
Guy E. Blelloch

In the past 20 years there has been treftlen­

dous progress in developing and analyzing

parallel algorithftls. Researchers have developed efficient

parallel algorithms to solve most problems for which efficient

sequential solutions are known. Although some of these algo­

rithms are efficient only in a theoretical framework, many are

quite efficient in practice or have key ideas that have been used

in efficient implementations. This research on parallel algo­

rithms has not only improved our general understanding ofpar­

allelism but in several cases has led to improvements in

sequential algorithms. Unf:ortunately there has

been less success in developing good lan­

guages f:or prograftlftling parallel algorithftls,

particularly languages that are well suited for teaching and pro-

totyping algorithms. There has been a large gap between lan­

guages that are too low level, requiring specification of many

details that obscure the meaning of the algorithm, and languages

that are too high level, making the performance implications of

various constructs unclear. In sequential computing many stan­

dard languages such as C or Pascal do a reasonable J·ob of bridg­

ing this gap, but in parallel languages building such a bridge

has been significantly more difficult.

COMMUNICATIONS 011 THE ACM March 1996/Vol. 39, No.3 85

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227234.227246&domain=pdf&date_stamp=1996-03-01

Figure2. Summing 16 numbers on a tree. The total
depth (longest chain of dependencies) is 4 and the
total work (number of operations) is 15.

Figure 1. A diagram of a Parallel Random Access
Machine (PRAM). It is assumed in this model that all
the processors can access memory locations in the
shared memory simultaneously in unit time.

Work and Depth
Analyzing performance is a key part of studying algo­
rithms. Although such analysis is not used to predict the
exact running time of an algorithm on a particular ma­
chine, it is important in determining how the running
time grows as a function of the input size. To analyze per­
formance, a formal model is needed to account for the
costs. In parallel computing, the most common models
are based on a set of processors connected either by a
shared memory, as in the Parallel Random Access Ma­
chines (PRAM) (see Figure 1), or through a network, as
with the hypercube or grid models. In such pTocessoT-based
models, performance is calculated in terms of the number
of instruction cycles a computation takes (its running
time) and is usually expressed as a function of input size
and number of processors.

An important advance in parallel computing was the
introduction of the notion of viTtual models. A virtual
model is a performance model that does not attempt to
represent any machine that we would actually build but
rather is a higher-level model that can be mapped onto
various real machines. For example, the PRAM is often
viewed as a virtual model [25]. From this viewpoint, it is
agreed that a PRAM cannot be built directly, since in prac­
tice it is unreasonable to assume that every processor can
access a shared memory in unit time. Instead, the PRAM
is treated as a virtual machine that can be mapped onto
more realistic machines efficiently by simulating multiple
processors of the PRAM on a single processor of a host
machine. This simulation imposes some slowdown K, but
requires a factor of K fewer processors, so the total cost
(processor-time product) remains the same. The advan­
tage of virtual models over physical machine models is
that they can be easier to program.

Virtual models can be taken a step further and used to
define performance in more abstract measures than just
running time on a particular machine. A pair of such mea­
sures are work and depth: WOTk is defined as the total
number of operations executed by a computation, and
depth is defined as the longest chain of sequential depen­
dencies in the computation. Consider, for example, sum­
ming 16 numbers using a balanced binary tree (see Figure
2). The work required by this computation is 15 operations
(the 15 additions). The depth of the computation is four
operations, since the longest chain of dependencies is the
depth of the summation tree-the sums need to be calcu­
lated starting at the leaves and going down one level at a
time. In general, summing n numbers on a balanced tree
requires n - 1 work and log2n depth. Work is usually
viewed as a measure of the total cost of a computation
(integral of needed resources over time), and also specifies
the running time if the algorithm is executed on a sequen­
tial processor. The depth represents the best possible run­
ning time assuming an ideal machine with an unlimited
number of processors.

Work and depth have been used informally for many
years to describe the performance of parallel algorithms
[23], especially when teaching them [16, 17]. The claim is
that it is easier to describe, think about, and analyze algo-

4

2

8

Work

Total 154 Total

Depth

Our research involves developing a parallel language
that is useful for teaching as well as for implementing par­
allel algorithms. To achieve this, an important goal has
been to develop a language that allows high-level descrip­
tions of parallel algorithms but also has a well-understood
mapping onto a performance model (i.e., bridges the
gap). Based on our research, we believe that the following
two features are important for achieving this goal:

• A language-based performance model that uses wOTk
and depth rather than a machine-based model that uses
"running time."

• Support for nested data-pamllel constructs. This is the
ability to apply a function in parallel to each element of
a collection of data and the ability to nest such parallel
calls.

In this article we describe these features and explain why
they are important for programming parallel algorithms.
To make the ideas concrete, we describe the program­
ming language NESL [5], which we designed based on the
features, and go through several examples of how to pro­
gram and analyze parallel algorithms using the language.
We have been using NESL for three years in undergradu­
ate and graduate courses on parallel algorithms [7]. The
algorithms we cover in this article are relatively straight­
forward. Many more algorithms can be found through
the Web version of this article (available at http://web.scan­
dal.cs.cmu.edu/www/cacm.html).

86 March 1996/Vol. 39, No.3 COMMU..ICA",IDN. OF 'I'R. _eM

mming

Scalar
Memory Vector Memory

I
Parallel Vector Processor I

procedure SUM(V):
n = length(V);
for i = I to log2n

begin

Yo= odd_elts(V);
Ve = even_elts(V);

V = vector_add(Vo, Ve);
end

return V

rithms in terms of work and depth than in terms of run­
ning time on a processor-based model (a model based on
P processors). Furthermore, work and depth together tell
us a lot about expected performance on various machines.
We will return to these points, but we first describe in
more detail how work and depth can be incorporated into
a computational model. There are basically three classes
of such models-circuit models, vector machine models,
and language-based models-and we briefly describe
each.

Circuit Models. In circuit models, an algorithm is speci­
fied by designing a circuit of logic gates to solve the prob­
lem. The circuits are restricted to have no cycles. For ex­
ample, we could view Figure 2 as a circuit in which the
inputs are at the top, each + is an adder circuit, and each
of the lines between adders is a bundle of wires. The final
sum is returned at the bottom. In circuit models, the cir­
cuit size (number of gates) corresponds to work, and the
longest path from an input to an output corresponds to
depth. Although for a particular input size one could build
a circuit to implement an algorithm, in general circuit
models are viewed as virtual models from which the size
and depth of the designs tell us sometime about the per­
formance of algorithms on real machines. As such, the
models have been used for many years to study various
theoretical aspects of parallelism, for example; to prove
that certain problems are hard to solve in parallel (see [17]
for an overview). Although the models are well suited for
such theoretical analysis, they are not a convenient model
for programming parallel algorithms.

