
Retargetable Microcode Synthesis

ROBERT A. MUELLER
Colorado State University
and
JOSEPH VARGHESE
Microelectronics and Computer Technology Corporation

Most work on automating the translation of high-level microprogramming languages into microcode
has dealt with lexical and syntactic analysis and the use of manually produced macro tables for code
generation. We describe an approach to and some results on the formalization and automation of the
more difficult problem of retargeting local code generation in a machine-independent, optimizing
microcode synthesis system. Whereas this problem is similar in many ways to that of retargeting
local code generation in high-level language compilers, there are some major differences that call for
new approaches.

The primary issues addressed in this paper are the representation of target microprogrammable
machines, the intermediate representation of local microprogram function, and general algorithmic
methods for deriving local microcode from target machine and microcode function specifications. Of
particular interest are the use of formal semantics and data flow principles in achieving both a general
and reasonably efficient solution. Examples of the modeling of a representative horizontal machine
(the PUMA) and the generation of microcode for the PUMA machine model from our working
implementation are presented.

Categories and Subject Descriptors: B.1.4 [Control Structures and Microprogramming]: Micro-
program Design Aids-lunguuges and compilers, mwhine-independent microcode generation; D.3.4
[Programming Languages]: Processors-co& generation, compilers, transhtor writing systems and
compiler generators

General Terms: Design, Languages

Additional Key Words and Phrases: Data antidependency, data dependency, flow graph, machine
description, microcode compaction, microcode generation, microinstruction set processors, micropro-
gramming.

1. INTRODUCTION

The evolution of microprogramming since Wilkes has seen a growth in the
sophistication of development tools [44]. As with general-purpose program-
ming, microprogramming can often be simplified and its reliability improved
through the use of symbolic languages and automatic translators. For machine-

Thii work was supported in part by National Science Foundation grants MCS-8107481 and
DCR-8503941 and by the Evans and Sutherland Corporation.
Authors’ addresses: R. A. Mueller, Department of Computer Science, Colorado State University,
Fort Collins, CO 80523; J. Varghese, Microelectronics and Computer Technology Corporation,
Austin, TX 78759.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
8 1987 ACM 0164-0925/87/0409-0257 $00.75

ACM Transactione on Programming Languages and Syeteme, Vol. 9, No. 2, April 1967, Pages 257-276.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22719.23717&domain=pdf&date_stamp=1987-03-20

258 l R. A. Mueller and J. Varghese

independent languages we require translation systems that, ideally, can be ported
with modest effort and high reliability.

As pointed out in 191, much progress has been made in automating the
generation of parsers, whereas comparatively little progress has been made toward
solving the more difficult problem of automating code generation. By code
(microcode) generation, we mean the translation of an intermediate language
representation produced by a parser and enhanced by flow analysis and optimi-
zation to a machine code (microcode) representation.

One approach to automating code (microcode) generation is the use of table-
driven methods, in which machine-dependent templates map intermediate lan-
guage constructs to machine code [21, 391 or microcode [5, 24, 401. To extend
the degree of automation, the generation of the machine-dependent code gener-
ation tables from machine descriptions was proposed by [8], [16], and [Ml. The
automated generation of microcode generators from machine descriptions was
subsequently proposed by [25], [26], and [43].

The common objective of such research is the ability to produce code generators
directly and reliably from machine descriptions, which are capable of exploiting
the underlying architecture in a reasonably efficient fashion. The automated
generation of microcode generators is even more difficult than the automated
generation of code generators since the underlying architectures tend to be much
more diverse and can offer considerable concurrency in the execution of micro-
operations. Thus, the feasibility of such systems in production environments
remains an open question.

Our general view of the problem, shown in Figure 1, is similar to that of
Cattell [8]. However, both our representations and algorithmic methods differ
owing to the different underlying environments. The translation process begins
with some high-level language representation of a microprogram, which is syn-
tactically analyzed and translated into an internal form for flow analysis proce-
dures. The flow analysis procedures decompose the program into a flow graph
with nodes corresponding to basic blocks. Finally, the program is symbolically
executed to statically optimize the machine-independent representation and
obtain nonprocedural functional specifications of basic blocks called symbolic
assertions. All this can be efficiently done using well-known methods [3, 20, 381.

The remainder of the translation, being machine dependent, is considerably
more difficult. Note first that any machine-independent system for performing
code generation must utilize a specification of the target machine. Our view of
such a system begins with a nonbinding assignment of target machine registers
to variables in the symbolic assertion specifications, followed by the phase-
coupled selection and optimization of target machine microcode from the
machine-dependent form.

The microcode generation algorithm uses procedural machine-independent
semantic knowledge to facilitate efficient exploitation of the target machine in
generating microcode from the symbolic assertion specifications. Whereas most
previously reported microcode generation systems employ functional operator-
driven macroexpansion, our algorithm is target machine architecture driven. It is
the data path structure of the target machine that determines how information
is transferred and transformed, and thus our flow-graph algorithm functions by
algebraically simulating the flow of data in synthesizing the microcode [31].
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis 259

High-Level Language Representation of a Microprogram

I

I I syntactle Amlysh / Translation 1

I 1
I Flow Analysis / Symbolic Execution / Static Analysis I
I I
I 0
0 ,
I ,
1
I

Machine-Independent 1
,

; MACHINEINDEPENDENT PHASE
Extended Symbolic Asrertionr I

8
0 8
L-------------------____________._______-------------------------,
1 I
I I
I
I MACHINE-DEPENDENT PHASE ;

I

Semantic Knowledge Base

L------------------------------- ________________________________I

Microcode Flealiiation of High-Level Language Microprogram on the Target Machine

Fig. 1. CSU retargetable microcode generation system.

This paper focuses on flow-graph local microcode selection and grammar-based
local compaction as the basis for the code generation component of a retargetable
microcode compiler. Detailed discussions of the other components of the retar-
getable system shown in Figure 1 are given elsewhere.’ The use of knowledge-
based methods to achieve retargetability in the Colorado State University (CSU)
system is the subject of [33].

