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Most work on automating the translation of high-level microprogramming languages into microcode 
has dealt with lexical and syntactic analysis and the use of manually produced macro tables for code 
generation. We describe an approach to and some results on the formalization and automation of the 
more difficult problem of retargeting local code generation in a machine-independent, optimizing 
microcode synthesis system. Whereas this problem is similar in many ways to that of retargeting 
local code generation in high-level language compilers, there are some major differences that call for 
new approaches. 

The primary issues addressed in this paper are the representation of target microprogrammable 
machines, the intermediate representation of local microprogram function, and general algorithmic 
methods for deriving local microcode from target machine and microcode function specifications. Of 
particular interest are the use of formal semantics and data flow principles in achieving both a general 
and reasonably efficient solution. Examples of the modeling of a representative horizontal machine 
(the PUMA) and the generation of microcode for the PUMA machine model from our working 
implementation are presented. 

Categories and Subject Descriptors: B.1.4 [Control Structures and Microprogramming]: Micro- 
program Design Aids-lunguuges and compilers, mwhine-independent microcode generation; D.3.4 
[Programming Languages]: Processors-co& generation, compilers, transhtor writing systems and 
compiler generators 

General Terms: Design, Languages 

Additional Key Words and Phrases: Data antidependency, data dependency, flow graph, machine 
description, microcode compaction, microcode generation, microinstruction set processors, micropro- 
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1. INTRODUCTION 

The evolution of microprogramming since Wilkes has seen a growth in the 
sophistication of development tools [44]. As with general-purpose program- 
ming, microprogramming can often be simplified and its reliability improved 
through the use of symbolic languages and automatic translators. For machine- 
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independent languages we require translation systems that, ideally, can be ported 
with modest effort and high reliability. 

As pointed out in 191, much progress has been made in automating the 
generation of parsers, whereas comparatively little progress has been made toward 
solving the more difficult problem of automating code generation. By code 
(microcode) generation, we mean the translation of an intermediate language 
representation produced by a parser and enhanced by flow analysis and optimi- 
zation to a machine code (microcode) representation. 

One approach to automating code (microcode) generation is the use of table- 
driven methods, in which machine-dependent templates map intermediate lan- 
guage constructs to machine code [21, 391 or microcode [5, 24, 401. To extend 
the degree of automation, the generation of the machine-dependent code gener- 
ation tables from machine descriptions was proposed by [8], [16], and [Ml. The 
automated generation of microcode generators from machine descriptions was 
subsequently proposed by [25], [26], and [43]. 

The common objective of such research is the ability to produce code generators 
directly and reliably from machine descriptions, which are capable of exploiting 
the underlying architecture in a reasonably efficient fashion. The automated 
generation of microcode generators is even more difficult than the automated 
generation of code generators since the underlying architectures tend to be much 
more diverse and can offer considerable concurrency in the execution of micro- 
operations. Thus, the feasibility of such systems in production environments 
remains an open question. 

Our general view of the problem, shown in Figure 1, is similar to that of 
Cattell [8]. However, both our representations and algorithmic methods differ 
owing to the different underlying environments. The translation process begins 
with some high-level language representation of a microprogram, which is syn- 
tactically analyzed and translated into an internal form for flow analysis proce- 
dures. The flow analysis procedures decompose the program into a flow graph 
with nodes corresponding to basic blocks. Finally, the program is symbolically 
executed to statically optimize the machine-independent representation and 
obtain nonprocedural functional specifications of basic blocks called symbolic 
assertions. All this can be efficiently done using well-known methods [3, 20, 381. 

The remainder of the translation, being machine dependent, is considerably 
more difficult. Note first that any machine-independent system for performing 
code generation must utilize a specification of the target machine. Our view of 
such a system begins with a nonbinding assignment of target machine registers 
to variables in the symbolic assertion specifications, followed by the phase- 
coupled selection and optimization of target machine microcode from the 
machine-dependent form. 

The microcode generation algorithm uses procedural machine-independent 
semantic knowledge to facilitate efficient exploitation of the target machine in 
generating microcode from the symbolic assertion specifications. Whereas most 
previously reported microcode generation systems employ functional operator- 
driven macroexpansion, our algorithm is target machine architecture driven. It is 
the data path structure of the target machine that determines how information 
is transferred and transformed, and thus our flow-graph algorithm functions by 
algebraically simulating the flow of data in synthesizing the microcode [31]. 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 
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Fig. 1. CSU retargetable microcode generation system. 

This paper focuses on flow-graph local microcode selection and grammar-based 
local compaction as the basis for the code generation component of a retargetable 
microcode compiler. Detailed discussions of the other components of the retar- 
getable system shown in Figure 1 are given elsewhere.’ The use of knowledge- 
based methods to achieve retargetability in the Colorado State University (CSU) 
system is the subject of [33]. 

