
ar
X

iv
:1

31
2.

29
19

v1
 [

cs
.D

B
]

10
 D

ec
 2

01
3

Win-Move is Coordination-Free (Sometimes)

Daniel Zinn1

daniel.zinn@logicblox.com
Todd J. Green1,2

green@cs.ucdavis.edu
Bertram Ludäscher2

ludaesch@cs.ucdavis.edu
1 LogicBlox, Inc.

1349 W Peachtree St NW
Atlanta, GA 30309 USA

2 Dept. of Computer Science
University of California, Davis

Davis, CA 95616 USA

ABSTRACT
In a recent paper by Hellerstein [15], a tight relationship
was conjectured between the number of strata of a Datalog¬

program and the number of “coordination stages” required
for its distributed computation. Indeed, Ameloot et al. [9]
showed that a query can be computed by a coordination-
free relational transducer network iff it is monotone, thus
answering in the affirmative a variant of Hellerstein’s CALM
conjecture, based on a particular definition of coordination-
free computation. In this paper, we present three additional
models for declarative networking. In these variants, rela-
tional transducers have limited access to the way data is
distributed. This variation allows transducer networks to
compute more queries in a coordination-free manner: e.g.,
a transducer can check whether a ground atom A over the
input schema is in the “scope” of the local node, and then
send either A or ¬A to other nodes.

We show the surprising result that the query given by the
well-founded semantics of the unstratifiable win-move pro-
gram is coordination-free in some of the models we consider.
We also show that the original transducer network model [9]
and our variants form a strict hierarchy of classes of coor-
dination-free queries. Finally, we identify different syntactic
fragments of Datalog¬¬

∀ , called semi-monotone programs,
which can be used as declarative network programming lan-
guages, whose distributed computation is guaranteed to be
eventually consistent and coordination-free.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems, Distributed databases

General Terms
Languages, Theory

Keywords
Datalog, distribution, relational transducer, monotonicity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

1. INTRODUCTION
The popularization of cloud computing as a scalable, dis-

tributed computing paradigm has reinvigorated work on pro-
gramming distributed systems and databases. One of the
thornier sources of inefficiency in such systems, identified
first in [15] and reiterated in [9, 18], is the presence of global
coordination barriers in distributed computation.

For example, consider a stratified Datalog¬ program with
a rule of the form A ← B,¬C. If a new fact C becomes
known, previously derived atoms A may no longer be deriv-
able, i.e., the program is non-monotonic. Therefore, the
standard bottom-up evaluation procedure for such programs
involves a staged, stratum-at-a-time evaluation [2], with com-
putation of a given stratum allowed to proceed only when
computation of all lower strata is complete. In the dis-
tributed context, each stratum apparently constitutes a syn-
chronization barrier where all nodes must wait for all other
nodes from lower strata to finish. Moreover, it seems that
no results can be returned to the user or client application
until computation reaches the last stratum.

In contrast, in Datalog programs without negation, the
rules can be evaluated in any order until a fixpoint is reached,
since such positive programs are monotone. Even though
this “disorderly” evaluation strategy can proceed in a non-
deterministic fashion, the resulting fixpoint is uniquely de-
termined, independent of the chosen evaluation order [5].
Thus, positive Datalog programs lend themselves to a coor-
dination-free evaluation. This has been exploited, e.g., by
Loo et al. [19] for declarative networking, using a pipelined
semi-naive strategy, which, as Hellerstein [15] puts it, “makes
monotonic logic embarrassingly parallel”. In contrast, strat-
ified Datalog¬ programs seem to require distributed coor-
dination to proceed from one stratum to the next: “Non-
monotonic stratum boundaries are global barriers: in gen-
eral, no node can proceed until all tasks in the lower stratum
are guaranteed to be finished” [15]. Guided by this intution,
Hellerstein conjectured:

Conjecture 1.1 (CALM [15]) A program has an even-
tually consistent, coordination-free execution strategy if and
only if it is expressible in (monotonic) Datalog.

The CALM1 conjecture is informal—it requires precise no-
tions of eventually consistent, coordination-free, etc.—but
seems plausible nevertheless. Ameloot et al. [9] have shown
that a version of the conjecture holds for transducer net-
works with a particular notion of coordination-freeness. For

1Consistency And Logical Monotonicity

http://arxiv.org/abs/1312.2919v1

stratified Datalog¬, Hellerstein [15] suggests that the paral-
lel runtime “might be best measured by the number of strata
it must proceed through sequentially”, which thus would yield
a simple, elegant notion of coordination complexity, and fur-
ther support the intuition that “there is deep connection be-
tween non-monotonic reasoning and parallel coordination”.

A close correspondence between coordination complex-
ity and number of strata in Datalog¬ programs would also
nicely mimic the strict class hierarchy of queries express-
ible by Datalog¬ programs with n strata: positive Datalog
programs are coordination-free and can be executed in any
order within a single stratum, while programs with n strata
could have a disorderly rule evaluation within a stratum,
but would require n global coordination barriers between
strata. Extrapolating these ideas even further, unstratifi-
able Datalog¬ programs, evaluated under the well-founded
semantics [22], would then require an unbounded number of
coordination stages, corresponding to the number of rounds
of the alternating fixpoint computation [14], i.e., the number
of coordination barriers would no longer be fixed for a given
program (as for stratified Datalog¬) but instead depend on
the database instance.2

In this paper, we revisit and shed new light on the CALM
conjecture. We show that, surprisingly, the canonical exam-
ple of an unstratifiable program, the win-move program, has
a coordination-free distributed evaluation strategy in some
of the declarative networking variants we consider.

A Hierarchy of Relational Transducer Networks
The original model, denoted N0, are the transducer net-
works defined by Ameloot et al. [9]. Only monotone queries
are coordination-free in this model. In our first variant, N1,
transducers have some limited knowledge about the hori-
zontal data distribution: a transducer can check whether an
input atom A (i.e., a ground fact R(x̄) from the Herbrand
base) is in its “scope”. If that is the case, then the local node
can determine whether A or ¬A is true using only local com-
putations, and pass on this information to other nodes. In
N1, semi-positive Datalog¬ programs are coordination-free.
In our second variant, N2, we require partitioning policies to
be element-determined, i.e., there is a function F , mapping
each domain element to a set of nodes. A ground input atom
R(x1, . . . , xk) is then in the scope of all nodes F (xi), for all
i = 1, . . . , k. We show that in this model the unstratifiable
win-move program is coordination-free.

Finally, in N3, transducers have access to a system rela-
tion adom containing the active domain of the global input.
As it turns out, this knowledge has a dramatic effect on
the class of coordination-free programs, making all queries
coordination-free.

Our main result, Theorem 6.2, states that the classes of
queries that are coordination-free under the network models
N0, N1, N2, and N3, form a strict hierarchy.

Games and Coordination
After presenting preliminaries in Section 2, we first motivate
our approach for minimizing coordination in the presence of
non-monotonic constructs (negation), on the example of the
well-known win-move program (Section 3). We start from
the “doubled program” [16] version of win-move and trans-

2Well-founded Datalog¬ expresses the fixpoint queries [2],
and is strictly more expressive than stratified Datalog¬ [17].

late it into Datalog¬¬
∀ , which is a Datalog¬ variant proposed

by Abiteboul and Vianu [3] with negation in the head (to in-
dicate deletions) and ∀-quantification in the body. The key
idea of our approach to deal with the inherent difficulties
in programming distributed systems is to define a disorderly
semantics for Datalog¬¬

∀ with built-in non-determinism that
corresponds to non-determinism caused by (i) network mes-
sage re-ordering or by (ii) asynchronously incorporationg
incoming updates to the local database state as in [19]. We
show that our transformed program is confluent and termi-
nating under this semantics, and that the result agrees with
both the deterministic and non-deterministic semantics of
Datalog¬¬

∀ given by Abiteboul and Vianu. Since the deter-
ministic and non-deterministic semantics in general disagree
for arbitrary programs, another contribution is the identifi-
cation of a “well-behaved” fragment of Datalog¬¬

∀ , which we
call semi-monotone Datalog (Section 4).

Section 5 introduces the basic transducer network model
of Ameloot et al. [9], called N0 here, and then describes our
variantsN1, N2, and N3. Section 6 presents our main result,
the hierarchy of classes of coordination-free queries implied
by these network models. The remaining sections contain
discussions of related work and concluding remarks.

2. BACKGROUND AND PRELIMINARIES

2.1 Datalog with Negation
A relational schema σ consists of a finite set of relation

symbols r1, . . . , rk with associated arities α(ri) ≥ 0. Let
dom be a fixed and countable underlying domain. A database
instance (database) over σ is a finite structure

D = (U, rD1 , . . . , rDk)

with finite universe U ⊆ dom and relations rDi ⊆ Uα(ri).
We will often identify database instances with sets of ground
facts in the standard way, assuming U to be the active do-
main.

A Datalog¬ program P is a finite set of rules of the form

A← B1, . . . , Bn,¬C1, . . . ,¬Cm

where the head A, positive body literals Bi and negative
body literals Ci are relational atoms, i.e., of the form

R(x1, . . . , xl)

with R ∈ σP being a relation symbol with α(r) = l and each
xi is either a variable or a constant from dom. The signature
σP of P is partitioned into a set idb(P) of intensional rela-
tion symbols of P occurring in some head of P and edb(P)
of extensional relation symbols occurring only in the bodies
of rules. We require negation to be safe, i.e., in every rule,
each variable must occur positively in the body. Among the
relation symbols of idb(P), one is distinguished as the output
predicate.

A (positive) Datalog program is a Datalog¬ program that
does not have negative literals. A Datalog¬ program P
is semi-positive if all negatively used relations are among
edb(P).

Fix a Datalog¬ program P . The predicate dependency
graph for P is the directed graph G(P) = (σP , E

+ ∪ E−)
whose vertices are the relation symbols of P , and such that
(r, r′) ∈ E+ (resp. E−) if r occurs positively (resp. nega-
tively) in the body of a rule in P that has r′ in the head. P

is recursive if G(P) contains a cycle. P is stratifiable if G(P)
does not contain a cycle with a negative edge (r, r′) ∈ E−.
Every semi-positive Datalog¬ program is trivially stratifi-
able.

2.2 Well-Founded Semantics
Let P be a Datalog¬ program, including a given database

D as a set of facts. Fix some Herbrand interpretation J ⊆
BP , where BP denotes the set of all ground instances of
atomic formulas of P . The immediate consequences under
the assumptions J are given by:

TP,J(I) :=

{H | (H ← B1, . . . , Bn,¬C1, . . . ,¬Cm) ∈ ground(P),

I |= B1 ∧ · · · ∧Bn, J |= ¬C1 ∧ · · · ∧ ¬Cm}.

