1 | [
) | Communication s
e I Q

= = N\
Michael K. Reiter ki

Distributing Trust
with the Rampart loolkit

The Rampart group communication
protocols are designed to distribute
trust among a group of nodes in a
distributed system—so while individ-
ual nodes need not be fully trusted,
the group can be.

any mechanisms for enforcing secu-
rity policy in distributed computer
systems rely on trusted nodes, that is,
computers and resident software
whose correct functioning is essential to implement-
ing the policy. In this article, we describe our
research on distributing trust among a group of
nodes, so while no single node need be fully trusted,
the function performed by the group can be. Cen-
tral to this effort is a toolkit of group communica-
tion protocols called Rampart we developed to
simplify construction of such groups.

An overarching goal of computer security mech-
anisms is to limit the extent to which each compo-
nent of a system must be trusted to implement a
desired security policy. Typically, this goal leads to
system designs in which components are labeled

COMMUNICATIONS OF THE AcM April 1996/Vol. 39, No. 4 71

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227210.227228&domain=pdf&date_stamp=1996-04-01

Rampart supports distributed
Process groups, a programming paradigm

shown to simplify

construction

of distributed programs tolerant
of simple failures.

“trusted” or “untrusted,” the trusted ones constitut-
ing a small kernel of hardware and software on
which the proper enforcement of the security poli-
cy relies. In distributed systems, these trusted com-
ponents often take the form of localized and
physically protected nodes from which the security
of the larger system is leveraged. Network firewalls,
file servers, authentication servers [15], and certifi-
cation authorities [10] are all examples of enforc-
ing security policy by leveraging trust in a few
nodes.

Distributed systems also offer another means for
arranging trust, so it is necessary to trust only some
reasonably large fraction of a group of nodes to
behave correctly. That is, no node in the group is
trusted completely, and even the arbitrary behavior
(Byzantine failure [11]) of a few nodes (e.g., due to
physical capture, electronic penetration, or insider
malfeasance) is survivable. Provided that sufficiently
few nodes misbehave, the group, acting in concert,
can be trusted as a whole. Distributing trust in this
way has obvious security and fault-tolerance advan-
tages over the placing-all-your-eggs-in-one-basket
alternative.

There has been substantial research on tech-
niques for distributing trust; for surveys of particular
classes of techniques, see [3, 8, 20, 21]. In some
cases, the results of this research have been dramat-
ic. For example, it has been shown that a group of
nodes, each with a private value, can reliably com-
pute any function of those values so that no infor-
mation about any correct node’s input is revealed to
other nodes beyond what can be computed from the
function’s output, despite even the collaboration of
a minority of faulty nodes [9]. Distributing trust has
also been applied in such cases as clock synchro-
nization [13], file storage, and security administra-
tion [4].

Despite a few limited successes, however, most
research in this area has not affected distributed sys-
tems practice. This is largely due to the inherent
complexity of coordinating the actions of many
nodes, some of which may behave in unexpected
ways. Distributed coordination in the presence of
failures is difficult—even more so when the failures
may be intentionally arbitrary—and is beyond the
reach of the average programmer. Infrastructure
and tools for distributing trust are essential if we are
to see distributed trust become viable for common
use.

72

Apl‘il 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

The Rampart System

At AT&T Bell Laboratories, we are engaged in an
ongoing research effort to overcome these barriers
to distributing trust in practical distributed systems.
To this end, we developed Rampart, a toolkit of pro-
tocols designed to simplify the task of coordinating
correctly operating nodes in a dynamic environ-
ment characterized by simple (e.g., crash) and arbi-
trary node failures, node recoveries, and
communication failures. Rampart provides support
for distributed process groups, a programming para-
digm shown to simplify construction of distributed
programs tolerant of simple failures [1]. Rampart
supports communication primitives by which group
members can multicast messages to the group, and
membership primitives by which a process can be
removed from or added to the group if it (or the
node on which it executes) fails or recovers, respec-
tively.

The semantics of Rampart process groups borrow
much from the notion of wirtual synchrony intro-
duced by the Isis system [1] and further developed
in the Horus [2], Transis [5], and Totem [14] sys-
tems. Intuitively, a virtually synchronous process
group is one in which each multicast and member-
ship change appears to be executed as a globally
indivisible and instantaneous event. Each multicast
and membership change is delivered to all group
members, and each is ordered identically relative to
other events at all group members. These semantics
enable a programmer to implement a distributed
application without concern for many of the com-
plexities introduced by distribution in a system in
which failures can occur [1].

Though Rampart process groups offer semantics
similar to the virtually synchronous process groups
of many simple-fault-tolerant systems, their imple-
mentation is more complex due to the possibility of
arbitrary member failures admitted by our system
model. For example, implicit in the semantics of a
group multicast in the virtual synchrony model is
that all group members receive the same multicast
message. An arbitrarily faulty multicast initiator
may, however, send different messages to different
group members in a single “multicast.” For such rea-
sons, the Rampart process group implementation
employs agreement protocols by which correct group
members reach agreement on the contents of mul-
ticasts and the ordering of events.