This paper is organized into two major sections and a summary. The first 
section presents the flow-graph machine model and microgrammar compaction 
model of microarchitectures. A flow graph and microgrammar for the Processing 

1 There are a large number of technical system documents describing the CSU retargetable microcode 
synthesis system. Those interested in obtaining copies of the available documents should address 
their requests to R. A. Mueller. 
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Unit With Microprogrammed Arithmetic (PUMA) microarchitecture are given 
as examples. The second section presents retargetable local microcode selection 
and grammar-based compaction methods that extract target machine specifics 
from flow-graph and microgrammar models of the target microarchitecture. 
Several examples of algorithms targeted to the PUMA are provided. The paper 
is summarized with a discussion of problem areas and the current status of the 
Colorado State University retargetable microcode synthesis system. 

First, we digress briefly in order to familiarize the reader with basic micropro- 
gramming terminology. Primitive operations of microprogrammable machines 
are known as microoperations. A collection of microoperations that are encoded 
into one word of the control store is termed a microinstruction, and a set of 
microinstructions that perform a well-defined task is a microprogram. For con- 
ciseness we use the abbreviations MO and MI for microoperation and microin- 
struction, respectively. 

The execution time for an MI is termed a basic clock cycle. A basic clock 
cycle may consist of one or more minor clock cycles, and this relates to the 
monophuse/polyphuse characteristic of the machine. In a monophase implemen- 
tation, all MOs within an MI execute in one minor cycle, whereas in a polyphase 
implementation, MOs could span multiple minor cycles within the basic clock 
cycle. Another basis for classification of microprogrammable machines measures 
the degree of concurrency within an MI. Horizontal and vertical machines form 
the end points of the spectrum, with horizontal machines having the most 
concurrency in MI execution. Machines that fall somewhere in between are 
sometimes termed diagonal machines. 

An MO m2 is data dependent on ml if ml executes before m2 and ml writes to 
some resource read by m2. Similarly, an MO ml is data antidependent on nz if 
the ml destroys data required by m2 [6,43]. 

2. MICROINSTRUCTION SET DESCRIPTION 

A crucial step in automating the generation of code generators is the definition 
of a target machine description model.’ The choice of the model determines both 
the scope of retargetability and the potential for efficiently and effectively 
generating the machine-dependent component of the code generator. Since these 
are competing goals, trade-offs must be made. 

When the target machine model is of the von Neumann variety, each machine 
can be viewed as an instruction set processor that cyclically fetches instructions 
from a primary memory and then executes them to modify the processor 
state [8]. For such a domain, the machine description can be organized into five 
components: (i) a set of storage bases that represent the storage elements (state) 
of the machine (e.g., registers and primary memory), (ii) a set of operand 
addressing modes that describe how information in the storage bases can be 
accessed, (iii) machine operation semantics that describe the machine operations 
in terms of how they modify the machine state, (iv) data types of the operands 
of the machine operations, and (v) instruction field format information that 
describes how operations can be encoded into machine instructions. 

* The term target muchine denotes that machine which ultimately executes the microprograms being 
generated. 
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A microinstruction set processor is assumed, for our purposes, to cyclically 
fetch its instructions from a read-only control store memory and execute them to 
modify the machine state. It differs from an instruction set processor in at least 
two important ways: (i) a microinstruction set processor generally uses very 
simple addressing, and (ii) concurrency of microoperations execution is allowed, 
implying the need for the model to include timing and field encoding conflict 
information [43]. Some of the different microinstruction set description models 
proposed for use in automating microcode generation are given in [17], [27], [41], 
and [43]. 

The model we present is somewhat different from those previously proposed 
in that it is data flow oriented. That is, the machine is described, in part, in terms 
of how information flows through the storage base elements and operational 
units. The motivation for such an approach is to improve the efficiency of the 
microcode generation algorithm, which is based on the data-flow concept. 

We can distinguish two major phases of the microcode synthesis process: the 
generation of a partial data dependency ordered collection of MOs that realizes 
the function associated with the intermediate language representation of a 
microprogram segment, and the compaction of the MOs into target machine MIS 
subject to the data dependency constraints in the partial order and the resource 
constraints manifested in the MI field encodings. Thus, our machine model has 
two major components: a flow graph to facilitate microcode generation and a 
microgrammar that reveals valid MI templates to facilitate compaction. More 
detailed discussions of the flow-graph model and microgrammar model can be 
found in [29] and [32], respectively, or in [27]. 

2.1 Flow-Graph Descriptions of Machines 

The flow-graph component has two major subcomponents: machine resources 
(i.e., storage bases and operational units) and the data paths that allow infor- 
mation to flow between machine resources. Thus, our model is essentially a graph 
whose nodes represent machine resources and whose edges represent the potential 
for data flow between nodes. Since only the generation of local code is being 
considered, control sequencing information is not included. 

2.1.1 Machine Resources. Each node in a flow graph represents a machine 
resource. Machine resources have both structural and behavioral characteristics. 
Structurally, a storage base element is a sequence of m words, each of length n. 
Similarly, a machine resource is behaviorally characterized in terms of the result 
it produces. 

The behavioral characteristics of a machine resource correspond to the condi- 
tions under which the resource is permitted to be modified (visibility), the MOs 
that modify the state of the resource (functionality), and the lifetimes of states 
realized as a result of executing these MOs (retention). There are two degrees of 
visibility: image and target. Image variables are those resources accessible to the 
machine language programmer. The values of image variables cannot be modified 
by the synthesis system unless the microprogram specification calls for such a 
modification. Target variables may be used as temporaries. The distinction 
between image and target variables is particularly useful in microarchitecture 
emulation. 
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Functionality is given by the list of MOs that assign new values to (modify the 
state of) a resource. There are two components in each MO: the functional 
transformation effected by the MO and the MI encoding that enables it. The 
value assigned to the resource could be an expression that includes constants 
and the values of other resources adjacent to this resource in the flow graph. The 
encoding information aids in the detection of side effects. 

