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Abstract

The performance of programs executing on vector computers is significantly improved when the

number of accesses to memory can be reduced. Unrolling Fortran DO loops, followed by substitutions

and eliminations in the unrolled code, can reduce the number of loads and stores. In this paper we

characterize the unrolling transformation and associated transformations of Fortran DO loops and

describe a set of software tools to carry out these transformations. The tools use the machinery avail-

able in Toolpack and have been integrated into that environment. We describe the results of applying

these tools to a collection of linear algebra subroutines.
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Transforming Fortran DO Loops to Improve Performance
on Vector Architectures*

Wayne R. Cowelt
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, Illinois

Christopher P. Thompson
Computer Science and Systems Division
Atomic Energy Research Establishment

Harwell, Oxfordshire
on leave at

Numerical Algorithms Group, Inc.
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1. Introduction

Fortran' programs that include matrix and vector calculations usually call highly optim-
ized linear algebra routines from a library; see, for example, [7,4]. The nested DO loops in
such linear algebra routines have properties that make the code amenable to the application of
certain transformations, described in [5], aimed at causing a vectorizing Fortran compiler to
produce code that is better adapted to vector architecture. The aim of the paper is to describe
preliminary work in the automation of these transformations. We begin by illustrating the
transformations and their effect.

Consider the computation of a matrix by vector product (c = Ab):

DO 20 J=1,N
DO 10 1=1,64

C(I) = C(I) + A(I,J)*B(J)
10 CONTINUE
20 CONTINUE

The following generic "pseudo-assembler" illustrates the code generated from the assignment
statement in the above Fortran by a typical vectorizing compiler for a register-based machine:

*This report is being issued jointly as Argonne National Laboratory Technical Report ANL-85-63 and Numerical Algorithms
Group Technical Report NP 1168.

tThis work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under contract W-31-109-Eng-38.

'The word Fortran in this paper means ANSI Standard Fortran 77 [1].



load c(1:64)
load a(1:64,j)
load b(j)
* SOV1

+ V1,V0
store VO

into
into
into
into
into

into

vector register

vector register
scalar register
vector register

vector register
c(1:64)

For simplicity we shall ignore che looping machinery generated by the compiler-it is compu-
tationally negligible by comparison with the arithmetic shown.

The following Fortran code is exactly equivalent, from an arithmetic viewpoint, to the
above code. (For clarity we assume that N is even.) The differences between the loops only
affect data movement; all the calculations, including intermediate values, are identical.

10
20

DO 20 J = 1,N-1,2
DO 10 I = 1,64

C(I) = (C(I) + A(I,J)*B(J)) + A(I,J+1)*B(J+1)
CONTINUE

CONTINUE

From the second version of the assignment statement, our hypothetical
piler generates

vectorizing com-

1 load c(1:64)
2 load a(1:64,j)
3 load b(j)
4 * SO,V1
5 + V1,V0
6 load a(1:64,j+1)
7 load b(j+1)
8 * S1,V2
9 + V2,V0
10 store VO

into vector

into vector

into scalar
into vector

into vector

into vector

into scalar
into vector

into vector

into c(1:64)

The significant fact is that this second set of assembler instructions is executed only N/2
times while the first set is executed N times; hence, the total number of vector load and store
instructions is reduced. With present computer technology this fact is extremely important
because memory access is the bottleneck for most computations.

In principle we can further reduce the number of vector loads and stores by unrolling to
greater depth (i.e., changing DO 20 J=1,N-1,2 to DO 20 J=1,N-d+1,d where d > 2) and suit-
ably modifying the assignment statement. (For convenience, we assume that d divides N but,
as will be seen later, our treatment does not rely on this.) In the set of instructions generated
by the compiler the arithmetic operations are the same but the set is executed N/d times. The
number of words moved between memory and registers in vector and scalar operations is
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vo
vi
so
V1
vo

regis ter
register
regis ter
register
register
register
register
register
register

vo
vi
So
vi
vo
V2
Si
V2
vo



Words Moved

Vector stores: 64N/d
Vector loads: (64N/d)(d+1)
Scalar loads: 64N

The most expensive operations are vector loads and stores. The number of words moved by
vector instructions, for various values of d, is

d Words Moved = 64N(d+2/d)

1 (original) 192N
2 128N
4 96N
64 66N

Because it is not meaningful for d to be larger than N, the lower limit is 64(N+2)-about one-
third the number for the original code. The cost of other types of instructions and the finite-
ness of the hardware make this limit unattainable, but we shall present the results of experi-
ments which show that a significant proportion of this improvement can be achieved. It is also
interesting to note that the largest single improvement is obtained 2 when d = 2.

Other benefits from such transformations of Fortran are worth noting. These are harder
to quantify and depend, to some extent, on the sophistication of the compiler; but it seems rea-
sonable to expect computer manufacturers to supply sufficiently sophisticated software to util-
ize the features that have been built into the hardware. There are indications that some com-
piler writers are beginning to consider this type of transformation.

First we note that reducing the number of memory references decreases the probability of
delays introduced by memory latency time. Further, in a multiprocessor environment, a reduc-
tion in the number of memory references decreases the probability of conflicts among proces-
sors, thereby lessening the delays caused by such conflicts and increasing the speed of all exe-
cuting processes (a socially desirable benefit!).

Benefits also derive from the fact that many existing vector computers have a limited
amount of parallelism incorporated into their architecture and the transformed code provides
enhanced opportunities for concurrency. For example, the second set of load instructions (6
and 7) is independent of and could be scheduled concurrently with the first set of load instruc-
tions (2 and 3), provided there were enough paths to memory, or with the preceding arithmetic
instructions (4 and 5). The possibilities for simultaneous execution of arithmetic operations are
also enhanced. The only restriction is that there be enough vector registers to contain the data.
If this is not the case, then presumably either the compiler will issue an error message (this has
been observed when d is large) or will generate code roughly like the first set.

We have written software tools that transform the parameters and ranges of a class of
Fortran DO loops in the manner of the example. Given such tools in the programming
environment for a vector computer, library routines may be written and maintained in their ori-
ginal, more compact, form while the task of generating transformed versions is given to the

2Although this is tue in our simple model, the actual decrease in execution time depends on the architecture of the machine.
For example, if there are two paths from memory, and they can function concurrently, the largest gains are observed when unrol-
ling to an odd depth. The reason can be detected by observing that instruction 6 (load a(1:64j+1)) in the second set leaves one
path from memory idle but could be paired with load a(1:64,j+2) if the unrolling depth were 3.
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tools. Programmers can easily generate transformed versions, unrolled to various depths, ena-
bling them to perform experiments that determine the optimal unrolling depth for a particular
routine on a particular machine configuration. Additionally, the tools may serve as models for
compiler writers who wish to incorporate such transformations into compilers for vector
machines. This is part of a longer-term effort to construct tools that transform existing pro-
grams so that their performance is enhanced on novel computer architectures.

We have concentrated initially upon full linear algebra subroutines for matrix and vector
operations. Human experts organize these calculations in terms of matrix by vector operations.
The transformed code can then be viewed as the implementation of a new algorithm (whose
validity may be demonstrated mathematically) that performs several vector operations on each
pass through the outer loop. On the other hand, no knowledge about computational linear
algebra is explicitly built into the tools. They are capable of detecting patterns and manipulat-
ing programs using algorithms that reflect knowledge of the target architecture. Therefore, the
analysis underlying the tool algorithms concentrates on operations that may be performed on
Fortran programs to improve their performance on a particular architecture. To produce the
transformed Fortran discussed in this paper, several intermediate stages of a program (created
by different transformations) must be introduced before the "final version" that exhibits the
improved data movement. These are described in Sections 2-5.