Vector Machine Models. The first programmable ma­
chine model based on work and depth was the Vector
Random Access Machine (VRAM) [4]. The VRAM model
is a sequential random-access machine (RAM) extended
with a set of instructions that operate on vectors (see Fig­
ure 3). Each location of the memory contains a whole vec­
tor, and the vectors can vary in size during the computa­
tion. The vector instructions include elementwise
operations, such as adding the corresponding elements of
two vectors, and aggregate operations, such as extracting
elements from one vector based on another vector of indi­
ces. The depth of a computation in a VRAM is simply the
number of instructions executed by the machine, and the

Figure 5. A diagram of a vector Random Access
Machine IVRAMI and pseudocode for summing n
numbers on the machine. The vector processor
acts as a slave to the scalar processor. The func­
tions od<Lelts and evelLelts extract the odd and
even elements from a vector, respectively. The
function vector_add elementwise adds two vec­
tors. On each iteration through the loop the length
ofthe vector V halves. The code assumes n is a
power of 2, but it is not hard to generalize the code
to work With any n. The total work done by the
computation is Oln + nl2 + n/4 + ... I = Oln!, and
the depth is a constant times the number of itera­
tions, which is O<log nl.

work is calculated by summing the lengths of the vectors
on which the computation operates. As an example, Fig­
ure 3 shows VRAM code for taking the sum of n values.
This code executes the summation tree in Figure 2-each
loop iteration moves down the tree one level. The VRAM
is again a virtual model, since it would be impractical to
build the vector memory because of its dynamic nature.
Although the VRAM is a good model for describing many
algorithms that use vectors or arrays, it is not an ideal
model for directly expressing algorithms on more compli­
cated data structures, such as trees or graphs.

Language-Based Models. A third choice for defining a
model in terms ofwork and depth is to define it directly in
terms oflanguage constructs. Such a language-based perfor­
mance model specifies the costs of the primitive instructions
and a set of rules for composing costs across program ex­
pressions. The use of language-based models is certainly
not new. Aho and Ullman, in their popular introductory
textbook Foundations of Computer Science [I], define such a
model for deriving running times of sequential algo­
rithms. The approach allows them to discuss the running
time of the algorithms without introducing a machine
model. A similar approach can be taken to define a model
based on work and depth. In this approach, work and
depth costs are assigned to each primitive instruction of a
language and rules are specified for combining parallel
and sequential expressions. Roughly speaking, when exe­
cuting a set of tasks in parallel, the total work is the sum of

CO.MUNlCAYtON. 01= 'l'ME AeM March 1996/VoJ.39, No.3 87

the work of the tasks and the total depth is the maximum
of the depth of the tasks. When executing tasks sequen­
tially, both the work and the depth are summed. These
rules are made more concrete when we describe NESL'S
performance model in the next section, and the algo­
rithms in this article illustrate many examples of how the
rules can be applied.

We note that language-based performance models
seem to be significantly more important for parallel algo­
rithms than for sequential algorithms. Unlike Aho and
Ullman's sequential model, which corresponds almost di­
rectly to a machine model (the RAM) and is defined
purely for convenience, there seems to be no satisfactory
machine model that captures the notion of work and
depth in a general way.

Why Work and Depth?
We now return to the question of why models based on
work and depth are better than processor-based models
for programming and analyzing parallel algorithms. To
motivate this claim we consider a particular algorithm,
Quicksort, and compare the code and performance analy­
sis of a parallel version of the algorithm using the two
types of models. We argue that in the work-depth model
the code is very simple, the performance analysis is closely
related to the code, and the code captures the notion of
parallelism in Quicksort at a very high level. This is not
true with the processor-based model.

We start by reviewing sequential Quicksort, for which
pseudocode is shown in Figure 4. A standard perfor­
mance analysis proves that for n keys the algorithm runs
in O(n log n) time on average (expected case). A similar
analysis proves that the maximum depth of recursive calls
is O(1og n) expected case; we will use this fact later. Quick­
sort is not hard to parallelize. In particular, we can exe­
cute the two recursive calls in parallel, and furthermore,
within a single Quicksort we can compare all the elements
of S to the pivot a in parallel when subselecting the ele­
ments for Sl, and similarly for S2 and S3' The questions
remain: how do we program this parallel version, and
what is its performance?

We first consider programming and analyzing parallel

procedure QUICKSORT(S):
if Scontains at most one element then return S
else
begin

choose an element a randomly from S;
let Sl' S2 and S3 be the sequences of elements in Siess

than, equal to, and greater than a, respectively;
return (QUICKSORT(SI) followed by S2 followed by

QUICKSORT(S3))
end

Figure 4. Pseudocode for Quicksort, from Aho,
Hopcroft, and Ullman [21. Although originally de­
scribed as a sequential algorithm, the algorithm as
stated is not hard to parallelize.

88 March 1996/Vol. 39, No.3 C•••UNICAno... GIll '1'•• AeM

Quicksort with a model based on work and depth. Figure
5 illustrates the NESL code for the algorithm. This code
should be compared with the sequential pseudocode-the
only significant difference is that the N ESL code specifies
that the subselection for 81,82, and 83, and the two re­
cursive calls to QUicksort should be executed in parallel
(in NESL, curly brackets {} signify parallel execution).
Since the parallel algorithm does basically the same opera­
tions as the sequential version, the work cost of the paral­
lel version is within a small constant factor of the time of
the sequential version (O(n log n) expected case). The
depth cost of the algorithm can be analyzed by examining
the recursion tree in Figure 5. The depth of each of the
blocks represents the sum of the depths of all the opera­
tions in a single call to Quicksort (not including the two
recursive calls). These operations are the test for termina­
tion, finding the pivot a, generation 81, 82, and 83, and
the two appends at the end. As discussed in more detail in
the next section, in NESL each of these operations has con­
stant depth (i.e., is fully parallel). The depth of each block
is therefore a constant, and the total depth is this constant
times the maximum number of levels of recursion, which
we mentioned earlier is O(log n) expected case. This com­
pletes our analysis of Quicksort and says that the work of
quicksort is O(n log n) and the depth is O(log n), both
expected case. l Note that we have derived performance
measures for the algorithm based on very high-level code
and without talking about processors.