It is sometimes the case that two independent or polyphase-ordered MOs are 
assigned the same MI encoding. In the code generation sense, we view one as a 
sicEe effect of the other. Thus the selection of one of these MOs for execution 
necessitates the execution of all its side effects. For example, the execution of an 
arithmetic logic unit (ALU) operation causes the setting of the condition bits as 
side effects. A side effect may be necessary if it performs an action that is required 
by the specification of the computation for which code is being generated. An 
unnecessary side effect can be ignored if it affects only target variables. An 
unnecessary side effect, which affects image variables, is potentially harmful and 
could produce unexpected results if selected for execution. 

The other important property of machine resources pertains to the lifetime of 
a value assigned to a resource. The retention characteristic is either permunent, 
when the resource retains its value until explicitly modified, or transient, when 
the value assigned to it is only stable for a fixed period of time. The timing 
information associated with each resource includes the earliest and latest time 
that the value of the resource is stable after an assignment to the resource is 
made. We assume that these times are a function of the resource and not of the 
MO that makes the assignment. This is a simplification, and the case in which 
these times vary can be modeled by making conservative estimates of the earliest 
and latest times. 

Accordingly, each node in the flow-graph model has five attributes: (i) a unique 
identifier, (ii) capacity information in terms of bit length and the number of 
words, (iii) visibility, which is either image or target, (iv) a retention character- 
istic, which is either permanent or transient, and the associated timing infor- 
mation, and (v) functionality, which is a functional description of each of the 
MOs that can modify the state of the resource. 

2.1.2 Data Flow. The flow of data between machine resources is inferred from 
the functional component of the nodes, in which the MOs that modify the state 
of the resource are described. Thus, a given resource is the implicit destination 
of each MO associated with it. Similarly, those resources that may pass data to 
the resource are elements of the expressions computed by the MOs. 

As such, a sequence of data dependent MOs represents a path in the flow 
graph. Finding a sequence of MOs that transforms a given initial state to a 
desired final state can be achieved by finding a path through the flow graph. The 
destination resource orientation of the flow graph is conducive to the backward 
chaining method, used in the microcode derivation algorithm, in which we move 
from a desired final state toward an assumed initial state [45]. 

2.1.3 The PUMA Microarchitecture. To illustrate the representation, we use 
the PUMA machine [19] that was also selected for illustrative purposes by [14] 
and [43]. The PUMA microarchitecture was designed to emulate the CDC 6600, 
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and it reflects this bias in the word sizes of its registers. The CDC 6600 has eight 
60-bit registers and sixteen 18-bit registers. Since the PUMA was constructed 
out of 4-bit slices, it has sixteen 60-bit registers and sixteen 20-bit registers. The 
data paths are 60 bits wide, and 20-bit data are right justified with zeros in the 
first 40 bits. The output of the registers is fed into an unpuclz unit that unpacks 
floating point data into a mantissa and an exponent. The output of the unpack 
unit feeds into the buffer and the exponent arithmetic section. 

The arithmetic and logic unit (alu) has the buffer and the accumulator (cc) as 
inputs. The output of the alu is wire-ORed with data from the instruction unit 
and the exponent unit and, concatenated with the output of the mq register, it 
forms the input to the 120-bit shifter which is capable of 4, 16, and 60-bit right 
shifts. The output of the shifter feeds the ac and mq registers, each of which are 
60 bits wide. Data from the ac register can be fed to the alu, to the pacle unit 
(which assembles floating point data from the ac and from the exponent arith- 
metic unit), to the main memory unit, and to the instruction unit. Data from 
memory also passes through the ac register. This is only a brief description of 
the PUMA. For more details see [19]. A pictorial sketch of the PUMA data paths 
is given in Figure 2. 

Besides the fact that it is a real, horizontal machine, the PUMA has other 
properties that recommend its use as a test target machine. The different word 
sizes in the register banks and the data paths are fairly common in real machines. 
The presence of side effects and transient machine resources also add to the 
complexity. There were also several compromises made when the PUMA was 
designed. For example, data can either be written into a register or read from a 
register during an MI, but not both, even if they are in different register banks. 
There are also some features that are easily modeled but not yet fully supported 
(e.g., floating point arithmetic). 

2.2 Microgrammar Compaction Model 

The local microcode compaction problem can be briefly described as follows: 
Given a set of MOs with data dependency, antidependency, and timing con- 
straints, find a minimal-length microprogram that is functionally equivalent to 
this set of MOs. This problem has been shown to be NP-complete [ll], and 
various heuristic solutions have been formulated that sacrifice optimality for 
near-optimal solutions. 

Compaction algorithms can be machine independent if they are provided with 
machine-dependent information. Typically they need to know about MO conflicts 
and about the timing of MOs within MIS. MO conflicts can arise from contradic- 
tory assignments to MI fields or from resource usage conflicts. Conflicting MOs 
cannot be executed in the same MI. 