Since J is fixed, TP,J is a monotone operator. Let ΓP (J) :=
lfp(TP,J) be its least fixpoint. The operator ΓP is antimono-
tone (observe how J is used in TP,J , i.e., J1 ⊆ J2 implies
ΓP (J2) ⊆ ΓP (J1)). It follows that Γ2

P (:= ΓP ◦ ΓP) is a
monotone operator, so it has a least and a greatest fixpoint.
These are used to define the 3-valued well-founded model
WP , a mapping of ground atoms to {true, false, undefined}
as follows:

WP (A) :=

true if A ∈ lfp(Γ2
P,I)

false if A 6∈ gfp(Γ2
P,I)

undefined if A ∈ gfp(Γ2
P,I) \ lfp(Γ

2
P,I)

We recall also that the well-founded semantics is a con-
servative extension of the stratified semantics, i.e., the well-
founded semantics is two-valued for stratifiable Datalog¬

programs P ; and in these cases, the well-founded model
agrees with stratified model.

2.3 Alternating Fixpoint
The construction of WP given above is called the alter-

nating fixpoint computation of the well-founded model [14]
and involves a nested fixpoint: The inner fixpoint is given by
ΓP (J) = lfp(TP,J), the outer fixpoints are obtained by iter-
ating the antimonotone operator ΓP . The sequence Γ

0
P ,Γ

1
P ,...

given by

Γ0
P := ∅ and Γi+1

P := ΓP (Γ
i
P), (1)

alternates between underestimates of true, and overestimates
of true or undefined atoms, respectively. More precisely, the
subsequence Γ2k

P converges to the least fixpoint (the set of
true atoms) from below, while Γ2k+1

P converges to the great-
est fixpoint (the set of true or undefined atoms) from above.
The key idea is that applying the antimonotone operator ΓP

to an underestimate yields an overestimate and vice versa.

2.4 Doubled Program
A standard refinement of the alternating fixpoint tech-

nique initializes the first underestimate with the set of defi-
nitely true facts, i.e., those that do not depend on any nega-
tive subgoals [16]. Furthermore, previously computed under-
and over-estimates are used to “seed” the fixpoint computa-
tion exploiting monotonicity of TP,J(I) in I . Here, comput-
ing a new underestimate starts from the old underestimate
(since the sequence of underestimates is monotonically in-
creasing), and computing a new overestimate starts from
the last underestimate since underestimates are always sub-
sets of the overestimates. Let P+ be the subset of rules of

a program P that do not contain negation, and Tω
P,J(I) de-

note the least fixpoint obtained by iterating TP,J on I . The
doubled program approach can be described as:

U0 := Tω
P+,∅

(∅)

V0 := Tω
P,U0

(U0)

Ui := Tω
P,Vi−1

(Ui−1), i ≥ 1

Vi := Tω
P,Ui

(Ui), i ≥ 1

This computation is performed until the sequence of under-
estimates Uk and overestimates Vk become stationary. It
is equivalent with the definition given in (1) in the sense
that lfp(Γ2

P) equals the fixpoint Ui
ω and gfp(Γ2

P) equals the
fixpoint Vi

ω.
We use the doubled program approach as a starting point

for our parallel win-move evaluation (Section 3). However,
note that while in this scheme an underestimate Ui+1 is
computed“incrementally”(using the previous underestimate
Ui), an overestimate Vi+1 is always computed “almost from
scratch” (without using the previous overestimate Vi but
only Ui), which is somewhat inefficient. A number of papers
(e.g., [11, 12, 24, 10]) have explored techniques for incremen-
tally computing overestimates V i+1 by directly inferring the
“to-be-deleted” facts from V i.

2.5 Production Rules Semantics
A number of production rule semantics have been defined

for Datalog¬ and extensions thereof [23, 3, 4]. These pro-
cedural semantics are easy to compute: The program is un-
derstood as a set of rules that are fired until a fixpoint is
reached. A rule can fire if its body is true for the cur-
rent database instance. The rule heads are interpreted as
updates, i.e., positive heads are insertions, while negative
literals are deletions. Here, we consider Datalog¬¬

∀ [3], a
language whose syntax extends Datalog¬ by allowing nega-
tive literals in the head (deletions), and ∀-quantification of
variables in the rule body. Thus, Datalog¬¬

∀ rules are of the
form

A← ∀X̄ B1, . . . , Bn,¬C1, . . . ,¬Cm

where A is a positive or negated (¬) relational atom3, each
variable not in X̄ occurs in at least one positive atom in the
body, and the variables in X̄ occur only in the body and
only in negated atoms.

It is convenient to allow Datalog¬¬
∀ programs to perform

updates to extensional relations; or, equivalently, to allow
for some intensional relations to come“pre-initialized.” Thus
we assume that the schema σP of a Datalog¬¬

∀ program P
is partitioned into a set edb(P) of relation symbols occur-
ring only in the bodies of rules, and two sets idb(P) and
eidb(P) of relation symbols occurring in the heads of rules.
The input to P will be an instance consisting of edb(P) and
eidb(P) tuples. The distinguished output predicate for P
must come from idb(P).

A Datalog¬¬
∀ program may be interpreted under either

of two distinct semantics, the deterministic and the non-
deterministic semantics. We will return to these semantics,
and present a third “even more non-deterministic” alterna-
tive which we call the disorderly semantics, in Section 4.

3In the presentation of Abiteboul and Vianu [3], heads may
have multiple atoms, giving additional expressive power
under their non-deterministic semantics, but the more re-
stricted version here is sufficient for our purposes.

Intuitively, the deterministic semantics involves firing all
applicable rules in parallel at each step of the computa-
tion. Rules with positive heads are treated as insertions,
while those with negative heads are considered deletions;
conflicting insertions and deletions are ignored. The non-
deterministic semantics for Datalog¬¬

∀ , on the other hand,
involves firing just a single ground rule at each step of the
computation, with the rule chosen non-deterministically.

Formally, given a Datalog¬¬
∀ program P and database in-

stance I , we define the deterministic immediate consequence
operator Adet

P () as follows:

Adet
P (I) := (I ∪ (∆I+ \∆I−)) \ (∆I− \∆I+) with

∆I = { ν(head) | I |= ν(body) for (head← body) ∈ P }

The result SP (I) of applying a Datalog¬¬
∀ program P to an

input instance I under the deterministic semantics is de-
fined as the least fixpoint of iterating Adet

P (·) on I . In case
the fixpoint does not exist SP (I) is undefined. Note, that
for these procedural semantics we do not encode the EDB
facts as body-less rules in P . Instead, they are introduced
by seeding the fixpoint computation. Since the procedural
semantics allow deletions, this is significant.

The non-deterministic semantics is based on the notion of
immediate successor [23] of a set of facts using a rule, defined
as follows. Let r = head ← body be a Datalog¬¬

∀ rule. Let
I be a set of facts and ν be a consistent variable assignment
for the variables in r such that I implies ν(body). Then
an instance I ′ is an immediate successor of I if it can be
obtained from I by (a) deleting the fact A if ν(head) = ¬A,
or (b) by inserting A if ν(head) = A. An instance J is an
eventual successor of I using the rules of P if there exists a
sequence I0 = I, . . . , In = J such that for each i, Ii+1 is an
immediate successor of Ii using some rule in P .

Definition 2.1 Let P be a Datalog¬¬
∀ program, and let I

be a source instance. The result of applying P to I under
the non-deterministic semantics is the set containing all in-
stances J such that J is an eventual successor of I using the
rules of P , and there is no immediate successor J ′ 6= J of J
using some rule in P .

3. BASIC APPROACH
In this section, we present the key intuitions for a parallel

and “disorderly” evaluation strategy for the win-move game:

win(X) ← move(X,Y), ¬win(Y). (2)

Here, we have a database instance over an active domain of
positions and having a single binary move relation. A tuple
move(a,b) can be read as indicating that “from position a

a player can move to position b.” In the game, two players
White and Black take turns making moves, starting from a
given position, with White playing first. A player loses at
position X if she cannot move; and she wins at X if she can
move to a position which the opponent loses.

Evaluating program (2) under the well-founded semantics,
the true facts in win are the positions X such that White

has a winning strategy for the game starting at X, while
the false facts in win are the positions for which Black has a
winning strategy. The undefined facts in win are the drawn
positions for which neither player has a winning strategy,
that is, the two players can move in cycles without either
one being able to force the other into a lost position. See

a b c

(a) c is initially lost, therefore b is won and thus a is lost.

a b c d

(b) d is initially lost, therefore c is won. From b, the optimal
strategy is to move back to a; thus a and b are draws.

a b c

d

j

e g

f

k l

h

i

(c) g, h, i, l are initially lost. Thus, e, f, k are won (for each
of the won positions, there exists an adjacent lost position).
d and f are lost, since all adjacent positions win. c is won
either by moving to d or j. Positions a and b are draws.

Figure 1: Examples of solved win-move games

Figure 1 for several examples of move graphs together with
their solutions.

Our strategy uses a multi-step program transformation
whose first step is just the standard doubled program ap-
proach (cf. Section 2). Thus, we introduce two relations
that we shall call won and may win, in which we compute
the set of definitely won and not definitely lost positions,
respectively. Here, won is the underestimate of the win rela-
tion, while may win is the overestimate of the win relation.

won(X) ← move(X,Y), ¬may_win(Y). (Pu)

may_win(X) ← move(X,Y), ¬won(Y). (Pv)

Example 3.1 Consider Figure 1(c). The doubled program
computation proceeds as follows to determine positions c, e, f
and k as win; a and b as draws and the remaining positions
d, g, h, i, j and l as lost positions.

estimates
U0 won = {}
V0 may_win = {a, b, c, d, e, f, j, k}
U1 won = {e, f, k}
V1 may_win = {a, b, c, e, f, k}
U2 won = {c, e, f, k}
V2 may_win = {a, b, c, e, f, k}

Note that in the doubled program evaluation, Pu and Pv are
evaluated sequentially in a strictly alternating order. Di-
rectly mapping this approach to a distributed setting would
seem to require reaching a global consensus that a given step
is complete before the next step is allowed to proceed. To
avoid the need for such coordination, we will derive a new set
of rules in which all rules can be applied to ground facts in
any order. The new set of rules will be a Datalog¬¬

∀ program,
whose result turns out to agree with the doubled program
whether we evaluate it under the deterministic semantics of
Abiteboul and Vianu, under their non-deterministic seman-
tics, or under the disorderly semantics that we introduce in
this paper.