The agreement protocols underlying Rampart

process groups are a group membership pro-
tocol [18] and reliable and atomic (totally
ordered) group multicast protocols [16, 17].
The role of the group membership pro-
tocol is to enforce agreement among cor-
rect processes on the group composition,
despite communication failures and
(simple or arbitrary) process failures.
The reliable and atomic group multicast
protocols then enforce agreement on the contents
of each multicast to the group (even from an arbi-
trarily faulty member) and order multicasts relative
to group membership changes and other multicasts.
These protocols, and thus a Rampart process group,
are suitable for use in asynchronous systems; that is,
they require no upper bounds on network delays or
relative clock drifts among members. Moreover,
they can tolerate the arbitrary failure of fewer than
one-third of each instance of the group member-
ship.

The semantics offered by Rampart process
groups can simplify distributing trust in systems, and
indeed, prior work has already placed reliable group
multicast (Byzantine agreement [11]) and atomic
group multicast at the heart of many techniques for
distributing trust (see [8, 20]). For example, state
machine replication [20] is a general technique for
constructing services that continue to operate cor-
rectly despite the simple or arbitrary failure of com-
ponent servers. In this technique, a service is
implemented using multiple identical deterministic
servers, initialized to the same state. Clients issue
requests to the service using an atomic multicast
protocol, so that all correct servers receive and
process the same sequence of requests and thus
return the same reply for each request. The client
accepts the response returned by a majority of the
servers, ensuring that the outputs of a faulty minor-
ity of the servers are ignored.

Applications

In conjunction with developing Rampart, we are
focusing on applications it can enable. Two efforts,
pursued with colleagues at Bell Labs, have resulted
in prototype services that illustrate Rampart’s poten-
tial utility, while also being of interest themselves.
The two applications are a service for performing
sealed-bid auctions [6] and a cryptographic key
management service [19]. Both demonstrate tech-
niques for distributing trust among many servers so
that the arbitrary failure of fewer than one-third of
the servers risks neither the integrity or the avail-

Rampart
adapted for

| I Communication |

ability of the service, nor the secrecy of
the confidential information it holds.

The first service illustrates how auc-
tions, which have already appeared on
the Internet [12], can be implemented
in conjunction with next-generation
secure commerce techniques to promote
direct competition in electronic buying
and selling. Our service offers an inter-
face through which bidders can submit secret mon-
etary bids for an advertised item. Once the bidding
period has ended, the auction service opens the
bids, determines the winning bid, and provides the
winning bidder with a ticket for claiming the item.
The service provides strong protection for both the
auction authority and correct bidders, despite the
arbitrary failure of any number of bidders and fewer
than one-third of the servers comprising the auction
service. Specifically, it is guaranteed that bids of cor-
rect bidders are not revealed until after the bidding
period has ended; the auction authority collects pay-
ment for the winning bid; losing bidders forfeit no
money; only the winning bidder can collect the item
bid upon; and, if desired, bidders can remain anony-
mous.

The second application is a service for managing
cryptographic keys in open networks, called Q
(“Omega”). Q supports traditional interfaces for
managing public keys, including interfaces for a
client to register a public key for a principal (e.g.,
person, computer), retrieve a public key for a princi-
pal, and revoke a public key on behalf of a principal.
In addition, motivated by the need for key backup to
ensure that critical information can be decrypted, Q
provides interfaces for escrowing the private keys
corresponding to the public keys it distributes. This
mechanism allows an escrowed private key to be
reconstructed if, for example, it is lost by its owner,
or to be used to decrypt data selectively in a protect-
ed and auditable way, such as in emergency situa-
tions when the owner of the private key is not
available. This mechanism can also be tailored to
support law enforcement access to encrypted com-
munications. Q ensures the integrity and availability
of its functions, and the confidentiality of the private
keys it escrows, despite the arbitrary failure of fewer
than one-third of the servers comprising the service.

Both our auction service and Q are built using
the technique of state machine replication
(described earlier) to ensure that the failure of
servers does not result in clients receiving incorrect
responses to requests. Moreover, in both of these

has been
two notable

applications: scaled-bid auctions and
cryptographic key management

73

COMMUNICATIONS OF THE A€M April 1996/Vol. 39, No. 4

Rampart greatly
simplifies
the task of distributing
trust among multiple
nodes in a system

services, further measures are required to protect
the secrecy of information stored at the service in
the event of server penetrations. In the case of the
auction service, that private information is digital
cash each bidder escrowed at the service to back its
bid. In the case of Q, that information is private keys
that are escrowed at the service. The requirement to
protect this information from arbitrarily faulty
servers implies that the information can never be
collected at a single server, and thus the validation
and use of this information must be performed as
distributed computations. In Q, this is done with
known techniques [3]; our auction service, however,
required new ones [7].