We now consider code and analysis for parallel Quick­
sort based on a parallel machine model with P processors.
We claim that in such a model the code will be very long,
will obscure the high-level intuition of the algorithm, and
will make it hard to analyze the performance of the algo­
rithm. In particular, the code ~ll have to specify how the
sequence is partitioned across processor (in general, the
input length does not equal P and needs to be broken up
into parts), how the subselection is implemented in paral­
lel (for generating Sl, S2, and S3 in parallel), how the re­
cursive calls get partitioned among the processors and
then load-balanced, how the subcalls are synchronized,
and many other details. This is complicated by the fact
that in Quicksort the recursive calls are typically not of
equal sizes, the recursion tree is not balanced, and the S2
sets have to be reinserted on the way back up the recur­
sion. Although coding these details might help optimize
the algorithm for a particular machine, they have little to
do with core ideas. Even if we assume the simplest pro­
cessor-based model with unit-time access to shared mem­
ory and built-in synchronization primitives, the fully par­
allel code for Quicksort in just about any language would
require hundreds ofJines of code. This is not just a ques­
tion of verbosity but a question of how we think about the
algorithm.

Relationship of work and depth to running time. Work
and depth can be viewed as the running time of an algo-

'We note that the parallel version of Quicksort requires more memory
than a good implementation of the sequential version. In particular, the
sequential version can be implemented in place, while the parallel version
requires about n scratch space.

function Quicksort(S) =
if (#S <= 1J then S
else

let a = S[rand (#S)];
51 = Ie in SI e < a };
52 = Ie in SI e == a};
53 = Ie in SI e > a};
R = IQuicksort(v); v in [Sl,S3]};

in R[O] ++ 52 ++ R[l];

Work = 0 (n log n) (expected)
Depth = 0 (log n) (expected)

Quicksort

Quicksort

rithm at two limits: one processor (work) and an unlimited
number of processors (depth). In fact, the costs are often
referred to as T1 and Too. In practice, however, we want to
know the running time for some fixed number ofproces­
SOl'S. A simple but important result of Brent [9] showed
that knowing the two limits is good enough to place rea­
sonable bounds on running time for any fixed number of
processors. In particular, he showed that if we know that a
computation has work Wand depth D, then it will run
with P processors in time T such that

W W
-:5: T<- + D.
P P

This result makes some assumptions about communica­
tion and scheduling costs, but the equation can be modi­
fied if these assumptions change. For example, with a
machine that has a memory latency (the time between
making a remote request and receiving the reply), of L,
the equation is W/P :5: T:5: W/P + L . D.

Let's return to the example of summing. Brent's equa­
tion, along with our previous analysis of work and depth
(W = n - 1, D = log2n), tells us that n numbers can be
summed on P processors within the time bounds

(,n_-_I.:-) (n - 1)
- P :5: T < P + log2n .

For example 1,000,000 elements can be summed on 1,000
processors in somewhere between 1,000 (106/103

) and
1,020 (106/103 + log2I06) cycles, assuming we count one
cycle per addition. For many parallel machine models,
such as the PRAM or a set of processors connected by a
hypercube network, this is indeed the case. To implement
the addition, we could assign 1,000 elements to each pro­
cessor and sum them, which would take 999 cycles. We

Figure 5. The Quicksort algorithm in NESL. The opera­
tor # returns the length of a sequence. The func­
tion rand(n) returns a random number between 0
and n (the expression 8[rand(#8)] therefore re­
turns a random element of 81. The notation {e in
81 e < a} is read: "in parallel find all elements e in 8
for which e is less than a". This operation has con­
stant depth, and work proportional to the length
of 8. The notation {Quicksort(v): v in [81, 83]} is
read: "in parallel forv in 81 and 83, Quicksort v".
The reSUlts are returned as a pair. The function + +
appends two sequences.

could then sum across the processors using a tree ofdepth
log2I,000 = 10, so the total number of add cycles would
be 1,009, which is within our bounds.

Communication Costs. A problem with using work and
depth as cost measures is that they do not directly account
for communication costs and can lead to bad predictions
of running time on machines where communication is a
bottleneck. To address this question, let's separate com­
munication costs into two parts: latency, as defined previ­
ously, and bandwidth, the rate at which a processor can
access memory. If we assume that each processor may
have multiple outstanding requests, then latency is not a
problem. In particular, latency can be accounted for in
the mapping of the work and depth into time for a ma­
chine (see the preceding), and the simulation remains
work-efficient (i.e., the processor-time product is propor­
tional to the total work). This is based on hiding the la­
tency by using few enough processors such that on aver­
age each processor has multiple parallel tasks (threads) to
execute and therefore has plenty to do while waiting for
replies. Bandwidth is a more serious problem. For ma­
chines where the bandwidth between processors is very

CO••U ••ca'l'IO........11••eM March 1996/VoI.39, No.3 89

much less than the bandwidth to the local memory, work
and. depth by themselves will not in general give good
predictions of running time. However, the network band­
width available on recent parallel machines, such as the
Cray T3E and SCI Power Challenge, is great enough to
give reasonable predictions, and we expect the situation
to improve with rapidly improving network technology.

Nested Data-Parallelism and NESL

Many constructs have been suggested for expressing par­
allelism in programming languages, including fork-and­
join constructs, data-parallel constructs, and futures,
among others. The question is which of these are most
useful for specifying parallel algorithms? Ifwe look at the
parallel algorithms that are described in the literature and
their pseudocode, we find that nearly all are described as
parallel operations over collections of values. For example
"in parallel for each vertex in a graph, find its minimum
neighbor", or "in parallel for each row in a matrix, sum
the row". Of course, the algorithms are not this simple­
they usually consist of many such parallel calls interleaved
with operations that rearrange the order of a collection,
and can be called recursively in parallel, as in Quicksort.
This ability to operate in parallel over sets of data is often
referred to as data-parallelism [IS], and languages based on
it are often referred to as data-parallel languages, or collec­
tion-oriented languages [24]. We note that many parallel
languages have data-parallel features in conjunction with
other forms of parallelism [3, 10, 12, 18].

Before we come to the rash conclusion that data-paral­
lel languages are the panacea for programming parallel
algorithms, we make a distinction between flat and nested
data-parallel languages. In flat data-parallel languages, a
function can be applied in parallel over a set ofvalues, but
the function itself must be sequential. In nested data-paral­
lel languages [4], any function including parallel func­
tions, can be applied over a set ofvalues. For example, the
summation of each row of the matrix mentioned previ­
ously could itself execute in parallel using a tree sum. We
claim that the ability to nest parallel calls is critical for
expressing algorithms in a way that matches our high­
level intuition of how they work. In particular, nested par­
allelism can be used to implement nested loops and di­
vide-and-conquer algorithms in parallel. (Five out of the
seven algorithms described in this article use nesting in a
crucial way.) The importance of allowing nesting in data­
parallel languages has also been observed by others [13].
However, most existing data-parallel languages, such as
High Performance Fortran (HPF) [14] or C* [21], do not
have direct support for such nesting.2

NESL

This article uses NESL [5] as an example of a nested data­
parallel language. This section gives an overview of the
language, and the next section gives several examples of
parallel algorithms described and analyzed with NESL.

