
84 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

Because toolkits for developing

process groups do not allow applica-

tions to issue reliable multicasts to

multiple groups, a new development

model distinguishing between groups

as logical addressing mechanisms and

reliable communication primitives is

needed to create reliable distributed

applications.

The design of structuring concepts that facil-
itate development of reliable and complex
applications and implementation of associ-
ated mechanisms is today one of the most

important research tasks in computer science. In this
context, the 1970s saw the emergence of transactional
computing [1], while the 1980s saw the emergence of
group communication. This short article describes a
group-based system, showing that transaction-based
systems and group-based systems are not antithetical.
More precisely, we show that adequate group com-
munication can support a specific class of transac-
tions in asynchronous distributed systems.

A transaction is a sequence of operations on
objects (or on data items) that satisfies the following
three properties:

From Group Communication
to Transactions in

Distributed Systems

GroupCommunication
André Schiper and Michel Raynal

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227210.227230&domain=pdf&date_stamp=1996-04-01

• Atomicity, also called the all-or-nothing property,
requiring that either all the operations of the
transaction (on all the objects it accesses) are
performed, or none of them is performed;

• Permanence, requiring that, despite crashes, the
effect of the performed operations is permanent;

• Ordering, usually called serializability, requiring
that transactions appear to have been executed in
some sequential order.

While all-or-nothing and permanence properties
address fault-tolerance and are on each transaction
separately, the ordering property addresses concur-
rency and is expressed in terms of the set of commit-
ted transactions.

Groups were first introduced in the V-Kernel [4]
as a syntactical convenience to express one-to-many
communication structures and have subsequently
been seen as a convenient addressing mechanism.
Groups for addressing are widely used by the parallel
systems community (see, for example, the Parallel
Virtual Machine [PVM] package [6]). However, V-
Kernel and PVM addressing groups are adequate for
disseminating information only in fault-free environ-
ments, as they provide no delivery guarantees in case
of failures. Subsequently, the group paradigm has
been extended to include strong guarantee in the
presence of failures, an approach pioneered by the
Isis system [2]. These extensions have promoted the
use of groups as an abstraction to represent fault-tol-
erant services and have combined the group abstrac-
tion with various group multicast primitives.

Groups for Fault Tolerance
Fault tolerance in asynchronous distributed systems
can be achieved through replication. Implementa-
tion of fault-tolerant services relies on replication of
some deterministic process, a technique often called
the “state-machine approach’’ [11]. Replication of a
state machine can be hidden to its clients through
the fault-tolerant group abstraction. Such an abstrac-
tion presents two principal characteristics:

• A fault-tolerant group g names a set of processes
that share a common state; every member has a
copy of the common state. Because of process
crashes and recoveries, not all members of g are
necessarily operational at the same time. A mem-
ber of g recovering after a crash receives an up-to-
date copy of the state of the group g from any
operational member of g, an event called state
transfer.

• Update of the state of the group requires ade-
quate multicast primitives to ensure that the state
shared by the members of g is always consistent.
For sake of clarity, we decompose update proper-
ties of group multicast primitives into three sub-
properties:

– A delivery permanence property defined on a group
taken individually;

– An all-or-none delivery property defined on multi-

ple groups; and
– An ordered delivery property defined on a set of

multicasts.

The degree of replication of a group g is based on
a worst-case analysis. Assume, for example, that
processes fail only by crashing, and that at any time,
at most f processes are simultaneously crashed. With
this assumption, a group of f + 1 members ensures
permanence of the group state—any time there is at
least one operational member in g. Actually, given
that at most f processes can be simultaneously
crashed, a group usually consists of 2f + 1 members.
This degree of replication ensures that at any time
the group contains a majority of operational mem-
bers—a condition required by the implementation
of the group multicast primitives defined in the fol-
lowing sections. From here on, we consistently
assume groups have 2f + 1 members and a maximum
of f simultaneous crashed processes.

Single group multicast with delivery permanence
property. Consider the multicast of message m to
the group g. It follows from the earlier discussion
that delivery of m is permanent in g only after a
majority of its members has delivered m. Thus, a
member of g should not deliver a message m before
a majority of its members has agreed to deliver it.
This defines the delivery permanence property. More
precisely, the semantics associated with this proper-
ty are the following: Either a majority of g agrees to
deliver m—and consequently every operational
member of g eventually delivers m—or no member
of g delivers m.