As a first step in this derivation, we introduce an auxiliary
binary relation good move in which we record moves that, so

far as we know, may be able to be played to avoid a certain
defeat. Initially, any move out of a node is such a move,
and all interior nodes may still win. That is, we initialize
our relations may win and good move as follows4 :

good_move(X,Y) ← move(X,Y).

may_win(X) ← move(X,Y).
(Pinit)

Now, intuitively, we can successively recognize won positions
by detecting an adjacent lost position, i.e., one that may
not win anymore (or is not in the over-estimate). Further,
whenever a position has been discovered to be won, moving
into that position is definitely not a good move since now
the opponent would be left in a winning position; thus the
edge should be deleted from our good move relation. Finally,
if no good moves remain from a position, then it is certain
that the position is lost.

1 won(X) ← move(X,Y), ¬may_win(Y).
2 ¬good_move(X,Y) ← won(Y), move(X,Y).
3 ¬may_win(X) ← ∀Y ¬good_move(X,Y),move(X,_).

(Pwm)

Example 3.2 Continuing with the example of Figure 1(c),
we now consider two possible computations according to the
non-deterministic semantics for Datalog¬¬

∀ . In either case,
we repeatedly choose a valuation of variables that makes the
body true for a rule in Pwm and the current database state,
and apply the corresponding insertion or deletion. The two
computations A and B are represented in Figure 2 as fol-
lows: move is an EDB relation, so it stays constant. The
relation good move is initialized with the contents of move,
and during the computation we are subsequently deleting
facts from good move. For may win it is similar: may win is
initialized with non-leaf nodes, some of which are going to
be deleted during the computation. won begins empty. The
numbers in the columns A (resp. B) indicate the order in
which a fact is derived into won or deleted from good move

and may win in the computation trace A (resp. B). For ex-
ample consider computation A. The first three derivations
performed are to successively declare positions e, f, and k

won according to rule (1) of Pwm. We can then apply rule
(2) to delete (d,e) from good move since e is lost (step 4),
similar for (d,f), and (j,k). Now, d does not have a good-
move out anymore, and thus can be deleted from may win

according to rule (3), same for j. Finally, we can apply rule
(1) again to declare c won, since, for example, d is not in
may win anymore. Now, no applicable rule would change any
of the IDB relations anymore. We end up with the winning
positions in won; the drawn positions are those in may win

that are not also in won, in our case a and b.
In the computation A, we derive won(c) last5. However,

the different order B of evaluating Pwm derives won(c) al-
ready after only four rule applications. Intuitively, this is
due to the fact that there is a short “winning path” from
c through j, k, and l, which does not have to wait for the
deletion of d from may_win.

Furthermore, both computations A and B reach the same
result, although Pwm contains negation and is non-monotonic.

4The rule to compute may win is equivalent to computing
the first overestimate of the alternating fixpoint procedure.
5Observe how this order roughly corresponds to the alter-
nating fixpoint order.

move

X Y

a b

b a

b c

c d

c j

d e

d f

e d

e g

f h

f i

j k

k l

good_move

X Y A B

a b

b a

b c

c d

c j

d e 4 9

d f 5 7

e d

e g

f h

f i

j k 6 2

k l

may_win

X A B

a

b

c

d 7 8

e

f

j 8 3

k

won

X A B

e 1 5

f 2 6

k 3 1

c 9 4

Figure 2: Two non-deterministic evaluations A and
B of Pwm, solving the win-move game in Figure 1(c).

The fact that computations A and B from the example
evaluate Pwm differently, yet reach the same conclusion, is
not a coincidence: as we will show in Section 4, it is a conse-
quence of the structure of Pwm that holds for any example
of a win-move graph and order of evaluation. Moreover, we
will also show there that the result is in accordance with the
well-founded semantics.

Since the order of picking rules for evaluation does not
change the final result, we have much more flexibility when
we distribute the computation, as discussed next.

3.1 Distributed Execution
We assume the contents of the relations move, won, may win,

and good move to be horizontally distributed across multiple
nodes. A global database state thus only exists virtually as
a union over all local databases. We would like each node to
be able to take part in the computation, i.e., execute rules
and update the global state. To do so, it is necessary that a
node can judge by only investigating its local state whether
the global database implies a certain valuation for a body of
a rule. Consider a rule that has only positive body literals,
e.g., a(X) ← b(X),c(X). Clearly, if a node N has b(1) and
c(1) amongst its local data, than a(1) can be derived. If
a(1) should be stored at a different node N ′, then an in-
sertion request for a(1) is sent to N ′, who in turn inserts
it into its local database. However, consider a rule such as
won(X) ← move(X,Y),¬may_win(Y). To be applicable with
a binding of X=k,Y=l on the global database state, it is in
general not enough to check whether the fact may_win(l) is
missing in the local state, since it could be in one of the other
partitions located at a different node. Here, we exploit the
fact that data is often not partitioned arbitrarily, but for ex-
ample, according to a hash-function, or a range-partitioning
scheme. In our example here, we assume a globally known,
fixed partitioning function h that maps each fact of the ac-
tive domain to a certain host. In our example, this simply
means that each node is responsible for a certain set of po-
sitions and its adjacent edges. The tuple may_win(l), when
existing, is thus stored at node N := h(may_win(l)). Now,
since node N knows that may_win(l) should be stored lo-
cally, it can deduce that the valuation X=k,Y=l is applicable
if may_win(l) is not present in its local database.

Each node applies valuations according to the program
Pwm, without coordination. Not only is the final result de-
terministic, but also can the computation potentially pro-

ceed even if communication to other nodes has been lost (or
is slow). Returning to example Figure 1(c). Assume a par-
titioning function that assigns positions a, b, and c to node
N1; j, k, l to node N2; and the remaining positions to node
N3. Now, consider the case in which the network is parti-
tioned such that N3 cannot communicate with the other two
nodes. Surprisingly, in this case, running program Pwm on
each node individually with communication only between
nodes N1 and N2 will compute the complete result! The
intuitive reason is that the only dependence between the
subgraphs a, b, c, j, k, l and d, e, f, g, h, i is the edge between
c and d. But then, the fact that position c is won, can be
established from the fact that j is lost and does not require
the cooperation of node N3. From the view of nodes N1 and
N2, the final result of d is irrelevant in deciding that c is
won. Similarly, d can be established to be lost by node N3

independently.

4. DISORDERLY EVALUATION MODEL
In this section, we formalize the ideas illustrated in the

previous section. We proceed in three steps. First, we define
an “even more non-deterministic” semantics for Datalog¬¬

∀

which we call the disorderly semantics. The basic idea is to
relax the non-deterministic semantics by allowing deferred
application of updates, to model network delay effects. Sec-
ond, we identify a syntactic fragment of Datalog¬¬

∀ , called
semi-monotone Datalog, where the deterministic, non-deter-
ministic, and disorderly semantics of Datalog¬¬

∀ coincide;
and which is eventually consistent in a certain precise sense.
Third, we demonstrate that our construction for evaluating
win-move is eventually consistent and correct.

4.1 The Disorderly Semantics
Intuitively, in a distributed system, each node only has

local knowledge about the global state. As in declarative
networking [19], we assume that the “global” database is
horizontally distributed accross various nodes in the system.
Each node runs a copy of the same Datalog¬¬

∀ program, but
has access only to its own local data. During the distributed
computation, a node fires rules of the program based on
its locally available data, requests updates that are either
applied locally or shipped to other nodes. Crucially, even
rules using negation in the body are fired using just locally
available information; correctness of the scheme will rely
on source data being partitioned in such a way that the
local node always sees a conservative underestimate of the
relevant negative information, making it safe to fire such
rules. To capture the network message delays and reordering
which arise in distributed systems, we include a global bag
(multiset) of pending updates in the description of the state
of the distributed system, manipulated by local nodes in a
non-deterministic fashion.

Fix a Datalog¬¬
∀ program P with schema σ. An update is

a positive or negative ground literal over eidb(P) ∪ idb(P).
A state of the computation is a pair (I,U) comprising a
database instance I over σ and a bag (multiset) U of re-
quested updates over σ. U can be thought of as a collection
of pending or deferred updates.

Like the non-deterministic semantics, the disorderly se-
mantics is based on the notion of an immediate successor,
but this time of states rather than sets of facts. Let (I, U)

be a state, let r be a Datalog¬¬
∀ rule,

H ← ∀X̄B1, . . . , Bn,

in P , and let ν be a consistent valuation of the free variables
in r such that I |= ∀X̄ν(B1) ∧ · · · ∧ ν(Bn). Then a state
(I ′, U ′) is an immediate successor of (I,U) using r if one of
the following holds:

request I ′ = I and U ′ = U⊎{ν(H)}, where ⊎ denotes
bag union

insert A′ is an update from U , I ′ = I ∪ {A′}, and
U ′ = U − {A′}, where − denotes bag difference

delete ¬A′ is an update from U , I ′ = I \ {A′}, and
U ′ = U − {¬A′}, where − denotes bag difference

A state (J, V) is an eventual successor of state (I,U) us-
ing the rules of P if there exists a sequence (I0, U0) =
(I, U), . . . , (In, Un) = (J, V) such that for each i, (Ii+1, Ui+1)
is an immediate successor of (Ii, Ui) using some rule in P .

Under the disorderly semantics, a program has a set of
possible outcomes (due to non-deterministic choices). Intu-
itively, the instance J is part of this result set if a state (J,U)
can be reached for which the only further updates that can
be requested or applied are “no-ops.”

Definition 4.1 Let P be a Datalog¬¬
∀ program, and let I

be a source instance. The result of applying P to I under the
disorderly semantics is the set of all instances J such that
there exists V satisfying (i) (J, V) is an eventual successor
of (I, ∅) using the rules of P , and (ii) (J, V) is a terminal
state, i.e., it has no eventual successor (J ′, V ′) of (J, V) with
J ′ 6= J .

The disorderly semantics is “even more non-deterministic”
than the non-deterministic semantics in the following sense:

Proposition 4.2

1. For any Datalog¬¬
∀ program P and source instance I,

if J is in the result of P under the non-deterministic
semantics, then J is in the result of P under the dis-
orderly semantics.

2. There exists a Datalog¬¬
∀ program P , a source instance

I, and an instance J such that J is in the result of P
under the disorderly semantics, but not under the non-
deterministic semantics.