"The current HPF 1.0 has some limited support for nested calls, and fu­
ture versions are likely to have significantly better support.

NESL was designed to express nested parallelism in a sim­
ple way with a minimum set of structures and was there­
fore designed as a language on its own rather than as an
extension of an existing sequential language. The ideas,
however, can clearly be used in other languages. NESL is
loosely based on ML [19], a language with a powerful type
system, and on SETL [22], a language designed for con­
cisely expressing sequential algorithms. As with ML, NESL

is mostly functional (has only limited forms of side effects),
but this feature is tangential to the points made in this
article.

NESL supports data-parallelism by means of operations
on sequences-one-dimensional arrays. All elements of a
sequence must be of the same type, and sequence indices
are zero-based (a[O] extracts the first element of the se­
quence a). The main data-parallel construct is apply-to­
each, which uses a set-like notation. For example, the ex­
pressIOn

{a * a : a in [3, -4, -9, 5]};

squares each element of the sequence [3, -4, -9, 5]
returning the sequence [9, 16,81,25]. This can be read:
"in parallel, for each a in the sequence [3, -4, -9, 5],
square a". The apply-to-each can be used over multiple
sequences. The expression

{a + b : a in [3, -4, -9, 5]; b in [1,2,3, 4]};

adds the two sequences elementwise returning [4, -2,
-6, 9]. The apply-to-each construct also provides the
ability to subselect elements of a sequence based on a fil­
ter. For example.

{a * a : a in [3, -4, -9, 5] I a > O};

can be read: "in parallel, for em::h a in the sequence [3,
-4, -9, 5] such that a is greater than 0, square a". It
returns the sequence [9, 25]. The elements that remain
maintain their relative order. Such filtering was used in
the Quicksort example.

Any function, whether primitive or user defined, may
be applied to each element of a sequence. So, for example,
we could define

function factorial en) =
if en == 1) then 1
else n*factorial en - 1);

and then apply it over the elements of a sequence, as in

{factorialei) : i in [3, 1, 7]};

which returns the sequence [6, 1, 5040].
In addition to the parallelism supplied by apply-to­

each, N ESL provides a set of functions on sequences, each
ofwhich can be implemented in parallel. For example, the
function sum adds the elements of a sequence, and the
function reverse reverses the elements of a sequence.
Perhaps the most important function on sequences is
write, which supplies the only mechanism to modify mul­
tiple values of a sequence in parallel. The function write
takes two arguments: the first is the sequence to modify,
and the second is a sequence of integer-value pairs that

90 March 1996/Vol.39. No.3 CO••U.lCATIONS all '1'•• AeM

amming

23

1

Depth = I + max (Dfact(3) , Dfaet(I), D fact (5), D fact (2»
= I + max(I3, 3, 23, 8)
=24

Work = I + sum(Wfaet (3), Wfact(I), Wfact (5), Wfact (2»
= I + sum(I3, 3, 23, 8)
= 48

Wfact(n) =Dfact(n) =5n - 2

inserts the -2, 5, and 9 into the sequence at locations 4,
2, and 5, respectively, returning

[0, 0, 5, 0, -2, 9, 0, 0].

If an index is repeated, then one value is written
nondeterministically. For readers familiar with the vari­
ants of the PRAM model, we note that the write function
is analogous to an "arbitrary" concurrent write. NESL also
includes a function e_write that does not allow repeated
indices and is analogous to an exclusive write. Ifrepeated
indices are used with e_write, the current implementa­
tion reports an error.

Nested parallelism is supplied in NESL by allowing se­
quences to be nested and allowing parallel functions to be
used in an apply-to-each. For example, we could apply the
sum function in parallel'Dver a nested sequence, as in

specify what to modify. For each pair (i,v), the value v is
inserted into position i of the destination sequence. For
example,

write([O, 0, 0, 0, 0, 0, 0, 0], [(4,-2),(2,5),(5,9)]);

{sum(a) : a in [[2,3], [8,3,9], [7JJ},

which would return [5, 20, 7]. Here, there is parallelism
both within each sum and across the sums. The Quicksort
algorithm showed another example of nested calls-the
algorithm is itself used in an apply-to-each to invoke two
recursive calls in parallel.

The Performance Model
We now return to the issue of performance models, this
time in the context of NESL. As mentioned earlier, NESL
defines work and depth in terms of the work and depth of
the primitive operations and rules for composing the
measures across expressions. We will use W(e) and D(e) to
refer to the work and depth of evaluating an expression e.
In most cases, the work and depth of an expression are
the sums of the work and depth of the subexpressions. So,
for example, if we have an expression el + e2, where el
and e2 are subexpressions, then the work of the expres­
sIOn IS

Figure 6. Calculating the work and depth of {fae­
torial(n) : n in [3, 1, 5, 2]}

where the 1 is the cost of the add. A similar rule is used for
depth. The interesting rules concerning parallelism are
the rules for an apply-to-each expression:

({ in (>~

D({el(a) : a in e2}) = 1 + D(e2) + max D(el(a». (2)
tI in",'.!

Figure 7. List of some of the sequence functions
supplied by NESL. The work required for each function is
given in the Work column: L(v) refers to the length
of the sequence v. The work of the write(d, a) func­
tion actually depends on whether the argument d
needs to be copied or not, but in the examples in
this article the difference has no effect.

Operation I Description I 'fork I Depth

dist(a,O
#a
a[i]
[s:e]
[s:e:d]
sum (a)
write (d,a)
a++ b
drop (a,n)
interleave(a,b)
flatten (a)

Create a sequence ofas oflength 1.
Return length ofsequence a.
Return element at position i ofa.
Return integer sequence from s to e.
Return integer sequence from s to e Uy d.
Return sum ofsequence a.
Place elements a in d.
Append sequences a and b.
Drop first n elements ofsequence a.
Interleave elements ofsequences a and b.
Flatten nested sequence a.

1
1
1
(e - s)
(e-s)/d
L(a)
L(a)
L(a) + L(b)
L(result)
L(result)
L(result)

1
1
1
1
1
log L(a)
1
1
1
1
1

COM.UIlICATIONS OP TNE .eM M;ar....h 1qqlS IV..... I ~Q No ~ Ot

(3)

1 procedure PRIMES(n):
2 let A be an array of length n
3 set all but the first elemerit of A to TRUE

4 for i from 2 to -fYi
5 begin
6 ifA[i] is TRUE

7 then set all multiples of i up to n to FALSE

8 end

Figure 8. Pseudocode for the sieve of Eratosthe­
nes

The first rule specifies that the work is the sum of the
work of each of the applications of ej to an element of a,
plus the work of e2, plus 1 to account for overheads. The
rule for depth is similar, but takes the maximum of the
depth of each application of ej. This supports our intui­
tion that the applications are executed in parallel and that
the evaluation of the apply-to-each completes when the
last call completes. The other interesting rules are the
rules for an if expression, which for work is

W(if e I then e2 else eg)

{

w(e2) ej = TRUE

= 1 + W(el) +
W(eg) otherwise,

with a similar rule for depth. The work and depth for a
function call and for scalar primitives are each I. The costs
of the NESL functions on sequences are summarized in
Figure 7. We note that the performance rules can be more
precisely defined using an operational semantics [6].

