
ar
X

iv
:1

10
4.

08
67

v1
 [

cs
.D

B
]

 5
 A

pr
 2

01
1

Factorised Representations of Query Results∗

Dan Olteanu and Jakub Závodný

Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, OX1 3QD, Oxford, UK

Abstract

Query tractability has been traditionally defined as a function of
input database and query sizes, or of both input and output sizes,
where the query result is represented as a bag of tuples. In this report,
we introduce a framework that allows to investigate tractability beyond
this setting. The key insight is that, although the cardinality of a query
result can be exponential, its structure can be very regular and thus
factorisable into a nested representation whose size is only polynomial
in the size of both the input database and query.

For a given query result, there may be several equivalent represen-
tations, and we quantify the regularity of the result by its readability,
which is the minimum over all its representations of the maximum
number of occurrences of any tuple in that representation. We give a
characterisation of select-project-join queries based on the bounds on
readability of their results for any input database. We complement it
with an algorithm that can find asymptotically optimal upper bounds
and corresponding factorised representations.

1 Introduction

This paper studies properties related to the representation of results of
select-project-join queries under bag semantics. In approaching this chal-
lenge, we depart from the standard flat representation of query results as
bags of tuples and consider nested representations of query results that can
be exponentially more succinct than a mere enumeration of the result tuples.
The relationship between a flat representation and a nested, or factorised,
representation is on a par with the relationship between logic functions in
disjunctive normal form and their equivalent nested forms obtained by alge-
braic factorisation. When compared to flat representations of query results,
factorised representations are both succinct and informative.

∗A preliminary version has been submitted for publication on March 1, 2011.

1

http://arxiv.org/abs/1104.0867v1

Cust ckey name
c1 1 Joe
c2 2 Dan
c3 3 Li
c4 4 Mo

Ord ckey okey date
o1 1 1 1995
o2 1 2 1996
o3 2 3 1994
o4 2 4 1993
o5 3 5 1995
o6 3 6 1996

Item okey disc
i1 1 0.1
i2 1 0.2
i3 3 0.4
i4 3 0.1
i5 4 0.4
i6 5 0.1

Figure 1: A TPC-H-like database.

Example 1. Consider a simplified TPC-H scenario with customers, orders,
and discounted line items, as depicted in Figure 1. Each tuple is anno-
tated with an identifier. The query Cust ✶ckey Ord ✶okey Item reports
all customers together with their orders and line items per order. A flat
representation of the result is presented below:

Q ckey name okey date disc
c1o1i1 1 Joe 1 1995 0.1
c1o1i2 1 Joe 1 1995 0.2
c2o3i3 2 Dan 3 1994 0.4
c2o3i4 2 Dan 3 1994 0.1
c2o4i5 2 Dan 4 1993 0.4
c3o5i6 3 Li 5 1995 0.1

For each result tuple, the identifiers of tuples that contributed to it are
shown. For instance, the input tuples with identifiers c1, o1, and i1 con-
tribute to the first result tuple. Our factorised representation is based on an
algebraic factorisation of a polynomial that encodes the result. This encod-
ing is constructed as follows. Each result tuple is annotated with a product
of identifiers of tuples contributing to it. The whole result is then a sum of
such products. For this example, the sum of products of identifiers is:

ψ1 = c1o1i1 + c1o1i2 + c2o3i3 + c2o3i4 + c2o4i5 + c3o5i6.

An equivalent nested expression would be:

ψ2 = c1o1(i1 + i2) + c2(o3(i3 + i4) + o4i5) + c3o5i6.

A factorised representation of the result is an extension of this nested ex-
pression with values from the result tuples:

c1〈1, Joe〉o1〈1, 1995〉(i1〈0.1〉+ i2〈0.2〉)+

c2〈2, Dan〉(o3〈3, 1994〉(i3〈0.4〉+ i4〈0.1〉) + o4〈4, 1993〉i5〈0.4〉)+

c3〈3, Li〉o5〈5, 1995〉i6〈0.1〉.

To correctly interpret this representation as a relation, we also need a
mapping of identifiers to schemas. For instance, the identifiers c1 to c3
are mapped to (ckey, name), which serves as schema for tuples 〈1, Joe〉,
〈2,Dan〉, and 〈3, Li〉. ✷

2

We can easily recover the result tuples from the factorised representa-
tion with polynomial delay, i.e., the delay between two successive tuples is
polynomial in the size of the representation. For this, consider the parse
tree of the representation. The inner nodes stand for product or sum, and
the leaves for identifiers with tuples. A result tuple is a concatenation of the
tuples at the leaves after choosing one child for each sum and all children
for each product. We assume here that from a user perspective, iterating
over the result with small delay is more important than presenting the whole
result at once.

Factorised representations can be more informative than flat representa-
tions in that they better explain the result and spell out the extent to which
certain input fields contribute to result tuples either individually or in groups
with other fields. This enables a shift in the presentation of the result from
a tuple-by-tuple view to a kernel view, in which commonalities across result
tuples are made explicit by exploiting the factorised representation. We can
depict it graphically as its parse tree or textually as a serialisation of this
tree in tabular form.

