
F
or many children today, their first
interaction with technology is at
home playing video games. The num-
ber of hours spent in front of these
screens must be in the order of hun-
dreds of billions. While many
researchers, parents, and educators
have good reason to be concerned

about the quantity of time spent in this manner, they
tend to overlook that even so-called educational soft-
ware often does not function as any more than
enhanced page-turning devices displaying informa-
tion to be learned and monitoring students’ progress.
There are currently few opportunities for children to
go beyond button-pushing and mouse-clicking in
their interaction with technology.

By asking children to program software for other
children, we are turning the tables and placing chil-
dren in the active role of constructing their own pro-
grams—and constructing new relationships with
knowledge in the process. The most obvious benefit
is that children learn about technology by building
things of significance, such as game software. A far
more promising aspect is that learning programming
and learning about technology is not only good for its
own sake but also good because it is supportive of
other types of learning. As I will explain in more
detail, the very process of programming game soft-
ware to teach fractions (or any other subject topic, for
that matter) to younger users allows children to
engage in significant mathematical thinking and
learning. But most importantly, through program-
ming, children learn to express themselves in the
technological domain. In the world of educational
programming, these last two aspects of learning with
technology have received far less attention than the
traditional benefits of technological knowledge.

The Game Design Studio
A software design project starts with a simple instruc-
tion: “Design a computer game that teaches some-
thing about fractions to younger students.”
Everything else is left open. A class of students trans-
forms their classroom into a game design studio for
six months. During that period, they are:

• Learning programming;
• Thinking about interface designs;
• Designing graphical elements;
• Conceiving story structures, dialogue, and

characters;
• Devising instructional strategies; and,
• Creating fraction representations.

Students meet every day for one hour to write in
their notebooks about their ideas, plans, and designs.
They also discuss issues related to programming,
games, teaching, and fractions. They give presenta-

tions to each other and meet once a month with their
prospective users. All the students create a fully fin-
ished product—a computer game—with its documen-
tation, advertising, and packaging. Since 1991, several
software design projects with a focus on various math-
ematical or science topics have been conducted suc-
cessfully with students ages 8 to 11 in public
elementary schools in Boston and Los Angeles.

38 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

GAMES

GAMES4

GAMES2

GAMES5

STARTUP
WAIT.FOR.USER

STARTUP
HOUSE

STARTUP
INSIDE

STARTUP
DEATH

GAMES7
STARTUP
ENDING
PROBLEM
ANSWER

Credits
Introduction to Mission :Town
If the player types "a," page
GAMES2 is called.

Frontview of Haunted House.
Choice "a" (in house) GAMES4
[not used but still in program:
Choice "b" (chicken) GAMES3]

INSIDE Display of (a) chest and (b)
 staircase calls CHOICE1
CHOICE1
 If "b" gets GAMES6
 If "a" = demon of the underworld comes.
 WAIT.FOR.USER calls QUESTION2
QUESTION2 asks fractions question
 answer "a" : wrong WAIT.FOR.USER.2
 which calls UNDERWORLD
 answer "b": correct gets GAMES6
 answer "c": wrong WAIT.FOR.USER.2
 which calls UNDERWORLD

Displays red mountain
for hell
If the player types "a,"
GAMES is called and
game starts again

GAMES6 STARTUP
CHICKEN

Wizard asks fraction question
about 3/4
answer "a": correct gets
 GAMES7
answer "b": wrong
answer "c": wrong
b and c provide instructions
about how to start game again.

ENDING
Alien from Plabet Zork
PROBLEM
question about adding fractions
ANSWER
"a" wrong: explanation and goes
to GAMES5
"b" correct: goes to GAMES8

STARTUP
MASTER
FRACTION
DUH
SUM

STARTUP
FINISH
SOUND
EVIL

GAMES8

GAMES9

MASTER
Landing on Planet Zork
FRACTION
Meeting Leader of all Zorks
WAIT.FOR.USER
DUH
Fraction question lowest terms
SUM
answer "a": wrong GAMES5
answer "b": correct GAMES9
answer "c": wrong GAMES5

FINISH
You have won the game
WAIT.FOR.USER
SOUND
music
EVIL
It isn't over yet

Software by Kids
for Kids

Yasmin B. Kafai

Figure 1.
Page structure and connections in
Albert’s game Mission: Town

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227210.227221&domain=pdf&date_stamp=1996-04-01

The Benefits of Making Software for Learning
There is no doubt that students acquired extensive
programming experience in this project. An overview
of students’ Logo pages reveals that most of them cre-
ated complex, interconnected pieces of software.
One example is Albert’s game “Mission: Town” where
at the end of the project consisted of more than 20
pages of code distributed over nine pages with multi-
ple procedures (see Figure 1).

But most importantly, all the games provided evi-
dence of students’ efforts to integrate the content to
be taught—fractions. Students created dozens of situ-
ations with fractions in their notebooks, but only the
best designs found their way into the games. In this
context, children engaged their fantasies and built
relationships with other pockets of reality that went

beyond traditional school approaches in mathemat-
ics education. The introductory screens of two stu-
dents, Amy and Trevor, provide an example of this
effort (see Figure 2).

A comment on the instructional drill-and-practice
format adopted by most students in the design and
implementation of their games: a correct answer pro-
duces a positive outcome, or “become the god or god-
dess of fractions,” whereas the incorrect answer results
in punishment, or “become mentally deformed.” One
explanation for this indeliberate consistency is that

students emulated instruction-
al models found in the com-
mercial market and media.
This should be a warning sign of
how the format, content, and
modalities of educational software
influence children’s thinking
about the standards of instruc-
tional software.

Programming games are a medium for their per-
sonal and creative expression. This is of particular rel-
evance if one is concerned with finding meaningful
and relevant learning situations for students. Being
engaged in this enterprise initiates learning and
learning about learning. This is best expressed in a
final review written by Rosemary, a 10-year-old game
designer: “I made a game. It started out very slowly at
first. It is very hard to put together your own game.
You may think it is easy to do because of all the video
games people play. They look so simple, but try mak-
ing your own game and it’s a totally different story.
Well, I started out with very high expectations think-
ing that I could make a great game in a very short
time. It turned out that I’m still not done with it even
after about four or five months. Truthfully, I hope
next time you play a computer or video game you will
think about its maker.”

More Tools and Toys for Young
Software Designers
Designing games offers a rich learning environment
for children to become engaged in a variety of issues
and to learn about many more aspects of program-
ming than I was able to address in this context. The
idea of children making software for fun and learn-
ing is definitely not limited to school activities; it has
a place at home and in the virtual playground. Con-
structive play is an important part of children’s devel-
opment. Children enjoy playing as much as making
things. Much more attention and effort should be
paid to providing virtual building blocks and tools for
young children to experience and master the world.

Further research efforts will examine models of
interdisciplinary and extended learning for young
game software designers and how various informa-
tion sources can be integrated into this effort. Again,
the point is not about providing access and building
adequate information structures for children (those
are worthy subjects by themselves!) but to consider
the other end: what children can make with informa-
tion, how they can build their own information struc-
tures, and, ultimately, how they construct knowledge
out of information.

Yasmin B. Kafai is an assistant professor at UCLA Graduate School of Education
& Information Studies. http://www.gse.ucla.edu/facpage/kafai.html

The described research was conducted at the MIT Media Laboratory and sponsored
by the National Science Foundation and the Nintendo Co. Ltd.

©ACM 0002-0782/96/0400

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 39

LEARNER-
CENTERED
DESIGN

Construction
Tool Kits

Figure 2.
Trevor and Amy’s introductory game screens

C