Proof. (1) follows from the observation that any computa-
tion under the non-deterministic semantics can be emulated
by strictly alternating update derivation and update appli-
cation. To prove (2), consider the Datalog¬¬

∀ program

P =
r ← ¬r, ¬s.
s ← ¬r, ¬s.

applied to the empty source instance. Under the non-deter-
ministic semantics, the result is {{r}, {s}}, while under the
disorderly semantics, the result is {{r}, {s}, {r, s}}. ✷

Practical Considerations
For practical reasons, we are interested in Datalog¬¬

∀ pro-
grams P that compute a single, deterministic result, even

while allowing the computation of that result to be car-
ried out in a non-deterministic or disorderly fashion. This
is captured by the notion of a functional fragment [4] of
Datalog¬¬

∀ :

Definition 4.3 A Datalog¬¬
∀ program P is functional, un-

der a given semantics, if the result under that semantics has
cardinality ≤ 1 for any source instance I .

However, even functional programs that compute exactly
one result can be undesirable from a practical point of view,
when they admit divergent evaluation sequences that never
reach a terminal state. Consider, for example, the following
functional Datalog¬¬

∀ program:

P =
t ← ¬a. p ← t.

a ← b. ¬p ← t.

Evaluated under the disorderly semantics, the result of P on
{b} is the single output {a, b}. Yet, if the first rule is used to
derive t in a state (I,U) (by for example, executing it first),
then no eventual successor of (I,U) will satisfy requirement
(ii) of Definition 4.1. This is problematic because we intu-
itively, would want to reach the final result eventually even
though some “bad choices” have been made while picking
the order of evaluation.

Before defining a notion of termination, we first dispatch
with one technical issue. Nothing in the formal semantics
we have presented so far rules out the possibility that, in
a given evaluation trace, the same update will be derived
ad infinitum, a given rule will never be given a chance to
fire, or a certain pending update will never be applied. To
rule out such pathological cases, we first introduce a notion
of fairness, which informally requires that each derivable
update is eventually derived, and each derived update is
eventually applied.

Definition 4.4 Given a Datalog¬¬
∀ program P . A sequence

of states (I0, ∅), (I1, U1), . . . for which (Ii+1, U i+1) is an im-
mediate successor using a rule in P is a fair trace if (1) for
any state (Ii, U i) for which there is a rule r = (head ←
body) ∈ P and valuation ν with Ii |= ν(body), there are
states Sj = (Ij , U j) and Sj+1 = (Ij+1, U j+1) with j ≥ i
such that Sj+1 is obtained from Sj by requesting the up-
date ν(head) (i.e., U j+1 = U j ∪{ν(head)}). And also, (2) if
A ∈ U i (¬A ∈ U i), then there are states Sj = (Ij , U j) and
Sj+1 = (Ij+1, U j+1) with j ≥ i such that Sj+1 is obtained
from Sj by inserting (deleting) A.

Having ruled out these pathological traces, we can now de-
fine termination6 desired:

Definition 4.5 A program P is terminating under a given
semantics if every fair trace reaches a terminal state.

Finally, combining termination and determinism yields our
desired property of Datalog¬¬

∀ programs:

Definition 4.6 A program P is eventually consistent un-
der a given semantics, if it is functional and terminating
under this semantics.

It was shown in [4] that for Datalog¬¬
∀ under the non-

deterministic semantics, functionality is undecidable. As
might be expected, this property (along with termination
and eventual consistency) is undecidable for the disorderly
semantics as well:
6This property is also often called quiesence, e.g., [9, 15].

Theorem 4.7 Under the disorderly semantics, functional-
ity, termination, and eventual consistency are undecidable
for Datalog¬¬

∀ , even for programs without universal quantifi-
cation or eidb relations.

The proof is by reduction from the undecidable problem
of checking containment of (positive) Datalog programs [21],
and can be found in the Appendix.

4.2 Semi-Monotone Datalog¬¬
∀

Consider again the win-move program from Section 3,
which we saw there compiled into the Datalog¬¬

∀ program
Pwm. Observe that the updates in the program follow a
certain, regular form: in particular, we only insert into the
won relation, while we only delete from the good_move and
may_win relations. Moreover, won occurs only positively in
the bodies of rules, while good_move and may_win occur only
negatively. We are therefore motivated to define the follow-
ing fragment of Datalog¬¬

∀ :

Definition 4.8 A Datalog¬¬
∀ program P is semi-monotone

if the relation names in idb(P) occur only positively, while
the relation names in eidb(P) occur only negatively.

Note that in the course of computation for such a program,
the idb(P) relations only grow, while the eidb(P) relations
only shrink. This justifies the terminology semi-monotone
Datalog¬¬

∀ (or semi-monotone Datalog for short).

Theorem 4.9 Every semi-monotone Datalog¬¬
∀ program is

eventually consistent under the disorderly semantics.

The proof can be found in the Appendix.
We conclude the subsection by noting the following:

Corollary 4.10 For semi-monotone Datalog¬¬
∀ programs,

the deterministic, non-deterministic, and disorderly seman-
tics coincide.

Proof. Let P be a semi-monotone Datalog¬¬
∀ program,

and let I be a source instance. Suppose that J is the re-
sult of evaluating P on I under the deterministic semantics.
By results of Abiteboul and Vianu [5], J is in the result
set of P applied to I under the non-deterministic seman-
tics. By Proposition 4.2, J is also in the result set of P
applied to I under the disorderly semantics. But since P
is semi-monotone, it is functional under that semantics, by
Theorem 4.9. It follows that the result under any of the
three semantics is exactly J . ✷

4.3 Correctness of the Transformed Win-Move
Next, we return to the Datalog¬¬

∀ version Pwm of the
win-move game presented in Section 3. Since Pwm is semi-
monotone, Theorem 4.9 tells us that it is eventually consis-
tent. We now show that it also correctly computes the result
of the original Datalog¬ under the well-founded semantics:

Lemma 4.11 Let P be the Datalog¬ version of the win-
move game, let (Pinit,Pwm) be its semi-monotone Datalog¬¬

∀

translation, and let I be a source instance. Denote by J the
result of applying first Pinit to Iobtaining I ′, and then Pwm

to I ′, both under the disorderly semantics. Let P ′ denote
the extension of P to include the facts of I. Then for any
ground fact win(a) we have the following:

WP ′(win(a)) =

true iff won(a) ∈ J
false iff may win(a) 6∈ J
undefined iff won(a) 6∈ J and

may win(a) ∈ J

Proof sketch. The basic idea is to show that the alter-
nating fixpoint computation is simulated by a certain dis-
orderly computation. (Since Pwm is semi-monotone, it is
functional by Theorem 4.9, hence any disorderly computa-
tion will produce the same result.) The initialization stage
computes the set of first overestimates. The proof is then
done by induction on the length of the alternating fixpoint
computation Γi using a strengthened induction hypothesis
(which includes an added good move relation to the alter-
nating fixpoint sequence). The chosen execution for the dis-
orderly semantics, computes all immediate consequences of
the first rule in Pwm(after which the underestimates agree),
then the second and the third (after which the overestimates
agree). Induction is done by proving the claim for i = 0, 1
as a base. Proving for i = 2k + 2 assuming i = 2k and
i = 2k + 1, i.e., correctness of a new underestimate is easy
to show, since applying rule 1 to the earlier state naturally
computes the new state. Correctness of the overestimates
i = 2k+1 is a little trickier and requires applying induction
hypothesis for i = 2k, 2k− 1, 2k− 2. The key insight here is
that the good move from both programs agree in the odd i,
i.e., in the over-estimations. ✷

5. TRANSDUCER NETWORKS
In this section we develop four closely-related models for

distributed computations.
The first model, denoted N0, is that of relational trans-

ducer networks as defined by Ameloot et al. [9]. The other
three models are new and vary from N0 along two dimen-
sions: how the input data is distributed across the network;
and how much a transducer node “knows” about the distri-
bution process. In the model N1, input facts are distributed
according to a distribution policy which assigns each fact
of the Herbrand base over the extensional schema to one
or more nodes. Further, the distribution policy is known
to each node in the transducer network, in a sense we shall
make precise shortly. In model N2, the facts of a k-ary re-
lation are distributed with a replication factor of at most
k, determined by their attribute values. Finally, model N3

differs from N1 in that each transducer also has information
about the active domain of the global input instance.

In the following, we describe these models in detail, begin-
ning with a review of transducers and networks of relational
transducers (model N0).

5.1 Background
We follow the paper by Ameloot et al. [9] in presenting

the background notions of relational transducers [6] and re-
lational transducer networks [9].

Relational Transducers
A transducer schema is a tuple (Sin,Ssys,Smsg,Smem, k) of
four disjoint database schemas along with an arity k. (The
subscripts stand for ‘input’, ‘system’, ‘message’, and ‘mem-
ory’, respectively.) An abstract relational transducer (trans-
ducer for short) over this schema is a collection of queries
{QR

snd | R ∈ Smsg} ∪ {Q
R
ins | R ∈ Smem} ∪ {Q

R
del | R ∈

Smem} ∪ {Qout}, where

• every query is over the combined schema Sin ∪ Ssys ∪
Smsg ∪ Smem;

• the arity of each QR
snd, each QR

ins, and each QR
del equals

the arity of R; and

• the arity of Qout equals the output arity k.

Here, ‘snd’ stands for ‘send’; ‘ins’ stands for ‘insert’; ‘del’
stands for ‘delete’; and ‘out’ stands for ‘output’. A state
of the transducer is an instance of the combined schema
Sin∪Ssys∪Smem. A message instance is an instance of Smsg.
Such a message instance can stand for a set of messages
(facts) received by the transducer, or a set of messages sent
by the transducer; the intended interpretation will always
be clear in context.

Let T be a transducer. A transition of T is a five-tuple

(I, Ircv, Jsnd, Jout, J), also denoted I, Ircv
Jout−→ J, Jsnd, where

I and J are states, Ircv and Jsnd are message instances, and
Jout is a k-ary relation such that

• every query of T is defined on I ′ = I ∪ Ircv;

• J agrees with I on Sin and Ssys;

• Jsnd(R), for each R ∈ Smsg, equals Q
R
snd(I

′);

• Jout equals Qout(I
′);

• J(R), for each R ∈ Smem, equals R′ as follows. Let
the set of insertions for R be R+ := QR

ins(I
′)\QR

del(I
′),

the set of deletions for R be R− := QR
del(I

′) \QR
ins(I

′).
Then, R′ := (R ∪ R+) \ R−. (That is, conflicting up-
dates are ignored.) Note that this allows assignment
R′ := Q to be implemented.