This paper is organized into two major sections and a summary. The first
section presents the flow-graph machine model and microgrammar compaction
model of microarchitectures. A flow graph and microgrammar for the Processing

1 There are a large number of technical system documents describing the CSU retargetable microcode
synthesis system. Those interested in obtaining copies of the available documents should address
their requests to R. A. Mueller.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

260 l R. A. Mueller and J. Varghese

Unit With Microprogrammed Arithmetic (PUMA) microarchitecture are given
as examples. The second section presents retargetable local microcode selection
and grammar-based compaction methods that extract target machine specifics
from flow-graph and microgrammar models of the target microarchitecture.
Several examples of algorithms targeted to the PUMA are provided. The paper
is summarized with a discussion of problem areas and the current status of the
Colorado State University retargetable microcode synthesis system.

First, we digress briefly in order to familiarize the reader with basic micropro-
gramming terminology. Primitive operations of microprogrammable machines
are known as microoperations. A collection of microoperations that are encoded
into one word of the control store is termed a microinstruction, and a set of
microinstructions that perform a well-defined task is a microprogram. For con-
ciseness we use the abbreviations MO and MI for microoperation and microin-
struction, respectively.

The execution time for an MI is termed a basic clock cycle. A basic clock
cycle may consist of one or more minor clock cycles, and this relates to the
monophuse/polyphuse characteristic of the machine. In a monophase implemen-
tation, all MOs within an MI execute in one minor cycle, whereas in a polyphase
implementation, MOs could span multiple minor cycles within the basic clock
cycle. Another basis for classification of microprogrammable machines measures
the degree of concurrency within an MI. Horizontal and vertical machines form
the end points of the spectrum, with horizontal machines having the most
concurrency in MI execution. Machines that fall somewhere in between are
sometimes termed diagonal machines.

An MO m2 is data dependent on ml if ml executes before m2 and ml writes to
some resource read by m2. Similarly, an MO ml is data antidependent on nz if
the ml destroys data required by m2 [6,43].

2. MICROINSTRUCTION SET DESCRIPTION

A crucial step in automating the generation of code generators is the definition
of a target machine description model.’ The choice of the model determines both
the scope of retargetability and the potential for efficiently and effectively
generating the machine-dependent component of the code generator. Since these
are competing goals, trade-offs must be made.

When the target machine model is of the von Neumann variety, each machine
can be viewed as an instruction set processor that cyclically fetches instructions
from a primary memory and then executes them to modify the processor
state [8]. For such a domain, the machine description can be organized into five
components: (i) a set of storage bases that represent the storage elements (state)
of the machine (e.g., registers and primary memory), (ii) a set of operand
addressing modes that describe how information in the storage bases can be
accessed, (iii) machine operation semantics that describe the machine operations
in terms of how they modify the machine state, (iv) data types of the operands
of the machine operations, and (v) instruction field format information that
describes how operations can be encoded into machine instructions.

* The term target muchine denotes that machine which ultimately executes the microprograms being
generated.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis l 261

A microinstruction set processor is assumed, for our purposes, to cyclically
fetch its instructions from a read-only control store memory and execute them to
modify the machine state. It differs from an instruction set processor in at least
two important ways: (i) a microinstruction set processor generally uses very
simple addressing, and (ii) concurrency of microoperations execution is allowed,
implying the need for the model to include timing and field encoding conflict
information [43]. Some of the different microinstruction set description models
proposed for use in automating microcode generation are given in [17], [27], [41],
and [43].

The model we present is somewhat different from those previously proposed
in that it is data flow oriented. That is, the machine is described, in part, in terms
of how information flows through the storage base elements and operational
units. The motivation for such an approach is to improve the efficiency of the
microcode generation algorithm, which is based on the data-flow concept.

We can distinguish two major phases of the microcode synthesis process: the
generation of a partial data dependency ordered collection of MOs that realizes
the function associated with the intermediate language representation of a
microprogram segment, and the compaction of the MOs into target machine MIS
subject to the data dependency constraints in the partial order and the resource
constraints manifested in the MI field encodings. Thus, our machine model has
two major components: a flow graph to facilitate microcode generation and a
microgrammar that reveals valid MI templates to facilitate compaction. More
detailed discussions of the flow-graph model and microgrammar model can be
found in [29] and [32], respectively, or in [27].

2.1 Flow-Graph Descriptions of Machines

The flow-graph component has two major subcomponents: machine resources
(i.e., storage bases and operational units) and the data paths that allow infor-
mation to flow between machine resources. Thus, our model is essentially a graph
whose nodes represent machine resources and whose edges represent the potential
for data flow between nodes. Since only the generation of local code is being
considered, control sequencing information is not included.

2.1.1 Machine Resources. Each node in a flow graph represents a machine
resource. Machine resources have both structural and behavioral characteristics.
Structurally, a storage base element is a sequence of m words, each of length n.
Similarly, a machine resource is behaviorally characterized in terms of the result
it produces.

The behavioral characteristics of a machine resource correspond to the condi-
tions under which the resource is permitted to be modified (visibility), the MOs
that modify the state of the resource (functionality), and the lifetimes of states
realized as a result of executing these MOs (retention). There are two degrees of
visibility: image and target. Image variables are those resources accessible to the
machine language programmer. The values of image variables cannot be modified
by the synthesis system unless the microprogram specification calls for such a
modification. Target variables may be used as temporaries. The distinction
between image and target variables is particularly useful in microarchitecture
emulation.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

262 l R. A. Mueller and J. Varghese

Functionality is given by the list of MOs that assign new values to (modify the
state of) a resource. There are two components in each MO: the functional
transformation effected by the MO and the MI encoding that enables it. The
value assigned to the resource could be an expression that includes constants
and the values of other resources adjacent to this resource in the flow graph. The
encoding information aids in the detection of side effects.

It is sometimes the case that two independent or polyphase-ordered MOs are
assigned the same MI encoding. In the code generation sense, we view one as a
sicEe effect of the other. Thus the selection of one of these MOs for execution
necessitates the execution of all its side effects. For example, the execution of an
arithmetic logic unit (ALU) operation causes the setting of the condition bits as
side effects. A side effect may be necessary if it performs an action that is required
by the specification of the computation for which code is being generated. An
unnecessary side effect can be ignored if it affects only target variables. An
unnecessary side effect, which affects image variables, is potentially harmful and
could produce unexpected results if selected for execution.

