, resulting in the following recovery:

1 PROCEDURE P IS
2 BEGIN
3 LOOP
4 IFX>OTHEN Y:=2;
5 IFY<OTHENZ:=3;

t
* * * Syntax Error: “END IF;” inserted to match “IF”

t
*** Syntax Error: “END IF;” inserted to match “IF”
6 END LOOP,
7 ENDP;

2.4 Secondary Recovery

If scope recovery also fails, secondary recovery is invoked. The secondary recovery
mechanism resumes the parse by discarding a token sequence immediately
preceding the error token and/or a token sequence that begins with the error
token and extends zero or more tokens into the right context. This mechanism
can also involve the closing of open scopes.

Those trial tokens that were in the deferred token queue prior to entering error
recovery could now be returned to it for secondary recovery. Our experience,
however, is that one level of deferral (i.e., deferral of the actions induced by the
error token) enhances the quality of secondary recovery, but greater deferral does
not. In preparation for secondary recovery, then, the parse is advanced to the
left-context point of the error token, with the deferred token queue remaining
empty. Recall (Section 2.2.1) that prior to simple recovery, the parse configuration
is set to the left-context point of the leftmost trial token (with the deferred token
queue emptied), and remains there throughout simple and scope recovery (until
a simple or scope repair is made). Now the trial tokens (except for the error
token) are removed from TOKENS, and their corresponding actions applied to
the state and parse stacks, advancing the parse to the left-context point of the
error token (with the deferred token queue remaining empty). The state stack
may alternatively be updated by simply setting it to the configuration held by
STATE-STACK-COPY during the last trial of scope recovery.

Starting with the error token as the current token, it is checked whether
parsing can resume by simply discarding a portion of the state stack along with
possibly inserting one or more scope closer sequences. Thus a move down the
state stack takes place, where it is checked at each point whether the parse can
be resumed by cutting back the state stack this far. If the parse can be resumed
at any point, recovery consists of peeling back the state and parse stacks to this
extent. This iteration is performed all the way down the state stack. In our
implementation the length of the parse check performed to test whether parsing
can resume is MIN-ADVANCE + 2 (MIN-ADVANCE + 3 when the current
token is an identifier). If the parse cannot be resumed at the current token, it is
deleted from TOKENS (the succeeding token becoming the new current token),
and the iteration down the state stack is repeated. Either there is a point at
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 175

which the parse can continue or the end-of-file token is reached. In the latter
case, special action is taken if necessary to ensure recovery.

Consider Pascal Example P.3, also drawn from the sample in [16]:

(P.3)
1 PROGRAM P(INPUT, OUTPUT);
2 BEGIN;
3 PROCEDURE FACTR(N: INTEGER; VAR FACTOR: INTEGER);
4 BEGIN

:
x:= 1

END;
x*= 1

i END’.

The “BEGIN” in line 2 is misplaced: It should occur after the procedure
declaration, just before the assignment to X on line 7. The desirable repair here
is to “move” the “BEGIN” to its proper position. The semicolon succeeding this
“BEGIN” complicates matters: Without it, a simple recovery would first result
in the deletion of “BEGIN” in line 2, and an ensuing simple recovery would
insert “BEGIN” after the semicolon of line 6. But, in the presence of this
semicolon, the deletion of “BEGIN” immediately blocks. The deletion of this
semicolon along with the “BEGIN” (followed by the insertion of “BEGIN” as
described above) is an appropriate recovery but requires a multiple token deletion.
We now trace the action of our error recovery routine on P.3. The error is
detected at “PROCEDURE.” The only simple repair candidates to parse into the
right context are generated during the trial taking place at “PROCEDURE”: The
deletion of “PROCEDURE,” as well as the substitution for it by semicolon,
“BEGIN,” “REPEAT,” “CASE,” “IF,” or “WHILE,” checks three tokens into
the right context, blocking at the first colon. These candidates all involve the
deletion of a keyword and are eliminated by our pruning criteria (see Section
3.2.1). Scope recovery also fails. Secondary recovery is then invoked, starting at
the error token (“PROCEDURE”). The parse stack is set to the configuration
obtained after the shifting of the semicolon:

[program proghxd decl-part “BEGIN” stmt-list statement “;“I

Note that both the stmt4st and statement are empty and so span no tokens.
The deletion of the suffix of the parse stack starting at “BEGIN” in effect deletes
“BEGIN;” and checks successfully until “X” in line 7. This secondary recovery
is effected, and an ensuing simple recovery inserts “BEGIN” appropriately:

(P.3)
1 PROGRAM P(INPUT, OUTPUT);
2 BEGIN;

+-me--,
* * * Syntax Error: Unexpected input
3 PROCEDURE FACTR(N: INTEGER; VAR FACTOR: INTEGER);
4 BEGIN
5 x:= 1
6 END ;

t
* * * Syntax Error: “BEGIN” expected after this token

x*= 1
ii END’.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

176 l M. G. Burke and G. A. Fisher

3. IMPLEMENTATION CONSIDERATIONS

3.1 Performance Problems

The practicality of our method, especially the general version, depends on
techniques that limit the size of the search space for simple and scope repairs.
We accomplish this by limiting the number of repair trials and the number of
closer token sequences considered in scope recovery. In a context where space
constraints are severe or time performance is a high priority, we offer versions
of the method that impose restrictions on the general model, such as the deferred
version described in Section 2.2.1. Versions involving more limiting restrictions
are described in Section 3.1.3.

3.1.1 The Number of Repair Triuls. We mentioned in Section 2.2.1 that a
special technique is used to determine the necessary number of simple and scope
repair trials. A simple or scope repair is not feasible to the left of a parse stack
element or a deferred token if it is not possible in any program context to parse
from that point through the error token. Thus a technique for recognizing when
a sequence of symbols cannot appear within any sentential form of the language
can be used to limit the number of repair trials. We have developed techniques
to efficiently accomplish this within both the LR and LL frameworks: See
Section 4.3 for measurements of their effectiveness in limiting the number of
repair trials.

We now describe our LR technique. Suppose the sequence W of symbols under
consideration is [W1W2 . . . W,], where each symbol Wi may be a terminal or a
nonterminal. With respect to determining the possible legality of the above
sequence, a nonterminal may be regarded as representing a choice of any of the
terminal strings that it derives. For symbol W1, SHIFT-STATES (W,) consists
of the set S of states that can be entered as a result of shifting Wr. If for each
state s in 5’ it is not possible to parse the token sequence [W, . . . W,] when
starting with s as the top element of the state stack, then the sequence W cannot
legally appear.

A special parse procedure PARSE-BLOCK is used to determine if the parse
will surely block when the state s is on top of the state stack and a given token
sequence is a prefix of the remaining input tokens. Of course it is not always
possible to determine whether the parse must block: A reduction may involve
cutting back the state stack below s. But in this case, if the current token is a
terminal and does not belong to the FOLLOW set of the rule being reduced, we
can conclude that the parse must block. The technique employed here of “starting
up” the parse at an arbitrary token (via SHIFT-STATES) is borrowed from the
“forward move” algorithms of [12] and [13] that restart the parse to condense
the right context of an error.