As an example of composing work and depth, consider
evaluating the expression

e = {factorialCn) : n in a},

where a = [3,1,5,2]. Using the rules for work and the
code for factorial given earlier, we can write the follow­
ing equation for work:

Wfact(n) = {I ~ I+ W == n = I
+ W.+W-+Wfact(n-l)n>1

where W~~, W" and W_ are the work for = = , *, and -,
and are all I. The two unit constants come from the cost of
the function call and the if-then-else rule.. \dding up the
terms and solving the recurrence gives Wfact(n) = 5n - 2.
Since there is no parallelism in the factorial function, the
depth is the same as the work. To calculate work and
depth for the full expression {factorialCn) : n in a}, we
can use equations I and 2. This calculation is shown in
Figure 6.

Examples of Parallel Algorithms in NESL

Several parallel algorithms are described and analyzed
here, providing examples of how to analyze algorithms in

terms of work and depth and of how to use nested data­
parallel constructs. They also introduce some important
ideas concerning parallel algorithms. Again, the main
goals are to have the code closely match the high-level
intuition of the algorithm and to make it easy to analyze
the asymptotic performance from the code.

Primes
Our first algorithm finds all prime numbers less than n.
This example demonstrates a common technique used in
parallel algorithms-solving a smaller case of the same
problem to speed the solution of the full problem. We also
use the example to introduce the notion of work effi­
ciency. An important aspect of developing a good parallel
algorithm is designing one whose work is close to the time
for a good sequential algorithm that solves the same prob­
lem. Without this condition we cannot hope to get good
speedup of the parallel algorithm over the sequential al­
gorithm. Parallel algorithms are referred to as work-effi­
cient relative to a sequential algorithm if their work is
within a constant factor of the time of the sequential algo­
rithm. All the algorithms we have discussed so far are
work-efficient relative to the best sequential algorithms. In
particular, summingn numbers took O(n) work and paral­
lel Quicksort took O(n log n) expected work, both of which
are the same as required sequentially. For finding primes,
our goal should again be to develop a work-efficient algo­
rithm. We therefore start by looking at efficient sequential
algorithms.

The most common sequential algorithm for finding
primes is the sieve of Eratosthenes, which is specified in
Figure 8. The algorithm returns an array in which the ith

position is set to TRUE if i is a prime and to FALSE otherwise.
The algorithm works by initializing the array A to TRUE

and then setting to FALSE all multiples of each prime it
finds. It starts with the first prime, 2, and works up to vn.
The algorithm only needs to go up to vn, since all com­
posite numbers (nonyrimes) less than n must have a fac­
tor less or equal to Yn. Ifline 7 is implemented by looping
over the multiples, then the algorithm can be shown to
take O(n log log n) time, and the constant is small. The
sieve of Eratosthenes is not the theoretically best algo­
rithm for finding primes, but it is close, and we would be
happy to derive a parallel algorithm that is work-efficient
relative to it (i.e., does O(n log log n) work).

It turns out that the algorithm as described has some
easy parallelism. In particular, line 7 can be implemented
in parallel. In N ESL, the multiples of a value i can be gen­
erated in parallel with the expression

[2*i:n:i]

and can be written into the array A in parallel with the
write function. Using the rules for costs (see Figure 7),
the depth of these operations is constant and the work is
the number of multiples, which is the same as the time of
the sequential version. Given the parallel implementation
of line 7, the total work of the algorithm is the same as the
sequential algorithm, since it does the same number of
operations, and the depth ofthe algorithm is O(vn), since

92 March 1996/VoI.39, No.3 CD••U ..ICAy..... OF THE acM

.. mining

each iteration of the loop in lines 5-8 has constant depth
and the number of iterations is \hi,. Note that thinking of
the algorithm in terms of work and depth allows a simple
analysis (assuming we know the running time of the se­
quential algorithm) without our having to worry about
how the parallelism maps onto a machine. In particular,
the amount of parallelism varies greatly from the first iter­
ation, in which we have n/2 multiples of 2 to knock out in
parallel, to the last iteration, where we have only \hi, mul­
tiples. This varying parallelism would make it messy to
program and analyze on a processor-based model.

We now consider improving the depth of the algorithm
without giving up any work. We note that if we were given
all the primes from 2 up to \hi" we could then generate all
the multiples of these primes at once. The NESL code for
generating all the multiples is

{[2*p:n:p]: pin sqr_primes};

where sqr_primes is a sequence containing all the primes
up to \hi,. This computation has nested parallelism, since
there is parallelism acrosS'the sqr_primes (outer parallel­
ism) and also in generating the multiples of each prime
(inner parallelism). The depth of the computation is con­
stant, since each subcall has constant depth, and the work
is O(n log log n), since the total number of multiples when
summed across the subcalls is the same as the number of
multiples used by the sequential version.

We have assumed that sqr_primes was given, but to
generate these primes we can simply call the algorithm

function primes(n) =
if n == 2 then ([] int)
else

recursively on \hi,. Figure 9 shows the full algorithm for
finding primes based on this idea. Instead of returning a
sequence of flags, the algorithm returns a sequence with
the values of the primes. For example, primesClO)
would return the sequence [2,3,4,7]. The algorithm re­
cursively calls itself on a problem of size \hi, and termi­
nates when a problem of size 2 is reached. The work and
depth can be analyzed by looking at the picture at the
bottom of Figure 9. Clearly most of the work is done at the
top level of recursion, which does O(n log log n) work. The
total work is therefore also O(n log log n). Now let's con­
sider the depth. Since each recursion level has constant
depth, the total depth is proportional to the number of
levels. To calculate this number, we note that the size of
the problem at level i is n 1/2' and that when the size is 2, the
algorithm terminates. This gives us the equation n 1/2" = 2,

Figure 9. The code for the primes algorithm, an
example of one level ofthe recursion, and a dia­
gram ofthe work and depth. In the code [I int indi­
cates an empty sequence of integers. The function
isqrt takes the square root of an integer. The func­
tion flatten takes a nested sequence and flattens it.
The function dist (a,n) distributes the value a to a
sequence of length n. The expression {I in [O:nl i fl
in flags Ifl} can be read as "for each i from 0 to n
and each fl in flags return the i if the corresponding
fl is true". The function drop(a,n) drops the first n
elements of the sequence a.