The other important property of machine resources pertains to the lifetime of
a value assigned to a resource. The retention characteristic is either permunent,
when the resource retains its value until explicitly modified, or transient, when
the value assigned to it is only stable for a fixed period of time. The timing
information associated with each resource includes the earliest and latest time
that the value of the resource is stable after an assignment to the resource is
made. We assume that these times are a function of the resource and not of the
MO that makes the assignment. This is a simplification, and the case in which
these times vary can be modeled by making conservative estimates of the earliest
and latest times.

Accordingly, each node in the flow-graph model has five attributes: (i) a unique
identifier, (ii) capacity information in terms of bit length and the number of
words, (iii) visibility, which is either image or target, (iv) a retention character-
istic, which is either permanent or transient, and the associated timing infor-
mation, and (v) functionality, which is a functional description of each of the
MOs that can modify the state of the resource.

2.1.2 Data Flow. The flow of data between machine resources is inferred from
the functional component of the nodes, in which the MOs that modify the state
of the resource are described. Thus, a given resource is the implicit destination
of each MO associated with it. Similarly, those resources that may pass data to
the resource are elements of the expressions computed by the MOs.

As such, a sequence of data dependent MOs represents a path in the flow
graph. Finding a sequence of MOs that transforms a given initial state to a
desired final state can be achieved by finding a path through the flow graph. The
destination resource orientation of the flow graph is conducive to the backward
chaining method, used in the microcode derivation algorithm, in which we move
from a desired final state toward an assumed initial state [45].

2.1.3 The PUMA Microarchitecture. To illustrate the representation, we use
the PUMA machine [19] that was also selected for illustrative purposes by [14]
and [43]. The PUMA microarchitecture was designed to emulate the CDC 6600,
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis 263

and it reflects this bias in the word sizes of its registers. The CDC 6600 has eight
60-bit registers and sixteen 18-bit registers. Since the PUMA was constructed
out of 4-bit slices, it has sixteen 60-bit registers and sixteen 20-bit registers. The
data paths are 60 bits wide, and 20-bit data are right justified with zeros in the
first 40 bits. The output of the registers is fed into an unpuclz unit that unpacks
floating point data into a mantissa and an exponent. The output of the unpack
unit feeds into the buffer and the exponent arithmetic section.

The arithmetic and logic unit (alu) has the buffer and the accumulator (cc) as
inputs. The output of the alu is wire-ORed with data from the instruction unit
and the exponent unit and, concatenated with the output of the mq register, it
forms the input to the 120-bit shifter which is capable of 4, 16, and 60-bit right
shifts. The output of the shifter feeds the ac and mq registers, each of which are
60 bits wide. Data from the ac register can be fed to the alu, to the pacle unit
(which assembles floating point data from the ac and from the exponent arith-
metic unit), to the main memory unit, and to the instruction unit. Data from
memory also passes through the ac register. This is only a brief description of
the PUMA. For more details see [19]. A pictorial sketch of the PUMA data paths
is given in Figure 2.

Besides the fact that it is a real, horizontal machine, the PUMA has other
properties that recommend its use as a test target machine. The different word
sizes in the register banks and the data paths are fairly common in real machines.
The presence of side effects and transient machine resources also add to the
complexity. There were also several compromises made when the PUMA was
designed. For example, data can either be written into a register or read from a
register during an MI, but not both, even if they are in different register banks.
There are also some features that are easily modeled but not yet fully supported
(e.g., floating point arithmetic).

2.2 Microgrammar Compaction Model

The local microcode compaction problem can be briefly described as follows:
Given a set of MOs with data dependency, antidependency, and timing con-
straints, find a minimal-length microprogram that is functionally equivalent to
this set of MOs. This problem has been shown to be NP-complete [ll], and
various heuristic solutions have been formulated that sacrifice optimality for
near-optimal solutions.

Compaction algorithms can be machine independent if they are provided with
machine-dependent information. Typically they need to know about MO conflicts
and about the timing of MOs within MIS. MO conflicts can arise from contradic-
tory assignments to MI fields or from resource usage conflicts. Conflicting MOs
cannot be executed in the same MI.

The grammatical model assumes that MIS are composed of series/parallel
sequences of MOs [42]. The metasymbol next denotes serial execution, whereas
the metasymbol ; denotes parallel execution. MO conflicts can be inferred from
the encoding information associated with each MO, and timing relationships can
be derived from the series/parallel metasymbols and the position that an MO
occupies in a series/parallel sequence [29]. The Backus-Naur form (BNF) nota-
ton for series/parallel grammars is given in Figure 3.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

264 . R. A. Mueller and J. Varghese

60
>

PACK X Y 6t) UNPACK $0

20
\ > BUFFER

*
I I

b
‘12 I , 60

n 60

', 60
20
\ INSTRUCTION 60 .
\ UNIT \ /

\I

7 t

60

'7 1

0

.; , SHIFTER ;

Fig. 2. The PUMA microarchitecture.

Example 2.1 Consider the following set of productions:

(MI-set) ::= (Al) next (B) next (Cl) I
(AZ) next (B) next (G)

(A,) ::= allail~
G42) ::= a4 1 us 1 ulj
(B) ::= (II); (E)
(Cl) ::= q(c2Ic3
(c2) ::= c4 1 c5 1 c‘3

(D) ::= dll d2 1 ds
(E) ::= el I q

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 198’7.

Retargetable Microcode Synthesis 265

(system-description) ::= (step) 1 (system-description) next (step)
(step) ::= (action) 1 (step); (action)
(action) ::= (elementary-action) 1 ((system-description))

Fig. 3. Series/parallel grammar.

The oi, bi, ci, di, and ci are MOS of a hypothetical micromachine. The terminal
strings derived by the (MI-set) are series/parallel sequences of MOs that
represent potential MIS. Each MO has an encoding component associated with
it, as mentioned in Section 2.1.1. If MOs al and bi have encodings f = x1 and
f = x2, respectively, for some field f where x1 # x2, then al and bl conflict in the
field encoding sense. If MOs dl and el have functional transformation compo-
nents r t expl and r t exp2, respectively, for some machine resource r where
expl # exp2, then they cannot be executed in the same minor cycle of an MI.
Here dl and el conflict in the machine resource usage sense.

Field encoding conflicts and machine resource usage conflicts can be deter-
mined by examining the encoding and functional transformation components,
respectively, of the corresponding MOs. Timing conflict determination requires
examination of the microgrammar. If a microprogram requires MO cl to be
executed after MO cl, then they conflict in the timing sense because, in an MI,
the ci MOs must always execute before the ci MOs. MOs al and c4 cannot execute
in the same MI even if they do not conflict in any of the senses described above.
This is because there is no MO sequence that can be generated by the (MI-set)
that contains both al and c4.