The number of repair trials is determined by applying this legality check to
sequences of symbols that immediately precede and include the error token ET.
Where the deferred tokens configuration is [DT1DT2 . . . DTk], the check is
applied to the sequence of tokens from DTi through ET, where i is first set to k
and then decremented by one down to one. If for some i the sequence [DTiDTti+i,
. . . DTkET] fails the legality check, then it is unnecessary to perform a trial at
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 177

any of the tokens preceding DTi or any of the parse stack elements (a trial would
be held at each element of this sequence). If the sequence [DT1DT2 . . . DTkET]
passes the legality check, then, in the general version, trials may also be held at
parse stack elements. Suppose the parse stack configuration is [PIPp . . . PJ.
The legality check would be applied to sequences of symbols of the form
[PjPu+l). . . P,DT,DTz.. . DTkET], wherej is first set to n and then decremented
by one down to one. If a sequence proves to be illegal, trials are not held below
that point on the parse stack (or at that point, if Pj is a nonterminal, as
nonterminals are not to be deleted or substituted for).

In the LL framework, an analogous technique is used. Here the set SYMBOL-
RULES(W1) of rules whose right-hand sides contain Wl is considered. If
for each such rule the portion of its right-hand side to the right of WI does
not successfully predict the input sequence [W, . . . W,], then the sequence
[WlW2 . . . W,] cannot legally appear. Here the procedure PARSE-BLOCK
determines whether the parse must block when a given sequence of symbols is
on top of the prediction stack and a given token sequence is a prefix of the
remaining input tokens. Once again, FOLLOW sets are used. See [3] for a more
detailed description of the LL determination of the number of repair trials.

3.1.2 Making Scope Recovery Efficient. Scope recovery involves closing open
scopes: An inserted closer token sequence always matches some scope opener
that has been seen and not yet closed. For example, a right parenthesis matches
a left parenthesis, and in Ada the sequence “END IF;” matches the opener “IF.”
Other examples of openers in Ada and Pascal are “PROCEDURE” and “BEGIN.”
A natural approach toward scope recovery, then, is to examine the parse stack
and the deferred token sequence for unclosed openers, and let these determine
the closer token sequences that are considered for insertion. For efficiency, we
opted for this approach in our implementation (for more detail, see Section 2.3
of [3]). At the point of error detection in the example of Section 2.3, the parse
stack contains the openers “LOOP, ” “IF,” and “IF.” In that particular recovery,
the presence of the topmost “IF” induces the generation of the candidate
“END IF;“; the presence of the other “IF” induces the extension of this candidate
to “END IF; END IF;.” Note that two additional language-dependent maps are
required by this approach: OPENERS and CLOSER-MAP. For each opener in
OPENERS, for example, “IF,” CLOSER-MAP gives the set of associated closer
token sequences in CLOSERS, for example, “END IF;.”

3.1.3 More Efficient Versions of the Method. The generation of left-context
repair candidates has two dimensions: the consideration of parse stack elements
and the deferring of parse actions. Given these two dimensions, there are four
recovery models to choose from. In Section 2 we described the general version,
which incorporates both dimensions, and the deferred version, which does not
consider parse stack elements.

The minimal version does not defer parse actions or consider parse stack
elements, and so only performs a single trial at the error token. It may not even
consider an appropriate repair at the error token when premature reductions
occur. In addition to speeding up error recovery, it incurs no space or time
overhead with respect to the parsing of correct programs.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

178 l M. G. Burke and G. A. Fisher

The condensed version does not defer parse actions, but considers parse stack
elements in simple and scope recovery. An error in the prefix might be repaired,
but there is still a reliance on the appropriateness of reductions. Premature
reductions, particularly default reductions in the LR framework, are still
troublesome here.

In some contexts the choice of a version that does not perform trials at parse
stack elements (i.e., the minimal or deferred version) is advantageous. Performing
trials at parse stack elements in simple and scope recovery requires that the
parser (or at least the parse checker) have the capability of parsing nonterminals
in contexts in which they are not necessarily legally expected. This imposes a
space cost when the LR parse table scheme saves space by assuming that goto
actions on nonterminals do not need to be checked for legality [lo]. When parsing
a correct program, this assumption is always valid. But suppose that an error has
been encountered, and an insertion is attempted at a point below one or more
nonterminals on the parse stack. The parse check routine must determine
whether these nonterminals are expected in this altered configuration, and so it
cannot be assumed that they are legal. The parse table scheme must then allow
for checking nonterminal gotos, resulting in larger tables. The deferred version
does not perform trials at parse stack elements and so is compatible with this
space-efficiency technique. (A space-efficient LR implementation of the general
and deferred versions of our method is discussed in Section 4.2.2.)

In the LL framework, accommodating nonterminals as possible input symbols
poses difficulties even where the symbol can be presumed legal (see [3]). When
a nonterminal A is the next input symbol and is also predicted, it can be shifted-
that is, deleted from the prediction stack and pushed onto the parse stack-as if
it were a terminal. The more difficult case is the one in which a different
nonterminal B is predicted. This is only a legal configuration if there exists a
sequence of rules such that B derives a string of symbols beginning with A.
A function FIND-RULE is needed that returns the first rule in this sequence if
it exists. Execution of the function involves much more than a single table
lookup, and in fact it invokes the LL parse action lookup routine twice for each
terminal symbol in the grammar.

Our method makes no assumptions about the timing of semantic actions.
Semantic analysis may take place in a separate pass from syntactic analysis, or
it may accompany parsing. If semantic actions are performed during parsing only
as reductions occur, then a manipulation of the terminal symbols on the parse
stack (as occurs during simple and scope recovery) cannot invalidate semantic
information that has already been generated. But suppose that semantic actions
occur at other points also, such as “new scope” semantic actions that might be
performed as a “BEGIN” symbol is shifted. Then any manipulation of the parse
stack may render semantic information invalid, and so backing down the parse
stack potentially interferes with semantic processing. In such a front end, the
deferred version offers the advantage of effecting simple and scope recoveries
without necessitating the disabling of semantic processing. In a syntax-directed
translation scheme that does more than build an abstract-syntax tree, however,
it may be necessary to turn off semantic actions when secondary recovery deletes
one or more nonterminal symbols.
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 179

3.2 Heuristic Evaluation of Repairs

3.2.1 Pruning of Repair Candidates. The evaluation of simple repair candi-
dates, as described in Section 2.2.3, may begin with the elimination of some
candidates through the application of heuristic criteria, including language-
dependent preferences. Our experience with Pascal and Ada samples has sug-
gested that certain criteria are generally effective in guiding the choice of a
simple repair candidate. Although their plausibility should be evident, these
should not be construed as hard and fast rules.

One general observation is that repairs involving the insertion and/or deletion
of keywords are dangerous in that spurious such repairs often parse check beyond
the minimum required distance and can significantly alter the meaning of the
program text. Thus we apply stricter criteria to keyword repairs, possibly pruning
some or all of them. One rule is that, if a given repair mode has both keyword
and nonkeyword candidates, the keyword candidates are eliminated. Recall
(Section 2.2.3) that three simple repair candidates parse check equally well in
Example P.2: deletion of the error token “ELSE,” deletion of the semicolon, and
substitution of a semicolon for “ELSE.” In pruning candidates that delete
keywords when candidates that delete nonkeywords are also present, the deletion
of “ELSE” is eliminated as a candidate. Deletion is favored over substitution as
a repair mode, and so deletion of the semicolon (the most appropriate repair) is
favored over the remaining substitution candidate.

We also prune keyword repairs that do not meet a long parse check criterion
(MIN-ADVANCE + 3 in our implementation). Recall (Section 2.4) Pascal
fragment P.3:

(P.3)
1 PROGRAM P(INPUT, OUTPUT);
2 BEGIN;
3 PROCEDURE FACTR(N: INTEGER, VAR FACTOR: INTEGER);
4 BEGIN
5 x:= 1
6 END;

x:= 1
ii END.