The intuition behind the instance I ′ is that T sees its input,
system and memory relations, plus its received messages.
The transducer does not modify the input and system rela-
tions. The transducer computes new tuples that can be sent
out as messages; this is the instance Jsnd. The transducer
also outputs some tuples (which cannot later be retracted);
this is the relation Jout. Finally the transducer updates its
memory by inserting and deleting some tuples in its memory
relations.

Transducers are parameterized by the language L in which
the queries are expressed. A UCQ-transducer, for example,
uses unions of conjunctive queries. Note that transducer
transitions are deterministic, in constrast to those of trans-
ducer networks, discussed next.

Transducer Networks
Next we recall transducer networks (model N0), in which
relational transducers are placed on nodes in a communicat-
ing network. Here a network is a connected (not necessarily
complete), directed graph of nodes N (dom. By insist-
ing that the graph is connected, we ensure that information
can (eventually) flow between any two nodes. A transducer
network is a pair (N, T) where N is a network and T is a
relational transducer.

Operationally, each node in the network has a relational
transducer and a receive buffer of incoming messages. In
the initial state, all memory relations and receive buffers of
all nodes are empty. The system relations contain useful
information about the transducer network and input distri-
bution (we will formally describe what this entails). The
input I of schema Sin to the transducer network is parti-
tioned (possibly with replication) across the input relations
via a partitioning function H that maps every node n to a
subset of I , such that I =

⋃

n∈N
H(n).

The (global) state of a transducer network is a function S
mapping each node n ∈ N to a pair (I,B) where I is a (local)
transducer state and B, the receive buffer, is a bag of facts

over the schema Smsg. The state of a transducer network
evolves via two kinds of transitions. In a delivery transi-
tion, a node reads and removes one fact over the schema
Smsg from its input buffer B, adds the fact to the appro-
priate memory relation, makes a local transducer transition
transforming the local state I to J , and sends the resulting
message instance Jsnd to its neighbors. A heartbeat transi-
tion is the same as a delivery transition, but no input is read
from the input buffer. Sending Jsnd to neighbors means that
after the transition, Jsnd is added to the input bags of the
neighboring nodes.

Non-Determinism and Desired Properties
To define desired properties of network transducers, we first
require the notion of a run. A run of a transducer net-
work (N, T) on input I according to a partitioning function
H is an infinite sequence (τn)n of transitions starting from
an input configuration with empty network buffers, empty
memory relations, and input relations populated according
to the partitioning function H . The result of a run is defined
as the union over all Jout produced during the transitions of
the run. A run is fair if every node does heartbeat transi-
tions infinitely often, and every fact in every message buffer
is eventually taken out by a delivery transition.

Network transducer transitions are non-deterministic in
several respects: from a given state, many transitions are
possible in general depending on the choice of node where
the transition occurs, the choice of transition type (heart-
beat or delivery), and, for delivery transitions, the choice
of fact delivered. These correspond to the kinds of non-
determinism found in real distributed systems.

It is desirable nevertheless for transducer networks to pro-
duce the same output regardless of the network topology,
partitioning strategy, or non-deterministic choices of the run.
We formalize this notion below.

Definition 5.1 A transducer T computes the query Q if
for any input I , network N , and distribution H , the result
of any fair run of (N, T) on I according to H is Q(I).

5.2 Variations on Transducer Networks
In basic relational transducer networks (model N0), the

horizontal partitioning of the input data is done arbitrarily
and, without communication, nodes know only which part
of the input data was assigned to them. By varying these
assumptions, we derive three natural variations on the basic
model.

In all of our variations, we derive the horizontal parti-
tion function for a particular input I from an instance-
independent partitioning policy. A partitioning policy for a
schema SP and network N is a computable function P that
associates with each ground atom in the Herbrand base of
SP a non-empty subset of the nodes of N . The domain of
the function P is infinite (the policy is independent of a par-
ticular input instance), covering all“potential” tuples. Given
a partitioning policy P and an input instance I , we define
the horizontal partition function HP,I used for distributing
the input instance data as follows:

HP,I(i) := {f | f ∈ I and i ∈ P(f)}

Note that for any horizontal partioning H of an input in-
stance I , there is a partitioning policy P such that HP,I =
H . (For one of the models to be described, however, we will

restrict the allowed partitioning policies such that this no
longer holds.)

Next, we allow each transducer restricted access to the
partitioning policy P by adding a relation LocalR for each
R ∈ Sin to its system relations. LocalR has the same arity
as R, and a tuple x̄ is in LocalnR (the copy of LocalR at
node n) iff n ∈ P(R(x̄)). Intuitively, on a node n, there is
a tuple x̄ ∈ LocalR if n is “responsible” for this tuple. If
R(x̄) is in the global input I , then R(x̄) will be distributed
to node n (and possibly others). Conversely, if node n finds
R(x̄) absent from its local input, then n “knows” that R(x̄)
is not in the global input I .

Note that the LocaliR are in general infinite relations; in
practice each node would be equipped with a decision pro-
cedure to check whether an arbitrary tuple is contained in
LocaliR or not. Also, while the queries of a transducer at
node i may access LocaliR, we require that the queries still
produce finite results. (For UCQ-transducers, for instance,
this can be ensured by extending the notion of safety to
require all variables occuring in LocalR atoms to also oc-
cur positively in normal atoms.) This requirement could
be lifted by restricting LocaliR to the active domain of the
global input instance, but we prefer not to do this as we
shall see in Lemma 6.3 that providing nodes knowledge of
the active domain has a dramatic impact on the notion of
coordination-freeness.

We are now ready to define our first variation on relational
transducer networks.

Definition 5.2 AnN1-L-transducer network is an L-trans-
ducer network along with a partitioning policy P , in which
each transducer is additionally provided system relations
LocalR for all R ∈ Sin as described above.

In our second model, we restrict the allowed partitioning
policies to those which, intuitively, map domain elements
(rather than ground facts) to nodes. This captures the style
of distribution used in our construction for the win-move
game in the earlier sections. More precisely, a partition-
ing policy P is called element-determined if there exists a
(unique) mapping F : dom → 2N of domain elements to
sets of nodes such that

P(p(x1, . . . , xn)) =
⋃

i=1,...,n

F (xi).

for every ground fact p(x1, . . . , xn) in the Herbrand base of
the transducer’s input schema Sin.

Definition 5.3 An N2-L-transducer network is an N1-L-
transducer network whose associated partitioning policy is
element-determined.

We do not impose any restriction on P for nullary rela-
tions beyond what was done for type N2 transducer net-
works. Note that the nodes of an N2-L-transducer network
have, essentially, full knowledge of the underlying mapping
F : dom → 2N for the partitioning policy via their LocalR
relations, since F (a) = LocalR (a, . . . , a) for any domain
value a and (non-nullary) relation R.

Finally, our third variation on transducer networks ex-
poses global knowledge of the active domain to nodes.

Definition 5.4 An N3-L-transducer network is an N1-L-
transducer network in which the transducers additionally
have access to a system relation adom containing the active
domain of the global input instance.

For any of these models, we also require that a transducer
is “oblivious” to the network and partitioning policy, in the
sense that the same transducer should produce the correct
result on any fair run, regardless of the choice of network
and partitioning policy.

Definition 5.5 A L-transducer T computes a query Q in
model X ∈ {N1,N2,N3} if for every network N , every dis-
tribution policy P compatible with X, and every input in-
stance I , every run of T in which the input is distributed
according to HP,I results in the output Q(I). In this case
we say that T is consistent.

5.3 Disorderly Semantics via Transducer Net-
works

In this section we will show how certain syntactic classes of
semi-monotone programs can be“compiled down” to equiva-
lent transducer networks of various kinds. The semi-monotone
program we have given for computing the win-move game
will be seen to obey the syntactic restrictions of one of these
classes.

Lemma 5.6 Let Q be a query computed under the disor-
derly semantics by a semi-monotone, ∀-free Datalog¬¬

∀ pro-
gram P in which each rule has at most one negated eidb
atom. Then there exists a type N1 UCQ¬-transducer net-
work which computes Q.

A similar result holds for type N2 transducer networks.
Here, we are allowed to use multiple negated eidb in the
body of rules and ∀-quantification. A Datalog¬¬

∀ rule r is
friendly if any negated atoms in the body of r share a com-
mon variable x which is not universally-quantified.

Lemma 5.7 Let Q be a query computed by a semi-mono-
tone Datalog¬¬

∀ program P under the disorderly semantics.
If all rules in P are friendly, then there exists a type N2

FO-transducer network which computes Q.

Even certain kinds of pre-processing are allowed: A Data-
log program consisting only of constant-free projection rules,
i.e., of the form R’(Z̄) ← R(X̄) with ∅ 6= Z̄ ⊆ X̄, and all
Xi ∈ X̄ being variables, is called a projection program.

Lemma 5.8 Let P be a projection program, and let Q be
a query as defined in Lemma 5.7. Then there exists a type
N2 FO-transducer network which computes Q ◦ P .

As is customary, we mean query compostion with ◦, i.e., for
any input instance I , Q ◦ P := Q(P (I)). We point out that
the programs Pinit and Pwm for computing win-move pre-
sented in Section 3 satisfy these requirements.

Proofs. All proofs for these lemmata are constructive. The
intuition is that the created transducer networks essentially
perform a distributed computation of the disorderly seman-
tics. Each transition of the transducer implements the FO-
query denoted by the body of the semi-monotone program
applied to its local state. Derived updates are locally applied
as well as broadcasted to all nodes in the network. Eventual
consistency for the disorderly semantics of semi-monotone
programs guarantees the consistency of the transducer. The
syntactic restrictions and access to the Local relations are
necessary to allow the evaluation of rule bodies in a dis-
tributed manner: Even though each transducer only has par-
tial local knowledge of the virtual global database state, the

restrictions guarantee that (1) each conclusion drawn from
the local state could also have been drawn from the global
state, and (2) each conclusion that can be drawn from the
global state can also be drawn on at least one node with
only its local knowledge.

The transducer T constructed for Lemma 5.8 is a modifi-
cation of the one constructed for Lemma 5.7 that first com-
putes the projection-program locally. Since the partitioning
policy is element-determined, all necessary Local system re-
lations for the idb(P), which are the edb and eidb for the
transducer, can be emulated.