Example 2. The textual presentation of our factorised representation in
Example 1 could be the left one below:

ckey name okey date disc
1 Joe 1 1995 0.1

0.2
2 Dan 3 1994 0.4

0.1
4 1993 0.4

3 Li 5 1995 0.1

name items

Joe LCD
Dan x LED
Li

Mo BW

It is easy to see that two discounted line items (with discount 0.1 and 0.2)
are for the same order 1 of customer Joe.

Consider now the following factorised representation

(s1〈Joe〉+ s2〈Dan〉+ s3〈Li〉)(p1〈LCD〉+ p2〈LED〉)+

s4〈Mo〉p3〈BW 〉

where s1 to s4 identify suppliers, and p1 to p3 identify items. This represen-
tation encodes that Joe, Dan, and Li supply both LCD and LED TV sets,
and Mo supplies BW TV sets. A textual presentation of this result could be
the right one above. The blocks between the horizontal lines encode tuples
obtained by combining any of the names with any of the items. This rela-
tional product is suggested by the x symbol between the blocks. (We skip
the details on the mapping between the parse trees of factorised expressions
and their tabular presentations.) ✷

In the factorised representation ψ2 and in contrast to its equivalent flat
representation ψ1, each identifier only occurs once. We seek good factorised

3

representations of a query result in which each identifier occurs a small
number of times. The maximum number of occurrences of any identifier
in a representation, or in any of its equivalent representations, defines the
readability of that representation. Readability implies bounds on the repre-
sentation size. In our example, the size of the factorised representation is at
most linear in the size of the input database, since its readability is one.

Our study of readability is with respect to tuple identifiers and aligns well
with query evaluation under bag semantics. This is different from readability
with respect to values. For instance, ψ2 has readability one, yet a value
may occur several times in the tuples of ψ2, e.g., the discount value of 0.1.
Studying readability with respect to values is especially relevant to query
evaluation under set semantics.

2 Contributions

The main contributions of this paper are as follows.

• We introduce factorised representations, a succinct and complete rep-
resentation system for (results of queries in) relational databases. In
contrast to the standard tabular representation of a bag of tuples,
factorised representations can be exponentially more succinct by fac-
toring out commonalities across tuples. They also allow for an intuitive
presentation, whereby commonalities across tuples are made explicit.

• We give lower and upper bounds on the readability of basic queries
with equality or inequality joins.

The following holds for select-project-join queries with equality joins.

• We introduce factorisation trees that define generic classes of factorised
representations for query results. Such trees are statically inferred
from the query and are independent of the database instance. A fac-
torised representation Φ(T) modelled on T has the nesting structure
of T for any input database.

• We give a tight characterisation of queries based on their readability
with respect to factorisation trees. For any query Q, we can find a
rational number f(Q) such that the readability of Q(D) is at most
|Q| · |D|f(Q) for any database D, while for any factorisation tree T
there exist databases for which the factorisation of Q(D) modelled on
T has at least (|D|/|Q|)f(Q) occurrences of some identifier.

• For any query Q, we present an algorithm that iterates over the fac-
torisation trees of Q and finds an optimal one T . Given T , we present
a second algorithm that computes in time O(|Q| · |D|f(Q)+1) for any

4

database D a factorised representation Φ(T) of Q(D) with readability
at most |Q| · |D|f(Q) and at most |D|f(Q)+1 occurrences of identifiers.

• Our characterisation captures as a special case the known class of hier-
archical non-repeating queries [DS07a] that have readability one [OH08].
We also show that non-hierarchical non-repeating queries have read-
ability Ω(

√

|D|) for arbitrarily large databases D.

Section 10 shows how to extend the above results to selections that
contain equalities with constants. Proofs are deferred to the appendix.

3 Related Work

Our study has strong connections to work on readability of Boolean func-
tions, provenance and probabilistic databases, streamed query evaluation,
syntactic characterisations of queries with polynomial time combined com-
plexity or polynomial output size, and selectivity estimation in relational
engines. The present work is nevertheless unique in its use of succinct nested
representations of query results.

The notion of readability is borrowed from earlier work on Boolean func-
tions, e.g., [GPR06, GMR08, EMR09]. Like in our case, a formula Φ is
read-m if each variable appears at most m times in Φ, and the readability
of a formula or a function Φ is the smallest number m such that there is
a read-m formula equivalent to Φ. Checking whether a monotone function
in disjunctive normal form has readability m = 1 can be done in time lin-
ear in both the number of terms and number of variables [GMR08]. This
problem is open for m = 2, and already hard for m > 2 or for m = 2 and
monotone nested functions [EMR09]. This strand of work differs from ours
in two key points. Firstly, we only consider algebraic, and not Boolean,
equivalence; in particular, idempotence (x · x = x) is not considered since
a reduction in the arity of any product in the representation would violate
the mapping between tuple fields and schemas. Secondly, we only consider
functions/formulas arising as results of queries, and classify queries based
on worst-case analysis of the readability of their results.