We noted that the deletion of “PROCEDURE” and several substitutions for it
are simple repair candidates that parse check three tokens into the right context
(up until the colon). They all would result in poor recoveries, and in fact they do
not meet our long parse check requirement for keyword repairs and so are pruned.
This example illustrates that inserting or deleting a keyword that opens a scope
is especially dangerous.

In addition to pruning candidates in accordance with conservative criteria
toward keyword repairs, we also allow for the heuristic evaluation of repair
candidates as guided by the language-dependent sets ALWAYS-PREFERRED
and PREFERRED-FOR. Where the implementor chooses to make use of
these sets, they specify preferred insertion and substitution candidates. See
Appendix A for the assignments to these sets in our Pascal and Ada imple-
mentations. Where one or more insertion candidates are preferred (i.e., belong
to the set ALWAYS-PREFERRED), then the other insertion candidates are

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

180 l M. G. Burke and G. A. Fisher

eliminated. Similarly, if a substitution of symbol y for x is a candidate and [x, y]
is an entry in the language-dependent set PREFERRED-FOR, then all other
substitutions (except those similarly preferred) are eliminated. These prefer-
ences are given precedence over the rules for eliminating keyword repairs:
That is, a preferred insertion or substitution is never eliminated on the basis
of involving a keyword.

3.2.2 Preference Order Among Repair Modes. Recall the preference order
among repair modes stated in Section 2.2.3: merge, misspelling, insertion, dele-
tion, substitution. Top preference is given to merge and misspelling because it is
unlikely, where such a repair checks, that is not the repair of choice. It is natural
to give substitution the lowest preference, since it may be thought of as an
insertion combined with a deletion. We illustrate the effectiveness of the pref-
erence for insertions over deletions and substitutions with the following erroneous
statement from the sample in [16]:

IF N I THEN POWER := ELSE POWER := M t POWER(M, M - 1)

Our implementation inserts an identifier after “s” and also after “:=.” In that
expressions seem to have been intended at these points, these are excellent
recoveries. With substitution given preference over insertion, “t” (the dereference
operator) is substituted for “5,” resulting in an unhelpful diagnostic. With
deletion given preference over insertion, “:=” is (inappropriately) deleted. For
several other examples in the sample in [16], giving substitution preference over
insertion results in a poorer recovery. Otherwise, permuting the preference order
of these three modes seldom affects the quality of a recovery; it affects none in
the sample in [16]. It is always possible, of course, that permuting our recom-
mended order may enhance the quality of a particular recovery.

3.2.3 Controlling Secondary Recovery. There are two dimensions to a second-
ary recovery: that of peeling back the state and parse stacks (eliminating left
context), and that of advancing past the error token and succeeding tokens
(eliminating right context). As described in Section 2.4, our method is biased
toward preserving right context and discarding left context. This does not always
result in a secondary recovery that deletes the minimum amount of overall
context, or that is the most appropriate secondary recovery by any other criterion.
We experimented with techniques for eliminating this bias, including the devel-
opment of a formula to assign a certain cost for deleting a stack entry, and
another cost for deleting the current or an advance token. Such a formula would
provide a basis for choosing one secondary recovery over another, rather than
simply opting for the first one to parse check the required distance. But we found
that our simple approach fares just as well in general as a more complicated
strategy that would occasionally preserve more left context. The basic reason for
this is that rarely in practice are more than two state stack items removed, and
so generally not much left context is discarded. We did find, however, that, where
a secondary recovery discards no left context and only a small amount of right
context, it is usually the most appropriate action. For example, consider the
following erroneous Ada procedure header:

PROCEDURE Q(2: RANGE 1. . 10; X: INTEGER) IS

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 181

The type specification for the parameter 2 is erroneous: A typemark should be
supplied, and in this context a range constraint is not allowed [2]. The error
token is “RANGE”: The deletion of it and right context up until “INTEGER” is
a good recovery. But secondary recovery as described in Section 2.4 would delete
the sequence of tokens beginning at the left parenthesis and running through
the “10,” since “PROCEDURE Q” in the left context is consistent with
“; X: INTEGER” in the right context. The procedure declaration of Q has then
been taken to be a procedure specification, resulting in a poor recovery.

Thus in our implementation we begin secondary recovery with a preliminary
phase that determines whether the parse can be resumed by deleting the error
token along with some prefix of the token sequence comprising the right context.
The deletion of two, three, up to some bounded number of tokens of right context
is tried, and the first such multiple deletion that allows the parse to advance a
distance of MIN-ADVANCE + 2 tokens into the remaining right context is
taken. The deletion of right context in this manner is bounded by the occurrence
of one of a language-dependent set BEACONS of symbols that are not to be
deleted in this mode of recovery. Note that the symbols in BEACONS do not
play the role that beacon symbols do in traditional panic mode recovery [9].

3.3 Diagnostics

Careful attention has been paid to the reporting of error recoveries. The diag-
nostic issued essentially states the repair that effects the recovery. The messages
are completely synthesized from the recovery mode and the tokens at the locus
of the error. Symbols on the parse stack carry along their token spans expressed
in terms of line and column numbers. Examples in Appendix B show the messages
produced.

For secondary recovery it is often possible to determine that a construct
appearing in a list is malformed. For example, if at the point of recovery
statement-list is the symbol on the parse stack (LR) or the predict stack (LL),
then the deleted input may be viewed as a malformed statement, and so the
diagnostic message “Bad statement” is issued. When no such message is available,
the bad input is simply termed “Unexpected.” We specify an association between
the list nonterminal symbols and their corresponding messages in the parser
generator, which then generates a map that allows the parser to associate a state
with its apropriate message. This process could be further automated by having
the parser generator deduce the messages automatically from nonterminal textual
names.

4. MEASUREMENTS AND EVALUATION OF PERFORMANCE

In Section 4.1 we present empirical measurements of the time performance of
implementations of the method on sample erroneous Pascal and Ada programs.
We have stated as a goal (Section 1.1) that in practice the time spent in repairing
a single error be independent of the length of the program. This requirement is
in fact satisfied: The average times given in Sections 4.1.1 (for Pascal) and 4.1.2
(for Ada) hold for programs of any length.

In our implementations the extent of the forward parse check is not actually
the entire program text in the right context of the error but is bounded in length

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

182 l M. G. Burke and G. A. Fisher

by a constant MAX-LOOK-AHEAD that we set to 25. MAX-LOOK-AHEAD
should be large enough to accommodate the possibility that the erroneousness of
the repair candidate is detected late. The length of 25 is generally sufficient, but
in the case of a scope correction or the insertion of a candidate that opens a new
scope, a longer check may sometimes help. Otherwise we have not encountered
an example in which a check longer than 15 tokens in advance of the error token
is needed.

The other time-efficiency factor for the general version is the size of the parse
stack, in that it limits the number of trials that occur. In the presence of non-
left recursive grammatical structures, the parse stack may grow with the length
of the program, but in general the average parse stack size does not vary from
shorter to longer programs. In any case it is not the average parse stack size that
is directly relevant, but rather the average number of trials. We have found that
the average number of trials does not vary with program length (see Section 4.3).