The grammatical model assumes that MIS are composed of series/parallel 
sequences of MOs [42]. The metasymbol next denotes serial execution, whereas 
the metasymbol ; denotes parallel execution. MO conflicts can be inferred from 
the encoding information associated with each MO, and timing relationships can 
be derived from the series/parallel metasymbols and the position that an MO 
occupies in a series/parallel sequence [29]. The Backus-Naur form (BNF) nota- 
ton for series/parallel grammars is given in Figure 3. 
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Fig. 2. The PUMA microarchitecture. 

Example 2.1 Consider the following set of productions: 

(MI-set) ::= (Al) next (B) next (Cl) I 
(AZ) next (B) next (G) 

(A,) ::= allail~ 
G42) ::= a4 1 us 1 ulj 
(B) ::= (II); (E) 
(Cl) ::= q(c2Ic3 
(c2) ::= c4 1 c5 1 c‘3 

(D) ::= dll d2 1 ds 
(E) ::= el I q 
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(system-description) ::= (step) 1 (system-description) next (step) 
(step) ::= (action) 1 (step); (action) 
(action) ::= (elementary-action) 1 ((system-description)) 

Fig. 3. Series/parallel grammar. 

The oi, bi, ci, di, and ci are MOS of a hypothetical micromachine. The terminal 
strings derived by the (MI-set) are series/parallel sequences of MOs that 
represent potential MIS. Each MO has an encoding component associated with 
it, as mentioned in Section 2.1.1. If MOs al and bi have encodings f = x1 and 
f = x2, respectively, for some field f where x1 # x2, then al and bl conflict in the 
field encoding sense. If MOs dl and el have functional transformation compo- 
nents r t expl and r t exp2, respectively, for some machine resource r where 
expl # exp2, then they cannot be executed in the same minor cycle of an MI. 
Here dl and el conflict in the machine resource usage sense. 

Field encoding conflicts and machine resource usage conflicts can be deter- 
mined by examining the encoding and functional transformation components, 
respectively, of the corresponding MOs. Timing conflict determination requires 
examination of the microgrammar. If a microprogram requires MO cl to be 
executed after MO cl, then they conflict in the timing sense because, in an MI, 
the ci MOs must always execute before the ci MOs. MOs al and c4 cannot execute 
in the same MI even if they do not conflict in any of the senses described above. 
This is because there is no MO sequence that can be generated by the (MI-set) 
that contains both al and c4. 

The flow-graph model and the microgrammar model can, in conjunction, 
handle most of the features of real machines. However, some of the basic 
assumptions used in these methods prevent the modeling of some aspects of 
microprogrammed machines. The requirement that the timing of MOs be repre- 
sentable in a series/parallel framework precludes the incorporation of asynchro- 
nous MOs (found, for example, in memory-accessing operations). Conditional 
MOs cannot be easily modeled using the flow-graph technique, especially when 
the operation is conditional on the value of a machine resource. Writable control 
stores permit the modification of microprograms, and this is a very difficult 
problem for program analysis tools in general. 

3. RETARGETABLE LOCAL MICROCODE SELECTION 

Microcode selection is the process of mapping intermediate representations of 
what function a code segment is to perform into a collection of target machine 
MOs that implement that function. We view microcode selection as the part of 
microcode generation in which machine-specific microcode sequences are substi- 
tuted for machine-independent representations of microcode function. We as- 
sume that the intermediate representations correspond to any part (or all) of a 
basic block and that any storage resources referenced in the intermediate repre- 
sentation designate specific machine resources.3 

3Thus, some register allocation is done prior to code selection. Additional “on-the-fly” register 
allocation is done during code selection when temporary registers are needed. The actual method 
used in handling register assignment is to assign symbolic references rather than specific register hank 
indices to delay the final register assignment until local compaction has been attempted. See [4] for 
further details. 
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The target machine MOs produced as output from the microcode selector have 
been parallelized and organized as a data dependency graph with minlmax delay 
constraints labeling edges in the graph. A min (max) time on an edge from MO 
ml to MO m2 specifies that a minimum (maximum) number of cycles can elapse 
between the execution of ml and m2. Global optimization, local compaction, and 
final register assignment are subsequently performed on the generated 
data dependency graphs before microcode generation is completed. The 
time-constrained data dependency graphs and their manipulation are described 
in [34]. 

The approach we take to microcode selection is based on the observation that 
every data-dependent sequence of target machine MOs corresponds to a path in 
the target machine flow graph. As such, we can generate microcode by attempting 
to discover a set of flow-graph paths that collectively transfer and transform the 
source data of the basic block to the designated destination storage bases of the 
block. An important property of such an approach is that it cleanly separates the 
machine-independent microcode selection algorithm from the target machine. 

In this section we discuss the intermediate representation of local microcode 
function and the retargetable local microcode selection algorithm that translates 
intermediate representations into target machine microcode. 

3.1 intermediate Representation of Local Microcode 

There have been several different intermediate representations for basic blocks 
discussed in the literature. Cattell uses a tree representation (TCOL) [8], whereas 
Sheraga and Gieser use sequences of triples and seven-tuples [40]. Our represen- 
tation is, basically, the set of exit expressions computed in the block. 