In Section 2 we define formal restrictions on the domain of the transformations.
Although Fortran DO loops can be extremely complex, many linear algebra operations can be
coded using a subset of the language - often such restrictions also improve efficiency. The
concept of a regular DO loop, discussed in Section 2, admits sufficient generality to allow
coding a full range of linear algebra routines (and many other routines) in a format that is
amenable to various transformations.

In the first intermediate stage of transformation, the innermost-but-one DO loop of each
nest is unrolled; i.e., the range of the loop, including, of course, the inner DO loops, is repro-
duced d times with appropriate substitutions for the DO variable and appropriate modification
of the parameters. (Our assumption is that the arithmetic is efficiently handled by vector
instructions.) At this stage, related assignment statements, in the ranges of the inner DO loops,
are generated for further processing. We have concentrated on routines with DOs nested two
deep, and so the loop that is unrolled by the tools is actually the outer loop.

In the example of matrix by vector multiplication the code generated at this first stage
when d = 2 (assuming that N is even) is

DO 30 J = 1,N-1,2
DO 10 I = 1,64

C(I) = C(I) + A(I,J)*B(J)
10 CONTINUE

DO 20 I = 1,64
C(I) = C(I) + A(I,J+1)*B(J+1)

20 CONTINUE
30 CONTINUE

The unrolling transformation is discussed in Section 3.

In the second stage of intermediate processing the two DO loops above are condensed to
give
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DO 30 J = 1,N-1,2
DO 10 I = 1,64

C(I) = C(I) + A(I,J)*B(J)
C(I) = C(I) + A(I,J+1)*B(J+a)

10 C NTINUE
30 CONTINUE

We have aggregated the assignments that were generated from the same "master."

In the third stage the two assignments are combined by substitution/elimination to give
the transformed version from which the more efficient assembler code was generated, as
analyzed above. Conditions prerequisite to condensation and substitution/elimination are dis-
cussed in Section 4.

In Section 5 we work through the transformations for a typical program paradigm. Then,
in Section 6, we describe the tools that perform these transformations and how they are
integrated into Toolpack [2]. In Section 7 we report the results of timing experiments in which
we compare machine-transformed with human-transformed versions of the codes described in
[4]. Finally, in Section 8, we suggest future directions for this work.

2. Regular DO Loops

In the following, I is a variable of type INTEGER, F(I) is a block of Fortran statements
that may depend on I, t(I) is a single Fortran statement that may depend on I, and el,e2,e3 are
expressions of type INTEGER. The Fortran DO loop

DO 10 I = el,e2,e3
F(I)

10 t(I)

is said to be regular when the following conditions hold:

(1) The terminating statement t(I) is a CONTINUE.

(2) There are no transfers to the terminating statement from the block F(I).

(3) If the parameters are such that the loop is executed at least once, then

e2 = el + m*e3

for some integer m.

(4) If the loop terminates by "dropping through" the terminating statement (rather than by
transferring out of the loop) then the value of the DO variable is not used after the termi-
nation of the loop.

The following lemma will be useful. Its proof relates condition(3) to loop processing as
defined in [1].

LEMMA 1. Regularity condition (3) is equivalent to saying that the execution of

DO 10 I = el,e2,e3
F(I)

10 CONTINUE
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is equivalent to the execution of the sequence

F(el)
F(el+e3)
F(el+2*e3)

F( e2)

Proof. The Fortran standard [1] defines the initial iteration count to be

IR = MAX((e2 - el + e3)/e3,0)

where "/" is integer divide in the Fortran sense. The iteration count is decremented by 1 each
time the loop is executed; execution of the loop continues as long as the iteration count is
non-zero. If IR > 0 (that is, if the loop is executed at least once), there is an integer r such that
0Or<e3 and

e2 - el + e3 = IR*e3 + r

If we assume regularity condition (3), then

e2 - el + e3 = (m + 1)*e3

and so r = 0 and IR = m + 1. Corresponding values of the iteration ccunt and the DO variable
are as follows:

IR el
IR - 1 el + e3
IR - 2 el + 2*e3

IR - (IR -1) = 1 el + (IR - 1)*e3 = e2
The sequence of values assumed by the DO variable corresponds to the execution of F(e 1),
F(el+e3), ... , F(e2), as required.

Conversely, if the execution of F(el), F(el+e3), ... , F(e2) is equivalent to the execution
of the DO, then

e2 = el + (IR - 1)*e3

and regularity condition (3) is satisfied. Q.E.D.

A DO loop that violates one or more of conditions (1)-(3) may be transformed into
equivalent Fortran in which the DO loop satisfies these conditions. Let loop 10, violating con-
ditions (1)-(3), be represented by

DO '0 I = el,e2,e3

F(I) [10]
10 t(I)
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where "[10]" indicates transfers to the statement with label 10 from the block F(I). Then the
following code is equivalent to loop 10; further, loop 11 satisfies conditions (1)-(3):

IR = (e2 - el + e3)/e3
E2NEW = el + (IR - 1)*e3
DO 11 I = e1,E2NEW,e3

F(I) [9]
9 CONTINUE

t(I)
11 CONTINUE

(We are assuming that IR and E2NEW are not used elsewhere in the program.) To verify
equivalence, note that if loop 11 is executed at least once, then IR is the initial iteration count
and the execution of loop 11 is equivalent to the execution of

F(el) [1]
1 CONTINUE

t(el)
F(el+e3) [2]

2 CONTINUE
t(el+e3)
F(el+2*e3) [3]

3 CONTINUE
t(el+2*e3)

F(E2NEW) [<label>]
<label> CONTINUE

t(E2NEW)

By construction, E2NEW is the same last value as before. Note also that condition (3) is true
by Lemma 1.

Condition (4) may seem unduly restrictive in view of the fact that it is easy to adjust the
"drop-through" exit value of I by following

11 CONTINUE

in the above code with

IF (IR .LE. 0) THEN
I = el

ELSE
I = E2NEW + e3

END IF

However, this appended code inhibits the application of certain transformations to be discussed
lacer. Moreover, our experience with codes that perform matrix and v' tor operations suggests
that the final value of the DO variable is rarely used.
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Thus it is clear that any DO loop can be automatically transformed into a regular DO
loop. The regular DO loops form the domain and range of the unrolling and condensing
transformations defined in Sections 3 and 4.2, respectively. Observe that if the loop contains
labelled statements, then extra care is required to avoid clashes when generating new code.
The necessary modifications are straightforward, and we do not discuss them explicitly in the
following.

3. The Unrolling Transformation

The transformation considered in this section is a generalization of the unrolling transfor-
mation discussed in [6] and pursued further in [5]. The aim here is to generate sequences of
assignment statements that can be combined by subsequent transformations. As illustrated in
Section 1, a DO loop is unrolled by replicating the statements in its range and suitably adjust-
ing the parameters. In general there will be values of the DO variable not assumed by the new
set of parameters and it will be necessary to have a "clean-up" loop to cover these cases. We
can choose the new parameters so that the vases covered by clean-up occur either at the end or
at the beginning of the set of values assumed by the DO variable. We call these alternative
constructions "clean-up after" and "clean-up before," respectively. The tools use clean-up
after and we concentrate on that case in the following analysis.