4.1 Measurements

The LR parsers that we have implemented and experimented with are LALR.
Default reductions are applied in any state that has only one completed rule (see
[3] for an examination of the trade-offs involved in applying default reductions
to different extents). All versions of the parser have been implemented as separate
parse modules attachable to a translator writer system, all written in the very
high-level language SETL. The application of our system to a particular language
amounts to writing the lexical module for that language, since all language-
dependent features are included there. This module essentially consists of a
lexical analyzer and a procedure that sets the error recovery parameters. We
have written and tuned such modules for Pascal and Ada.

4.1.1 Pascal. We ran all versions of the parser on the sample in [16], supplied
by Ripley and Druseikis (obtained by them from the original sample in [17] by
reducing it to “unique” syntax errors). We refer to this sample as “PTESTS.”
Each version has also been run on a program (PTESTSl) that results from
removing all errors from this sample. Subtracting the time spent by a particular
version parsing PTESTSl from the time it spends parsing PTESTS and divid-
ing by the number of errors give the average time per error for this version.
The programs were executed on a VAX 11/780. Our experience with recoding
SETL programs into a lower level language, such as PL/l, suggests that a
speedup factor of 30 can be achieved through a simple transliteration of the
SETL codes [6].

The quality of a recovery is measured using categories proposed by Pennello
and DeRemer [13], whereby a repair is rated “excellent” if it is the one a human
reader would make, “good” if it results in a reasonable program and no spurious
or missed errors, and “poor” if it results in one or more such errors or if excessive
token deletion occurs. At times two different repairs of an error reflect syntacti-
cally equivalent views of what the error is. For example, in a case where two
consecutive commas occur among a sequence of identifiers that legally are to be
separated by single commas, the deletion of a comma is essentially syntactically
equivalent to the insertion of an identifier. We have used [16], which provides
an interpretation of the syntax error involved for each case in the sample, to
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 183

guide our determination of the repair that the hypothetical human reader would
effect. Results obtained with the sample in [16], for both the LR and LL general
versions, with the extent of deferral k set to one are as follows:

Excellent Good Poor
128

(77.6%) (20?%) (2.i%)

Pennello and DeRemer [141 rate their own recoveries on the sample in [161 as
follows:

Excellent Good Poor
64.9% 29.4% 5.7%

With the scope recovery phase, which relies essentially on language-dependent
sets, turned off, eight recoveries are affected. Our recoveries then rate as follows:

Excellent Good Poor
121

(73.3%) (2lT%) (4.s8W)

The four additional poor recoveries without scope recovery are excellent
recoveries with it. They are all missing the END statement, or the entire
statement part, of a procedure or program; the poor recovery is to delete the
entire procedure or program.

Increasing k from one to two in the general versions results in the improvement
to Example P.2 as discussed in Section 2.1.3, where a semicolon precedes “ELSE.”
This error may arise owing to confusion regarding the role of the semicolon as a
separator rather than as a terminator and so is probably a common mistake
among beginning Pascal programmers. But, as the only recovery in the entire
PTESTS sample that is affected in a significant way by the extension to two
levels of deferral, it is probably insufficient to justify the extension. Further
increasing k does not improve the performance of the general version. Thus, with
respect to Pascal, the appropriate degree of deferral for the general version seems
to be one level.

The deferred versions perform as well as the general ones on this sample, so
long as the extent of deferral k is at least 12 (see Example P.l of Section 2.1.3).
With k set to one, five recoveries (all in cases essentially identical to P.l) rated
as excellent for the general version worsen to good in the deferred version.

The time spent per error by the general and deferred versions of our method
is about 4.50 seconds (and so about 0.15 seconds, given the speedup factor). With
the more economic versions of our method, the time per error is about half this,
and performance still rates comparably with Pennello and DeRemer (see [3]).
With k set to one, LR and LL provide recoveries of equal quality in all examples
in the sample: The few differences between them are minor.

4.1.2 Ada. One particular Ada test program that we developed, ATESTS (see
the section on Ada in Appendix B), is about 75 lines in length and includes
36 errors that we regard as either common or troublesome. ATESTSl is the same
Ada program but with these errors removed. The LR results with this sample are
summarized in Table “I.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

184 l M. G. Burke and G. A. Fisher

Table I. LR Results with ATESTS

Version

Number of repairs rated as:
ATESTS ATESTSl Average time

K Excellent Good Poor time time per error

General 2 33 3 0 5~23 36 7.91
General 1 30 4 2 4:50 36 7.06
Deferred 3 33 2 1 5~32 36 6.22
Deferred 2 31 2 3 494 36 6.66

This short sample is sufficient to demonstrate that the extent to which
reductions are deferred more seriously influences recovery actions on Ada pro-
grams than on Pascal programs. In three cases the performance of the general
version is improved by setting k to two instead of one. All three cases involve
misspelled reserved words, and in all three cases, the error is detected one token
late: That is, the erroneous (misspelled) token is PREVTOK at the time of error
detection. Given a single level of deferral, PREVTOK is guaranteed to be the top
symbol on the parse stack at the point of error detection, and so substitutions
for it are generated as candidates. But in each case the erroneous identifier, prior
to being shifted, induces a reduction by a rule with an empty right-hand side that
disallows the misspell substitution from successfully parse checking.

Two cases in which an inferior recovery takes place with only a single level of
deferral involve the introduction of an empty statement label list onto the parse
stack. Consider the following Ada segment:

CASE MIS
WHEN FEB =+ RETURN 28;
WHAN APR 4 RETURN 30;

The following rules of the Ada grammar [2] are relevant here:

case-statement ::= CASE expression IS
pragma-list
case-statement-alternative
casestatement-alternatiue-list
END CASE;

case-statement-alterntiue ::= WHEN
choice choice-list *
sequence-of-statements

sequence-of-statements ::= pragmdist statement statement-list

Also, a statement begins with a (possibly empty) label list. After the first
semicolon has been shifted, the parse stack contains the suffix

[CASE expression IS pragmu-list WHEN choice choice-list
“=s” RETURN expression “;“I.

Where k = 2, this is the parse stack configuration at the point of error detection,
and the identifier “WHAN” is the only element of the deferred tokens queue.
But with k = 1, this identifier is presumed to begin a second statement of the
sequence of statements that may follow the “a” (note that it is not regarded as
possibly being a label, since a label must begin with the symbol “CC”). Thus it
induces the reduction of [RETURN expression “;“I to a sequence of statements
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 185

and then the pushing of the nonterminal l&-list onto the parse stack as an
empty label list. The above parse stack suffix has become

[CASE expression IS pragma-list WHEN
choice choice-list “*”
sequence-of-statements label-list IDENTIFIER].

Owing to the presence of the (empty) label list, the substitution of “WHEN” for
“WHAN” does not successfully parse check.

The third case, in which the reserved word “separate” is misspelled, involves
the introduction of an empty basic-declarative-item-list onto the parse stack.
This case is discussed in detail in [3]. All three inferior recoveries result from a
premature introduction of a list by means of a reduction by an empty rule,
evidence of the troublesome nature of these reductions for error recovery.

An alternative solution to deferring parse actions an extra level is to rewrite
the syntactic rules defining lists so that they cannot be generated by an empty
rule. The general technique is to replace a list of zero or more items by an
optional list of one or more items. A drawback of this approach is that it enlarges
the size of the grammar and so of the parse action table. See Section 4.2.3 of [3]
for a full description of this technique and measurements of its cost with respect
to table size.

The implementor’s choice of a grammar, however, may be governed by other
concerns, such as compatibility with a standard. For example, the implementor
may choose to follow the rules of the Ada standard [2], whether it is an ideal
grammatical design or not. In any case deferring parse actions an appropriate
extent is preferable to grammatical tuning in that the choice of an error recovery
should not be dictated by grammatical design.