let sqr_primes = primes(isqrt(n»;
composites = {[2*p:n:p]: p in sqr_primes};
flat_camps = flatten (composites);
flags = write (dist(true, n), {(i,false): i in flat_comps});
indices = Ii in [O:n]; fl in flags I fl}

in drop (indices, 2);

Example for primes(20):

sqr_primes
composites
flat_camps
flags
indices
result

= [2,3]
= [[4,6,8,10,12,14,16,18] , [6,9,12,15,18]]
= [4,6,8,10,12,14,16,18,6,9,12,15,18]
= [t, t, t, t,f, t,f, t,f,f,f, t,f, t,f,f,f, t,f, t]
= [0,1,2,3,5,7,11,13,17,19]
= [2,3,5,7,11,13,17,19]

Depth

primes(n) 1::=:::==::;:;:;:-_n_IO_g__IO_g_n ~

primes (n l / 2) I nl/2 log log n l
/ 2 ~

primes (nI/4) 0
primes(2) 0

COM.UN.CAno.......11••eM March 1996/Vol. 39. No.3 g:!

where d is the depth we seek. Solving for d, this method
gives d = log log n. The costs are therefore:

W = O(n log log n)
D O(log log n)

This algorithm remains work-efficient relative to the se­
quential sieve of Eratosthenes and greatly improves the
depth.

Sparse Matrix Multiplication
Sparse matrices, which are common in scientific applica­
tions, are matrices in which most elements are zero. To
save space and running tillIe it is critical to store only the
nonzero elements. A standard representation of sparse
matrices in sequential languages is an array with one ele­
ment per row, each of which contains a linked-list of the
nonzero values in that row along with their column num­
ber. A similar representation can be used in parallel. In
NESL a sparse matrix can be represented as a sequence of
rows, each of which is a sequence of (column-number,
value) pairs of the nonzero values in the row. The matrix

A [i:~ ~:~ l.~ ~]
o 1.0 2.0 -1.0
o 0 1.0 2.0

is represented in this way as

A = [[(0, 2.0), (1, 1.0)],
[(0, -1.0), (1, 2.0), (2, -1.0)],
[(1, 1.0), (2, 2.0), (3, -1.0)],
[(2, 1.0), (3, 2.0)]],

where A is a nested sequence. This representation can be
used for matrices with arbitrary patterns of nonzero ele­
ments, since each subsequence can be of a different size.

A common operation on sparse matrices is to multiply
them by a dense vector. In such an operation, the result is
the dot-product of each sparse row of the matrix with the
dense vector. The NESL code for taking the dot-product of
a sparse row with a dense vector x is:

sum({v*x[i] : (i,v) in row})

This code takes each index-value pair (i,v) in the sparse
row, multiplies v by the ith value of x, and sums the re­
sults. The work and depth is easily calculated using the
performance rules. If n is the number of nonzero ele­
ments in the row, then the depth of the computation is the
depth of the sum, which is O(log n), and the work is the
SUlll of the work across the elelllents, which is O(n).

The full code for multiplying a sparse matrix A repre­
sented by a dense vector x requires that we apply the code
to each row in parallel, which gives

{sum({v*x[i] : (i,v) in row})
: row in A}.

This exalllple has nested parallelism, since there is paral­
lelislll both across the rows and within each row for the
dot products. The total depth of the code is the maximum

94 March 1996/VoI.39. No.3 COMMUNlCA'I'IOIlIi OP 'I'HE ACM

of the depth of the dot products, which is the logarithm of
the size of the largest row. The total work is proportional
to the total number of nonzero elements.

Planar Convex-Hull
Our next example solves the planar convex hull problem:
Given n points in a plane, find which of them lie on the
perimeter of the smallest convex region that contains all
points. This example shows another use of nested paral­
lelism for divide-and-conquer algorithms. The algorithm
we use is a parallel Quickhull [20], so named because of its
similarity to the Quicksort algorithm. As with Quicksort,
the strategy is to pick a "pivot" element, split the data
based on the pivot, and recurse on each of the split sets.
Also as with Quicksort, the pivot element is not guaran­
teed to split the data into equally sized sets, and in the
worst case the algorithm requires O(n2

) work; however, in
practice the algorithm is often very efficient.

Figure 10 shows the code and an example of the Quick­
hull algorithm. The algorithm is based on the recursive
routine hsplit. This function takes a set of points in the
plane «x,y) coordinates) and two points pI and p2 known
to lie on the convex hull and returns all the points that lie
on the hull clockwise from pI to p2, inclusive of pI, but
not ofp2. In Figure 10, given all the points [A, B, 0, . . . ,
P], pI A, and p2 = P, hsplit would return the se­
quence [A, B, J, 0]. In hsplit, the order of pI and p2
matters, since if we switch A and P, hsplit would return
the hull along the other direction [P, N, 0].

The hsplit function first removes all the elements that
cannot be on the hull because they lie below the line be­
tween pI and p2 (which we denote by pl-p2). This is
done by removing elements whose cross product with the
line between pI and p2 is negative. In the case pI = A
and p2 P, the points [B, D, F, G, H, J, K, M, 0] would
remain and be placed in the sequence packed. The algo­
rithm now finds the point pm farthest from the line pl­
p2. The point pm must be on the hull, since as a line at
infinity parallel to pl-p2 moves toward pl-p2, it must
first hit pm. The point pm (J in the running example) is
found by taking the point with the maximulll cross prod­
uct. Once pm is found, hsplit calls itself twice recursively
using the points (p1, pm) and (pm, p2) (in the example,
(A, J) and (J, P)). When the recursive calls return,
hsplit flattens the result, thereby appending the two
subhulls.

The overall convex-hull algorithm works by finding
the points with minilllum and maximum x coordinates
(these points must be on the hull) and then using hsplit to
find the upper and lower hull. Each recursive call has con­
stant depth and O(n) work. However, since many points
might be deleted on each step, the work could be signifi­
cantly less. As with Quicksort, the worst-case costs are W =
O(n2

) and D = O(n). For m hull points the best case times
are O(log m) depth and O(n) work.' It is hard to state the
average-case time, since it depends on the distribution of
the inputs. Other parallel algorithms for the convex-hull
problem run in D = O(log n), and W = O(n) in the worst
case [16], but have larger constants.

mmlng

W(n) = W(n/2) + kn = O(n)
D(n) = D(n/2) + k = O(log n)

Figure 11. Code for the fast Fourier transforms,
the scan operation, and for finding the J<!h smallest
element of a set

The particular code shown works only on sequences that
have a length equal to a power of two, but it is not hard to
generalize it to work on sequences of any length.