The original (or "rolled") loop, the unrolled loop, and the clean-up loop (called loops
10, 20, and 21, respectively) have the following forms, where d, the depth of the unrolling, is a
positive integer.

C This is the original loop.
DO 10 I = el,e2,e3

F(I)
10 CONTINUE

C This is the main unrolled loop.
DO 20 I = elmain,e2main,d*e3

F(I)
F(I+e3)

F(I+(d-1)*e3)

20 CONTINUE

C This is the clean-up loop.

DO 21 I = elclup,e2clup,e3
F(I)

21 CONTINUE

Define

M = (e2 - el + e3)/(d*e3)

where el,e2,e3 are the parameters of loop 10. Then the parameters of loops 20 and 21 are
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defined as follows:

elmain = el, e2main = el + (M - 1)*d*e3

elclup = el + M*d*e3, e2clup = e2

THEOREM 1. If loop 10 is regular, then loops 20 and 21 are regular and together are
equivalent to loop 10.

Proof. Regularity condition (1) is true by construction for loops 20 and 21. We shall first
establish regularity condition (3) for these loops and then show that together they are
equivalent to loop 10. Regularity conditions (2) and (4) will follow from the equivalence.

For loop 20 we note that

e2main = elmain + (M - 1)*d*e3

and thus regularity condition (3) is satisfied. For loop 21,

e2clup = elclup + e2 - el - M*d*e3.

Loop 10 is regular, and so e2 - el = m*e3 for some integer m. Hence,

e2clup = e lclup + (m - M*d)*e3

and regularity condition (3) for loop 21 is satisfied.

Next we establish that loops 20 and 21 are equivalent to loop 10. By Lemma 1 the main
loop is equivalent to the blocks in the first column below. Corresponding values of the main
loop variable are shown in the second column (only changes are recorded).

F(el)
F(el+e3)

F(el+(d-1)*e3)
F(el+d*e3)
F(el+(d+l)*e3)

I = elmain = el

I = el + d*e3

F(el+(2*d-l)*e3)

F(e2main)
F(e2main+e3)

F(e2main+(d-1)*e3)

I = e2main

-9-



By Lemma 1 the clean-up loop may be similarly depicted:

F(elclup) I = elclup
F(elclup+e3) I = elclup+e3

F(e2) I = e2clup = e2

Consider the last block in the main loop and the first block in the clean-up loop. From
the new parameter definitions

e2main + (d-1)*e3 = el + M*d*e3 - e3 = elclup - e3

Hence, the concatenation of the first columns is equivalent to loop 10. Regularity conditions
(2) and (4) for loops 20 and 21 follow immediately. Q.E.D.

We note that the clean-up loop is not executed when e2 - el + e3 is exactly divisible by
d*e3. To show this, let the initial iteration count for the clean-up loop be IRclup. Then,

IRclup = MAX((e2clup - elclup + e3)/e3,0) =

MAX((e2 - el + e3 - M*d*e3)/e3,0)

If e2 - el + e3 is exactly divisible by d*e3, then from the definition of M, M*d*e3 = e2 - el +
e3 and IRclup = 0.

For clean-up before, loop 21 would precede loop 20, M would be defined as before, and
the new parameters would be

e lmain = e2 - (M*d - 1)*e3, e2main = e2 - (d-1)*e3

elclup = el, e2clup = e2 - M*d*e3.

The above analysis can be carried through for clean-up before without essential change.

4. Dependency Sets

Any regular DO loop may be unrolled, as seen in Section 3, but in order to condense
sequences of DO loops and then combine the statements in the range of the condensed DO
loop, we need the transformations discussed in this section. The independence conditions that
permit these transformations to be applied without changing the results of the computation are
expressed using the notion of the dependency set of an assignment statement. We shall limit
the discussion to arithmetic assignments because of our focus on modules that carry out vector
and matrix computations. To simplify the discussion and the operation of the tools, we shall
exclude statements that contain function references and shall require that the program contain
no EQUIVALENCE statements.

Let v = e be an arithmetic assignment statement. Then v is the name of a variable or an
array element of type integer, real, double precision, or complex, and e is an arithmetic expres-
sion that, by assumption, does not contain a function reference [1]. The dependency set of v =
e is the set of memory locations associated with the variable and array references in v and e.
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In other words, if we regard v = e as a definition of v, then this definition is dependent on the
definitions of exactly the members of the dependency set, including, for convenience, the loca-
tion associated with v itself. To illustrate, the dependency set of each arithmetic assignment
statement in the first column below is the set of locations associated with the references in the
second column:

A = 2 [A]
A = B + C(I,J) [A,B,I,J,C(I,J)]
S = S + 1 [5
C(A(I,J)) = 2 [I,J,A(I,J),C(A(I,J))]
C(I) = A(I,J)*B(J) [I,C(I),J,A(I,J),B(J)]
C(I) = C(I)+A(I,J)*B(J) [I,C(I),J,A(I,J),B(J)]
C(2) = C(2)+A(2,J)*B(J) [C(2),J,A(2,J),B(J)]

We shall need to be able to decide whether a variable or array element is a reference to a
member of the dependency set of an assignment statement. Even by excluding Fortran
EQUIVALENCE, the question is not necessarily settled by examining the names in Fortran
expressions because two array references with the same name, but differently named subscripts,
refer to the same memory location if the subscripts are equal. The tools examine names and
could determine, for example, that the following pairs of array references are different:

C(I) and C(I+1)
C(2,I) and C(1,J)

B(I) and C(J)

However, without further information, the tools could not determine whether or not C(I) and
C(J) were different references. Rather, the tools detect whether the assignment statements and
the array references in question arise in the context of a Fortran structure in which the sub-
scripts have been analytically shown to be different. Such a structure is analyzed in Section 5.

4.1. Permutation and Substitution/Elimination

Using the notion of dependency sets, we can state the conditions under which the
transformations permutation and substitution/elimination may be performed (without changing
the final result). In th; following, an Assignment Block is a sequence of arithmetic assignment
statements containing no function references and no assignments to subscripts of array refer-
ences in the block. By fixed subscripts we refer to program execution; the value of the sub-
script has been assigned before the execution of the assignment block and, since there are no
assignments to array subscripts in the block, does not change value during the execution of the
block. Thus, the fixed subscripts behave mathematically as constants, but we shall reserve the
term "constant" to refer to a Fortran constant. The set of allowable values depends on the
Fortran context of the assignment block; in our applications, the allowable values are the
values assumed by DO variables.

Permutation: The assignment block consisting of

u1 = Vi

U2 =V 2

may be replaced by

.11-



U 2 = V 2

U1 = VI

if, for every allowable set of fixed subscripts, (1) u1 is not a reference to a member of the
dependency set of u2 = v2; (2) u2 is not a reference to a member of the dependency set of
u1 = V 1 .

Substitution/elimination: Let u = redef be a redefinition of u = def in the assignment block

u = def

u1 = V 1

un = v

u = redef

Suppose that, for every allowable set of ''xed subscripts, none of the u, is a reference to a
member of the dependency set of u = def. Then the above sequence may be replaced by

u = v 1 [u -+ def]

u; = V; [u - def]

u = redef [u - def

where the first definition, u = def, has been eliminated and every occurrence of u on the right-
hand side of any assignment statement in the sequence has been replaced by the expression def,
suitably parenthesized. Note that the number of arithmetic operations in the transformed code
is never smaller than in the original, but is the same when precisely one substitution occurs.
One substitution is typical for linear algebra codes.