Another difference that we have observed between Ada and Pascal is that
scope recovery is more frequently of importance in handling syntactic errors in
Ada programs. Several of the examples in our Ada sample (such as the example
of Section 2.3) were chosen by us because we felt the omission of a sequence of
closers to be a common error, in particular for scope constructs that do not
require closers (or do not exist at all) in other languages. The syntactic complexity
of Ada, along with its abundance of scope constructs, makes for larger scope
recovery sets for it (see the section on Ada in Appendix A).

The general version of our method (with only a single level of deferral) is
currently in use in the NYUADA/ED translator and interpreter, and so has been
tested on the Ada Compiler Validation (ACV) test suite. We have not measured
our performance on the numerous syntactic error tests among these since there
is no reason they should be taken to be representative of the kinds of errors that
any group of programmers (beinning or expert) would tend to make, and certain
types of errors occur repeatedly. We have in general done well on this sample,
and some of the examples in ATESTS have been drawn from it.

4.2 Overhead to Correct Programs

4.2.1 Time Overhead of Deferral Mechanisms. The deferring of parse actions
to some extent k > 0 inevitably adds to the time cost of parsing a correct program.
We represented the deferred action queues with SETL tuples, using costly

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

186 l M. G. Burke and G. A. Fisher

high-level tuple operations (such as concatenation) without availing ourselves
of the SETL representation specification facility that allows the programmer
to indicate the type of the elements of the tuple and/or a data structure to
efficiently implement it.

In both our LR and LL implementations, the time cost of deferring parse
actions is less than 10 percent. This percentage increase is with respect to the
time cost of lexical analysis and parsing (without semantic analysis), which
generally accounts for 20-40 percent of the time spent compiling a program.

It is difficult to imagine a context in which the above cost would be prohibitive,
but it is worth noting that even the most general version of our method can be
implemented so that no time overhead at all is incurred for correct programs.
We have already observed that parse deferral may be viewed as double parsing.
One can accomplish this “double parse” with only a single parse for correct
programs by letting the first parse proceed until an error is encountered. At that
point the second parse is invoked and proceeds the desired distance k from the
error token. The effect of a deferral of k is then accomplished, with the advantage
that, where no syntactic error is detected, no second parse takes place. Where
the programmer expects that he or she has a correct program, he or she may
wish to parse it in this “no time overhead” mode.

4.2.2 Space Overhead. Except for the general LL version, for which the
FOLLOW map is required by the FIND-RULE routine (Section 3.1.3), the only
space overhead derives from the determination of the number of repair trials by
the parse block check described in Section 3.1.1. The inclusion of this technique
is desirable from the viewpoint of time efficiency. The parse block routine requires
FOLLOW and SHIFT-STATES maps in the LR framework, and FOLLOW and
SYMBOL-RULES maps in the LL framework. The maximum requirements for
additional maps are summarized in Table II.

In some LR parsers, the general (but not the deferred) version imposes a space
overhead in requiring the capability of parsing nonterminals in contexts in which
they are not necessarily expected (Section 3.1.3).

Where space efficiency is a higher priority than time efficiency, the number of
repair trials may simply be set to a fixed number. Space overhead is then entirely
eliminated in the LR context (the FOLLOW map would still be necessary for
the general LL version).

The minimal LR and LL versions impose no space overhead.

4.3 The Number of Repair Trials

The effectiveness of the “parse block” check described in Section 3.1.1 in limiting
the number of repair trials is a critical efficiency concern for the general version
and for a deferred version with a long deferral. Tables III and IV indicate the
effectiveness of this technique for the general version. They indicate the trial
distribution for all recoveries, including those where simple and scope recovery
fail. Note that the average number of trials grows with the degree to which parse
actions are deferred. For j I 10, the jth entry of each row indicates the number
of recoveries in the sample for which j trials took place.
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 187

Table II. Maximum Space Overhead

Percent
increase in
table sizes

Version FOLLOW SHIFT-STATES SYMBOL-RULES Ada Pascal

LR
LL

Yes
Yes

Yes
No

No
Yes

10.7 10.8
- 11.1

Table III. Trial Distribution for All Recoveries for PTESTS

Average
number

Version K Trial distribution of trials

1 2 3 4 5 6 7 8 9 10 >lO -
LR 1 0 115 35 5 15 21 0 2 0 0 0 2.96
LR 2 0 83 38 8 22 19 8 7 1 4 3 3.81
LR 3 0 83 31 6 14 8 17 18 4 8 4 4.29
LL 1 0 102 38 6 12 18 9 2 2 0 2 3.32
LL 2 0 82 39 6 18 24 7 3 6 3 3 3.84
LL 3 0 82 32 3 9 22 23 5 6 5 4 4.20

Table IV. Trial Distribution for AI1 Recoveries for ATESTS

Version K Trial distribution

Average
number
of trials

1 2 3 4 5 6 7 8 9 10 -
LR 1 1 22 4 4 0 1 1 0 0 1 2.82
LR 2 1 19 4 3 1 1 0 1 2 2 3.53
LR 3 1 19 3 2 2 1 0 2 1 3 3.73

5. CONCLUSION

5.1 Summary of Results

On the basis of the literature that we have surveyed, the method of Pennello and
DeRemer seems a legitimate representative of the current state of the art in
syntactic error recovep. Fortunately, they provide a measure of the effectiveness
of their method on the same Pascal sample as ours. A comparison of their
performance statistics with ours (Section 4.1.1) provides evidence that we have
in fact succeeded in developing a method that advances the state of the art in
terms of effectiveness, and even our limited “efficiency” versions perform com-
parably with theirs.

The measurements of Sections 4.1.1 and 4.12 also indicate that the average
time per repair of even the most general version of our method is reasonably
small. And in Section 4.2 we have seen that the space and time overheads
incurred by our most general version amount to slightly more than 10 percent
and less than 10 percent, respectively. These costs would not seem to be

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

188 l M. G. Burke and G. A. Fisher

prohibitive with respect to the speed requirements or spatial constraints of
almost any application. Time overhead for correct programs may in any case
be eliminated entirely by effecting parse deferral in the manner described in
Section 4.2.1.

Most of the literature on syntactic error recovery confines its empirical studies
to Pascal programs. But, owing to Ada’s higher syntactic complexity, syntax
errors tend to pose more of a difficulty in Ada than Pascal programs. In that we
have applied the method with success to both Ada and Pascal, there is some
empirical evidence for our claim that the method is essentially language inde-
pendent. We have found that with Ada the late detection of an error is more
likely to occur. Our parse action deferral mechanism is low cost and makes it
possible to handle difficult examples of errors that are detected late, as we have
seen with several of the examples drawn from ATESTS. We have also found
that, with Ada, language-dependent parameters play a more important role with
respect to the quality of our recoveries.

A significant result is that our general LR and LL versions perform equally
well on all PTESTS examples. The method thus shows itself to be equally
applicable to LR and LL parsing. This result suggests that there is not much to
choose between LR and LL as far as the quality of error recovery is concerned.