While the proofs provide valuable insights in how to pro-
gram the transducer to guarantee consistency and correct-
ness, the details are somewhat technical. We thus decide
to skip them here and refer the interested reader to Ap-
pendix A.2.

6. COORDINATION
Again following Ameloot et al. [9], we say that an L-

transducer T that computes Q is coordination-free with re-
spect to model N0 if for every input I and every network
N , there exists a distribution H for which when the trans-
ducer network (N, T) is run with only heartbeat transitions,
it already produces the correct result. Note that since local
heartbeat transitions are deterministic, the result is deter-
ministic for a given input I , network N , and partitioning
H . A query Q is coordination-free in N0 if there exists a
coordination-free L-transducer T that computes Q, for some
query language L.

A main result of the paper by Ameloot et al. [9] relates
coordination-freeness and monotonicity:

Theorem 6.1 [9] A query is coordination-free in model N0

if and only if it is monotone.

The notion of coordination-free queries extends naturally
to models N1, N2, and N3 (replace horizontal distributions
with distribution policies in the definitions above for N0).
For X ∈ {N0,N1,N2,N3}, denote by F [X] the class of
queries that are coordination-free with respect to model X.
Denote by C the class of all computable queries, byM the
class of monotone queries, and by SP the class of all queries
computable by a semi-positive Datalog¬ program.

The main result of this section is that these classes form
the following hierarchy:

Theorem 6.2

M = F [N0] (F [N1] (F [N2] (F [N3] = C

The first equality is just a restatement of Theorem 6.1; and
it is clear from the construction of the models that F [N0] ⊆
F [N1], F [N1] ⊆ F [N2], and F [N1] ⊆ F [N3]. The remainder
of the section is devoted to a proof that these inclusions are
proper, and indeed that the above hierarchy holds.

6.1 Proof of Main Theorem
First, we show that endowing the nodes with knowledge

of the global active domain has a dramatic impact on the
class of coordination-free queries:

Lemma 6.3 Every computable query is coordination-free
in model N3, i.e., F [N3] = C.

This implies in particular that F [N2] ⊆ F [N3].

Proof. First, we claim that there is a coordination-free
Datalog¬-transducer T of type N3 such that, on any net-
work, and any input I distributed according to any policy,
any fair run reaches a configuration where every node has
a local copy of the entire instance I in its memory, and an
additional flag ready (implemented by a nullary memory re-
lation) is true. Moreover, the flag ready does not become
true at a node before that node has the entire instance in
its memory.

We use the programming technique broadcast as described
in Appendix A.2 to let transducers send messages (contain-
ing update requests) that will eventually be delivered to any
node in the system; besides sending the updates out, they
are also locally applied. The transducer does the follow-
ing on heartbeat transitions: for each edb-relation R, it uses
adom and LocalR to broadcast existence and non-existence
of tuples which is then stored in the memory relations Rm,
and Rcm, respectively. With @all denoting broadcast:

Rm@all(X̄) ← R(X̄).

Rcm@all(X̄) ← adom(X1),...,adom(Xn),LocalR(X̄),¬R(X̄).

Then, each edb relation R also has a flag readyR that is set
as follows:

knownR(X̄) ← Rm(X̄).

knownR(X̄) ← Rcm(X̄).

not_readyR ← adom(X1),...,adom(Xn),¬knownR(X̄).
readyR ← ¬not_readyR.
ready ← readyR, readyS,...

Finally, ready is implemented as a conjunction of all readyR
for each edb relation R. This Datalog¬ program is run in
each transition by T .

Next, for any query Q expressible in a query language L,
let L′ be a query language at least as expressible as both
L and stratified Datalog¬. The L′-transducer T , which dis-
tributedly computes Q, does now first use the sub-routine
from above to distribute I to all nodes, and then, on each
node, when ready is true, computes Q in one step.
T is coordination-free. For any network, consider the pol-

icy that allocates all data to a single node n0. Even though
none of the sent messages arrive, n0 will reach the “ready-
state” and output the complete result. ✷

Lemma 6.4 In model N1, for each semi-positive Datalog¬

program there exists an equivalent coordination-free UCQ¬-
transducer. As a consequence, SP ⊆ F [N1], and in partic-
ular F [N0] (F [N1].

Proof. Each semi-positive Datalog¬ program P is also
a semi-monotone program, which additionally satisfies the
syntactic restrictions identified in Lemma 5.7. Let T be
the type N1 transducer as in the proof for Lemma 5.7. We
observe that T is coordination-free. Consider again the par-
titioning policy mapping all data to a single node n0. T on 1
will run the complete semi-monotone program already with
only heartbeat transitions. ✷

Lemma 6.5 The query computing the won positions of the
win-move game is N2-coordination free.

Proof. Lemma 4.11 states that Pwm ◦ Pinit computes the
won positions for win-move. Pwm satisfies the restrictions
of Lemma 5.7; and Pwm is a projection program. Now,
consider the N2-FO-transducer T that was constructed in

the proof for Lemma 5.8. T is coordination-free: consider
the partitioning policy that puts all data on a single node
n0. ✷

Lemma 6.6 F [N1] is strictly contained in F [N2].

Proof. Considering Lemma 6.5, we assume towards a con-
tradiction that there is a coordination-free N1-transducer T
computing the won positions of the win-move game. Let
I = {move(a,b)}. Since T is coordination-free it computes
the correct result win(a) on all networks N and a partition-
ing policy P with only performing k heartbeat transitions
for some k ∈ N. Choose the network that contains only a
single node n0. We observe that this implies P ≡ {n0}.
Now, consider input I ′ = {move(a,b), move(b,c)} on the
network N ′ = {n0, n1}. We choose a partitioning policy
P ′ that assigns all ground atoms to n1 except move(a,b),
which is assigned to n0. Consider stepping T on n0 with
k heartbeat transitions. T will output win(a) since its in-
put and system relations move and Localmove have the same
contents as above (remember, T is deterministic if run only
with heartbeat transitions). This is a contradiction since
win(a) is not part of the correct result for I ′. ✷

We finish the proof of Theorem 6.2 by showing that the
last containment in the hierarchy is strict.

Lemma 6.7 Not all computable queries are coordination-
free in model N2, i.e., F [N2] (F [N3] = C.

Proof. Assume towards a contradiction that the query
that decides whether a unary relation R is empty is in F [N2].
Following the argument from the proof for Lemma 6.6, con-
sider I = ∅ on the network with one node n0; and then
I ′ = {R(a)} together with P ′ ≡ {n1} on the network N ′ =
{n0, n1}. ✷

We point out that although win-move is coordination-
free in N2, this does not directly imply that all well-founded
Datalog¬ is in F [N2], even though “win-move” is a normal-
form for well-founded Datalog [13]. The normal-form result
for win-move as described in [13] requires a recursion-free
semi-positive pre-processing step. It is not clear how, in
general, this can be done in a coordination-free manner.

7. RELATED WORK
Our work is inspired by Hellerstein’s quest for logic-based

foundations of parallel, distributed, data-intensive comput-
ing [15], and the search for suitable models of computation
and parallel complexity. Hellerstein’s model incorporates
non-determinism via the choice construct with an explicit
representation of time within Datalog; we use instead a
bag of pending updates. The paper by Alvaro et al. [7]
also studies methods to ensure eventual consistency of dis-
tributed computations. In particular, the authors analyze
Dedalus programs (a version of distributed Datalog) to iden-
tify points of non-monotonicity that require coordination.

Much of our technical approach is inspired by the paper
by Ameloot et al. [9], which introduced the framework of
networks of relational transducers and was the first to ven-
ture a formal notion of coordination complexity. We have
shown that slight variations on the model have a dramatic
impact on the ensuing notion of coordination complexity.

A more recent paper by Ameloot et al. [8] investigates
syntactic restrictions under which eventual consistency of

networks of relational transducers can be decided. Our pa-
per complements that work by introducing disorderly eval-
uation of semi-monotone Datalog¬¬

∀ programs and a com-
pilation procedure for such programs guaranteed to create
eventually consistent transducer networks.

Our disorderly semantics is closely related to the so-called
“production-rule” semantics of Datalog¬ [5, 23]. Recent
work by Abiteboul et al. [1] also investigates confluence and
distributed systems, however without the focus on coordi-
nation freeness.

The paper by Koutris and Suciu [18] presents a“massively
parallel” computation model (MP) for conjunctive queries
that takes data skew into account. They show that in the
MP model, the so-called “tall-fat queries” are precisely the
ones that can be executed in a single stage. It would be
interesting to investigate formal notions of coordination that
take into account data skew.

Finally, the paper by Brass et al. [10] describes transfor-
mation based strategies for incremental, bottom-up evalua-
tion of Datalog¬ programs under the well-founded seman-
tics [14]. Some of their conditional rewriting techniques re-
semble ours, but the paper does not address distributed or
coordination-free computations.

8. CONCLUSION
We have presented a syntactic fragment of Datalog¬¬

∀ ,
semi-monotone Datalog, that lends itself to a disorderly,
eventually consistent evaluation strategy, while permitting
certain kinds of negation. We have shown that the win-move
game, the canonical example of a non-stratifiable Datalog¬

program, can be solved using a semi-monotone Datalog pro-
gram, and that the program can also be compiled into a rela-
tional transducer network for distributed evaluation without
resorting to “global synchronization barriers.”

We have also introduced several natural variations on re-
lational transducer networks [9], in which various degrees of
partitioning policy information are made available to partici-
pating network nodes, and we used these models to study the
notion of coordination-freeness. We showed that the classes
of queries which are coordination-free under these various
models form a strict hierarchy, highlighting the sensitivity
of the formalization of coordination-freeness by Ameloot et
al. to the precise details of how partitioning policy informa-
tion is made available to nodes. The win-move game, and
our semi-monotone Datalog program for solving it, play a
starring role in separating two of these classes.

Like Ameloot et al. [9], we do not claim that the notions of
coordination-freeness developed here are definitive7. How-
ever, our results can be interpreted as informing the on-
going development of more robust notions of coordination-
freeness.

9. REFERENCES
[1] S. Abiteboul, M. Bienvenu, A. Galland, and

É. Antoine. A rule-based language for web data
management. In Proceedings of the 30th symposium on
Principles of database systems of data, pages 293–304.
ACM, 2011.

7Current events in American campaign finance law [20] sug-
gest that confusion over the precise meaning of “coordina-
tion” is not limited to the database theory community!

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] S. Abiteboul and E. Simon. Fundamental properties of
deterministic and nondeterministic extensions of
datalog. Theor. Comput. Sci., 78(1):137–158, 1991.