4.2. Condensation of Regular Parameter-Equivalent DO Loops

Condensation is a technique for coalescing the ranges of DO loops, thus creating
sequences of assignments with the potential for substitution/elimination. The most basic case
of condensation is considered in this section. The tools attempt to reduce more complex cases
to this one, as we shall illustrate in Section 5.
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Let

DO 10 I = el,e2,e3
F(I)

10 CONTINUE
DO 20 I = el,e2,e3

G(I)

20 CONTINUE

be a pair of consecutive regular DO loops that have the same parameters (we use the term
parameter-equivalent), where F(I) and G(I) are assignment blocks. We wish to condense th
two DO loops into one whose parameters are the same and whose range is the concatenation of
the two ranges. The condensed loop is

DO 30 I = el,e2,e3
F(I)
G(I)

30 CONTINUE

The following theorem provides a sufficient condition for this condensation to take place.

THEOREM 2. Let k, c be any allowable values of the DO variable such that k*e3 < c*e3.
Let a = f [I -. c] and b = g [I -> kJ be any statements from the first and second ranges,
respectively, in which the values c and k have been substituted for the DO variable I. Then
loop 30 is equivalent to loops 10 and 20 together if a is not a reference to a member of the
dependency set of b = g [I -> kJ and b is not a reference to a member of the dependency set
of a =f[I -> cJ.

Proof. By regularity, loops 10 and 20 together are equivalent to the following assign-
ment block in which all the subscripts are fixed:

F(el)

F(el+e3)

F(e2)
G(el)
G(el+e3)

G(e2)

We proceed by induction on n where el + (n-1)*e3 is an allowable value of the DO vari-
able. For the case n = 1, write the above sequence of blocks as
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F(el)

F(el+r*e3) r >0

F(e2)
G(el)

G(e2)

Choose k = el and c = el + r*e3. Then

k*e3 = el*e3 < el*e3 + r*(e3)**2 = c*e3

and the hypothesis of the theorem guarantees that block G(el) can be permuted, statement by
statement, with each higher (i.e., previous) block until the next higher block is F(el).

Now suppose that the first n blocks associated with loop 20 have been permuted upward
so that the sequence of blocks may be written

F(el)
G(el)

F(e1+(n-1)*e3)
G(e1+(n-1)*e3)
F(el+n*e3)

F(e2)
G(el+n*e3)

G(e2)

Choose k -el + n*e3 and c = el + m*e3 where m > n > 0. Then

k*e3 = el*e3 + n*(e3)**2 < el*e3 + m*(e3)**2 = c*e3

and the hypotheses of the theorem guarantees that block G(e1+n*e3) may be permuted, state-
ment by statement, with each higher (i.e., previous) block until the next higher block is
F(el+n*e3). By induction, we may permute all the blocks associated with loop 20, giving
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F(el)
G(el)

F(e2)
G(e2)

which is equivalent to loop 30. Q.E.D.

5. A Typical Paradigm

We now illustrate the use of the transformational machinery described in the previous
two sections. We shall step through the stages described in the Introduction for a nest of DO
loops that matches one of the paradigms that the tools recognize and transform.

The seven special paradigms that the tools currently recognize were derived from the For-
tran structures that occur in several generic linear algebra routines, for example, the routines of
[4]. The tools also transform more general structures using general algorithms; they issue warn-
ings when this occurs because data dependencies may render the code incorrect and, in any
case, its performance is apt to be poor. When this happens, it is a signal that an additional
paradigm needs to be incorporated. Further information may be found in [3].

In the following, an Array Assignment Block (AAB) is an assignment block in which the
left side of each statement is an array reference.

The paradigm is the nest

DO 10 J = 1,N
DO 20 I = J+1,M

B(I) = F(I,J)
20 CONTINUE
10 CONTINUE

where B(I) = F(I,J) is an AAB in which the left side of each statement has a single subscript
which is the DO variable. The right side of each statement depends on the DO variables I and
J; any other subscripts are considered fixed. We require the AAB to have the restricted sub-
script property, defined as follows: Let b(I) = f(I,J) be any statement in the block. Then any
occurrence of the array reference b on the right side of any statement in the block has subscript
J, except that b(I) is also permitted on the right side of a statement whose left side is b(I).

Completing the description of the paradigm, we require tha' the left sides of the state-
ments in the block be distinct. However, there is no loss of generality in this requirement, for
suppose there were two occurrences of b(I) on the left, either consecutive or separated by state-
ments whose left sides were not b(I). If they were consecutive, we could eliminate the first by
substitution/elimination. Otherwise, in the AAB

b(I) = f(I,J)
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a(I) = f 2 (I,J)

b(I) = f 3 (I,J)

let i, j be any fixed values of I, J. By the restricted subscript property, any occurrence of a(i)
in f(ij) must have subscript j. But the loop parameters guarantee that i > j so a(i) is not a
reference to a member of the dependency set of b(I) =f1(I,J) and, again, we may combine the
assignments to b(I) by substitution/elimination.

The first step in the transformation of the above nest is to unroll loop 10 to depth d. The
result is

DO 10 J = 1,d*(N/d)-d+1,d
DO 20 I = J+1,M

B(I) = F(1,J)
20 CONTINUE

DO 30 I = J+2,M
B(I) = F(I,J+1)

30 CONTINUE

DO 100 I = J+d,M
B(I) = F(I,J+d-1)

100 CONTINUE
10 CONTINUE

C Following is the clean-up loop.

DO 200 J = d*(N/d)+1,N
DO 210 I = J+1,M

B(I) = F(I,J)
210 CONTINUE
200 CONTINUE

We will ignore the clean-up loop in what follows since we do not transform it further.
Consider loops 20 and 30 in the unrolled code. Write the sequence of statements resulting
from substituting the first value of the DO variable in the range of loop 20 and adjusting the
DO parameters of loop 20 accordingly. We refer to this operation as peeling the range of the
loop for this value of the DO variable. Some paradigms involve peeling the range for several
values of the DO variable at the beginning or end of its set of values. In this paradigm peeling
is equivalent to writing special code to deal with the "triangle" formed at the top of a block of
columns.