5.2 Comparison with Other Methods

Our method builds upon our own earlier work [4], as well as that of Feyock and
Lazurus [73, Graham, Haley, and Joy [9], and Poonen [Xi]. The recovery methods
of [7] and [9] employ two levels of recovery in similar fashion to ours: The first
attempts a single token repair, and the second a deletion of the flawed portion
of text based on identification of an ill-formed program component. Both methods
test single token repair candidates by performing a separate forward parse check
for each, but they depart from ours in using semantic information when evalu-
ating a candidate. We have found that our repair selection criteria and language-
dependent sets (Section 3.2) preclude the need for the weighted cost analysis of
[9]. The techniques that we use in generating the set of simple repair candidates,
including the parse action deferral mechanism (Section 2.1.3) and the determi-
nation of the necessary number of simple recovery trials (Section 3.1.1), are
original.

The mechanism in [7] for backing up the parse bears a resemblance to our
parse action deferral mechanism, but rather than deferring the parse actions for
recently parsed tokens, it simply places these tokens in a buffer. In that actions
already applied to the parse stack are undone as the parse is backed up, the
integration of the semantic and parsing phases of the compiler then seems
problematic. And their reliance on semantic information for analyzing repair
candidates indicates the presumption of a parse model in which these phases are
integrated. Their backup halts at the beginning of what is taken to be the relevant
program component (the “substructure”). It is not checked whether this far a
backup is necessary. If the substructure contains more than one error, it is
deleted: Unlike us, they make no effort to repair errors in close proximity.

Poonen and Johnson [lo] base their recovery algorithms on a stack resynchron-
ization technique that is similar in spirit to the second phase of our secondary
recovery. But their methods depend on the augmentation of the grammar by
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 189

error productions. Poonen bases resynchronization with right context on a single
occurrence of any member of a set of tokens, rather than on a sequence of
advance tokens. We do not use error productions. They have the advantage of
speeding up secondary recovery, but complicate the grammar and in most cases
provide a diagnostic that could just as well be derived automatically from the
parse or prediction stack. Graham, Haley, and Joy [9] require that the parser
generator “know” about error productions and avoid default reductions when
they are used. We place no restrictions on the parser generator and freely use
default reductions in the LR case.

The preliminary forward move of [121 and [131 lessens the degree of repetition
involved in parse checking individual candidates. However, this approach de-
mands considerable overhead in terms of additional tables required of the parser
generator [14].’ We find that our implementations spend little time parse check-
ing in simple recovery, although the check is allowed to be long if necessary and
may be repeated for many candidates. Typically, in the course of a simple recovery
few candidates require a check of more than two tokens.

The preliminary forward move lacks a systematic method for dealing with the
presence of errors in the right context. Mauney and Fischer address this issue in
[111, describing an algorithm that repairs all errors within a “region” that includes
the error token and some right context. They adapt Aho and Peterson’s algorithm
[l] for finding the least-cost repair of an entire program, applying their adaptation
to the region. This approach is expensive with respect to time, however, unless
the region is very small, and, in the LR framework, requires a considerable
augmentation of the original grammar. With our method an error in the right
context may sometimes prevent a simple recovery from taking place, since a
plurality of candidates may check up to the occurrence of the second error, but
not so far as the required threshold (see Section 2.2.2). However, we have good
success at handling errors in close proximity (see examples in Appendix B).
Without a systematic method for repairing multiple errors, multiple symbol
deletions are of particular importance, and our secondary recovery is designed
especially to handle these cases. In [12] and [131, a multiple symbol deletion
involving a mutilated right context is accomplished only by means of a costly
process that attempts the full gamut of repairs at every symbol before deleting
it. Outside of those accommodated by our inclusion of scope recovery within
secondary recovery efforts, we have not discovered any cases in which a multi-
ple symbol deletion is appropriately accompanied by a single token insertion.
This kind of repair becomes more relevant when nonterminals are allowed as
candidates for insertion and substitution. We do not regard the insertion of a
nonterminal as desirable, as it would invalidate a semantic action stack or
abstract-syntax tree. More importantly, it is generally difficult to issue clear
and helpful diagnostics accompanying such a repair.

We have found that our scope recovery mechanism, at little cost, significantly
enhances many of our Ada recoveries (see the section on Ada in Appendix B).
We are unaware of the systematic incorporation of this form of recovery in any
other method.

2 Given a nondeterministic implementation of the forward move algorithm, the only additional tables
required are the FOLLOW sets (private communication with F. L. DeRemer).

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

190 l M. G. Burke and G. A. Fisher

APPENDIX A. LANGUAGE-SPECIFIC SETS

Pascal

The language-specific sets for our Pascal implementations are as follows:

PREFERRED-FOR := (
y,“=:], $ For := used instead of = in an expr
[“ I.,;= It $ For = used instead of := in assignment

9, , ,
[‘;‘, ‘,‘I 1;

ALWAYS-PREFERRED := {‘IDENTIFIER’, ‘;‘, ‘,‘, ‘[‘I;

BEACONS := (‘PROGRAM’, ‘BEGIN’, ‘END’, ‘FUNCTION’, ‘PROCEDURE’,
‘DO’ ‘FOR’, ‘REPEAT’, ‘UNTIL’, ‘WHILE’, ‘IF’, ‘THEN’,
‘ELSE’, ‘CASE’, ‘WITH’, ‘;‘, ‘.‘);

OPENERS := (‘prog.head’, ‘PROGRAM, ‘PROCEDURE’, ‘FUNCTION’,
‘ARRAY’, ‘(‘, ‘[‘, ‘REPEAT’, ‘BEGIN’);