The flow-graph model and the microgrammar model can, in conjunction,
handle most of the features of real machines. However, some of the basic
assumptions used in these methods prevent the modeling of some aspects of
microprogrammed machines. The requirement that the timing of MOs be repre-
sentable in a series/parallel framework precludes the incorporation of asynchro-
nous MOs (found, for example, in memory-accessing operations). Conditional
MOs cannot be easily modeled using the flow-graph technique, especially when
the operation is conditional on the value of a machine resource. Writable control
stores permit the modification of microprograms, and this is a very difficult
problem for program analysis tools in general.

3. RETARGETABLE LOCAL MICROCODE SELECTION

Microcode selection is the process of mapping intermediate representations of
what function a code segment is to perform into a collection of target machine
MOs that implement that function. We view microcode selection as the part of
microcode generation in which machine-specific microcode sequences are substi-
tuted for machine-independent representations of microcode function. We as-
sume that the intermediate representations correspond to any part (or all) of a
basic block and that any storage resources referenced in the intermediate repre-
sentation designate specific machine resources.3

3Thus, some register allocation is done prior to code selection. Additional “on-the-fly” register
allocation is done during code selection when temporary registers are needed. The actual method
used in handling register assignment is to assign symbolic references rather than specific register hank
indices to delay the final register assignment until local compaction has been attempted. See [4] for
further details.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

266 . R. A. Mueller and J. Varghese

The target machine MOs produced as output from the microcode selector have
been parallelized and organized as a data dependency graph with minlmax delay
constraints labeling edges in the graph. A min (max) time on an edge from MO
ml to MO m2 specifies that a minimum (maximum) number of cycles can elapse
between the execution of ml and m2. Global optimization, local compaction, and
final register assignment are subsequently performed on the generated
data dependency graphs before microcode generation is completed. The
time-constrained data dependency graphs and their manipulation are described
in [34].

The approach we take to microcode selection is based on the observation that
every data-dependent sequence of target machine MOs corresponds to a path in
the target machine flow graph. As such, we can generate microcode by attempting
to discover a set of flow-graph paths that collectively transfer and transform the
source data of the basic block to the designated destination storage bases of the
block. An important property of such an approach is that it cleanly separates the
machine-independent microcode selection algorithm from the target machine.

In this section we discuss the intermediate representation of local microcode
function and the retargetable local microcode selection algorithm that translates
intermediate representations into target machine microcode.

3.1 intermediate Representation of Local Microcode

There have been several different intermediate representations for basic blocks
discussed in the literature. Cattell uses a tree representation (TCOL) [8], whereas
Sheraga and Gieser use sequences of triples and seven-tuples [40]. Our represen-
tation is, basically, the set of exit expressions computed in the block.

In program flow analysis, there are two important classes of variables: those
that are read before being defined in a basic block (use variables), and those
variables that are live upon exiting the block as a consequence of being defined
in the block (def variables). There are efficient algorithms for computing both
the use and def variables [20]. The function of a basic block can be represented
by associating with each def variable the value of the expression assigned to it
during any execution of the basic block. Such exit expressions are independent
of any actual block execution when expressed symbolically in terms of the initial
values of the use variables and are derived using symbolic execution [38].

The function of a basic block can then be represented as a pair (1, F), where I
associates with each use variable a symbolic constant that represents the value
of that variable upon entry to the block, and F associates with each def variable
a symbolic representation of the exit expression assigned to that variable in
terms of the symbolic constants associated with the use variables. We call any
mapping between a program variable and a symbolic expression a symbolic state
mapping (SSM), any tuple of SSMs for distinct program variables a symbolic
state vector (SSV), I an initial symbolic state vector (ISSV), F a final symbolic
state vector (FSSV), and sa(I, F) a symbolic assertion that specifies the function
of a basic block.

For example, suppose the execution of basic block B assigns X the sum of the
initial value of X and 1 and assigns Y the product of the initial values of W and
X. Then X and W are the use variables of B, X and Y are the def variables of B,
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis 267

and a symbolic assertion representation of B is

3.2 Microcode Selection Algorithm

In general, there may be many def variables in the goal SSV. Further, each of
the expressions associated with those variables may be computed independently.
This will not generally yield optimal code, but this is to be expected since the
optimization problem is NP-hard [7].4 However, the significant advantage of
such an approach lies in the potentially substantial efficiency gains in the
execution of the algorithm.

The flow-graph method recursively constructs n microprograms independently
for n exit expressions in a final SSV. There are two major processes in the
procedure: the path determination process that selects a target machine path
that moves information (backward) so as to derive microcode for an exit expres-
sion, and the data-dependency graph coupling process that unifies the separate
but related data dependency graphs by adding data antidependency arcs. The
first process is called path arbitration, and the second process is called data
dependency graph coupling.

3.2.1 Path Arbitration. Let Q be an initial SSV and P a final SSV;
P = (Sl, . ..) s,). We attempt to resolve the specification by independently
deriving microcode for each of Q + (s1), . . . , Q + (sn) , and coupling the resulting
n data dependency graphs in a way that exposes potential parallelism and
preserves the functionality of each graph.

Given Q + (X = y), we attempt to move the information associated with y
backwards from X to either a storage base or operational unit, depending on y.
Since y is a symbolic expression, there are only three possible forms it can take:
a hard constant, a symbolic constant, or a functional expression.

Hard constants can be generated using only a few different methods. Sym-
bolic constants must be initial values of use variables in the initial SSV.
The task is now to find a (reverse) path from X to use variables such that
the MOs representing the paths perform the computation necessary to derive
&+(X=7).

If y consists only of a single constant, then the synthesis system seeks a path
to the origin (source) of this constant such that the data are not transformed.
For example, if the symbolic assertion is

then X is the source of y, and we need a sequence of MOs that transfer data
from X to Y.

If the expression is more complicated, we consider its leftmost prefix operator.
If the target machine contains an operational unit corresponding to that operator,

’ We note, however, that the preprocessing of SSVs based on recognized common subexpressions will
generally improve the efficiency of the generated microcode considerably. This preprocessing is
currently implemented in the CSU retargetable microcode compiler.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

266 l Fi. A. Mueller and J. Varghese

the system tries to find a path to one such unit.5 If not, it attempts to algebraically
rewrite the expression in terms of those operators available on the machine.