B(J+1)=F(J+1,J)
DO 20 I - J+2,M

B(I) = F(I,J)
20 ONrINUE
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DO 30 I = J+2,M
B(I) = F(I,J+1)

30 CONINUE

Loops 20 and 30 are now parameter-equivalent. We wish to verify that these two loops
satisfy the conditions of Theorem 2. Let k, c be allowable values of the DO parameter I,
where k < c, and let j be an allowable value of the DO parameter J. Substituting these values,
consider statements from the ranges of the indicated loops, as follows:

b,(c) = f,(c,j) (loop 20)
bt(k) = ft(k,j+1) (loop 30)

From the restricted subscript property, every occurrence of b8 in the expression ft has subscript
k or j+1. But this subscript is not c because c > k and c j+2; hence b(c) is not a reference
to a member of the dependency set of bt(k) = ft(kj+l) . Similarly, every occurrence of b in the
expression f, has subscript c or j. But this subscript is not k because k < c and k j+2; hence
bt(k) is not a reference to a member of the dependency set of b8(c) = f(c,j). By Theorem 2 the
loops may be condensed resulting in

B(J+1) = F(J+1,J)
DO 40 I = J+2,M

B(I) = F(I,J)
B(I) = F(I,J+1)

40 CONINUE

If d > 2, loop 40 is followed in the unrolled code by

DO 50 I = J+3,M
B(I) = F(I,J+2)

50 CONTINUE

We offer an inductive argument that the same transformations can be applied to this pattern of
assignment statements and DO loops. Suppose that after n such steps the first n+1 inner loops
have been mapped into the following:

C Following is the peeled code from the first step.
B(J+l) = F(J+l,J)

C Following is the peeled code from the second step.
B(J+2) = F(J+2,J)
B(J+2) = F(J+2,J+1)

C The following dots represent the peeled code from
C steps 3 through n-1.
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C Following is the peeled code from the nth step.
B(J+n) = F(J+n,J)
B(J+n) = F(J+n,J+1)

B(J+n) = F(J+n,J+n-l)

C Following is the DO loop resulting from condensing the
C first n-1 DO loops.

DO 60 I = J+n+1,M
B(I) = F(I,J)

B(I) = F(I,J+n)
60 CONTINUE

If d > n+l, loop 60 is followed in the unrolled code by

DO 70 I = J+n+2,M
B(I) = F(I,J+n+l)

70 CONINUE

In loop 60 peel the range for the first value of the DO variable and adjust the parameters
accordingly; then examine whether we may condense the new loop 60 and loop 70. The typi-
cal statements are

b,(c) = f,(c, j+m) (new loop 60)
bt(k) = ft(k,j+n+l) (loop 70)

where 0 : m s n and c, k, j are as before. Then every occurrence of b, in ft has subscript k or
j+n+1. But c > k and c z j+n+2, so such a subscript could not be c. Again, every occurrence
of b in f, must have subscript c or j+m. But k < c and k z j+n+2 z j+m+2, so the subscript is
not k. Hence the loops can be condensed by Theorem 2, completing the inductive argument.
After d-1 steps all the inner loops have been condensed and we are ready to consider
substitution/elimination. In the peeled code that precedes the condensed loop, successive
definitions of b,(J+n) for n d-1 have the form

b,(J+n) = f,(J+n,J+m)

b,(J+n) =f,(J+n,J+m+l)

where 0 s m s n-2. The statements between the two definitions are assignments to bt(J+n)
where t * s. Let j be any allowable value of J. From the restricted subscript property, every
occurrence of b in the expression f,(j+nj+m) must have subscript j+m; hence b(j+n) cannot be a
reference to a member of the dependency set of b,j+n) = f,(j+n,j+m). Therefore, we may
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eliminate the first definition if we substitute f,(J+n,J+m) for b(J+n) in all the statements up to
and including the second definition. Repetition of the operation results in a series of AABs,
one for each n, 1snsd-1. In each AAB all the assignments to b,(J+n), for each s, have been col-
lected into a single assignment.

Similar arguments about substitution/elimination obtain for the condensed loop where the

sequence of definition statement, intervening statements, and redefinition statement looks like

b,(I) = f,(I,J+m)

bt(I) = ft(I,J+m) or b,(I)=f,(I,J+m+l)

b,(I) = f8(I,J+m+l)

where 0 s m n-1. Let i, j be any allowable values of I and J. Then any occurrence of b in
f,(ij+m) has subscript j+m by the restricted subscript property. However, the inner DO state-
ment is DO <label> I = J+n+1,M and so ihj+n+12j+m+2. Hence, bt(i) is not a reference to a
member of the dependency set of b,(i) = f,(i,j+m) and the range of the DO may be compacted
by substitution/elimination.

The final result of the transformations is Fortran of the following form where B is the
same as in the original Fortran, i.e., the array names on the left side of statements in the blocks
are the same as in the original block and appear in the same order.

B(J+1) = G 1(J,J+1)
B(J+2) = G2(J,J+1,J+2)

B(J+d-1) = Gd.1(J,J+1,J+2,...,J+d-1)
DO 10 I = J+d,M

B(I) = G(I,J,J+1,J+2,...,J+d-1)
10 XJNTINUE

The G blocks are derived from the F blocks by the above processes.

An example of a routine that fits this paradigm is F01AKY from [4]. This routine calcu-
lates b = L-'b where L has the form

L1  0
L2 1  I

L11 is unit lower triangular of order N, and L21 is of order M-N by N. The original form of the
code is as follows:
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SUBROUTINE FO1AKY(A, IA, M, N, B)
INTEGER IA, M, N
DOUBLE PRECISION A(IA,N), B(M)
INTEGER I, J
DO 40 J=1,N

CDIR$ IVDEP
DO 20 I=J+1,M

B(I) = B(I)-A(I,J)*B(J)

20 CONTINUE
40 CONTINUE

RETURN
END

The comment CDIR$ IVDEP is a directive to CRAY compilers. It instructs the compiler to
compile vector code even if its dependency analysis cannot verify that the code can be vector-
ized. The unrolling tool handles comments in such a way that such directives are preserved
and are repeated in the clean-up loop.

The tools discussed in the next section were used to unroll this code to depth 4, con-
dense, and substitute. The result is shown below. The comments generated by the tools assist
in relating the transformed code to the transformations.

SUBROUTINE FO1AKY(A, IA,M,N, B)
INTEGER IA,M,N
DOUBLE PRECISION A(IA,N),B(M)
INTEGER I,J

C*** DO-loop unrolled to depth 4 ***
M99999 = (N- (1)+1)/ (4)

v9998 = 1 + 4* (M99999-1)
DO 20 J = 1,M99998,4

CDIR$ IVDEP
C*** DO loops condensed ***

B(J+1) = B(J+1) - A(J+1,J)*B(J)

C*** DO loops condensed ***
C*** Pedefinition detected - substitution/elimination applied ***

I(J+2) = (B(J+2)-A(J+2,J)*B(J)) - A(J+2,J+1)*B(J+1)
C*** Redefinition detected - substitution/elimination applied ***
C*** Redefinition detected - substitution/elimination applied ***

B(J+3) = ((B(J+3)-A(J+3,J)*B(J))-A(J+3,J+1)*B(J+1)) -
+ A(J+3,J+2)*B(J+2)

DO 10 I = (J+3) + 1,M
C*** Redefinition detected - substitution/elimination applied ***
C*** Redefinition detected - substitution/elimination applied ***

B(I) = (((B(I)-A(I,J)*B(J))-A(I,J+1)*B(J+1))-A(I,J+2)*
+ B(J+2)) - A(I,J+3)*B(J+3)

C*** Redefinition detected - substitution/elimination applied ***
10 CONTINUE
20 CONTINUE
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DO 40 J = M99998 + 4,N
CDIR$ IVDEP

DO 30 I = J + 1,M
B(I) = B(I) - A(I,J)*B(J)

30 CONTINUE
40 CONTINUE

RETURN
END

Timing experiments show that on a CRAY-S the original code executes on data with
N > 200 at about 35 megaflops and the transformed code at about 65 megaflops, a speedup of
over 80 percent.

6. The Transformation Tools

In this section we provide a general description of the tools that effect the transformations
and certain Toolpack features on which they depend.