CLOSERS := [
~~~~~~‘;;END’. ‘.‘I, 

[‘BEGIN’, ‘END’, ‘;‘I, 

t Ti 
D’,‘Yl, 
Wit 
[‘END’], 
[‘UNTIL’, ‘IDENTIFIER’], 
[‘UNTIL’, ‘IDENTIFIER’, ‘;‘I, 
[‘OF’, ‘IDENTIFIER’] 

I; 

Ada 

The language-specific sets for Ada are as follows: 

PREFERRED-FOR := ( 
[‘:=‘, ‘21, $ For := used instead of = in an expr 
[l:‘; ‘:=‘I, $ For = used instead of := in assignment 

j:ii;; &/, 

[‘iSI’: ‘OF’j, 
[‘OF’, ‘IS’], 
[‘identifier’, ‘PROCEDURE’], 
[‘TYPE’, ‘SUBTYPE’], 
[‘SUBTYPE’, ‘TYPE’], 
[‘DO’, ‘LOOP’], 
[‘FOR’, ‘LOOP’], 
[‘;‘, ‘LOOP’], 
[‘numeric-literal’, ‘identifier’] 

$ For 1.100 instead of 1 . . 100 in index 
I. 

ALWAYS-PREFERRED := (‘identifier’, ‘;‘, ‘,‘); 

BEACONS := 
{‘BEGIN’, ‘DO’, ‘ELSE’, ‘ELSIF’, ‘END’, ‘FOR’, ‘FUNCTION’, 
‘IF’, ‘LOOP’, ‘PACKAGE’, ‘PROCEDURE’, ‘TASK’, ‘THEN’, 
‘WHILE’, ‘;‘, ‘ RETURN’, ‘IS’); 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 191 

OPENERS := 
(‘subprogram-specification’, ‘TASK’, ‘PACKAGE’, 
‘(‘, ‘IF’, ‘ARRAY’, 
‘SELECT’, ‘ELSIF’, ‘BEGIN’, 
‘CASE’, ‘LOOP’, ‘ELSE’, ‘RECORD’}; 

CLOSERS := I 
[‘BEGIN’, ‘tiULL’, I;‘, ‘END’, ‘;‘I, 
yy, ‘;‘I, 

[‘EhD’, ‘IF’, ‘;‘], 
[SEND’; ‘SELECT’, ‘;‘I, 
[‘END’, ‘CASE’, ‘;‘I, 
[‘END’, ‘LOOP’, ‘;‘I, 
[‘END’, ‘RECORD’, ‘;‘I, 
PS’I, 
[‘IS, ‘WHEN’], 
[‘OF’19 
[‘OF’, ‘identifier’], 

71 ‘;‘I 

APPENDIX B. SAMPLE RESULTS 

Pascal 

EXAMPLES FROM PASCAL SAMPLE PTESTS: 
(General LR Version with level of deferral k = 2) 
(Rating and type of each recovery is indicated immediately above it.) 
(See [5] for listing of run with the entire sample PTESTS.) 

Excellent Simple Recovery. 

1 PROGRAM P(INPUT, OUTPUT); 
2 BEGIN 
3 IFX:=OTHENX:=l 

t 
*** Syntax Error: “=” expected instead of “:=” 

END. 

Three Excellent Simple Recoveries. 

5 PROGRAM P(INPUT, OUTPUT); 
6 FUNCTION TOPSORT(VAR X: ORDER, VAR y: SORTED, x: INTEGER); 

t t 
* * * Syntax Error: “;” expected instead of ‘0” 
*** Syntax Error: ‘I;” expected instead of ‘0” 

t 
* ** Syntax Error: “PROCEDURE” expected instead of “FUNCTION” 

i 
BEGIN 
END; 

9 BEGIN 
10 x:= 1 
11 END. 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



192 l M. G. Burke and G. A. Fisher 

Excellent Simple Recovery. 

12. PROGRAM P(INPUT, OUTPUT); 
13. VAR L, N: REAL; 
14. VAR X, NONPRIME, PRIME: INTEGER; 

t 
* * * Syntax Error: Unexpected “VAR” ignored 

15 BEGIN 
16 END. 

Six Excellent Simple Recoveries. 

17 PROGRAM P(INPUT, OUTPUT); 
18 BEGIN 
19 WRITELN(‘ ‘; 9, ‘X’; 10, ‘M’; 9, ‘I Xl’; 9, ‘APPROX Xl’; 19, 

t t t T t t 
*** Syntax Error: “,” expected instead of “;” 
*** Syntax Error: ‘0” expected instead of “;” 
* * * Syntax Error: “,” expected instead of “;” 
*** Syntax Error: “,” expected instead of “;” 
* * * Syntax Error: “,” expected instead of “;” 
** * Syntax Error: “)” expected instead of “,” 

20 END. 

Good Secondary Recovery. 

21 PROGRAM P(INPUT, OUTPUT); 
22 BEGIN 
23 FOR Z := 1 STEP 1 UNTIL LISTSIZE - 1 DO 

< -----___--------- TtQ _-------_____----___.----------------- > 
: :* Syntax Error: Bad statement 

24 x:= 1 
25 END. 

Excellent Simple Recovery. 

26 PROGRAM P(INPUT, OUTPUT); 
27 BEGIN 
28 FOR Z := 1 TO MAXELEMENTS 

t 
* ** Syntax Error: “DO” expected after this token 

29 Y[ I] := 0; 
30 END. 

Excellent Simple Recovery. 

31 PROGRAM P(INPUT, OUTPUT); 
32 BEGIN 
33 FOR Kl := TO NOELEMS DO X := 1 

t 
* * * Syntax Error: IDENTIFIER expected after this token 

34 END. 

Excellent Simple (misspelling) Recovery. 

35 PROGRAM P(INPUT, OUTPUT); 
36 BEGIN 
37 IF NON PUSH(I) THEN X := 1 

T 
* * * Syntax Error: Reserved word “NOT” misspelled 

38 END. 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 193 

An Excellent Simple Recovery and an Excellent Scope (double insertion) Recovery. 

39 PROGRAM HUNTER\INPUT, OUTPUT’? 
t 0 

*** Syntax Error: “(” expected instead of “\” 
* ** Syntax Error: Unexpected input -- “);” inserted to match I‘(” 

40 VAR Q: INTEGER; 
41 BEGIN 
42 END. 

FOUF Excellent Simple Recoveries. 

43 PROGRAM P(INPUT, OUTPUT); 
44 VAR Z, PRIME, CHECK, NUMB: REAL, A:ARRAY\l . . 6’ OF REAL? 

T t t t 

*** Syntax Error: “;” expected instead of ‘0” 
*** Syntax Error: “[” expected instead of “\,, 
* * * Syntax Error: “I” expected instead of “ ’ ” 
*** Syntax Error: “;” expected instead of “?” 

45 BEGIN 
46 END. 

Excellent Scope Recovery. 

47 PROGRAM P(INPUT, OUTPUT); 
48 BEGIN 
49 REPEAT (* UNTIL LOOP IS FOUND *) 
50 x:= 1 
51 UNTIL X = Y; 
52 X 

t 
*** Syntax Error: “END.” inserted to match “PROGRAM” 

Excellent Simple (merge) Recovery. 

53 PROGRAM P(INPUT, OUTPUT); 
54 BEGIN 
55 BEGIN 
56 COUNT := 0; 
57 GOT02 

t 
* * * Syntax Error: “GOTO” expected instead of “GO” “TO” 

58 END; 
59 END. 

Poor Simple Recovery. 

60 PROGRAM P(INPUT, OUTPUT); 
61 PROCEDURE FACTORIAL (A); 

t 
* ** Syntax Error: “PROCEDURE” expected after this token 

62 VAR Q: INTEGER, 

iz: 
BEGIN 

x:= 1 
65 END; 
66 BEGIN 
67 END. 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



194 l M. G. Burke and G. A. Fisher 

Two Excellent Simple Recoveries. 
68 PROGRAM P(INPUT, OUTPUT); 
69 VAR KEY, RECORD: ARRAY[l . . LIMIT] IF AKFA; 

t t 
* * * Syntax Error: IDENTIFIER expected instead of “RECORD” 
*** Syntax Error: “OF” expected instead of “IF” 

70 BEGIN 
71 x:= 1 
72 END. 

ExceLlent Simple (misspelling) Recovery. 
73 PROGRAM P(INPUT, OUTPUT); 
74 BEGIN REPEAT 
75 WRITELN(‘__________________ ‘); 
76 UNTILL EOF (INPUT); 

t 
* * * Syntax Error: Reserved word “UNTIL” misspelled 

77 x:= 1 
78 END. 

Ada 

LISTINGS OF RUN WITH THE ADA SAMPLE ATESTS: 
(General LR Version with level of deferral k = 2) 

The three secondary recoveries, issuing diagnostics immediately following lines 23, 29, 
and 69, are rated as good. All other recoveries are rated as excellent. 

1 program atests is 
t 

* * +- Syntax Error: “PROCEDURE” expected instead of “PROGRAM” 

i 
4 x: float := 2.1 +; 

t 
*** Syntax Error: IDENTIFIER expected after this token 

5 
6 a: array INTEGER range 1 . . 10 of INTEGER; 

t t 
* * * Syntax Error: “(” expected after this token 
*** Syntax Error: “)” expected after this token 

7 b: array [INTEGER range 0 . . 91 of FLOAT, 

* * * Syntax Error: “(” expected instead of ‘[” 
t 

* * * Syntax Error: “)” expected instead of “In 