For example, if the symbolic assertion is of the form

ESV + (X = f(r1, * * - , Yn))

then the algorithm searches for a target machine operational unit that performs
the operation f on n operands. If no such operational unit exists, then the
algorithm tries to transform the expressionf(yl,. . . , m) into some semantically-
equivalent expression g (cyl, . . . , (u,) such that the target machine contains an
operational unit for g. Note that when the prefix operator does have a correspond-
ing operational unit, the choice of which operational unit to select as the source
of the path must be made. The system picks the one that generates the shortest
overall path, which is equivalent to picking the MO sequence having the smallest
number of MOs.

The algorithm attempts the transformation one MO at a time, starting with
the goal SSV and working backwards. If the MO we choose is of the form
A t B and the goal specification is ISSV + (A = rl), then the new goal
becomes ISSV + (B = rl). If the goal is of the form ISSV + (A = f(rl, yz),
and the MO we choose is A t f(&, I&), then the new goal is ISSV +
(B1 = yl, Bz = y2). The determination of the new goals has a formal justification
on the basis of the weakest precondition operator [121. Since formal treatment of
this is not consistent with the central theme of this paper, we refer the interested
reader to 1301 or [27].

Algebraic properties can often lead to a variety of choices in the determination
of a new goal specification. For example, if f is a commutative operator, then we
have two choices for the new goal, (& = yl, BZ = y2) or (B, = y2, BP = rl).
Such choices can be represented with an AND-OR search tree [37,43,45]. When
all expressions have been reduced to simple values of use variables, the process
terminates.

We now demonstrate the method with several examples based on the PUMA
machine model, in which the image variables are the 8 X, the 8 A, and the 8 B
registers, and the rest of the variables, including the 8 Y registers, are target
variables. The X and Y registers are 60 bits wide, and the A and B registers are
20 bits wide. All generated code shown was derived by a prototype implementation
developed by the authors. Note that the examples have been kept simple for the
sake of clarity, and much of the detail of the operation of the implementation
has been left out to improve readability.

Example 3.1 Consider the symbolic assertion

(X(0) = a) + (A(0) = a[19, . . . , 0])

where Z(n) denotes the nth word in the 2 array (which may be a register bank)
and Z[a, . . . , b] refers to bits a to b, inclusive, of 2, where 2 may be a symbolic
expression or a variable. The expression (w[19, . . . , 0] is a fragment of a symbolic
constant whose source is X(0). Looking backwards from A (0), the shortest path
to X(0) is through the pack unit, the ac register, the shifter, the alu, the buffer,

s Note that our implementation precomputes all paths exactly once for each target machine.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis l 269

unpack c X(0)
buffer c unpack
alu c buffer
shifter[ll9, . . . , 601 t alu
ac + shifter[ll9, . . . , 0]
pack c ac

Fig. 4. MO sequence derived in Example 3.1.

A(0) c pack[l9, . . . , 0]

and the unpack unit in that order. (Shortest paths between nodes can be
precomputed using any of the methods applicable to graphs [2].) Using the
weakest precondition semantics and moving a[19, . . . , 0] back to the pack
unit, we get the new goal (pack[l9, . . . , 0] = a[19, . . . , 0]), using the
MO A (0) t pack[19, . . . , 01.

Since the path from X(0) to the pack unit is 60 bits wide, the most likely
candidate for the contents of pack[59, . . . ,201 is a[59, . . . ,201. Hence this goal
is equivalent to (pack = a). Moving (Y backwards to the ac register produces the
goal (ac = a). Continuing in this manner, we get the MO sequence shown in
Figure 4 in the reverse order of selection.

In performing the MO shifter[ll9, . . . ,601 t alu, we have as a side effect the
MO shifter[59, . . . , 0] t mq. However, as mentioned earlier, the shifter is a
target variable, and side effects to target variables can be ignored unless they are
required by the microprogram specification. Henceforth, we will simply ignore
such side effects in the derivations presented.

The MOs presented above were linearly ordered. In general, the MO set derived
is usually in the form of a partial order with directed edges between MOs in its
graphical representation. A directed edge (ml, m2) denotes that MO ml must
execute before MO m2, because m2 is data dependent or data antidependent on
ml.

The directed edges also have two attributes that represent the timing relation-
ships between MOs. The first attribute of the directed edge is the minimum
number of clock cycles that must elapse between the executions of the depend-
ency-related MOs. The second attribute is the maximum such number; inf
indicates that the second MO can execute any time after the first, subject to the
minimum time constraint. Transient variables lose their values after a certain
fixed number of cycles. Thus the maximum number of cycles that can elapse
between a definition of such a variable and its use is finite. The data dependency
graph representation of the MO sequence generated in Example 3.1 is given in
Figure 5.

Example 3.2. As another example of a data transfer, we look at a memory read
operation. The assertion for reading from memory into register X(1) is

(mem(a!) = y, mu = CY) 4 (X(1) = y)

where ma is the memory address register. There is no way to transfer data from
memory to the ac register directly. However, the data from the memory data
register (mdr) are wire-ORed with the output of the ALU. This requires trans-
forming (X(1) = y) to (X(1) = or(0, y)), using one of a set of equivalence
preserving axioms discussed at greater length later in this section. Passing this

ACM Transactions on Programming Languages and Systems, Vol. 9, NO. 2, April 1987.

270 l R. A. Mueller and J. Varghese

unpack c X(0)
1

1, 1
buffer c unpack

1
1, inf

alu c buffer
1

1, 1
Fig. 5. Data dependency graph derived in Example 3.1. shifter[ll9, . . . , 601 c alu

1
1, 1

ac c shifter[ll9, . . . 0] ,
1

1, inf
pack t ac

3
1, 1

A(0) + pack[l9, . . . , 0]

mem(ma) aluto
mdrc 1 1

5, inf 1, 1
shifter[ll9, . . . , 601 c or (alu, mdr)

1
1, 1

ac c shifter[ll9, . . . , 601 Fig. 6. Data dependency graph derived in Example 3.2.
1

1, inf
pack c ac

1
1, 1

X(1) + pack

goal backward through the ac and the shifter yields (shifter[ll9, . . . , 601 =
or(0, 7)). Using the MO shifter[ll9, . . . , 601 t or(alu, mdr) we get
(alu = 0, mdr = y). The complete data dependency graph for this example is
given in Figure 6.