Toolpack3 consists of a suite of software tools aimed at the development and maintenance
of moderate-sized Fortran programs, a user interface to the tools, and a host-system interface
called TIE (Tool Interface to the Environment). Both interfaces may vary from one host sys-
tem to another. The tools are portable to any installation of TIE and are integrated in the
sense that user-requested end results are obtained by invoking an appropriate sequence of tools.
Each tool in the sequence takes its input from files generated by the user and/or other tools and
it, in turn, generates output as files for the user and/or other tools. Scheduling the appropriate
sequence of tool invocations and managing the intermediate data is the task of the user inter-
face. The reader should refer to [2] and the documentation on the Toolpack distribution tape
for detailed information on the installation and use of Toolpack tools, including those described
here, and the software environment in which they reside.

Toolpack includes a Fortran lexical analyzer tool, sometimes called a "scanner," that
maps a Fortran program into a sequence of basic lexical units ced tokens. For example, the
assignment statement

20 C(I) = C(I) + A(I,5)*B(5)

may be represented as the following sequence of tokens:

3Toolpack is in the public domain and may be obtained from The National Energy Software Center, Argonne National La-
boratory, Argonne, IL 60439, U.S.A. or The Numerical Algorithms Group, Inc., 1101 31st Street, Downers Grove, IL 60515,
U.S.A. or The Numerical Algorithms Group, Ltd., 256 Banbury Road, Oxford OX2 7DE, U.K.
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<integer constant> <name> <left parenthesis> <name>
20 C I

<right parenthesis> <equals> <name> <left parenthesis>
C

<name> <right parenthesis> <plus> <name> <left parenthesis>
I A

<name> <conma> <integer constant> <right parenthesis>
I 5

<star> <name> <left parenthesis> <integer constant>
B 5

<right parenthesis> <end of statement>.

Some token types (e.g., <name> and <integer constant>) have strings associated with them; the
associated string is shown under the token in the example. The Toolpack scanner outputs a
file containing the sequence of tokens and their'associated strings, except that the strings asso-
ciated with tokens of type <comment> are stored in a separate file and indexed to their place in
the token sequence. The two files together constitute the token/comment stream.

Another Toolpack tool, the parse tree builder or "parser," takes a token/comment stream
as input and, by referring to a Fortran grammar, produces a representation of the program as a
parse tree, composed of nodes and branches, together with an associated symbol table. To
illustrate, the assignment statement above would be represented as a subtree of the program
parse tree as shown in Fig. 1. The types of the nodes are shown in brackets. Nodes of certain
types, such as [name] and [integer constant], have associated symbols in the symbol table.
These are shown below the node.

Also of direct significance for the transformation tools is a Toolpack tool called "Polish"
or the "unscanner" which maps a token/comment stream into Fortran text. User-defined
options in an options file specify the rules for indentation, label increments, etc., that govern
the appearance of the Fortran text. A Polish options editor tool facilitates the construction of
options files.

The three representations of a Fortran program and the tools that map one into another
are summarized in Fig. 2. (Toolpack names for the tools are shown in parentheses.)

Mapping a parse tree/symbol table into a token/comment stream is called "parse tree
flattening" and is the type of mapping performed by Toolpack transformation tools such as the
precision transformer and the declaration standardizer. Such tools call functions in the Tool-
pack system that enable the tool to extract information about the parse tree and that provide the
facility to construct a token/comment stream by generating individually specified tokens and/or
by generating the tokens corresponding to certain kinds of subtrees of the parse tree.

The unrolling, condensing, and substitution/elimination transformations are carried out by
parse tree flattening tools. To supplement the Toolpack system functions we wrote additional
parse tree flattening functions (largely by modifying existing functions) as utilities for these
transformation tools.

The tools that carry out the transformations discussed in this paper are the DO loop
unrolling tool (ISTUD), the DO loop condensing tool (ISTCD), and the substitution/elimination
tool (ISTSB). These, like all Toolpack tools, are written in "pre-Fortran" that contains
INCLUDE statements and symbolic constants; the tool source must be processed using a suit-
able macro processor, such as the portable Toolpack installation utility TIEMAC, to produce
Fortran. These new tools conform to the requirements of the Toolpack virtual machine [2] and
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[assignment statement]

[label] [array element] [add]
20

[name] [name] [array element] [multiply]
C I

[name] [name] [array element] [array element]
C I

[name] [integer constant]
B 5

[name] [name] [integer constant]
A I 5

Figure 1. The Parse Tree Representation of
20 C(I) = C(I) + A(I,5)*B(5)

Scanner (ISTLX) Parser (ISTYP)

Fortran Text Token/Comment Stream Parse Tree/Symbol Table

Polish (ISTPL) Various Tools

T

options file

Polish Options Editor (ISTPO)

Figure 2. Transformations Among Fortran Representations
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are designed to operate in the environment provided by Toolpack.

ISTUD searches a Fortran program (represented as a parse tree/symbol table) for DO
loops, checking whether the loop is the outer DO of a nest and satisfies regularity conditions
(1), (2), and (3). The tool unrolls such DO loops tc i depth specified by the user. The
transformed program is output as a token/comment stream.

ISTCD searches a Fortran program (represented as a parse tree/symbol table) for
sequences of DO loops that match the patterns obtained by unrolling the outer loop of some
one of a set of nested loop paradigms typically found in linear algebra routines. It condenses
such sequences according to rules for the paradigm discovered (see [3]). The design of the
tool encourages the incorporation of additional paradigms as experience dictates. The
transformed program is output as a token/comment stream.

ISTSB searches sequences of assignment statements in a Fortran program (represented as
a parse tree/symbol table) for opportunities to apply substitution/elimination. The strategy of
ISTSB is sketched in [3] and includes permutation transformations when these are possible and
result in an application of substitution/elimination. The sequences of greatest interest are those
that result from the actions of ISTUD and ISTCD. The transformed program is output as a
token/comment stream.

As noted in Section 4, the tools only check names in array references when examining
membership in a dependency set. Formal analysis of the sort exemplified in Section 5 assures
the user that the transformed program is correct if both the conditions that define an included
paradigm, and the conditions described in warnings issued by the tools, are satisfied.

The flow of control among these tools is shown in Appendix B in the form of a "pro-
gram" in an idealized language that permits nested while loops, invocation of tools, and the
use of the termination status of a tool. Comments have "#" in column 1. Since ISTUD,
ISTCD, and ISTSB are parse tree flattening tools, the parser, ISTYP, must be invoked after
ISTUD to produce a parse tree/symbol table for input to ISTCD, and after ISTCD to produce a
parse tree/symbol table for input to ISTSB.4 Moreover, whenever ISTCD or ISTSB carries out
a transformation, it sets the termination status to one of the flags termflag_0 or termflag_1 as
explained in the comments. The termination status determines which further tool sequences are
invoked. For example, we saw that each time two DO loops that match the paradigm of Sec-
tion 5 are condensed there is the possibility that the new DO loop and its successor in the
sequence will match the paradigm. Hence, whenever ISTCD carries out this transformation, it
exits with the termination status set to termflag_0, which causes the parse tree/symbol table
generated from the output token/comment stream to be submitted as input to ISTCD. For other
paradigms, the sequence 1STYP/ISTSB/ISTYP/ISTCD is scheduled because ISTCD terminates
with the status termflag_1. Again, whenever ISTSB carries out a substitution/elimination or
permutation the termination status is set to termflag_0, causing the invocation of the sequence
ISTYP/ISTSB. Thus these tools make full use of the integration of the Toolpack tool suite.