1
We use SEND(m to {g}) to denote

the multicast of m to g with delivery permanence
semantics.

Multiple groups multicast with all-or-none delivery
property. While group-based systems have generally
considered multicasts to a single group, nothing pre-
vents us from extending the SEND primitive to mul-
tiple groups. This step is important in making
explicit the link between group communication and
transactions. A transaction aggregates operations on
multiple objects. So, if every object is replicated and
managed by a fault-tolerant group, a transaction
operates on multiple groups. Consequently, if a mes-
sage m aggregates the operations of a transaction,
message m has to be multicast to all the groups con-
cerned by the transaction described by m.

Given two groups g and g', we define SEND (m to
{g,g'}) by the following property: Either a majority of
g and a majority of g' agree to deliver m—and conse-
quently all operational members of g and g' eventu-
ally deliver m—or none of the members of g or of g'

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 85

1 This property—also called “majority agreement’’ (see F. Cristian’s article in
this special section)—is close to uniform reliable multicast [8]. However,
uniform reliable multicast is defined in a static system model in which
processes do not recover after a crash. Group-based systems consider a
dynamic system model in which processes can join the computation and
recover after a crash.

delivers m. This all-or-none delivery property links
groups g and g'. Either the state of g and the state of
g' are permanently updated by m, or neither of the
states is updated (e.g., see [10]).

Multicast with global total order property. The
SEND primitive can be extended by an ordering
property. We denote TO-SEND the SEND primitive
with an additional global totally ordered delivery prop-
erty. Consider two messages m1 and m2, TO-
SEND(m1 to {...}) and TO-SEND(m2 to {...}), and let
pi and pj be two processes that deliver both m1 and
m2. Then pi and pj deliver m1 and m2 in the same
order.

2

Most existing group-based systems provide only a
total order multicast primitive to one single group
(e.g., TO-SEND (m to {g}). Total order multicasts
to multiple groups (e.g., TO-SEND(m to {g,g'}) per-
mits extension of such systems to address the group
communication requirements of transactional
applications.

From group communication to transactions. Consid-
er a classical transaction that transfers $1,000 from
bank account #1 to bank account #2. To achieve
fault tolerance, assume that each bank account is
replicated on several nodes, and assume that every
replica is managed by a process. Let g1 be the fault-
tolerant group of processes that manage bank
account #1, and let g2 be the fault-tolerant group of
processes that manage bank account #2. The two
operations (withdrawal and deposit) can be aggre-
gated into a single message by defining m as: (remove
$1,000 from account #1; add $1,000 to account #2).
When a process in g1 delivers m, it removes $1,000
from the bank account it manages; when a process
in g2 delivers m, it adds $1,000 to the bank account
it manages. In this distributed setting, the money
transfer transaction can be expressed as TO-
SEND(m to {g1,g2}):

• The all-or-none delivery property of TO-SEND(m to
{g1,g2}) corresponds to the transaction all-or-noth-
ing atomicity property. Updates (money transfer)

described by message m are taken into account by
both or neither of the two objects (bank
accounts);

• The delivery permanence property, ensured on g1 and
on g2, corresponds to the transaction perma-
nence property. Processes in g1 and in g2 deliver
m only if a majority of g1 and a majority of g2
have agreed to deliver m. This property ensures
permanence of the update defined by m; and

• The total ordering delivery property of TO-SEND
ensures the serializability property of transac-
tions.

Due to space limitations, other properties of
transactions, such as unilateral abort, are not con-
sidered here. Notice that implementation of the
permanence property usually requires some infor-
mation to be logged into permanent storage (e.g.,
on disk). No such logging technique is needed here
because permanence is ensured by replication.

The multicast primitive TO-SEND (m to {g1,g2, .
. . ,gn}) implements a transaction t on a set of n fault-
tolerant objects managed by the groups g1, g2, . . .
,gn, respectively. Operations of t are aggregated into
message m. When comparing this TO-SEND primi-
tive with traditional implementations of transac-
tions, it is worth noting that the TO-SEND primitive
integrates data locking, data update, and atomic
commitment in a single operation. This primitive is
more efficient than the traditional multistep imple-
mentation of the same transaction and, consequent-
ly, makes group communication an attractive
implementation alternative for a specific class of
transactions in distributed systems.