In program flow analysis, there are two important classes of variables: those 
that are read before being defined in a basic block (use variables), and those 
variables that are live upon exiting the block as a consequence of being defined 
in the block (def variables). There are efficient algorithms for computing both 
the use and def variables [20]. The function of a basic block can be represented 
by associating with each def variable the value of the expression assigned to it 
during any execution of the basic block. Such exit expressions are independent 
of any actual block execution when expressed symbolically in terms of the initial 
values of the use variables and are derived using symbolic execution [38]. 

The function of a basic block can then be represented as a pair (1, F), where I 
associates with each use variable a symbolic constant that represents the value 
of that variable upon entry to the block, and F associates with each def variable 
a symbolic representation of the exit expression assigned to that variable in 
terms of the symbolic constants associated with the use variables. We call any 
mapping between a program variable and a symbolic expression a symbolic state 
mapping (SSM), any tuple of SSMs for distinct program variables a symbolic 
state vector (SSV), I an initial symbolic state vector (ISSV), F a final symbolic 
state vector (FSSV), and sa(I, F) a symbolic assertion that specifies the function 
of a basic block. 

For example, suppose the execution of basic block B assigns X the sum of the 
initial value of X and 1 and assigns Y the product of the initial values of W and 
X. Then X and W are the use variables of B, X and Y are the def variables of B, 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 
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and a symbolic assertion representation of B is 

3.2 Microcode Selection Algorithm 

In general, there may be many def variables in the goal SSV. Further, each of 
the expressions associated with those variables may be computed independently. 
This will not generally yield optimal code, but this is to be expected since the 
optimization problem is NP-hard [7].4 However, the significant advantage of 
such an approach lies in the potentially substantial efficiency gains in the 
execution of the algorithm. 

The flow-graph method recursively constructs n microprograms independently 
for n exit expressions in a final SSV. There are two major processes in the 
procedure: the path determination process that selects a target machine path 
that moves information (backward) so as to derive microcode for an exit expres- 
sion, and the data-dependency graph coupling process that unifies the separate 
but related data dependency graphs by adding data antidependency arcs. The 
first process is called path arbitration, and the second process is called data 
dependency graph coupling. 

3.2.1 Path Arbitration. Let Q be an initial SSV and P a final SSV; 
P = (Sl, . ..) s,). We attempt to resolve the specification by independently 
deriving microcode for each of Q + ( s1 ), . . . , Q + ( sn ) , and coupling the resulting 
n data dependency graphs in a way that exposes potential parallelism and 
preserves the functionality of each graph. 

Given Q + (X = y), we attempt to move the information associated with y 
backwards from X to either a storage base or operational unit, depending on y. 
Since y is a symbolic expression, there are only three possible forms it can take: 
a hard constant, a symbolic constant, or a functional expression. 

Hard constants can be generated using only a few different methods. Sym- 
bolic constants must be initial values of use variables in the initial SSV. 
The task is now to find a (reverse) path from X to use variables such that 
the MOs representing the paths perform the computation necessary to derive 
&+(X=7). 

If y consists only of a single constant, then the synthesis system seeks a path 
to the origin (source) of this constant such that the data are not transformed. 
For example, if the symbolic assertion is 

then X is the source of y, and we need a sequence of MOs that transfer data 
from X to Y. 

If the expression is more complicated, we consider its leftmost prefix operator. 
If the target machine contains an operational unit corresponding to that operator, 

’ We note, however, that the preprocessing of SSVs based on recognized common subexpressions will 
generally improve the efficiency of the generated microcode considerably. This preprocessing is 
currently implemented in the CSU retargetable microcode compiler. 
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the system tries to find a path to one such unit.5 If not, it attempts to algebraically 
rewrite the expression in terms of those operators available on the machine. 

For example, if the symbolic assertion is of the form 

ESV + (X = f(r1, * * - , Yn)) 

then the algorithm searches for a target machine operational unit that performs 
the operation f on n operands. If no such operational unit exists, then the 
algorithm tries to transform the expressionf(yl,. . . , m) into some semantically- 
equivalent expression g ( cyl, . . . , (u,) such that the target machine contains an 
operational unit for g. Note that when the prefix operator does have a correspond- 
ing operational unit, the choice of which operational unit to select as the source 
of the path must be made. The system picks the one that generates the shortest 
overall path, which is equivalent to picking the MO sequence having the smallest 
number of MOs. 

The algorithm attempts the transformation one MO at a time, starting with 
the goal SSV and working backwards. If the MO we choose is of the form 
A t B and the goal specification is ISSV + (A = rl), then the new goal 
becomes ISSV + (B = rl). If the goal is of the form ISSV + (A = f(rl, yz), 
and the MO we choose is A t f(&, I&), then the new goal is ISSV + 
( B1 = yl, Bz = y2 ). The determination of the new goals has a formal justification 
on the basis of the weakest precondition operator [ 121. Since formal treatment of 
this is not consistent with the central theme of this paper, we refer the interested 
reader to 1301 or [27]. 