Work = O(n)

Depth = O(Jog n)

Work = O(n)

(expected)

Depth = 0 (Jog n)

(expected)

Work = O(nlog n)

Depth = O(Jog n)

function scan (a) =

if#a == 1 then [0]

else
let e = even_elts(a);

0= odd_elts(a);

s = scan({e + 0: e in e; 0 in oj)

in interleave(s,ls + e: s in s; e in e));

function ffHa,w) =

if#a == 1 then a

else

let r = {fft(b, even_elts(w»:

bin [even_elts(a) ,odd_elts(a)]}

in fcadd(a, cmult(b, w»:

a in r[O] ++ do];
bin r[I) ++ r[I);

winwl;

function kth_smallest(s, k) =

let pivot = s[#s/2];

lesser = Ie in sl e < pivot);

greater = Ie in sl e > pivot!;

in if (k < #Iesser) then

kth_smallestOesser, k)

else if (k >= #s - #greater) then

kth_smallest(greater, k -' (#S-#greater»

else pivot;

as a containing all the complex nth roots of unity. The FFT
is called recursively on the odd and even elements of a.
The results are then combined using cadd and CIDuit
(complex addition and multiplication). Assuming that
cadd and cIDult take constant work and depth, then the
recursion gives us the costs:

W(n) = 2W(n/2) + kn = O(n log n)
D(n) = D(n/2) + k = O(log n).

The plus-scan operation (called all-prefix-sums) takes a
sequence of values and returns a sequence of equal length
for which each element is the sum of all previous elements
in the original sequence. For example, executing a plus­
scan on the sequence [3, 5, 3, 1, 6] returns [0, 3, 8, I I,
12]. This can be implemented as shown in Figure I I. The
algorithm works by elementwise adding the odd and even
elements and recursively solving the problem on these
sums. The result of the recursive call is then used to gen­
erate all the prefix sums. The costs are:

P

function cross_product(o,line) =

let (xo,yo) = 0;
«xl,yl),(x2,y2» = line

in (xl-xoh(y2-yo) - (yl-yoh(x2-xo);

function convex_hull (points) =
let x = Ix : (x,y) in points};

minx = points(min_index(x)];
maxx =points (max_index(x)]

in hsplit(points,minx,maxx) ++ hsplit(points,
maxx,minx) ;

A

(AB CD E FGR I]KL MN 0 p]
A (BDFGRJKMO] P [CEILN]

A (B FJ] (0] P N (C E]
ABJOPNC

function hsplit(points,pl,p2) =

let cross = lcross_produet(p,(pI,p2»: p in points};
packed ={p:p in points; c in cross I plusp(c)}

in if (#packed < 2) then [pI] ++ packed
else

let pm =points [max_index(cross)]
in flatten ({hsplit(packed,pl,p2):

pi in [pI,pm]; p2 in [pm,p2]});

Three Other Algorithms
We conclude our examples with brief discussions of three
other algorithms: the fast Fourier transform (FFT), the
scan operation (all prefix sums), and an algorithm for
finding the kth smallest element of a set. All the code is
shown in Figure II. These algorithms further demon­
strate the conciseness of nested data-parallel constructs.

We use the standard recursive version for the FFT [I I].
The second argument w is a sequence of the same length

Figure 10. Code and example ofthe Quickhull al­
gorithm. Each sequence in the example shows one
step of the algorithm. Since A and P are the two x
extrema, the line AP is the original split line. J and N
are the farthest points in each subspace from AP
and are, therefore, used for the next level of splits.
The values outside the brackets are hull points that
have already been found.

CO.MUN.CA'I'IOil. 011 TIiE .CM March I996/Vol. 39, No.3 95

A variation of Quicksort can be used to find the kth

smallest element of a sequence [11]. This algorithm calls
itself recursively only on the set ofelements containing the
result. Here we consider a parallel version of this algo­
rithm. Mter selecting the lesser elements, if #lesser is
greater than k, then the kth smallest element must belong
to that set. In this case, the algorithm calls kth smallest
recursively on lesser using the same k. Otherwise, the
algorithm selects the elements that are greater than the
pivot, and can similarly find if the k th element belongs in
greater. If it does belong in greater, the algorithm calls
itself recursively but must now readjust k by subtracting
the number of elements less than or equal to the pivot. If
the k th element belongs in neither lesser nor greater,
then it must be the pivot, and the algorithm returns this
value. For sequences of length n, the expected work of this
algorithm is O(n), which is the same as the time of the
serial version. The expected depth is O(log n), since the
expected depth of recursion is O(log n).

summary
The N ESL language was designed to be useful for pro­
gramming and teaching parallel algorithms. For these
purposes, it was important that it allow simple descrip­
tions of algorithms that ciosely match our high-level intui­
tion, and also that it supply a well-defined model for ana­
lyzing performance. We believe the language has
successfully achieved these goals. There are many aspects
of N ESL, and the purpose of this article was to extract the
two features that are most important for programming
parallel algorithms. They are:

• A performance model based on work and depth. An
important aspect is that the model is defined directly in
terms of language constructs rather than trying to ap­
peal to any intuition of a machine. As discussed, the
model is a virtual one for which we give mappings onto
running times for various physical machine models.

• The use of data-parallel constructs for expressing paral­
lelism and the ability to nest such constructs. We cer­
tainly do not mean to exclude any other parallel con­
structs, but having some way of mapping a function
over a set of values in parallel seems critical for express­
ing many parallel algorithms.

This article is suggesting a change in the underlying mod­
els we use for analyzing parallel algorithms. In particular,
it suggests that we move away from using theoretical per­
formance models based on machines to using models
based on languages. As mentioned in the article, some ref­
erence works already informally analyze parallel algo­
rithms in terms of work and depth before mapping them
onto a PRAM [16, 17]. We suggest that the extra step be
taken of formalizing a model based on work and depth.
With this formal model, the PRAM can be cut out of the
loop, directly mapping the model onto more realistic ma­
chines. We furthermore argue that language-based mod­
els seem to be the most reasonable way to define a pro­
grammingmodel based on work and depth.

A full implelnentation of N ESL is currently available on

96 March 1996/VoI.39. No.3 COMMU.lCATIONS 011 TN8 AeM

the World-Wide Web. The compiler is based on a tech­
nique called flattening nested parallelism [4] and compiles
to an intermediate language called VCODE. Benchmark
results for this implementation for the Connection Ma­
chines CM-2 and CM-5 and the Cray C90 are described in
[8]. These results show that NESL'S performance is com­
petitive with that of machine-specific codes for those
benchmarks.