On a Unix installation of Toolpack, this flow of control is managed by a shell script that
is logically equivalent to the program in Appendix B (neglecting error checking, file handling,
etc.). The user types the command line

ucs <unrolling depth> <Polish options file> <Fortran source file>

4 Although it is conceptually correct to say that ISTYP is "invoked," the design of Toolpack permits the parser tool to be
called as a subroutine by the tools that require a parse tree. This is more efficient than invoking the parser as a free-standing tool.
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The transform of the code in the file named <Fortran source file> is written to standard output
and a log showing the sequence of tool invocations is written to standard error. The file
named <Polish options file> is assumed to have been created using the Polish options editor; it
governs the formatting of the transformed code by the unscanner ISTPL.

Normally, when ISTCD and ISTSB call for no further invocation sequences, the
transformed program is mapped from a token/comment stream to Fortran text by ISTPL. How-
ever, if after ISTUD, ISTCD, and ISTSB have been invoked, no substitution/elimination
transformations are possible, the presumption is that unrolling and (possibly) condensing have
not served the purpose of producing Fortran better suited to a vectorizing compiler. ucs recog-
nizes this condition and causes the program in its original form to be output.

Comments present in the original program are retained in the transformed code and are
placed in "reasonable" locations, although thc e is no guarantee that they will be interposed
optimally with the source code to which they relate. Handling comments takes on special
significance because all compiler directives known to the authors take the form of special com-
ments. We have already noted that ISTUD repeats comments in the clean-up loop. It is also
necessary to be sure that the options used with ISTPL preserve comments in their original form
so that their syntax as compiler directives is not changed.

7. Preliminary Results

We believe that this work can be viewed in at least two ways: as providing useful
software tools for inclusion in the programming environment of a vector computer and as
research into the means for developing such tools. The experimental results presented in this
section should help evaluate the work from either orientation. We begin by outlining the cri-
teria we have used to judge the tools and the work of developing them.

We first require, of course, that the tools shall reliably perform the task for which they
have been programmed-they must produce software that is computationally equivalent to the
original code, in the sense of producing the same output from the same input data. Our tests
verify that this has been achieved for Fortran that matches any of the included paradigms, sub-
ject to conditions issued by the tools as warnings.

Secondly, we require that the transformed code be reasonably close in performance to
that produced by human experts. The codes in our test bed satisfied this criterion, as shown
below by the experimental results.

Thirdly, we require that the tools recognize and transform, at an acceptable cost, a
sufficiently wide range of paradigms to be useful. Initially we have considered full linear alge-
bra modules; these are at the heart of very many programs and have already been studied by
experts. Our initial test bed has been a set of 21 kernels taken from the NAG library. These
form a reasonably large, documented, and self-contained collection on which to work. More-
over, J. J. Du Croz of NAG had already studied these subroutines and unrolled them "by
hand." The unrolling depth is 4 in both his work and the tests. The current versions of the
tools recognize and transform 19 of the kernels. Paradigms to match the remaining two have
not yet been incorporated. 5

5One of these two kernels, namely f0lagf, performs the reduction of a real, symmetric matrix to tridiagonal form. The ma-
trix is held in compressed form (only the lower triangle). If one applies the tools to this code, ISTCD resorts to a general condens-
ing algorithm and issues warnings as comments in the transformed code. The transformed f0lagf performs the test calculations
correctly but inefficiently. In particular, all the substitutions that are performed by ISTSB are contained in DO loops that are never
executed. We expect to refine ISTCD to look for the "real" paradigm but we leave this example to illustrate the process through
which the tools were refined. Data from a timing experiment using this code is included in Appendix A.
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The cost of automatically transforming programs is expressible in terms of the cost of
developing and maintaining the tools and the resources required to execute them. The source
for ISTUD, ISTCD, and ISTSB, and their associated function library, currently comprises
about 9000 lines of Fortran (prior to macro processing of the INCLUDE statements), including
comments. The tools required about 8 man-months of effort to develop and document. The
NAG kernels were transformed (unrolling depth 4 to permit comparison with Du Croz's work)
on a VAX 11/780 at Argonne National Laboratory in about one and one-half hours of wall
clock time when the machine load was low. We regard these costs as an acceptable price to
pay for the benefits cited in Section 1.

We expect these tools to become more intelligent through the incorporation of additional
paradigms and more sophisticated analysis. As the level of intelligence built into the system
increases so also does the cost of using and maintaining the tools. We will need more experi-
ence before we can estimate the benefits and marginal cost of adding sophistication to the
tools. We have been guided by the principle that the efficiency of the transformed Fortran
weighs much more heavily than the running time or complexity of a tool.

The differences between the tool-transformed code and the human-transformed code
mainly involve the clean-up loop. The tools use a single algorithm to create the clean-up loop
while Du Croz used some alternative strategies that were beyond the scope of the tools. Since
these differences do not appear critical for large N, we do not regard this as a significant area
for refinement of the tools.

Our experiments involved executing and timing 25 test programs that call various
members of the test bed of NAG kernels. This effort generated a plethora of information
demonstrating the behavior of the code for various N between 50 and 200, the effect of
memory bank conflicts, and the relative merits of different clean-up strategies.

All the results presented here were obtained on the CRAY-lS at AERE, Harwell. This is
a single processor machine so the results are not confused by the effects of memory references
from other CPUs. Furthermore, this machine has only one load/store pipe. The effect of one
pipe may be important although initial experiments on other architectures suggest that the same
effects are present.

Table 1 gives detailed performance figures for two user-callable test programs that per-
form matrix multiplication and the inversion of a real, symmetric, positive-definite matrix
(using Cholesky factorization), respectively. The first column in the table is the dimension of
the matrix. The versions of the NAG kernels called by the test program are indicated by
ROLL, TOOL, and JJDC signifying, respectively, the original (or "rolled") version, the tool
transformed version, and the version produced by Du Croz.

The cycle time of the CRAY-lS is 12.5 nanoseconds so that the maximum "vector"
speed (which we define to be one result per cycle) corresponds to 80 megaflops. The simplest
example of interest is that of matrix multiplication. The unmodified code reaches 39 megaflops
while the unrolled codes both reach about 70 megaflops, a reasonable approximation to the
peak "vector" performance. It has not been possible to achieve an average speed of more than
one result per cycle ("super-vector" performance) from Fortran using these techniques. It is
clear that for the longer vector lengths both adapted versions of the code show significant
improvements (almost a doubling in speed) compared to the "rolled" code. Moreover, the
differences between the automatically altered modules and those changed by Du Croz are very
small.

Bank conflicts did not occur in obtaining the results in Table 1. However, other exam-
ples, where delays resulting from bank conflicts are present, show slower speeds but
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qualitatively similar results; the rates achieved with the human and machine transformed
modules are similar and show significant gains over the original code. In fact, the advantages
are relatively greater because the memory references are more expensive, so their elimination is
more effective.

Matrix multiplication is, in some respects, an artificial example because all of the
floating-point arithmetic can be vectorized and the vector lengths are constant. The second
example, Cholesky decomposition, contains varying vector lengths (the decomposition is tri-
angular) and scalar, real arithmetic. This is reflected in the slower calculation rates shown in
Table 1. Nonetheless, the comparative speed of the tool-changed code is much better than the
speed of the unchanged code and close to the human-unrolled version. From the syntactic
point of view this code is considerably more challenging than matrix multiplication.