Algebraic properties can often lead to a variety of choices in the determination 
of a new goal specification. For example, if f is a commutative operator, then we 
have two choices for the new goal, (& = yl, BZ = y2) or (B, = y2, BP = rl). 
Such choices can be represented with an AND-OR search tree [37,43,45]. When 
all expressions have been reduced to simple values of use variables, the process 
terminates. 

We now demonstrate the method with several examples based on the PUMA 
machine model, in which the image variables are the 8 X, the 8 A, and the 8 B 
registers, and the rest of the variables, including the 8 Y registers, are target 
variables. The X and Y registers are 60 bits wide, and the A and B registers are 
20 bits wide. All generated code shown was derived by a prototype implementation 
developed by the authors. Note that the examples have been kept simple for the 
sake of clarity, and much of the detail of the operation of the implementation 
has been left out to improve readability. 

Example 3.1 Consider the symbolic assertion 

(X(0) = a) + (A(0) = a[19, . . . , 0]) 

where Z(n) denotes the nth word in the 2 array (which may be a register bank) 
and Z[a, . . . , b] refers to bits a to b, inclusive, of 2, where 2 may be a symbolic 
expression or a variable. The expression (w[19, . . . , 0] is a fragment of a symbolic 
constant whose source is X(0). Looking backwards from A (0), the shortest path 
to X(0) is through the pack unit, the ac register, the shifter, the alu, the buffer, 

s Note that our implementation precomputes all paths exactly once for each target machine. 
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unpack c X(0) 
buffer c unpack 
alu c buffer 
shifter[ll9, . . . , 601 t alu 
ac + shifter[ll9, . . . , 0] 
pack c ac 

Fig. 4. MO sequence derived in Example 3.1. 

A(0) c pack[l9, . . . , 0] 

and the unpack unit in that order. (Shortest paths between nodes can be 
precomputed using any of the methods applicable to graphs [2].) Using the 
weakest precondition semantics and moving a[19, . . . , 0] back to the pack 
unit, we get the new goal (pack[l9, . . . , 0] = a[19, . . . , 0]), using the 
MO A (0) t pack[ 19, . . . , 01. 

Since the path from X(0) to the pack unit is 60 bits wide, the most likely 
candidate for the contents of pack[59, . . . ,201 is a[59, . . . ,201. Hence this goal 
is equivalent to (pack = a). Moving (Y backwards to the ac register produces the 
goal (ac = a). Continuing in this manner, we get the MO sequence shown in 
Figure 4 in the reverse order of selection. 

In performing the MO shifter[ll9, . . . ,601 t alu, we have as a side effect the 
MO shifter[59, . . . , 0] t mq. However, as mentioned earlier, the shifter is a 
target variable, and side effects to target variables can be ignored unless they are 
required by the microprogram specification. Henceforth, we will simply ignore 
such side effects in the derivations presented. 

The MOs presented above were linearly ordered. In general, the MO set derived 
is usually in the form of a partial order with directed edges between MOs in its 
graphical representation. A directed edge (ml, m2) denotes that MO ml must 
execute before MO m2, because m2 is data dependent or data antidependent on 
ml. 

The directed edges also have two attributes that represent the timing relation- 
ships between MOs. The first attribute of the directed edge is the minimum 
number of clock cycles that must elapse between the executions of the depend- 
ency-related MOs. The second attribute is the maximum such number; inf 
indicates that the second MO can execute any time after the first, subject to the 
minimum time constraint. Transient variables lose their values after a certain 
fixed number of cycles. Thus the maximum number of cycles that can elapse 
between a definition of such a variable and its use is finite. The data dependency 
graph representation of the MO sequence generated in Example 3.1 is given in 
Figure 5. 

Example 3.2. As another example of a data transfer, we look at a memory read 
operation. The assertion for reading from memory into register X(1) is 

(mem(a!) = y, mu = CY) 4 (X(1) = y) 

where ma is the memory address register. There is no way to transfer data from 
memory to the ac register directly. However, the data from the memory data 
register (mdr) are wire-ORed with the output of the ALU. This requires trans- 
forming (X(1) = y ) to (X(1) = or(0, y )), using one of a set of equivalence 
preserving axioms discussed at greater length later in this section. Passing this 
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unpack c X(0) 
1 

1, 1 
buffer c unpack 

1 
1, inf 

alu c buffer 
1 

1, 1 
Fig. 5. Data dependency graph derived in Example 3.1. shifter[ll9, . . . , 601 c alu 

1 
1, 1 

ac c shifter[ll9, . . . 0] , 
1 

1, inf 
pack t ac 

3 
1, 1 

A(0) + pack[l9, . . . , 0] 

mem(ma) aluto 
mdrc 1 1 

5, inf 1, 1 
shifter[ll9, . . . , 601 c or (alu, mdr) 

1 
1, 1 

ac c shifter[ll9, . . . , 601 Fig. 6. Data dependency graph derived in Example 3.2. 
1 

1, inf 
pack c ac 

1 
1, 1 

X(1) + pack 

goal backward through the ac and the shifter yields (shifter[ll9, . . . , 601 = 
or(0, 7)). Using the MO shifter[ll9, . . . , 601 t or(alu, mdr) we get 
(alu = 0, mdr = y ). The complete data dependency graph for this example is 
given in Figure 6. 