The hierarchical property [DS07a] of queries plays a central role in stud-
ies with seemingly disparate focus, including the present one, probabilistic
databases, and streamed query evaluation. Our characterisation of query
readability essentially revolves around how far the query is from its hierarchi-
cal subqueries. We show that, within the class of queries without repeating
relation symbols, the readability of any non-hierarchical query is dependent
on the size of the input database, while for any hierarchical query, the read-
ability is always one. This latter result draws on earlier work in the context
of probabilistic databases [OH08, OHK09, FO11], where read-once polyno-
mials over random variables are useful since their exact probability can be

5

computed in polynomial time. Read-m functions for m > 2 are of no use
in probabilistic databases, since probability computation for such functions
over random variables is #P-hard [Vad01]. In our case, however, readability
polynomial in the sizes of the input database and query is acceptable, since
it means that the size of the result representation is polynomial, too.

Mirroring the dichotomies in the probabilistic and query readability con-
texts, it has been recently shown that the hierarchical property divides
queries that can be evaluated in one pass from those that cannot in the fi-
nite cursor machine model of computation [GGL+09]. In this model, queries
are evaluated by first sorting each relation, followed by one pass over each
relation. It would be interesting to investigate the relationship between the
readability of a query Q and the number of passes necessary in this model
to evaluate Q.

Our study fits naturally in the context of provenance management [GKT07].
Indeed, the polynomials over tuple identifiers discussed in Example 1 are
provenance polynomials and nested representations are algebraic factorisa-
tions of such polynomials. In this sense, our work contributes a characteri-
sation of queries by readability and size of their provenance polynomials.

Earlier work in incomplete databases has introduced a representation
system called world-set decompositions [OKA08] to represent succinctly sets
of possible worlds. Such decompositions can be seen as factorised represen-
tations whose structure is a product of sums of products.

There exist characterisations of conjunctive queries with polynomial time
combined complexity [AHV95]. The bulk of such characterisations is for
various classes of Boolean queries under set semantics. In this context, even
simple non-Boolean conjunctive queries such as a product of n relations
would require evaluation time exponential in n. Our approach exposes the
simplicity of this query, since its readability is one and the smallest factorised
representation of its result has linear size only and can be computed in linear
time. Factorised representations could thus lead to larger classes of tractable
queries.

Finally, there has been work on deriving bounds on the cardinality of
query results in terms of structural properties of queries [GLS99, AGM08,
GLV09]. Our work uses the results in [AGM08] and quantifies how much
they can be improved due to factorised representations.

4 Preliminaries

Databases. We consider relational databases as collections of annotated
relation instances, as in Example 1. Each relation instance R is a bag of
tuples in which each tuple is annotated by an identifier. We denote by I(R)
the set of identifiers in R, by S(R) the schema of R, and call the pair
(I(R),S(R)) its signature.

6

The size of a relation instance R is the number of tuples in R, denoted
by |R|. The number of distinct tuples in R is denoted by ||R||. The size
|D| of a database D is the total number of tuples in all relations of D.

Remark 1. For the purpose of analysing the complexity of our algorithms,
we assume that the tuples in the input database are of constant size. In
many scenarios, this is however not realistic since even the encodings of the
tuple identifiers must have size at least logarithmic in D. If the maximal
size of a tuple in D is C(D), the time complexity increases by an additional
factor C(D) or similar, depending on the exact computation model used.✷

Queries. We consider conjunctive or select-project-join queries written in
relational algebra but with evaluation under bag semantics. Such queries
have the form πĀ(σϕ(R1 × . . . × Rn)), where R1, . . . , Rn are relations, ϕ is
a conjunction of equalities of the form A1 = A2 with attributes A1 and A2,
and Ā is a list of attributes of relations R1 to Rn. The size |Q| of the query
Q is the total number of relations and attributes in Q.

LetQ = πĀ(σϕ(R1×· · ·×Rn)) be a query andD be a database containing
a relation instance Ri of the correct schema for each relation Ri in Q. The
result Q(D) of the query Q on the database D is a relation instance whose
tuples are exactly those πĀ(t1×· · ·×tn) for which ti ∈ Ri and t1×· · ·×tn |=
ϕ. The tuple πĀ(t1×· · ·× tn) is annotated by id1id2 . . . idn, where idi is the
identifier of ti in Ri.

Every query can be brought into an equivalent form where all relations
as well as all their attributes are distinct. To recover the original query Q0

from the rewritten one Q, we keep a function µ that maps the relations in Q
to relations in Q0, and the attributes of R in Q to those of µ(R) in Q0. For
technical reasons, we will only consider the rewritten queries in further text,
the mapping µ will carry the information about different relation symbols
representing the same relation. If a query Q has two relations with the same
mapping µ(R), then Q is repeating ; otherwise, Q is non-repeating.

For any attribute A, let A∗ be its equivalence class, that is, the set of all
attributes that are transitively equal to A in ϕ, and let r(A) be the set of
relations that have attributes in A∗.

A query is hierarchical1 , if for any two attributes A and B, either r(A) ⊆
r(B), or r(A) ⊃ r(B), or r(A) ∩ r(B) = ∅.

Example 3. The query from Example 1 in the introduction is non-repeating
and not hierarchical.