In Appendix A we present a selection of data obtained from other user-callable test pro-
grams that call the kernels. A range of matrix decompositions, linear equation solution methods
and eigenvalue problems is included, and several special forms are handled. The tools have
succeeded according to the criteria outlined above. The first column in Appendix A is the size
of N (dimension of the matrix), and "TOOL" and "JJDC" indicate that the test program
called the tool-transformed or human-transformed (Du Croz) versions of the kernels, respec-
tively. The entries are relative improvements, as percentages, over the original, "rolled" code.
The thrust of our argument is that, with the exception noted, the tool-transformed kernels
achieve the same improvements as the Du Croz versions. More than one column of results
indicates either that runs with different sets of test data were made, to measure different
options in the test program or, in the case of FO1CKF, that A=BC, B=BC, and C=BC were
calculated (sub-columns 1, 2, and 3, respectively). The second calculation is significantly
affected by bank conflicts.

We observed some of the benefits of automation in the course of performing these experi-
ments. In particular, it was relatively easy to process, or reprocess, the test bed when we made
changes in the tools. This was important since refining the tools involves quite a lot of "cut
and try." The implication is that when the computer environment alters, for example, a new
release of a compiler, then one can easily repeat transformations and experiments. Moreover,
it is possible that some small improvement can be gained which may be missed or judged not
to repay the effort involved in rewriting code if one is doing it by hand. Our tests revealed
several examples of this, not included in Appendix A, where we obtained gains not achieved
by Du Croz.

8. Conclusions and Future Work

We have described a methodology and a set of software tools for improving the perfor-
mance of Fortran subroutines on vector processors. Results of experiments performed on a
CRAY-IS have been presented. These show that reasonable success has been achieved in
terms of the speed of the transformed codes (in some cases speeds have been almost doubled)
and their similarity to human-transformed codes. It has also been shown that Toolpack pro-
vides a suitable environment for the implementation of this type of software tool.

Future work related to these tools includes expanding the range of paradigms recognized,
testing the unrolling technique on additional vector machines, and examining the effects of
unrolling to different depths. Some further software engineering is planned, to improve the
robustness of the tools.

The functions exemplified by these tools may be characterized as recognizing source code
constructs that consume a significant amount of computing time and transforming them to
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forms which are raore suitable for a particular computer. In the longer term we intend to look
at other architectures (for example, parallel machines with either global-shared memory or
message-passing designs) with a view to recognizing source-code constructs that may be
related to performance. For example, a segment of a program may be identified as a candidate
for parallelization by tools that detect both large amounts of floating point arithmetic in the
segment and data independence among subsegments. The components of ISTCD that deter-
mine and examine dependency sets provide a starting point for detecting data independence.

We anticipate that it will be important to be able to combine detailed information given
by a tool that tests data dependence conditions with a programmer's global view of the pro-
gram and the machine. It will also be important to easily conduct tests and experiments on
variants of a program under development. Hence we envision that future tools will be interac-
tive.
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Appendix A. Percentage Decrease in Execution Time
for Codes Unrolled to Depth 4

TOOL JJDC

ROUTINE: f0ladf
Inversion of real synmetric positive-definite matrix

50 36 41
100 41 45
150 42 46
200 42 47

ROUTINE: f0laef
Reduction of Ax=XBx to standard synmetric eigenproblem

50 37 40
100 42 44
150 43 45
200 44 45

ROUTINE: f0laff
Back transformation of eigenvectors after fOlaef (N vectors)

50 40 46
100 43 47
150 43 47
200 44 47

ROUTINE: f0lakf
Reduction of real, unsynmetric matrix to Hessenberg form.

50 33 34
100 39 39
150 40 41
200 42 42

ROUTINE: fOlalf
Back transformation of eigenvectors after f0lakf (N vectors)

50 23 45 15 29
100 27 44 21 34
150 31 46 24 36
200 32 45 27 38

ROUTINE: f0laxf
QR factorization (NxN)

50 17 17
100 19 19
150 19 20
200 20 20
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Appendix A. Percentage Decrease (continued)

TOOL JJDC

ROUTINE: f0lckf
Matrix multiplication A=BC

50 45 48 44 46 49 46
100 46 44 46 46 44 46
150 46 48 45 46 48 45
200 46 32 45 45 32 45

ROUTINE: f01clf
Matrix multiplication A=BCT

50 45 46
100 46 46
150 45 46
200 45 45

ROUTINE: f03aef
LL factorization

50 32 34
100 38 40
150 41 42
200 42 43

ROUTINE: f03aff
LU factorization (real)

50 23 26
100 30 34
150 33 38
200 35 y 40

ROUTINE: f04agf
Solution of LLTb

50 40 40 41 40
100 43 43 43 42
150 43 43 43 43
200 44 44 44 43

ROUTINE: f04ajf
Solution of LUx=b (real)

50 28 41 32 46
100 33 44 36 48
150 34 44 38 48
200 36 44 40 48
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Appendix A. Percentage Decrease (continued)

TOOL

f04anf
of QRx=b (NxN)

14
14
13
13

ROUTINE: f0lagf (The noted exception - see footnote 5.):
Reduction of a real, synmetric matrix to tridiagonal form

50 -71 16
100 -58 17
150 -48 17
200 -40 17
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Solution

50
100
150
200

JJDC

14
14
13
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Appendix B. Flow of Control for Transformation Tools

# Represent the original Fortran as a token/coment stream.
invoke ISTLX

# Represent the original Fortran as a parse tree/symbol table.
# See footnote 6.
invoke ISTYP

# BEGIN PHASE 1 - Unrolling
# ISTUD input is the original program as a parse tree/symbol table.
# Unroll and parse (parse tree/symbol table -> token/coment stream

# -> parse tree/symbol table)
invoke ISTUD
invoke ISTYP

# BEGIN PHASE 2 - Condensation
# Condense DO loops when paradigms are discovered.
# (parse tree/symbol table -> token/corment stream)
invoke ISTCD

# ISTCD sets the termination status to 'termflagl' when the
# paradigm requires substitution/elimination before further
# condensation. When any other paradigm is discovered, ISTCD
# sets the termination status to 'termflag_0'.

while (termination status = termflag_1)
# Parse the output from ISTCD.

invoke ISTYP

# Apply substitution/elimination in preparation for further

# search by ISTCD for paradigms.
# (parse tree/symbol table -> token/coment stream)

invoke ISTSB

# ISTSB sets the termination status to 'tcrmflag_0' whenever
# any transformation is made.

while (termination status = termflagO)
# Parse the output from ISTSB and invoke ISTSB again.

invoke ISTYP
invoke ISTSB

end while
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Appendix B. Flow of Control (continued)

# Parse the output from ISTSB and invoke ISTCD.
invoke ISTYP
invoke ISTCD

end while

while (termination status = termflagO)
# Parse the output from ISTCD and invoke ISTCD again.

invoke ISTYP
invoke ISTCD

end while

# Parse the output from ISTCD
invoke ISTYP

# BEGIN PHASE 3 - Substitution/Elimination
invoke ISTSB

while (termination status = termflag_0)
# Parse the output from ISTSB and invoke ISTSB again.

invoke ISTYP
invoke ISTSB

end while

# "Unscan" the transformed token/conment stream.
# The output from ISTPL is the transformed Fortran.

invoke ISTPL
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