Example 3.3 As a final example consider the case in which we require 
some data divided by 64, which is equivalent to shifting the data right by 
6 bits (assuming one’s complement arithmetic). The symbolic assertion for this 
computation is 

(X(0) = a) + (X(0) = sxt(a[59, . . . , 61)) 

where C&(Z) refers to sign extension. The shifter can only shift data by 4, 16, or 
60 bits. The ac and the mq can function together as a 120-bit shifter by shifting 
data by one bit to the left or right. The synthesis system can classify bitwise 
operations into different categories, one of which is arithmetic shifts. Any 
arithmetic shift that the machine can perform in one or more operations can be 
broken down into functional compositions of arithmetic shifts. Hence, the ma- 
chine has only to look at the shifter and the ac-mq shifts. Thus a 6-bit shift can 
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unpack c X(0) 
1 

1, 1 
buffer t unpack 

1 
1, inf 

alu t buffer 
1 

1, 1 
shifter[ll9, . . . , 601 + sxt(alu[59, . . . , 41) 

1 
1, 1 

ac t shifter[ll9, . . . , 601 
1 

1, inf 
ac )* 1 

Fig. 7. Data dependency graph produced in 
Example 3.3. 

1 
1, inf 

ac zs- 1 
1 

1, inf 
pack c ac 

1; 1 

X(0) + pack 

be accomplished by shifting to the right by 4 bits in the shifter and then twice in 
the ac and mq registers. The MO sequence for this example is given in Figure 7. 
Here X >> n refers to a shift right of X by n bits. 

As is obvious from the above example, the synthesis system has some under- 
standing of bitwise operations. This has been one of the major weaknesses of 
other microprogram development systems [ 10,431. To realize this capability, the 
system must be able to convert among different ways of representing data. It 
does not have a complete set of axioms but instead uses a set of heuristics to 
guide the derivation. This kind of reasoning is also useful in constant generation 
in cases in which the literal field of the MI word is a bottleneck [43]. 

The solution search time can be drastically improved by storing computed data 
dependency graphs in a table for subsequent direct look-up. This makes the 
derivation of efficient code through the use of coupling methods between different 
phases such as resource allocation, microcode selection, and microcode compac- 
tion more computationally tractable. The mechanism used in the CSU retarget- 
able microcode synthesis system for machine table construction and direct code 
sequence look-up is described in [13] and [28]. 

3.2.2 Data Dependency Graph Coupling. Given a collection of input data 
dependency graphs that compute the exit expressions that comprise a basic block, 
we need to compute a single data dependency graph for the block. The single 
data dependency graph includes all the MOs and data dependencies between the 
MOs from the input data dependency graphs. However, additional data anti- 
dependencies must be introduced to synchronize usage of common resources in 
different input data dependency graphs. 
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Each resource used in an input data dependency graph has a live track 
associated with it. A live track is a subgraph rooted by a born node and having 
die nodes as leaves. The born node is an MO in which the resource assumes a 
value. A die node is an MO that reads that value and is not followed by another 
MO that reads the same value. (For example, the sequential assignments 
X c A; Y c X, 2 t X might define a live track for X. X is born in the MO 
XtAanddiesattheMOZ t X. X does not die at Y t X, since the same 
value of X is read by the following MO 2 t X.) 

The data-dependency graph coupling problem is a problem of introducing data 
antidependencies between nodes of the input data dependency graphs so that no 
live tracks for a particular resource overlap. In general, solutions to the problem 
are not unique. Further, the solution found generally has a significant influence 
on the effects of subsequent compaction and register assignment. The specifics 
of the coupling algorithm form the basis for a paper in their own right. (We are 
currently writing such a paper and refer the interested reader to the interim 
report [34].) To illustrate the nonuniqueness, Figure 8 offers distinct solutions 
for the coupling of the data dependency graphs derived in Examples 3.1 and 3.2. 

3.3 Microcode Compaction Algorithm 

Given a data dependency graph representing local target microcode, the MOs 
represented by the nodes must be assigned to MIS subject to the dependency and 
timing constraints in the graph and the encoding constraints on MIS of the target 
machine. The problem is referred to as microcode compaction. Generally, one 
seeks an assignment of MOs to MIS that minimizes expected execution time. 
However, heuristics are required, since the general form of the problem is NP- 
hard [ 111. Many such heuristics have been reported in the literature, with a good 
summary given in [22]. 

A major subproblem of microcode compaction is the problem of determining 
whether an MO may reside in a particular MI. An MO is data ready with respect 
to placement in a particular MI if its placement in that MI does not violate any 
data dependencies or data antidependencies. An MO is timing ready with respect 
to placement in a particular MI if it is data ready with respect to that MI and its 
placement in the MI does not violate any timing constraints. A timing-ready MO 
with respect to a given MI can only be placed in that MI if it does not conflict 
with the encoding of any other MO assigned to that MI. 