Consider the relations R, S, and T over schemas {AR}, {AS , BS}, and
{BT , U} respectively. The query πĀ[σAR=AS ,BS=BT

(R×S × T)] is not hier-
archical (independently of the set Ā), since r(AS) 6⊆ r(BS), r(AS) 6⊃ r(BS),
but r(AS) ∩ r(BS) = {S}. The query πĀ[σAR=AS ,BS=BT ,AR=U(R× S × T)],

1The original definition [DS07a] does not consider the output attributes Ā when check-
ing the hierarchical property.

7

equivalent to R(A), S(A,B), T (B,A), is hierarchical, since r(AR) = r(AS) =
r(U) = {R,S, T} ⊃ r(BS) = r(BT) = {S, T}. ✷

5 Factorised Representations

In this section we formalise the notion of factorised representations, their
algebraic equivalence, and readability. We also give tight bounds on the
readability of certain factorised representations that are used in the next
sections to derive bounds on the readability of query results.

Definition 1. A factorised representation, or f-representation for short, Φ
over a set of signatures Sign is

• Φ1 + · · · +Φn, where Φ1 to Φn are f-representations over Sign, or
• Φ1 · · ·Φn, where Φ1 to Φn are f-representations over Sign1 to Signn,

respectively, and these signatures form a disjoint cover of Sign, or
• id〈t〉, where id ∈ Ri and t is a tuple over schema Si, and Sign =

{(Ri,Si)}.
The polynomial of Φ is Φ without tuples on identifiers. The size of (the
polynomial of) Φ is the total number of occurrences of identifiers in Φ. ✷

Two examples of f-representations are given in Section 1. A relational
database can have several algebraically equivalent f-representations, in the
sense that these f-representations represent the same tuples and polynomials.
Syntactically, we define equivalence of f-representations as follows.

Definition 2. Two f-representations are equivalent if one can be obtained
from the other using distributivity of product over sum and commutativity
of product and sum. ✷

Each f-representation has an equivalent flat f-representation, which is a
sum of products. A product i1〈t1〉 · · · in〈tn〉 defines the tuple 〈t1 ◦ · · · ◦ tn〉
over schema

⋃

i Si, which is a concatenation of tuples 〈t1〉 to 〈tn〉, and is
annotated by the product i1 . . . in.

Definition 3. The relation encoded by an f-representation Φ consists of all
tuples defined by the products in the flat f-representation equivalent to Φ.✷

Since flat f-representations are standard relational databases annotated
with identifiers, it means that any relational database can be encoded as an
f-representation. This property is called completeness.

Proposition 1. Factorised representations form a complete representation
system for relational data.

In particular, this means that there are f-representations of the result of
any query in a relational database.

8

Definition 4. Let Q = πĀ(σϕ(R1 × · · · × Rn)) be a query, and D be a
database. An f-representation Φ encodes the result Q(D) if its equivalent flat
f-representation contains exactly those products id1〈πĀ(t1)〉· . . . ·idn〈πĀ(tn)〉
for which πĀ(t1 × · · · × tn) ∈ Q(D), and idi is the identifier of ti for all i.

The signature set of Φ consists of the signatures (Ii,Si) for each query
relation Ri, such that Ii is the set of identifiers of the relation instance in
D corresponding to Ri, and Si is the schema of Ri in Q restricted to the
attributes in Ā. ✷

Flat f-representations can be exponentially less succinct than equivalent
nested f-representations, where the exponent is the size of the schema.

Proposition 2. Any flat representation equivalent to the f-representation
(x1α + y1β) · . . . · (xnα + ynβ) over the signatures ({x1, . . . , xn},A) and
({y1, . . . , yn},B) has size 2n.

In addition to completeness and succinctness, f-representations allow for
efficient enumeration of their tuples.

Proposition 3. The tuples of an f-representation Φ can be enumerated with
O(|Φ| log |Φ|) delay and space.

Besides the size, a key measure of succinctness of f-representations is
their readability. We extend this notion to query results for any input
database in Section 7.

Definition 5. An f-representation Φ is read-k if the maximum number of
occurrences of any identifier in Φ is k. The readability of Φ is the smallest
number k such that there is a read-k f-representation equivalent to Φ. ✷

Since the readability of Φ is the same as of its polynomial, we will use
polynomials of f-representations when reasoning about their readability.

Example 4. In Example 1, the polynomial ψ1 is read-3 and the polynomial
ψ2 is read-1. They are equivalent and hence both have readability one. ✷

Given the readability ρ and the number n of distinct identifiers of a
polynomial, we can immediately derive an upper bound nρ on its size. A
better upper bound can be obtained by taking into account the (possibly
different) number of occurrences of each identifier. However, for polynomials
of query results, the bound nρ is often dominated by the readability ρ.

In Section 7, we define classes of queries that admit polynomials of low
readability, such as constant readability. We next give examples of polyno-
mials with readability depending polynomially on the number of identifiers.

Lemma 1. The polynomial pN =
∑N

i,j=1 risijtj has readability N
2 +O(1).

Lemma 1 can be generalised as follows.

9

AR, AS , AT

BR, BS

C

R

D

S

ET , EU

T F

U

ET , EU

AR, AS , AT

BR, BS

C

R

D

S

T

F

U

Figure 2: F-trees for the query in Example 5.