Example 3.3 As a final example consider the case in which we require
some data divided by 64, which is equivalent to shifting the data right by
6 bits (assuming one’s complement arithmetic). The symbolic assertion for this
computation is

(X(0) = a) + (X(0) = sxt(a[59, . . . , 61))

where C&(Z) refers to sign extension. The shifter can only shift data by 4, 16, or
60 bits. The ac and the mq can function together as a 120-bit shifter by shifting
data by one bit to the left or right. The synthesis system can classify bitwise
operations into different categories, one of which is arithmetic shifts. Any
arithmetic shift that the machine can perform in one or more operations can be
broken down into functional compositions of arithmetic shifts. Hence, the ma-
chine has only to look at the shifter and the ac-mq shifts. Thus a 6-bit shift can
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis l 271

unpack c X(0)
1

1, 1
buffer t unpack

1
1, inf

alu t buffer
1

1, 1
shifter[ll9, . . . , 601 + sxt(alu[59, . . . , 41)

1
1, 1

ac t shifter[ll9, . . . , 601
1

1, inf
ac)* 1

Fig. 7. Data dependency graph produced in
Example 3.3.

1
1, inf

ac zs- 1
1

1, inf
pack c ac

1; 1

X(0) + pack

be accomplished by shifting to the right by 4 bits in the shifter and then twice in
the ac and mq registers. The MO sequence for this example is given in Figure 7.
Here X >> n refers to a shift right of X by n bits.

As is obvious from the above example, the synthesis system has some under-
standing of bitwise operations. This has been one of the major weaknesses of
other microprogram development systems [10,431. To realize this capability, the
system must be able to convert among different ways of representing data. It
does not have a complete set of axioms but instead uses a set of heuristics to
guide the derivation. This kind of reasoning is also useful in constant generation
in cases in which the literal field of the MI word is a bottleneck [43].

The solution search time can be drastically improved by storing computed data
dependency graphs in a table for subsequent direct look-up. This makes the
derivation of efficient code through the use of coupling methods between different
phases such as resource allocation, microcode selection, and microcode compac-
tion more computationally tractable. The mechanism used in the CSU retarget-
able microcode synthesis system for machine table construction and direct code
sequence look-up is described in [13] and [28].

3.2.2 Data Dependency Graph Coupling. Given a collection of input data
dependency graphs that compute the exit expressions that comprise a basic block,
we need to compute a single data dependency graph for the block. The single
data dependency graph includes all the MOs and data dependencies between the
MOs from the input data dependency graphs. However, additional data anti-
dependencies must be introduced to synchronize usage of common resources in
different input data dependency graphs.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

272 l FL A. Mueller and J. Varghese

Each resource used in an input data dependency graph has a live track
associated with it. A live track is a subgraph rooted by a born node and having
die nodes as leaves. The born node is an MO in which the resource assumes a
value. A die node is an MO that reads that value and is not followed by another
MO that reads the same value. (For example, the sequential assignments
X c A; Y c X, 2 t X might define a live track for X. X is born in the MO
XtAanddiesattheMOZ t X. X does not die at Y t X, since the same
value of X is read by the following MO 2 t X.)

The data-dependency graph coupling problem is a problem of introducing data
antidependencies between nodes of the input data dependency graphs so that no
live tracks for a particular resource overlap. In general, solutions to the problem
are not unique. Further, the solution found generally has a significant influence
on the effects of subsequent compaction and register assignment. The specifics
of the coupling algorithm form the basis for a paper in their own right. (We are
currently writing such a paper and refer the interested reader to the interim
report [34].) To illustrate the nonuniqueness, Figure 8 offers distinct solutions
for the coupling of the data dependency graphs derived in Examples 3.1 and 3.2.

3.3 Microcode Compaction Algorithm

Given a data dependency graph representing local target microcode, the MOs
represented by the nodes must be assigned to MIS subject to the dependency and
timing constraints in the graph and the encoding constraints on MIS of the target
machine. The problem is referred to as microcode compaction. Generally, one
seeks an assignment of MOs to MIS that minimizes expected execution time.
However, heuristics are required, since the general form of the problem is NP-
hard [111. Many such heuristics have been reported in the literature, with a good
summary given in [22].

A major subproblem of microcode compaction is the problem of determining
whether an MO may reside in a particular MI. An MO is data ready with respect
to placement in a particular MI if its placement in that MI does not violate any
data dependencies or data antidependencies. An MO is timing ready with respect
to placement in a particular MI if it is data ready with respect to that MI and its
placement in the MI does not violate any timing constraints. A timing-ready MO
with respect to a given MI can only be placed in that MI if it does not conflict
with the encoding of any other MO assigned to that MI.

The microgrammar compaction model introduced in Section 2.2 is used to
guide the compaction of timing-ready MOs into MIS. It is easily used with any
of the compaction heuristics for selecting timing ready MOs [15, 221 to yield a
machine-independent compactor. The grammatical packing of an MI is similar
to a recursive-descent parse in which parse tree leaf nodes represent MOs. The
MOs are placed in (reverse) polyphase order in the MI, as determined by the
series/parallel meta-symbols embedded in the microgrammar for the target
machine. Thus, with a given heuristic for ordering the placement of timing-ready
MOs, the grammatical packer resolves the placement of MOs in MIS in a machine-
independent fashion, using the microgrammar to resolve the machine-dependent
MI timing and encoding structure. The result is a retargetable local compactor.