Conclusion

At the time of this writing, Rampart is a research
prototype and the subject of ongoing work. While it
is too early to deem Rampart a success, our initial
experiences with the system indicate it can greatly
simplify the task of distributing trust among multi-
ple nodes in a system, and that it performs suffi-
ciently well to support a wide range of applications.
Our plans include efforts to extend the protocols
to accommodate new failure models and to
improve system performance. In addition, we are
preparing Rampart for release to the scientific com-
munity free of charge to encourage peer review of
the system and experimentation with challenging
applications. For more information, write to reit-
er@research.att.com. O

References

1. Birman, K.P. The process group approach to reliable distrib-
uted computing. Commun. ACM 36, 12 (Dec. 1993) 37-53.

2. Birman, K.P., Maffeis, S., and van Renesse, R. Software sup-
port for distributed modularity in Horus. Commun. ACM 39, 4
(April 1996).

3. Desmedt, Y. Threshold cryptography. European Transactions on
Telecommunications and Related Technologies 5, 4 (July 1994)
449-457.

4. Deswarte, Y., Blain, L., and Fabre, J. Intrusion tolerance in dis-
tributed computing systems. In Proceedings of the 1991 IEEE
Symposium on Research in Security and Privacy (Oakland, Calif.,
May 1991) pp. 110-121.

5. Dolev, D. and Malki, D. The Transis approach to high avail-
ability cluster communication. Commun. ACM 39, 4 (April
1996).

6. Franklin, M.K. and Reiter, M.K. The design and implementa-
tion of a secure auction service. In Proceedings of the 1995 IEEE
Symposium on Security and Privacy (Oakland, Calif., May 1995)
pp- 2-14.

7. Franklin, M.K. and Reiter, M.K. Verifiable signature sharing.
In L.C. Guillou and J. Quisquater, eds., Advances in Cryptol-

74

April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

0gy—EUROCRYPT ‘95 (Lecture Notes in Computer Science
921) pp. 50-63. Springer-Verlag, 1995.

8. Franklin, M.K. and Yung, M. The varieties of secure distrib-
uted computation. In Proceedings of Sequences II, Methods in
Communications, Security and Computer Science (June 1991) pp.
392-417.

9. Goldreich, O., Micali, S., and Wigderson, A. How to play any
mental game. In Proceedings of the 19th ACM Symposium on the
Theory of Computing (May 1987) pp. 218-229.

10.Kent, S.T. Internet privacy-enhanced mail. Commun. ACM, 36,
8 (Aug. 1993), 48-60.

11.Lamport, L., Shostak, R., and Pease, M. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and
Systems, 4, 3 (July 1982) 382-401.

12 Lewis, P.H. Auction of collectibles on the Internet. The New
York Times, May 23, 1995.

13.Mills, D.L.. Network Time Protocol (Version 2) specification
and implementation. RFC 1119, Sept. 1989.

14.Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Budhia, R.K.,
and Lingley-Papadopoulos, C.A. Totem: A fault-tolerant mul-
ticast group communication system. Commun. ACM 39, 4
(April 1996).

15.Neuman, B.C. and Ts’o, T. Kerberos: An authentication ser-
vice for computer networks. IEEE Commun. 32,9 (Sept. 1994).

16. Reiter, M.K. Secure agreement protocols: Reliable and atom-
ic group multicast in Rampart. In Proceedings of the 2nd ACM
Conference on Computer and Communications Security (Fairfax,
Va., Nov. 1994) pp. 68-80.

17. Reiter, M.K. The Rampart toolkit for building high-integrity
services. In K.P. Birman, F. Mattern, and A. Schiper, eds., The-
ory and Practice in Distributed Systems (Lecture Notes in Com-
puter Science 938), 99-110. Springer-Verlag, 1995.

18. Reiter, M.K. A secure group membership protocol. IEEE
Transactions on Software Engineering, 22, 1 (Jan. 1996) 31-42.

19. Reiter, M.K., Franklin, M.K., Lacy, J.B., and Wright R.N. The
Q key management service. In Proceedings of the 3rd ACM Con-
Serence on Computer and Communications Security (New Delhi,
India, March 1996).

20. Schneider, F.B. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22, 4 (Dec. 1990), 299-319.

21.Simmons, G.J. An introduction to shared secret and/or
shared control schemes and their application. In G.J. Sim-
mons, ed., Contemporary Cryptology: The Science of Information
Integrity, 441-497. IEEE Press, 1992.

About the Author:

MICHAEL K. REITER is a principal investigator and member of
the technical staff at AT&T Bell Laboratories. Author’s Present
Address: AT&T Bell Laboratories, 600 Mountain Ave., Murray
Hill, NJ; email: reiter@research.att.com

Permission to make digital/hard copy of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/96,/0400 $3.50