Theorem 1. The readability of the polynomial pN,M =
∑N

i=1

∑M
j=1 risijtj

is NM
N+M +O(1).

If we drop the set of identifiers sij, the readability becomes one. How-
ever, if we restrict the relationship between the remaining identifiers, the
readability increases again.

Theorem 2. The readability of the polynomial qN =
∑N

i,j=1;i 6=j ritj is

Ω(logN
log logN) and O(logN).

The polynomials pN,M and qN are relevant here due to their connection
to queries: pN,M is the polynomial of the query σϕ(R × S × T), where
ϕ := (AR = AS ∧ BS = BT) and the schemas of R, S, and T are {AR},
{AS , BS}, and {BT } respectively, on the database where R, S and T are
full relations with |R| = n and |T| = m. Also, qN is the polynomial of the
disequality query σAR 6=BT

(R × T). If i 6= j is replaced by i ≤ j in qN , the
lower and upper bounds on readability on this new polynomial q′N still hold,
and we obtain the result of an inequality query.

A lower bound of
√

logN
log logN on the readability of q′N is already known

even in the case when Boolean factorisation is allowed [GPR06].

6 Factorisation Trees

We next introduce a generic class of factorised representations for query re-
sults, constructed using so-called factorisation trees, whose nesting structure
and readability properties can be described statically from the query only.
We present an algorithm that, given a factorisation tree T of a query Q,
and an input database D, computes a factorised representation of Q(D),
whose nesting structure is that defined by T . Factorisation trees are used
in Section 7 to obtain bounds on the readability of queries.

Definition 6. A factorisation tree (f-tree) for a query Q is a rooted un-
ordered forest T , where

10

Jsiblings {T1, . . . ,Tn}K(γ) = JT1K(γ) · · · JTnK(γ)

Jinner node A∗(U)K(γ) =
∑

a∈DomA∗

(JUK(γ,A∗ = a))

Jleaf RK(γ) =
∑

tj∈σγ(R)

idj〈πhead(Q)(tj)〉

Figure 3: The T -factorisation of a query result Q(D) is computed as Φ(T) =
JT K(⊤), where ⊤ is the constant true (an empty conjunction). For a relation
R in Q, R is the corresponding relation instance in the input database D.

• there is a one-to-one mapping between inner nodes in T and equiva-
lence classes of attributes of Q,

• there is a one-to-one mapping between leaf nodes in T and relations
in Q, and

• the attributes of each relation only appear in the ancestors of its leaf.✷

Example 5. Consider the relations R, S, T , and U over schemas {AR, BR, C},
{AS , BS ,D}, {AT , ET }, and {EU , F} respectively, and the queryQ = σϕ(R×
S × T × U) with ϕ = (AR = AS , AR = AT , BR = BS , ET = EU). Figure 2
depicts two f-trees for Q.

Consider now the query Q′ = σϕ(R× S × T) with ϕ = (AR = AS , AR =
AT , BR = BS). Figure 7 on page 20 shows two f-trees for Q′ as well as a
partial tree that cannot be extended to an f-tree since the attributes AS and
D of S lie in different branches. ✷

Each f-tree for Q is a recipe for producing an f-representation of the
result Q(D) for any database D. For a given query Q and database D,
this f-representation is called the T -factorisation of Q(D) and is denoted
by Φ(T). Figure 3 gives a recursive function J·K that computes the T -
factorisation of Q(D). A more detailed implementation of this function,
including an analysis of its time and space complexity, is given in Section 9.

The function J·K recurses on the structure of T . The parameter γ is
a conjunction of equality conditions that are collected while traversing the
f-tree top-down. Initially, γ is an empty conjunction ⊤. In case T is a
forest {T1, . . . ,Tn}, we return the f-representation defined by the product of
f-representations of each tree in T . If T is single tree A∗(U) with root A∗ and
children U , we return the f-representation of a sum over all possible domain
values a of the attributes in A∗ of the f-representations of the children U . To
compute these, for each possible value a we simply recurse on U , appending
to γ the equality condition A∗ = a. Finally, in case T is a leaf R, we return
a sum of f-representations for result tuples in R, that is, only those tuples

11

R AR BR C
r111 1 1 1
r122 1 2 2
r212 2 1 2
r221 2 2 1

S AS BS D
s111 1 1 1
s112 1 1 2
s121 1 2 1
s211 2 1 1

T AT ET

t12 1 2
t21 2 1
t22 2 2

U EU F
u11 1 1
u21 2 1
u22 2 2

Figure 4: Database used in Example 6.

that satisfy γ. (When evaluating the selection with γ on R, we only consider
the equalities on attributes of R.) In the f-representation we only include
attributes from Q’s projection list, along with the tuple identifier.

The symbolic products and sums in Figure 3 are of course expanded
out to produce a valid f-representation. However, we will often keep the
sums symbolic, abbreviate

∑

a∈DomA∗
to

∑

A∗ and write R instead of
∑

tj∈σγ(R) idj〈πhead(Q)(tj)〉 for the expression generated by the leaves. The
condition γ can be inferred from the position in the expression, so we can still
recover the original representation and write out the sums explicitly. Such
an abbreviated form is independent of the database D and conveniently
reveals the structure of any T -factorisation.