[4] S. Abiteboul, E. Simon, and V. Vianu.
Non-deterministic languages to express deterministic
transformations. In PODS, 1990.

[5] S. Abiteboul and V. Vianu. Datalog extensions for
database queries and updates. J. Comput. Syst. Sci.,
43:62–124, August 1991.

[6] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In
PODS, pages 179–187. ACM, 1998.

[7] P. Alvaro, N. Conway, J. Hellerstein, and W. Marczak.
Consistency analysis in bloom: a calm and collected
approach. In CIDR, 2011.

[8] T. J. Ameloot and J. V. den Bussche. Deciding
eventual consistency for a simple class of relational
transducer networks. In ICDT, 2012.

[9] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking. In
PODS, 2011.

[10] S. Brass, J. Dix, B. Freitag, and U. Zukowski.
Transformation-based bottom-up computation of the
well-founded model. TPLP, 1(5):497–538, 2001.

[11] F. Bry. Logic programming as constructivism: a
formalization and its application to databases. In
PODS, 1989.

[12] P. M. Dung and K. Kanchanasut. A natural semantics
for logic programs with negation. In Foundations of
Software Technology and Theoretical Computer
Science, LNCS 405, pages 78–88, 1989.

[13] J. Flum, M. Kubierschky, and B. Ludäscher. Total and
partial well-founded datalog coincide. In ICDT, 1997.

[14] A. V. Gelder. The alternating fixpoint of logic
programs with negation. JCSS, 47(1):185 – 221, 1993.

[15] J. M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed logic.
SIGMOD Record, 39, March 2010.

[16] D. B. Kemp, D. Srivastava, and P. J. Stuckey.
Bottom-up evaluation and query optimization of
well-founded models. TCS, 146:145–184, 1995.

[17] P. Kolaitis. The expressive power of stratified logic
programs. Information and Computation, 90(1):50–66,
January 1991.

[18] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In PODS, 2011.

[19] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
CACM, 52(11), 2009.

[20] P. Overby. SuperPACs, candidates: Dancing solo or
together? In National Public Radio. January 6, 2012.
http://www.npr.org/2012/01/06/144801659/

a-look-at-super-pacs-and-political-coordination.

[21] O. Shmueli. Equivalence of datalog queries is
undecidable. J. Logic Programming, 15(3), 1993.

[22] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The
well-founded semantics for general logic programs. J.
ACM, 38:619–649, July 1991.

http://www.npr.org/2012/01/06/144801659/a-look-at-super-pacs-and-political-coordination
http://www.npr.org/2012/01/06/144801659/a-look-at-super-pacs-and-political-coordination

[23] V. Vianu. Rule-based languages. Annals of
Mathematics and Artificial Intelligence,
19(1-2):215–259, 1997.

[24] U. Zukowski and B. Freitag. The differential fixpoint
of general logic programs. In DDLP, pages 45–56,
1996.

APPENDIX

A. PROOFS

A.1 Proofs for Section 4

Proof. (Theorem 4.7) We show the undecidability of all
three problems via reduction from the problem of check-
ing containment of (positive) Datalog programs, which is
known to be undecidable [21], to deciding termination of
Datalog¬¬. Let P1 and P2 be two Datalog programs with
edb(P1) = edb(P2), assume w.l.o.g. that idb(P1) and idb(P2)
are disjoint, and let p1 (resp. p2) denote the distinguished
output predicate of P1 (resp. P2).

Termination and eventual consistency. Define P to be the
Datalog¬¬

∀ program that is the union of the rules of P1 and
P2, along with

toggle ← p1(X̄), ¬p2(X̄).
¬toggle ← toggle.

and with eidb(P) = ∅. It is easy to see that P is terminat-
ing under the disorderly semantics iff P1 is contained in P2.
Since P is also functional—the result being empty for any
input database instance—it follows that P is also eventually
consistent iff P1 is contained in P2.

Functionality. Introduce a disjoint copy P ′
1 of P1 (with

distinguished output predicate p′1), and define P to be the
Datalog¬¬

∀ program that is the union of the rules of P1, P
′
1,

and P2, along with

q(X̄) ← p1(X̄), ¬p1’(X̄).
¬q(X̄) ← p2(X̄).

where again eidb(P) = ∅. If P1 is contained in P2, then
the result of P is empty on any source database, hence P is
functional. On the other hand, if P1 is not contained in P2,
then the order of firing the rules of P1 and P ′

1 matters, and
P is not functional. ✷

Proof. (Theorem 4.9) Termination immediately follows from
the fact that each ground atom from ground(P, I) can only
be changed (inserted into I or deleted from I) once. A finite
number of changes implies termination since any (fair) trace
has to reach a fixpoint.

It remains to establish functionality. First, it will be con-
venient to assume that use of the request case of the imme-
diate successor relation is restricted to disallow requesting
“useless” updates as follows: an insertion of A′ is requested
in a state (I,U) only if A′ 6∈ I and A′ 6∈ U ; conversely, a
deletion of ¬A′ is requested only if A′ ∈ I and ¬A′ 6∈ U .
Using the semi-monotonicity of P , one can check that this
restriction does not affect the result sets for P under the
disorderly semantics.

Now, fix a semi-monotone Datalog¬¬
∀ program P and in-

put instance I . Under the amended definition of immedi-
ate successor given above, we claim (1) that any sequence

(I0, U0), (I1, U1), . . . of states such that for each i, (Ii+1, Ui+1)
is an immediate successor of (Ii, Ui) using some rule in P
must be finite. Indeed, this is a straightforward consequence
of our earlier observation that the idb(P) relations only grow
during computation, while the eidb(P) relations only shrink
(and the finiteness of I).

Next, observe (2) that if J is in the result of applying P
to I under the disorderly semantics, then (J, ∅) is an even-
tual successor of (I, ∅). To see this, suppose that (J, U) is
an eventual successor of (I, ∅). Let (J ′, ∅) be the eventual
successor of (J, U) reached by repeated application of the
pending updates. By Definition 4.1, since J is in the result
set, it must be the case that J ′ = J . Since (J ′, ∅) is also
an eventual successor of (I, ∅), we conclude that (J, ∅) is an
eventual successor of (I, ∅) as required.

Then, we show (3) the following weak confluence property:
any distinct immediate successors (I1, U1) and (I2, U2) of a
state (I,U) have a common immediate successor (J, V). In-
tuitively, whatever the change from (I, U) to (I1, U1), we
can show that it still applies to (I2, U2), and commutes
with the change from (I,U) to (I2, U2). We show this by
an analysis of the nine possible cases. First, suppose that
(I1, U1) and (I2, U2) follow as immediate successors of (I,U)
using just the insert or delete changes. Then it is clear
from inspecting the definition of immediate successor that
the changes commute. Next we consider the five remain-
ing cases involving some use of request. Suppose that
(I1, U1) immediately succeeds (I, U) using request, with
a rule H ← ∀X̄B1, . . . , Bn and valuation ν. It is easy to see
that if (I2, U2) also succeeds (I,U) using request, then the
changes commute; and that the same is true for insert or
delete, using the semi-monotonicity of P . The remaining
cases are symmetric.

Finally, we observe that (1) and (3) imply that the imme-
diate consequence relation is strongly confluent. Together
with (2), this establishes the theorem. ✷

A.2 Proofs for Section 5.3
Lemma 5.6 Let Q be a query computed under the disor-
derly semantics by a semi-monotone, ∀-free Datalog¬¬

∀ pro-
gram P in which each rule has at most one negated (eidb)∗

atom. Then there exists a type N1 UCQ¬-transducer net-
work which computes Q.

∗ The proof for Lemma 5.6 below assumes a stronger syn-
tactic restriction requiring each rule to contain only a single
negative atom. The follow lemma shows that this can safely
be assumed:

Lemma A.1 Let Q be a query computed under the disor-
derly semantics by a semi-monotone, ∀-free Datalog¬¬ pro-
gram P in which each rule has at most one negated eidb
atom. Then Q can be computed under the disorderly seman-
tics by a semi-monotone, ∀-free Datalog¬¬ program P ′ in
which each rule has at most one negated atom.

Proof sketch. Let r = (H ← body,¬A) ∈ P be the rule
with more than one negated atoms. Replace r by (H ′ ←
body) and (H ← H ′,¬A) where H ′ = R(x̄) for R being a
fresh relation symbol and x̄ being all variables occuring in
body. The resulting program is still semi-monotone and it is
then easy to see that it still computes Q. ✷

Lemma 5.7 Let Q be a query computed by a semi-mono-
tone Datalog¬¬

∀ program P under the disorderly semantics.

If all rules in P are friendly, then there exists a type N2

FO-transducer network which computes Q.

All proofs are constructive. Starting from a semi-monotone
program for Q, we construct a consistent FO-transducer T
that computes Q in model N1. We will see that the pol-
icy restriction to be element-determined (restricting T to
be a type N2 transducer) is important to allow multiple
negated body atoms and ∀-quantification while still guar-
anteeing that T computes Q, i.e., is deterministic under
all allowed circumstances. The differences for the proofs of
Lemma 5.6 and Lemma 5.7 are only required in the proofs
of Lemma A.3 and Lemma A.5.

Given Q; let P be the semi-monotone program computing
Q. As a first step modify P to P ′ by adding one idb relation
R′ for each R ∈ edb(P) via the rule:

R’(X̄) ← R(X̄).

Also, in all other rules of P , replace R(X̄) by R’(X̄). Note
that it is easy to see that P ′ computes the same query as
P ; also P ′ is semi-monotone and satisfies the requirements
from Lemma 5.6 (resp. Lemma 5.7) if P did.

We then enrich P ′ with the system-relations LocalR for
each R ∈ eidb(P) to obtain P ′′ in the following way: Con-
sider each rule r of P ′ in turn. For each body atom R(x̄),
add an additional atom LocalR (x̄) to the body of r if R is
an eidb relation of P ′; if LocalR (x̄) contains a ∀-quantified
variable x, replace x with the variable z as in the require-
ment of Lemma 5.7.

Example A.2 Applied to the semi-monotone win-move pro-
gram Pwm, this two-step transformation yields:

0 move’(X,Y) ← move(X,Y).
1 won(X) ← move’(X,Y),

¬may_win(Y), Localmay_win(Y).
2 ¬good_move(X,Y) ← won(Y), move’(X,Y).
3 ¬may_win(X) ← ∀Y ¬good_move(X,Y),

Localgood_move(X,X), move’(X,_).