The microgrammar compaction model introduced in Section 2.2 is used to 
guide the compaction of timing-ready MOs into MIS. It is easily used with any 
of the compaction heuristics for selecting timing ready MOs [15, 221 to yield a 
machine-independent compactor. The grammatical packing of an MI is similar 
to a recursive-descent parse in which parse tree leaf nodes represent MOs. The 
MOs are placed in (reverse) polyphase order in the MI, as determined by the 
series/parallel meta-symbols embedded in the microgrammar for the target 
machine. Thus, with a given heuristic for ordering the placement of timing-ready 
MOs, the grammatical packer resolves the placement of MOs in MIS in a machine- 
independent fashion, using the microgrammar to resolve the machine-dependent 
MI timing and encoding structure. The result is a retargetable local compactor. 

The result of packing the PUMA machine data dependency graph of Figure 8a 
is shown in Figure 9. The compaction algorithm utilizes a list-scheduling heuristic 
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mdr c mem(ma) alu t 0 unpack + X(0) 
1 1 

5. inf 1. 1 
1 

1. 1 
shifter[il9, . . . , 601 i or (alu, mdr) buffer c unpack 

1 1 1 
1, 1 1, inf 1, inf 

ac +‘shifter[ll9, . . . , 601 alu + buffer 
1 1 1 

1, inf 1, inf 1, 1 
pack + ac 

llA 

shifter[ll9, . . . , 601 e alu 
1 

1, 1 1, inf 1, 1 
X(1) t pack 

1 
ac c shifter[ll9, . . . , 0] 

1 
1, inf 1, inf 

pack + ac 
1 

1, 1 
A(0) t pack[l9,. . . , 0] 

mdr + mem(ma) alu + 0 unpack c X(0) 
1 1 1 

5, inf 1, 1 1, 1 
shifter[ll9, . . . , 601 c or (alu, mdr) buffer c unpack 

1 1 
1, 1 1, inf 

ac t shifter[llg, . . . , 601 alu + buffer 

pack;+ ac,, sh\%er[ll9, . . . ,601 c alu 

1, 1 1, inf 1, 1 
X(1) c pack ac c shifter[ll9, . . . , 0] 

1 
1, inf 1, inf 

pack + c ac 
1 1 

1, inf 1, 1 
A(0) + pack[l9, . . . , 0] 

(W 

Fig. 8. Results of coupling data dependency graphs from Examples 3.1 and 3.2. 

that is greedy with MO height in the data dependency graph to select timing- 
ready MOs and the grammatical method of packing MIS. 

4. CONCLUSIONS 

We have presented a synthesis system for the local generation of microcode. This 
system can be incorporated into the back end of a retargetable microcode 
compiler, such as the Colorado State University retargetable microcode compiler 
or any of the table-driven compilers proposed by [5], [24], or [40]. Input to the 
system is in the form of symbolic assertions that express the functionality of 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



274 l FL A. Mueller and J. Varghese 

MIX 
Minor 
Cycle # Microoperation 

1 1 
2 

2 1 
2 
3 
4 
5 

3 1 
2 
3 
4 
5 

mdr t mem(ma); unpack c X(0) 
buffer + unpack 
alu c 0 
shifter[ll9, . . . ,601 c or (alu, mdr) 
ac + shifter[ll9, . . . ,601 
pack c ac 
X(1) + pack 
alu t buffer 
shifter[ll9,. . . ,601 + alu 
ac + shifter[ 119, . . . , 0] 
pack c ac 
A (0) c pack[ 19, . . . , 0] 

Fig. 9. Compacted MOs for Figure 8. 

basic blocks without imposing any sequencing structure. The symbolic assertions 
can be efficiently constructed from conventional intermediate program represen- 
tations produced by the front end of a high-level language compiler [27]. The 
microcode selector transforms an assertion into a data dependency graph using 
a data-dependency graph coupling procedure to synchronize resource usage. The 
resulting data dependency graph is compacted using any of a variety of list- 
scheduling heuristics and a grammatical MI packer. 

The flow graph model has been shown to be sufficiently general to handle an 
actual, representative horizontal machine. This model is oriented toward code 
generation using data flow principles. Its main features include the capability to 
model different word widths in the same machine, complex timing relationships, 
and volatile machine resources. The microgrammar model is used during com- 
paction to determine microoperation conflicts and to determine the relative 
positioning of microoperations within microinstructions. At present, these ma- 
chine models cannot handle some features of real machines such as asynchronous 
timing, writable control stores, and subroutines. 

The main feature of the local microcode synthesis system is its data flow 
orientation. Among its major innovations are machine-independent methods of 
coupling independently-derived data dependency graphs without imposing strict 
sequentiality, the ability to handle side effects, the ability to reason about 
machines with different word widths, and a limited understanding of bitwise 
operations such as rotates, shifts, and bit extractions. 

Although the system did generate the microcode in the examples described 
above, it does have some limitations. It does not have a complete understanding 
of bitwise operations and in this area it must rely on heuristics. The application 
of equivalence axioms can lead to much larger search spaces and more intelli- 
gence is required in selecting the relevant axioms. The system described forms 
the basis for a retargetable microcode compiler for a C-like language that was 
developed at Colorado State University. The compiler has been targeted to several 
hypothetical machines, the PUMA machine, and an AMD29500-based signal 
processing architecture [ 11. 

We are currently targeting the compiler to the highly horizontal micro- 
architecture of the next-generation Evans and Sutherland graphics processor 
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and developing retargetable methods of phase-coupled global optimization and 
delayed register assignment. 
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