Example 6. Consider the query Q from Example 5 and the f-trees from
Figure 2. For any database, the left f-tree yields

Φ(T1) =
∑

A

[
∑

B

(
∑

C R
∑

D S
)
∑

E

(

T
∑

F U
)]

,

while the right f-tree yields

Φ(T2) =
∑

E

(
∑

A

(
∑

B

(
∑

C R
∑

D S
)

T
)(

∑

F U
)

,

both in abbreviated form. A procedure to produce the explicit form of Φ(T1)
is shown in Figure 5.

For the particular database D given in Figure 4, the f-representations
Φ(T1) and Φ(T2) yield the polynomials

P1 =(r111(s111 + s112) + r122s121)t12(u21 + u22) + r212s211(t21u11 + t22(u21 + u22)),

P2 =r212s211t21u11 + ((r111(s111 + s112) + r122s121)t12 + r212s211t22)(u21 + u22).

They are equivalent to each other and to the polynomial P of the flat f-
representation of Q(D),

P =r111s111t12u21 + r111s111t12u22 + r111s112t12u21+

r111s112t12u22 + r122s121t12u21 + r122s121t12u22+

r212s211t21u11 + r212s211t22u21 + r212s211t22u22.

Whereas P is read-6, both P1 and P2 are read-2. ✷

12

foreach value a ∈ DomA do output sum of

foreach value b ∈ DomB do output sum of

foreach value c ∈ DomC do output sum of identifiers of R-tuples (a, b, c)

×

foreach value d ∈ DomD do output sum of identifiers of S-tuples (a, b, d)

×

foreach value e ∈ DomE do output sum of

output sum of identifiers of T -tuples (a, e)

×

foreach value f ∈ DomF do output sum of identifiers of U -tuples (e, f)

Figure 5: A procedure for producing T1-factorisations in explicit form. The
abbreviated form is

∑

A

[
∑

B

(
∑

C R
∑

D S
)
∑

E

(

T
∑

F U
)]

. T1 is the left f-
tree in Figure 2.

Remark 2. For any query Q, consider the f-tree T in which the nodes
labelled by the attribute classes all lie on a single path, and the leaves
labelled by the relations are all attached to the lowest node in that path.
Such a tree T produces the T -factorisation in which we sum over all values
of all attributes and for each combination of values we output the product
over all relations of the sums of tuples which have the given values. If all
the tuples in the input relations are distinct, the T -factorisation is just a
sum of products, that is, the flat f-representation of the result.

Thus, for a non-branching tree T we obtain a flat representation of Q(D).
The more branching the tree T has, the more factorised the T -factorisation
of Q(D) is. ✷

The correctness of our construction for a general query Q and database
D is established by the following result.

Proposition 4. For any f-tree T of a query Q and any database D, Φ(T)
is an f-representation of Q(D).

We next introduce definitions concerning f-trees for later use. Consider
an f-tree T of a query Q. An inner node A∗ of T is relevant to a relation R if
it contains an attribute of R. For a relation R, let Path(R) be the set of inner
nodes appearing on the path from the leaf R to its root in T , Relevant(R) ⊆
Path(R) be the set of nodes relevant to R, and Non-relevant(R) = Path(R)\
Relevant(R). For example, in the left f-tree of Figure 2, Non-relevant(R) = ∅
and Non-relevant(U) = {A∗

R}. In the right f-tree, Non-relevant(U) = ∅, yet
Non-relevant(R) = Non-relevant(S) = {E∗

T }. In fact, there is no f-tree for

13

the query in Example 5 such that Non-relevant(R) = ∅ for each relation R.
This is because the query is not hierarchical.

Proposition 5. A query is hierarchical iff it has an f-tree T such that
Non-relevant(R) = ∅ for each relation R.

The left two trees shown in Figure 7 are f-trees of a hierarchical query.
The first f-tree satisfies the condition in Proposition 5, whereas the second
does not.

7 Readability of Query Results

The readability of a query Q on a database D is the readability of any
f-representation of Q(D), that is, the minimal possible k such that there
exists a read-k representation of Q(D).

In this section we give upper bounds on the readability of arbitrary select-
project-join queries with equality joins in terms of the cardinality |D| of the
database D. We then show that these bounds are asymptotically tight with
respect to statically chosen f-trees. By this we mean that for any query Q, if
we choose an f-tree T , there exist arbitrarily large database instances D for
which the T -factorisation of Q(D) is read-k with k asymptotically close to
our upper bound. In the next section we give algorithms to compute these
bounds. We conclude the section with a dichotomy: In the class of non-
repeating queries, hierarchical queries are the only queries whose readability
for any database is 1 and hence independent of the size of the database.

A key result for all subsequent estimates of readability is the following
lemma that states the exact number of occurrences of any identifier of a
tuple 〈t〉 in the T -factorisation of Q(D) as a function of the f-tree T , the
query Q = πĀ(σϕ(R1 × · · · ×Rn)), and the database D.