Conclusion
Most existing systems restrict multicast primitives
to a single group at a time. This restriction
simplifies the implementation but also obscures
the link between group-based systems and transac-
tional systems. Aggregating operations in one
message and providing multicast primitives to multi-
ple groups make the link visible. Multicasting
to multiple groups is available in the Totem system
[9], where delivery order of two messages is deter-
mined from the messages themselves (called born-
order in Totem). Nonborn-ordered implementations
are also possible [7] and are valuable in settings
where the group members might trigger unilateral
aborts.

86 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

2Chandra and Toueg showed that the total order broadcast problem is equiv-
alent to the consensus problem [3] and thus subject to the Fischer-Lynch-
Paterson impossibility result about solving consensus in an asynchronous
system (in which message transmission delays are not bounded) [5]. These
problems are solvable, however, in an asynchronous system augmented with
(even unreliable) failure detectors [3].

Transactions based
on group communication

primitives represent an
important step toward extending the power

and generality of group communication
as a broad distributed computing discipline.

Despite the success of existing group communica-
tion primitives for asynchronous systems, there is still
room for versatile systems better suited to users’
needs. Introduction of transactions based on group
communication primitives represents an important
step toward extending the power and generality of
group communication as a broad distributed com-
puting discipline for designing and implementing
reliable applications.

References
1. Bernstein, P.A., Hadzilacos, V., and Goodman, N. Concurrency

Control and Recovery in Distributed Database Systems. Addison-
Wesley, Reading, Mass. 1987.

2. Birman, K. The process group approach to reliable distrib-
uted computing. Commun. ACM 36, 12 (Dec. 1993), 37–53.

3. Chandra, T.D., and Toueg. S. Unreliable failure detectors for
reliable distributed systems. To appear in Journal of the ACM.
A preliminary version appeared in Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing (Aug. 1991,
Montreal, Canada) 325–340. ACM Press, New York, 1991.

4. Cheriton, D.R., and Zwaenepoel, W. Distributed process
groups in the V-kernel. ACM Transactions on Computer Systems
3, 2 (Feb. 1985) 77–107.

5. Fischer, M., Lynch, N., and Paterson, M. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM
32, 4 (Apr. 1985) 374–382.

6. Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek,
R., and Sunderam, V.S. PVM: A User’s Guide and Tutorial for
Networked Parallel Computing. MIT Press, Cambridge, MA,
1994.

7. Guerraoui, R., and Schiper, A. Transaction Model vs Virtual Syn-
chrony Model: Bridging the Gap. In Theory and Practice in Dis-
tributed Systems. Springer Verlag, Berlin, Germany, LNCS
938, 121–132, 1995.

8. Hadzilacos, V., and Toueg, S. Fault-tolerant broadcast and
related problems. In Distributed Systems, S. Mullender Ed.,
Addison-Wesley and ACM Press, New York, 1993, pp. 97–145.

9. Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Budhia, R.K.,
and Lingley-Papadopoulos, C.A. Totem: A fault-tolerant mul-
ticast group communication system. Commun. ACM 39, 4
(Apr. 1996).

10. Powell, D. Distributed fault-tolerance: Lessons learned from
Delta-4. IEEE Micro 14, 4, (Feb. 1994) 36–47.

11. Schneider, F.B. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys 22,
4, (Apr. 1990) 299–319.

About the Authors:
ANDRÉ SCHIPER is a professor of computer science at the Fed-
eral Institute of Technology (EPFL) in Lausanne, Switzerland,
where he heads the Operating Systems Laboratory. Author’s Pre-
sent Address: EPFL, Dept. d’Informatique, 1015 Lausanne,
Switzerland; email: schiper@di.epfl.ch

MICHEL RAYNAL is a professor in the computer science depart-
ment at the University of Rennes, France. He also heads the
IRISA INRIA research group working on distributed algorithms,
fault tolerance, and distributed systems. Author’s Present
Address: IRISA, Campus de Beaulieu, 35042 Rennes-cedex,
France; email: raynal@irisa.fr

Permission to make digital/hard copy of part or all of this work for person-
al or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying
is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a
fee.

© ACM 0002-0782/96/0400 $3.50

C

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 87