(P ′′
wm)

Before describing the operations in T , we develop some
programming techniques for transducers. We first need to
emulate update-able eidb relations in N1-FO-transducers,
since the relations in Sin are read-only for the transducers.
To do so, we essentially program the transducer to—as a
first action—copy the data of eidb relations into the mem-
ory. During normal operation, we refer to the memory ver-
sion of the eidb relations. The construction is a little tedious
because we cannot control whether the transducer performs
heartbeat or network transitions in the beginning. However,
with a number of boolean flags (e.g., to indicate when the
copy had happened), and buffers for to-early-read network
tuples, this can be done. To simplify notation later on, we
also copy the edb relations into the memory of the transduc-
ers; these will not be changed during the local computation.

We then need another programming technique: broadcast.
We emulate broadcast by always including the received fact
in a network transition in the facts to be sent out to the
neighbors. Since the network is connected every fact that
is output on any transducer will eventually be read by any
other transducer in the network.

We now describe the operations of the N1-FO-transducer
T . The FO queries that implement that behavior are easy
to envision. T has the idb, eidb and edb relations of P ′

in his memory; the LocalR relations are system relations.
Note that edb and eidb relations are initially partitioned ac-
cording to HP,I . All updates to idb and eidb relations will
be broadcasted during the run of the transducer network.
During each transition, T evaluates the FO-queries denoted
by the bodies of the semi-monotone program P ′′ over its
memory to determine a set of updates. These updates are
(1) locally applied (via the appropriate QR

ins and QR
del rela-

tions); (2) also broadcasted (via appropriate QR
snd); and (3)

output (via Qout) if they are insertions for the designated
idb output predicate. Since the relation-name R already de-
termines whether an update is an insertion or a deletion the
update ground atom R(x̄) can be sent. On the receiver side,
it is then put into appropriate QR

ins and QR
del relation based

on whether R is an idb or eidb.
Fix a network N and an arbitrary partitioning policy P .

Next, we will show a correspondence between (1) any run
run(I, T , N,H) of the constructed transducer T in network
N on an arbitrary input I over the schema edb(P)∪ eidb(P)
with H determined by P and (2) a sequence of eventual
successors under the disorderly semantics of running P ′ on
I (note that the disorderly program we compare to is the
LocalR-free version P ′).

The main difference between the transducer network and
the trace of the disorderly program is that in the transducer
network the program P ′′ is run with local knowledge whereas
in the disorderly semantics, an applicable body atom is eval-
uated based on the“global” database state. The next lemma
states that, at least, the transducer network is not perform-
ing any wrong updates, provided the syntactic restrictions
from Lemma 5.6 and Lemma 5.7 are met for the respective
transducer types. We will use this lemma to subsequently
show that the transducer is deterministic; which will allow
us to choose any order of transitions. Which is then suffi-
cient to show that the network transducer is not missing any
derivations, i.e., each fair run of the transducer corresponds
to a fair trace of the disorderly semantics.

We first relate the global state S of a transducer network
to a single, database instance M(S) over Smem. For any
R ∈ edb(P ′′) ∪ idb(P ′′), M(S) contains the union of the
memory relations R across the network. For R ∈ eidb(P ′′)
we take the intersection modulo scope, that is a fact R(x̄) is
in M(S) iff it is present on all nodes v with v ∈ P(R(x̄)),
i.e., that have R(x̄) in scope. We ommit the obvious (but
somewhat tedious) formal definition. Furthermore, let N(S)
be the bag containing the bag-union of all local network
buffers.

Lemma A.3 Let S be an arbitrary global state of the trans-
ducer T . Let SD := (M(S),N(S)) be a state for the disor-
derly semantics as defined in Section 4.1. Let v be an ar-
bitrary node in N with S(v) = (J,B), i.e., the contents of
its memory relations being J. Then, R(x̄) ∈ QR

snd(J) im-
plies that an insert/delete-update ν(H) = R(x̄)/¬R(x̄) can
be derived in SD according to P ′.

Proof. Let R(x̄) be a ground atom with R(x̄) ∈ QR
snd(J);

Since QR
snd is the FO-query obtained from the bodies of P ′′,

the needs to be a valuation ν such that J |= ν(body′′) for a
rule

(¬)R(x̄)← body′′ ∈ P ′′.

We need to show that not only J |= ν(body′′) but also
M(S) |= ν(body′) with body′ being the body of the cor-
responding rule in P ′. Individually, consider all body atoms

A ∈ body′. If A is a positive atom, then clearly M(S) |=
ν(A). Now consider a negative body atom ¬R(x̄) not con-
taining a ∀-quantified variable. According to our trans-
formation from P ′ to P ′′, also the atom LocalR (x̄) is in
body′′; thus, v has R(x̄) in scope but does not contain R(x̄),
which implies R(x̄) 6∈M(S). Without ∀-quantification, this
completes the proof. Note, that for this lemma the restric-
tion to one negative body atom in Lemma 5.6 is not re-
quired. The existence of ∀-quantified body atoms requires
the restrictions given in Lemma 5.7 and a restriction to type
N2 transducers. W.l.o.g., consider a the single “ground”
body atom with only one ∀-quantified variable. (It is easy
to see that the argument holds for the other cases too).
∀Z ¬R(c1..ck,Z,ck+1..cn) with ci being constants from
the domain. Since body′′ is friendly, the exists at least
one ci such that the non-ground atom had a variable x 6=Z

with ν(x) = ci. Since body′′ is guarded by LocalR, J |=
LocalR(c1..ck,ci,ck+1..cn), thus for the node v under
consideration v ∈ P(R(c1..ck,ci,ck+1..cn)). But since P
is element-determined, we can conclude that for all z ranging
over the universe, v ∈ P(R(c1..ck,z,ck+1..cn)). Thus, v
is responsible for all relevant tuples which implies the goal
M(S) |= ∀Z ¬R(c1..ck,Z,ck+1..cn). ✷

We now show that any transition taken by the relational
transducer can be emulated by the disorderly semantics, in
the following sense:

Lemma A.4 If the transducer network T can transition
from a state S to S ′, then (M(S ′), N(S ′)) is an eventual
successor of (M(S ′), N(S ′)) under the disorderly semantics
for P ′.

Proof sketch. The proof is technical, but straightforward
using Lemma A.3. Using multiple request and update rule
invocations, the disorderly semantics can emulate the set-
based FO-queries of a single transducer. A key ingredient is
the fact that if a node v in the transducer network is the first
(amongst all nodes) that derives a new idb fact (or delete an
eidb fact), then M(S) changes; if it was not the first then
M(S) does not change even though S does. In this case, the
change in pending network messages can be accomodated
by the disorderly semantics since P ′ is semi-monotone. ✷

It is important to also show that the trace computed by
the transducer network corresponds to a fair trace of the
disorderly semantics according to Definition 4.4.

Lemma A.5 Every fair run of T corresponds to a fair
trace of P ′ under the disorderly semantics.

Proof sketch. Being a fair run ensures that every sent
update is eventually applied. The more interesting part of
the proof is to show condition (1) from Definition 4.4. This
is somewhat dual to Lemma A.3. We need to show that
being able to derive an update in the global state implies
that there is (or will be in a later state) a node that can
derive the same update based on its local knowledge. That
is, we need to show if M(S) |= ν(body′) then there exists an
eventual successor state S ′ of S that will be reached by any
fair run of T , for which there is a node v ∈ N with memory
contents J such that J |= ν(body′′). Fix a ν(body′) with
M(S) |= ν(body′). If body′ does not contain any negated
atoms than body′′ = body′. But now, the claim is easy to
show since either body′ is a single edb atom (in which case

we are done according to the definition of M(S)) or body′ is
a join of only idb relations; the claim then follows from the
fact that we broadcast all idb-updates and the fact that P ′

is semi-monotone.
The more interesting cases are when body′ contains negated

subgoals. According to the same argument as above, we
can w.l.o.g., assume that on all nodes v the positive body
atoms are satisfied. Next, a differentiated analysis of (1)
Lemma 5.6 and (2) Lemma 5.7 is necessary. (1) body′ con-
tains only one negated atom ¬R(x̄). Since M(S) |= ¬R(x̄),
none of the nodes v ∈ P(R(x̄)) contain R(x̄) in their mem-
ory; consider one of these nodes v: both LocalR (x̄) and
¬R(x̄) are true on v. (2) Following the argument above,
we see that for each ¬R(x̄),LocalR (x̄) pair in body′′ there
exists a node v ∈ N for which ν(body′′) makes both true.
We would like one single node v′ on which all of the pairs
are true. Now, because the rule is friendly, all LocalR(...)
have one variable x in common. Since Lemma 5.7 requires
a type N2 transducer and thus P is element-determined, we
can conclude that v′ = F (ν(x)) is the desired node. ✷

Since an initialization of the transducer network T corre-
sponds to the initial disorderly state, Lemmata A.4 and A.5
prove Theorem 5.6 and 5.7.

Lemma 5.8 Let P be a projection program, and let Q be a
query as defined in Lemma 5.7. Then there exists a type N2

FO-transducer network which computes Q ◦ P .

Consider the semi-monotone program PQ for Q. Replace
occurrences of R ∈ edb(PQ) by their definition in P ; the
resulting program P ′

Q is still semi-monotone. So, w.l.o.g.,
assume P only defines projections for relations R that are
used as eidb in PQ. Also, for later, let T be part of edb(P).
To simplify the exposition, consider only one of such R.
We now modify the transducer constructed in the proof for
Lemma 5.7. First, we add R to the eidb relations of the
transducer (changing Smem and Smsg). We now change the
procedure that initializes the memory relations from the in-
put relation and compute the projection query during the
copy process. While doing so, we also take the partioning
policy P into consideration. Here, we use LocalT to get ac-
cess to the function H as defined just above Definition 5.3.
In particular, for a projection rule R(Z̄) ← S(X̄), we use a
UCQ as follows to decide what fragment of S to copy into R.

R(Z1,..,Zn) = S(X̄), LocalT(Z1,Z1,..,Z1).

R(Z1,..,Zn) = S(X̄), LocalT(Z2,Z2,..,Z2).

...

R(Z1,..,Zn) = S(X̄), LocalT(Zn,Zn,..,Zn).

The second modification in the process of creating T is a
change to the program P ′′

Q (as by the proof for Lemma 5.7).
We emulate the (non-existing system) relation LocalR(Z̄)

with LocalT as done above. It is easy to see that the emu-
lated LocalR and the contents of R corresponds to an allowed
distribution policy for a type N2 transducer.