Let R = Ri be a relation of Q, denote by the condition S(R) = 〈t〉 the
conjunction of equalities of the attributes of R to corresponding values in
〈t〉, and denote NR = Non-relevant(R). In the T -factorisation of Q(D),
multiple occurrences of the same identifier from R arise from the summa-
tions over the values of attributes from NR. Lemma 2 quantifies how many
different choices of such values in the summations thus yield a given iden-
tifier from R. Recall that the projection attributes Ā do not influence the
cardinality of the query result and hence the number of occurrences of its
identifiers, since we consider bag semantics.

Lemma 2. The number of occurrences of the identifier r of a tuple 〈t〉 from
R in the T -factorisation of Q(D) is

∣

∣

∣

∣

(

πNR(σS(R)=〈t〉σϕ(R1 × · · · ×Rn))
)

(D)
∣

∣

∣

∣ .

14

For example, for the left f-tree in Figure 2, all identifiers in R, S, and T
occur once, whereas any identifier of U may occur as many times as distinct
A∗ values in R, S, and T . For the leftmost f-tree in Figure 7, all identifiers
in all relations occur once, since no relation has non-relevant nodes.

Lemma 2 represents an effective tool to further estimate the readabil-
ity and size of T -factorisations. Our results build upon existing bounds
for query result sizes and yield readability bounds which can be inferred
statically from the query. Lemma 2 can be potentially also coupled with
estimates on selectivities and various assumptions on attribute-value corre-
lations [MD88, PI97, GTK01, RS10] to infer database-specific estimates on
the readability.

7.1 Upper Bounds

Let D be a database, let Q = πĀ(σϕ(R1×· · ·×Rn)) be a query, let T be an
f-tree of Q, and let R be a relation in Q. Denote NR = Non-relevant(R),
by ϕR the condition ϕ restricted to the attributes of NR, by QR the query
σϕR

(πNRR1×· · ·×πNRRn), and by DR the database obtained by projecting
each relation in D onto the attributes of NR.

Lemma 3. The number of occurrences of any identifier r from R in the
T -factorisation of Q(D) is at most ||QR(DR)||.

Proof. By Lemma 2, the number of occurrences of r is equal to

∣

∣

∣

∣

(

πNR(σS(R)=〈t〉σϕ(R1 × · · · ×Rn))
)

(D)
∣

∣

∣

∣ ,

from which we obtain the desired bound by straightforward estimates:

||
(

πNR(σS(R)=〈t〉σϕ(R1 × · · · ×Rn))
)

(D)||

≤||
(

πNR(σϕ(R1 × · · · ×Rn))
)

(D)||

≤||
(

σϕR
(πNR(R1 × · · · ×Rn))

)

(D)||

=||QR(DR)||.

The number of distinct tuples in an equi-join query such as QR can
be estimated in terms of the database size using the results in [AGM08].
Intuitively, if we can cover all attributes of the query QR by some k of
its relations, then ||QR(DR)|| is at most the product of the sizes of these
relations, which is in turn at most |D|k. This corresponds to an edge cover
of size k in the hypergraph of QR. The following result strenghtens this idea
by lifting covers to a weighted version.

Definition 7. For an equi-join query Q = σϕ(R1 × · · ·×Rn), the fractional
edge cover number ρ∗(Q) is the cost of an optimal solution to the linear

15

program with variables {xi}
n
i=1,

minimising
∑

i xi

subject to
∑

i:Ri∈r(A) xi ≥ 1 for all attributes A, and

xi ≥ 0 for all i. ✷

Lemma 4 ([AGM08]). For any equi-join query Q and for any database D,
we have ||Q(D)|| ≤ |D|ρ

∗(Q).

Together with Lemma 3, this yields the following bound.

Corollary 1. The number of occurrences of any identifier r from R in the
T -factorisation of Q(D) is at most |D|ρ

∗(QR).

Proof. By Lemma 3, the number of occurrences of r in the T -factorisation
of Q(D) is bounded above by ||QR(DR)||. By Lemma 4, this is bounded
above by |DR|

ρ∗(QR), which is equal to |D|ρ
∗(QR).

Corollary 1 gives an upper bound on the number of occurrences of iden-
tifiers from each relation. Let M be the maximal number of relations which
can contain the same identifier, that is, the maximal number of relations in
Q mapping to the same relation name by µ. Defining f(T) = maxR ρ

∗(QR)
to be the maximal possible ρ∗(QR) over all relations R from Q, we obtain
an upper bound on the readability of the T -factorisation of Q(D).

Corollary 2. The T -factorisation of Q(D) is at most read-(M · |D|f(T)).

By considering the T -factorisation with lowest readability, we obtain an
upper bound on the readability of Q(D). Let f(Q) = minT f(T) be the
minimal possible f(T) over all f-trees T for Q.

Corollary 3. For any query Q and any database D, the readability of Q(D)
is at most M · |D|f(Q).

Since M ≤ |Q|, the readability of Q(D) is at most |Q| · |D|f(Q).

Example 7. For the query Q in Example 5 and the left f-tree in Figure 2,
the relation U is the only one with a non-empty query QU = σϕU

(πAR
R ×

πAS
S × πAT

T), where the condition ϕU is AR = AS = AT . Since the
other relations have empty covers (thus of cost zero), we conclude that their
identifiers occur at most once in the query result. We can cover QU with any
subset of R, S, and T . A minimal edge cover can be any of the relations,
and the number of occurrences of any identifier of U is thus linear in the size
of that relation. The fractional edge cover number is also 1 and we obtain
the same bound.