The result of packing the PUMA machine data dependency graph of Figure 8a
is shown in Figure 9. The compaction algorithm utilizes a list-scheduling heuristic
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis 273

mdr c mem(ma) alu t 0 unpack + X(0)
1 1

5. inf 1. 1
1

1. 1
shifter[il9, . . . , 601 i or (alu, mdr) buffer c unpack

1 1 1
1, 1 1, inf 1, inf

ac +‘shifter[ll9, . . . , 601 alu + buffer
1 1 1

1, inf 1, inf 1, 1
pack + ac

llA

shifter[ll9, . . . , 601 e alu
1

1, 1 1, inf 1, 1
X(1) t pack

1
ac c shifter[ll9, . . . , 0]

1
1, inf 1, inf

pack + ac
1

1, 1
A(0) t pack[l9,. . . , 0]

mdr + mem(ma) alu + 0 unpack c X(0)
1 1 1

5, inf 1, 1 1, 1
shifter[ll9, . . . , 601 c or (alu, mdr) buffer c unpack

1 1
1, 1 1, inf

ac t shifter[llg, . . . , 601 alu + buffer

pack;+ ac,, sh\%er[ll9, . . . ,601 c alu

1, 1 1, inf 1, 1
X(1) c pack ac c shifter[ll9, . . . , 0]

1
1, inf 1, inf

pack + c ac
1 1

1, inf 1, 1
A(0) + pack[l9, . . . , 0]

(W

Fig. 8. Results of coupling data dependency graphs from Examples 3.1 and 3.2.

that is greedy with MO height in the data dependency graph to select timing-
ready MOs and the grammatical method of packing MIS.

4. CONCLUSIONS

We have presented a synthesis system for the local generation of microcode. This
system can be incorporated into the back end of a retargetable microcode
compiler, such as the Colorado State University retargetable microcode compiler
or any of the table-driven compilers proposed by [5], [24], or [40]. Input to the
system is in the form of symbolic assertions that express the functionality of

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

274 l FL A. Mueller and J. Varghese

MIX
Minor
Cycle # Microoperation

1 1
2

2 1
2
3
4
5

3 1
2
3
4
5

mdr t mem(ma); unpack c X(0)
buffer + unpack
alu c 0
shifter[ll9, . . . ,601 c or (alu, mdr)
ac + shifter[ll9, . . . ,601
pack c ac
X(1) + pack
alu t buffer
shifter[ll9,. . . ,601 + alu
ac + shifter[119, . . . , 0]
pack c ac
A (0) c pack[19, . . . , 0]

Fig. 9. Compacted MOs for Figure 8.

basic blocks without imposing any sequencing structure. The symbolic assertions
can be efficiently constructed from conventional intermediate program represen-
tations produced by the front end of a high-level language compiler [27]. The
microcode selector transforms an assertion into a data dependency graph using
a data-dependency graph coupling procedure to synchronize resource usage. The
resulting data dependency graph is compacted using any of a variety of list-
scheduling heuristics and a grammatical MI packer.

The flow graph model has been shown to be sufficiently general to handle an
actual, representative horizontal machine. This model is oriented toward code
generation using data flow principles. Its main features include the capability to
model different word widths in the same machine, complex timing relationships,
and volatile machine resources. The microgrammar model is used during com-
paction to determine microoperation conflicts and to determine the relative
positioning of microoperations within microinstructions. At present, these ma-
chine models cannot handle some features of real machines such as asynchronous
timing, writable control stores, and subroutines.

The main feature of the local microcode synthesis system is its data flow
orientation. Among its major innovations are machine-independent methods of
coupling independently-derived data dependency graphs without imposing strict
sequentiality, the ability to handle side effects, the ability to reason about
machines with different word widths, and a limited understanding of bitwise
operations such as rotates, shifts, and bit extractions.

Although the system did generate the microcode in the examples described
above, it does have some limitations. It does not have a complete understanding
of bitwise operations and in this area it must rely on heuristics. The application
of equivalence axioms can lead to much larger search spaces and more intelli-
gence is required in selecting the relevant axioms. The system described forms
the basis for a retargetable microcode compiler for a C-like language that was
developed at Colorado State University. The compiler has been targeted to several
hypothetical machines, the PUMA machine, and an AMD29500-based signal
processing architecture [11.

We are currently targeting the compiler to the highly horizontal micro-
architecture of the next-generation Evans and Sutherland graphics processor
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Retargetable Microcode Synthesis 275

and developing retargetable methods of phase-coupled global optimization and
delayed register assignment.

ACKNOWLEDGMEhlTS

The authors gratefully acknowledge the financial support provided by the Na-
tional Science Foundation and the Evans and Sutherland Corporation and the
use of the DEC VAX-11/780, provided by the Center for Computer-Assisted
Engineering at Colorado State University, for our implementation and experi-
ments. Thanks also to Steve and Vicki Allan for their critical comments on an
earlier draft of this paper and to Mike Duda for helping with revisions.

REFERENCES

1. ADVANCED MICRO DEVICES COMPANY, AM29500 Application Note, Santa Clara, Calif.
1985.

2. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

3. AHO, A. V., AND ULLMAN, J. D. Principles of Compiler Design. Addison-Wesley, Reading,
Mass., 1977.

4. ALLAN, V. H., AND MUELLER, R. A. Retargetable code generator register assignment and
heuristics (version 3.1). Firmware Engineering and Micro-Architecture Design Lab. Dot.
MAD-86-18, Colorado State Univ., Fort Collins, Colo., 1986.

5. BABA, T., AND HAGIWARA, H. The MPG system: A machine-independent efficient micro-
program generator. IEEE Trans. Comput. C-30,6 (1981).

6. BANERJEE, U., SHEN, S., KUCK, D. J., AND TOWLE, R. A. Time and parallel processor bounds
for Fortran-like loops. IEEE Trans. Comput. C-28,9 (Sept. 1979).

7. BRUNO, J., AND SETHI, R. Code generation for a one-register machine. J. ACM, 23, 3 (July
1976), 502-510.

8. CATPELL, R. G. G. Formalization and automatic derivation of code generators. Ph.D. disserta-
tion, Carnegie-Mellon Univ., Pittaburgh, Pa., April 1978.

9. CA~ELL, R. G. G. “Automatic derivation of code generators from machine descriptions. ACM
Trans. Program. Lang. Syst. 2,2 (Apr. 1980), 173-190.

10. DASGUPTA, S. Principles of firmware verification. Submitted for publication.
11. DEWIIT, D. J. A machine-independent approach to the production of optimal horizontal

microcode. Ph.D. dissertation, Univ. of Michigan, Ann Arbor, Mich., 1976.
12. DIJKSTRA, E. W. Guarded commands, nondeterminacy, and the formal derivation of programs.

Commun. ACM, 18,8 1975,453-457.
13. DUDA, M. R., AND MUELLER, R. A. Retargetable code generator micro-architecture specification

and representation (version 3.1). Firmware Engineering and Micro-Architecture Design Lab.
Dot. MAD-86-13, Colorado State Univ., Fort Collins, Colo., 1986.