8 c: array (BOOLEAN); 

T 
*** Syntax Error: “OF IDENTIFIER” inserted to match “ARRAY” 

9 
10 type t is 
11 record 
12 a b: character;; 

t t 
*** Syntax Error: “,” expected after this token 
* ** Syntax Error: Unexpected ‘I;” ignored 

13 end record, 
14 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 195 

15 type b is INTEGER range 1 . . 30; 
t 

* * * Syntax Error: Unexpected “INTEGER” ignored 
16 
17 subtype c is range 1 . .30; 

7 
* * * Syntax Error: IDENTIFIER expected after this token 

18 
19 proc count is 

* * * Syntax Error : Reserved word “PROCEDURE” misspelled 
20 use TEXT-IO; 
21 x: integer; 

t 
* ** Syntax Error: “BEGIN” expected after this token 

22 GET(x); 
23 PUT(x); -- a bad comment 

(__--_________-----_-) 
* * * Syntax Error: Unexpected input 

24 end count; 
25 
26 procedure q is seperate; 

7 
* * * Syntax Error: Reserved word “SEPARATE” misspelled 

27 
28 procedure spell is 
29 b: array of float; 

(-_______) 
* * * Syntax Error: Unexpected input 

30 x: integer; 

t 
* * * Syntax Error: “BEGIN” expected after this token 

31 for i in 1 . . 10 loop 
32 b(i) := 0.0; 

t 
* * * Syntax Error: “END LOOP;” inserted to match “LOOP” 

33 end; 
34 
35 function DAYS-IN_MONTH(M: MONTH IS-LEAP: BOOLEAN) 

t return DAY is 
* * * Syntax Error: “;” expected after this token 

36 begin 
37 case M of 

t 
* * * Syntax Error: Unexpected input -- “IS WHEN” inserted to match “CASE” 

38 FEB + return 28; 
39 whan APR + return 30; 

t 
* * * Syntax Error: Reserved word “WHEN” misspelled 

40 when SEP ) APR 1 JUN 1 1 NOV * return 30; 
t 

* * * Syntax Error: IDENTIFIER expected after this token 
41 when others + return 31; 
42 end case; 

t 
*** Syntax Error: “WHILE” expected after this token 

43 
44 z(y-5*j+krem7)>Oloop 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



196 l M. G. Burke and G. A. Fisher 

45 
46 

x := x + 1; 
go to label; 

t 
** * Syntax Error: “GOTO” expected instead of “GO” “TO” 

47 end loop; 
48 
49 x := x + + 1: 

t 
* * * Syntax Error: IDENTIFIER expected after this token 

50 y := ((3; 
T 

* ** Syntax Error: “)” inserted to match “(” 
t 

* * * Syntax Error: “)” inserted to match “(” 
51 return 28; 
52 CC label 

t 
* * * Syntax Error: “>>” expected after this token 

53 return 29; 
54 
55 end of DAYS-IN-MONTH; 

t 
* * * Syntax Error: Unexpected “OF” ignored 

56 
57 procedure p is 
58 
59 x: integer := 2 

t 
* ** Syntax Error: “;” expected after this token 

60 begin 
61 loop 
62 ifx>Otheny:=2; 
63 ify<Othenz:=3; 

t 
*** Syntax Error: “END IF” inserted to match “IF” 

r 
* * * Syntax Error: “END IF;” inserted to match “IF” 

64 end loop; 
65 end p; 
66 
67 procedure test is 
68 3~: array(123.144) of real; 
69 y: integer = 5; 

t t 
*** Syntax Error: “:=” expected instead of “=” 
*** Syntax Error: statement part missing for unit 

70 begin 
71 if x(1) := y then 

t 
* ** Syntax Error: “=” expected instead of “:=” 

72 null; 
73 elseif x(2) > y then 

t 
* * * Syntax Error: Reserved word “ELSIF” misspelled 

74 null; 
75 end if; 
76 end atests; 
77 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



A Practical Method for LR and LL Syntactic Error Diagnosis and Recovery l 197 

ACKNOWLEDGMENTS 

The authors wish to thank Frank DeRemer and the other referees for their 
careful reading and thoughtful criticisms and suggestions, which have improved 
the presentation and content of this paper. 

REFERENCES 

1. AHO, A. V., AND PETERSON, T. J. A minimum-distance error-correcting parser for context-free 
languages. SIAM J. Comput. I, 4 (Dec. 1972), 305-312. 

2. AMERICAN NATIONAL STANDARDS INSTITUTE. Ada programming language military standard. 
ANSI/MIL-STD-1815A, American National Standards Institute, Washington, D.C., Jan. 1983. 

3. BURKE, M. G. A practical method for LR and LL syntactic error diagnosis and recovery. Ph.D. 
thesis, Dept. of Computer Science, New York Univ., 1983. 

4. BURKE, M. G., AND FISHER, G. A. A practical method for syntactic error diagnosis and recovery. 
In Proceedings of the SZGPZAN 82 Symposium on Compiler Construction (June 23-25, 1982, 
Boston). ACM, New York, 1982, pp. 67-78. 

5. BURKE, M. G. AND FISHER, G. A. A practical method for LR and LL syntactic error diagnosis 
and recovery. Res. Rep. RC 11111, IBM T. J. Watson Research, Yorktown Heights, N.Y., 
Mar. 1985. 

6. CHARLES, P. Implementation of a LALR parser generator. Master’s thesis, Dept. of Computer 
Science, New York Univ., 1982. 

7. FEYOCK, S., AND LAZURUS, P. Syntax-directed correction of syntax errors. Softw. Pratt. Exper. 
6,2 (Apr.-June 1976), 207-219. 

8. GRAHAM, S. L., AND RHODES, S. P. Practical syntactic error recovery. Commun. ACM 18, 11 
(Nov. 1975), 639-650. 

9. GRAHAM, S. L., HALEY, C. B., AND JOY, W. N. Practical LR error recovery. In Proceedings of 
the SZGPLAN 79 Symposium on Compiler Construction (Aug. 6-10, 1979, Denver). ACM, New 
York, 1979, pp. 168-175. 

10. JOHNSON, S. C. YACC-Yet another compiler compiler. Bell Laboratories, Murray Hill, N.J., 
1977. 

11. MAUNEY, J., AND FISCHER, C. N. A forward move algorithm for LR and LL parsers. In 
Proceedings of the SZGPZAN 82 Symposium on Compiler Construction (June 23-25,1982, Boston). 
ACM, New York, 1982, pp. 79-87. 

12. MICKUNAS, M. D., AND MODRY, J. A. Automatic error recovery for LR parsers. Commun. ACM 
21,6 (June 1978), 459-465. 

13. PENNELLO, T. J., AND DEREMER, F. L. A forward move algorithm for LR error recovery. In 
Conference Record of the ACM Symposium on Principles of Programming Languages (Jan. 23-25, 
1978, Tucson). ACM, New York, 1978, pp. 241-254. 

14. PENNELLO, T. J., AND DEREMER, F. L. Practical error recovery for LR parsers. Unpublished 
Rep. 

15. POONEN, G. Error recovery for LR(k) parsers. Znf. Process. 77 (Aug. 1977), 529-533. 
16. RIPLEY, D. J. Pascal Syntax Errors Data Bose. RCA Laboratories, Princeton, N. J., Apr. 1979. 
17. RIPLEY, G. D., AND DRUSEIKIS, F. C. A statistical analysis of syntax errors. J. Comput. Lang. 

3, 4 (1978), 227-240. 

Received May 1985; revised January 1986; accepted March 1986 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 