Acknowledgments
I would like to thank Marco Zagha, Uzi Vishkin, Jay
Sipelstein, Margaret Reid-Miller, Takis Metaxas, Bob
Harper, Jonathan Hardwick, John Greiner, Jacques
Cohen, and Siddhartha Chatterjee for many helpful com­
ments on this article. Siddhartha Chatterjee, Jonathan
Hardwick, Jay Sipelstein, and Marco Zagha helped in the
design of NESL and did all the work implementing the
intermediate languages VCODE and CVL. This research
was sponsored in part by the Advanced Research Projects
Agency (ARPA) under grant number F33615-93-1-1330,
and in part by an NSF Young Investigator Award.

References
1. Aho, A.V., and Ullman, J.D. Foundations of Science.

Computer Science Press, New York, 1992.
2. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The and

of Computer Addison-Wesley, Reading,
Mass., 1974.

3. Arvind, R., Nikhil, S., and Pingali, K.K. I-structures: Data
structures for parallel computing. ACM Trans. Program.

11, 4 (Oct. 1989), 598-632.
4. Blelloch, G.E. VectoT Data-Parallel MIT

Press, Cambridge, Mass., 1990.
5. Blelloch, G.E. NEsL: A nested data-parallel language (version

2.6). Tech. Rep. CMU-CS-93':129, School of Computer Sci­
ence, Carnegie Mellon Univ., 1993.

6. Blelloch, G.E., and Greiner,J. Parallelism in sequential func-
tionallanguages. In on Functional
PTogTamming and Computer Architecture (June 1995).

7. Blelloch, G.E., and Hardwick,J.C. Class notes: Programming
parallel algorithms. Tech. Rep. CMU-CS-93-115, School of
Computer Science, Carnegie Mellon Univ., 1993.

8. Blelloch, G.E., Chatterjee, S., Hardwick, J .C., Sipelstein, J.,
and Zagha, M. Implementation of a portable nested data­
parallel language.]. Parallel DistTib. 21, 1 (Apr.
1994), 4-14.

9. Brent, R.P. The parallel evaluation of arithmetic
expressions.]. ACM 21,2 (1974), 201-206.

10. Chandy, K.M., and Misra, J. PaTallel A Foun-
dation. Addison-Wesley, Reading, Mass., 1988.

11. Cormen, T.H., Leiserson, C.E., and Rivest, R.L. IntToduction
to Algorithrns. Cambridge, Mass., 1990.

12. Feo, J.T., Cann, D.C., and Oldehoeft, R.R. A report on the
Sisal language project.]. Parallel Distrib. Comput. 10, 4 (Dec.
1990), 349-366.

13. Hatcher, P., Tichy, W.F., and Philippsen, M. A critique of the
programming language C*. Commun. ACM 35, 6 (June 1992),
21-24.

14. High Performance Fortran Forum. High Fortran
Language May 1~~3.

15. Hillis, W.D., and Steele, G.L.' Jr. Data parallel algorithms.
Commun. ACM 29, 12 (Dec. 1986), 12.

IIIlng

16. J<ija, J An Introduction to Parallel Algorithms. Addison-Wesley,
Reading, Mass., 1992.

17. Karp, R.M., and Ramachandran, V. Parallel algorithms for
shared memory machines. In Handbook ofTheoretical Computer
Science- Volume A: Algorithms and Complexity, J. Van Leeuwen,
Ed. MIT Press, Cambridge, Mass., 1990.

18. Mills, P.H., Nyland, L.S., Prins, JF., Reif, JH., and Wagner,
R.A. Prototyping parallel and distributed programs in Pro­
teus. Tech. Rep. UNC-CH TR90-041, Computer Science
Dept., Univ. of North Carolina, 1990.

19. Milner, R., Tofte, M., and Harper, R. The Definition of Stan­
dard ML. MIT Press, Cambridge, Mass., 1990.

20. Preparata, F.P., and Shamos, M.l. Computational Geometry­
An Introduction. Springer-Verlag, New York, 1985.

21. Rose, JR., and Steele, G.L., Jr. C*: An extended C language
for data parallel programming. In Proceedings of the 2d Inter­
national Conference on Supercomputing, Vol. 2 (May) 1987, pp.
2-16.

22. Schwartz,JT., Dewar, R.B.K., Dubinsky, E., and Schonberg,
E. Programming with Sets: An Introduction to SETL. Springer­
Verlag, New York, 1986.

23. Shiloach, Y, and Vishkin, U. An O(n2 log n) parallel Max-

Flow algorithm. J. Algorithms 3 (1982), 128-146.
24. Sipelstein, J and Blelloch, G.E. Collection-oriented lan­

guages. In Proceedings of the IEEE 79, 4 (Apr. 1991), pp. 504­
523.

25. Vishkin, U. Parallel-design distributed-implementation
(PDDI) general purpose computer. Theor. Comput. Sci. 32
(1984), pp. 157-172.

About the Author:
GUY E. BLELLOCH is an associate professor of Computer Sci­
ence at Carnegie Mellon University. Author's Present Address:
Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213-3891; email: blelloch@cs.cmu.edu

Permission to make a digital/hard copy of part or all of this work for per­
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to repub­
lish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

©ACM 0002-0782/96/0300 $3.50

CALL FOR 1997 ACM FELLOWS NOMINATIONS

The designation "ACM Fellow" may be conferred upon those ACM Members who have distinguished themselves by
outstanding technical and professional achievements in information technology, who are current voting members of
ACM and have been voting members for the preceding five years. Any voting member of ACM may nominate anoth­
er member for this distinction. Nominations must be received by the ACM Fellows Committee no later than August I
of each year and must be delivered to the Committee on forms provided for this purpose (see below).

Nomination information organized by a principal nominator includes:
l) excerpts from the candidate's current curriculum vitae. listing selected publications, patents, technical

achievements, honors, and other awards.
21 a description of the work of the nominee, drawing attention to the contributions which merit designation as Fellow.
3) supporting endorsements from five ACM Members.

ACM Fellows nomination forms and endorsement forms may be obtained from ACM by writing to:
ACM Fellows Nomination Committee
ACM Headquarters
1515 Broadway
New York, New York 10036-5701
nom inate- fellows@] acm.o rg

The forms can also be accessed on the following:
http://www.acm.org/awards/fellows/nominatioD1_packet.htmI

Completed forms should be sent by August I. 1996 to one of the following:

ACM Fellows Committee
ACM Headquarters

1515 Broadway
New York, New York 10036-5701

or
nominate-fellows@acm.org

or
+1-212-869-0824 - fax

C:OMMUNICA'I'IONS OP THE .CM March 1996/Vol. 39, No.3 97