14. FISHER, J. A. The optimization of horizontal microcode within and beyond basic blocks: An
application of processor scheduling. Ph.D. dissertation, New York Univ., New York, N.Y.
(Oct. 1979).

15. FISHER, J. A. Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput. C-30, 7 (July 1981).

16. FRASER, C. W. Automatic generation of code generators. Ph.D. dissertation, Computer Science
Dept., Yale Univ., New Haven, Conn., 1977.

17. GIESER, J. L. On horizontally microprogrammed microarchitecture description techniques.
IEEE Trans. Softw. Eng. SE-& 5 (Sept. 1982).

18. GLANVILLE, R. S. A machine-independent algorithm for code generation and ita use in retar-
getable compilers. Ph.D. dissertation, Electrical Engineering and Computer Science, Univ. of
California, Berkeley (Dec. 1977).

19. GRISHMAN, R. The structure of the PUMA computer system. U.S. Department of Energy
Report, Courant Mathematics and Computing Lab., New York Univ., New York, 1978.

20. HECHT, M. S. Flow Analysis of Computer Programs. North-Holland, New York, 1977.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

276 l R. A. Mueller and J. Varghese

21. JOHNSON, S. C. A portable compiler: Theory and practice. In Proceedings of the Fifth Annual
ACM Symposium on Principles of Programming Languages, (Tucson, Ariz., Jan. 23-25). ACM,
New York, 1978,97-104.

22. LANDSKOV, D., DAVIDSON, S., SHRIVER, B. D., AND MALL!?XT, P. W. Local microcode compac-
tion techniques. Comput. Suru. 22,3 (Sept. 1980), 261-294.

23. LEVERETT, B. W. Register allocation in optimizing compilers. Ph.D. dissertation, Dept. of
Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., 1981.

24. MA, P-Y. R., AND LEWIS, T. On the design of a microcode compiler for a machine-independent
high-level language. IEEE Trans. Softw. Eng. SE-7,3 1981.

25. MARWEDEL, P. A retargetable compiler for a high-level microprogramming language. Micro-l 7
(New Orleans, La., Oct. 30-Nov. 1,1984), ACM, New York, 1984.

26. MUELLER, R. A. Automated microprogram synthesis. Ph.D. dissertation, Univ. of Colorado,
1980.

27. MUELLER, R. A. Automated Microcode Synthesis. UMI Research Press, Ann Arbor, Mich., 1984.
28. MUELLER, R. A. Retargetable code generator table-driven code selector-Prolog Implementation

(version 3.1). Firmware Engineering and Micro-Architecture Design Lab. Dot. MAD-86-7,
Colorado State Univ., Fort Collins, Colo., 1986.

29. MUELLER, R. A., AND VARGHESE, J. Grammatical models of micro-instruction set processors.
Tech. Rep. CS-81-10, Dept. of Computer Science, Colorado State Univ., Fort Collins, Colo., 1981.

30. MUELLER, R. A., AND VARGHESE, J. Formal semantics for the automated derivation of micro-
code. In ACM IEEE 19th Design Automation Conference, Proceedings (Las Vegas, Nev.,
June 14-16). IEEE, New York, 1982,8X+824.

31. MUELLER, R. A., AND VARGHESE, J. Applying algebraic simulation to machine-independent
microcode synthesis. Euromicro J. Microprocess. Microprogramm. 11,2 (Feb. 1983).

32. MUELLER, R. A., AND VARGHESE, J. Flow graph machine models in microcode synthesis. In
Proceedings of the 16thAnnual Microprogramming Workshop (Downington, Pa., Oct. 11-14) New
York, 1983,159-167.

33. MUELLER, R. A., AND VARGHESE, J. Knowledge-based code selection methods in retargetable
microcode synthesis. IEEE Design and Test, 2,3 (Aug. 1985).

34. MUELLER, R. A., AND SWEANY, P. Retargetable code generator series-parallel coupler/decoupler
for DAGs (version 3.1). Firmware Engineering and Micro-Architecture Design Lab. Dot.
MAD-86-10, Colorado State Univ., Fort Collins, Colo., 1986.

35. MUELLER, R. A., ALLAN, V. H., AND VARGHESE, J. The complexity of horizontal word encoding
in microprogrammed machines. IEEE Trans. Comput. C-33.10 (Oct. 1984).

36. MUELLER, R. A., ALLAN, V. H., AND VARGHESE, J. The complexity of horizontal word encoding
in microprogrammed machines. IEEE Trans. Comput. C-33,10 (Oct. 1984).

37. NILSSON, N. J. Principles of Artificial Inteiiigence. Tioga Press, Palo Alto, Cahf. 1980.
38. REIF, J. H., AND TARJAN, R. E. Symbolic program analysis in almost-linear time. SIAM J.

Comput. 11,l (F&. 1981).
39. RIPKEN, K. Formale beschreibung von maschinen, implementierungen und optimierender

maschinencodeerzung aus attributierten programmgraphe. Ph.D. dissertation, Technische Univ.
Miinchen, Munich, 1977.

40. SHERAGA, R. J., AND GIESER, J. L. Automatic microcode generation for horizontally micropro-
grammed processors. In Proceedings of the 14th Annual Workshop on Microprogramming
(Chatham, Mass., Oct. 12-15). ACM, New York, 1981.X4-168.

41. SINT, M. MIDL-A microinstruction description language, In Proceedings of the 14th Annual
Workshop on Microprogramming (Chatham, Mass. Oct. 12-15). ACM, New York, 1981,95-106.

42. SMITH, B. J., AND JORDAN, H. F. Implications of series-parallel sequencing rules. Computing
19 (Jan. 1978), New York.

43. VEGDAHL, S. R. Local code generation and compaction in optimizing microcode compilers.
Ph.D. dissertation, Carnegie-Mellon Univ., Pittsburgh, Pa., 1982.

44. WILKES, M. V. The best way to design an automatic calculating machine. Report of the
Manchester University Computer Inaugural Conference, Electrical Engineering Dept., Man-
chester Univ., England, July 1951.

45. WINSTON, P. H. Artificial Inteiiigence. Addison-Wesley, Reading, Mass., 1984.

Received April 1984; revised June 1986; accepted August 1986

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