For the right f-tree in Figure 2, both R and S have non-empty queries QR

and QS defining their non-relevant sub-query of Q: QR = QS = σϕ(πET
T ×

16

AR, AS , AT

BS , BT

CS , CU

S DT , DU

T ER, EU

R U

AR, AS , AT

CS , CU

DT , DU

BS , BT

S T

ER, EU

R U

Figure 6: F-trees T1 and T2 for the query in Example 7.

πEU
U), where ϕ is ET = EU . The attributes ET and EU can be covered by

U or by T . A minimal cover thus has size 1. The minimal fractional edge
cover has also cost 1.

Now consider a different query over the relations R(AR, ER), S(AS , BS , CS),
T (AT , BT ,DT) and U(CU ,DU , EU), given by Q̂ = σϕ(R×S ×T ×U), with
ϕ = (AR = AS = AT , BS = BT , CS = CU ,DT = DU , ER = EU).

Consider the left f-tree T1 shown in Figure 6. For the relation R, we
have Non-relevant(R) = {B∗

S , C
∗
S ,D

∗
T }, and hence the restricted query QR

will be Q̂R = σBS=BT ,CS=SU ,DT=DU
(πBS ,CS

S × πBT ,DT
T × πCU ,DU

U). We
need at least two of the relations S, T, U to cover all attributes of QR, the
edge cover number is thus 2. However, in the fractional edge cover linear
program, we can assign to each relation the value xS = xT = xU = 1/2.
The covering conditions at each attribute are satisfied, since each attribute
belongs to two of the relations. The total cost of this solution is only 3/2.
It is in fact the optimal solution, so ρ∗(QR) = 3/2. It is easily seen that
ρ∗(Q̂T) = ρ∗(Q̂U) = 1 (since Q̂T can be covered either by S or U , and
Q̂U can be covered by either S or T) and ρ∗(Q̂S) = 0 (since Q̂S has no
attributes), so f(T1) = 3/2. We obtain the upper bound |D|3/2 on the
number of occurrences of identifiers from R, and hence on the readability of
any T1-factorisation.

Note however that in the right f-tree T2 in Figure 6, each of Q̂R, Q̂S , Q̂T

and Q̂U is covered by only one of its relations, and hence f(T2) = 1. Any
T2-factorisation will therefore have readability at most linear in D.

In fact, no f-tree T for Q̂ has f(T) < 1, so T2 is in this sense optimal
and f(Q̂) = 1. ✷

7.2 Lower Bounds

We also show that the obtained bounds on the numbers of occurrences of
identifiers are essentially tight. For any query Q and any f-tree T , we con-

17

struct arbitrarily large databases for which the number of occurrences of
some symbol is asymptotically as large as the upper bound.

The expression for the number of occurrences of an identifier, given in
Lemma 2, states the size of a specific query result. As a first attempt to
construct a small database D with a large result for the query QR, we pick
k attribute classes of QR and let each of them attain N different values. If
each relation has attributes from at most one of these classes, each relation
in D will have size at most N , while the result of QR will have size Nk.

This corresponds to an independent set of k nodes in the hypergraph of
QR. We can again strenghten this result by lifting independent sets to a
weighted version. Since the edge cover and the independent set problems
are dual when written as linear programming problems, this lower bound
meets the upper bound from the previous subsection. The following result,
derived from results in [AGM08], forms the basis of our argument.

Lemma 5. For any equi-join query Q, there exist arbitrarily large databases
D such that ||Q(D)|| ≥ (|D|/|Q|)ρ

∗(Q).

Now let Q = πĀ(σϕ(R1 × · · · × Rn)) be a query, let T be an f-tree of Q
and let R be a relation in Q. Define NR, ϕR and QR as before. We can
apply Lemma 5 to the expression from Lemma 2 to infer lower bounds for
numbers of occurrences of identifiers in the T -factorisation of Q(D).

Lemma 6. There exist arbitrarily large databases D such that each identifier
from R occurs in the T -factorisation of Q(D) at least (|D|/|Q|)ρ

∗(QR) times.

We now lift the result of Lemma 6 from the identifiers from R to all
identifiers in the T -factorisation of Q(D).

Corollary 4. There exist arbitrarily large databases D such that the T -
factorisation of Q(D) is at least read-(|D|/|Q|)f(T).

Finally, by minimising over all f-trees T , we find a lower bound on read-
ability with respect to statically chosen f-trees.

Corollary 5. Let Q be a query. For any f-tree T of Q there exist arbitrarily
large databases D for which the T -factorisation of Q(D) is at least read-
(|D|/|Q|)f(Q).

Example 8. Let us continue Example 7. For the left f-tree in Figure 2,
an independent set of attributes covering the relations R, S, and T of the
query QU is {A∗

R}. Since QU only has one attribute, this is also the largest
independent set, and the fractional relaxation of the maximum independent
set problem has also optimal cost 1.

For the right f-tree in Figure 2 the situation is similar. A maximum
independent set of attributes covering the relations T and U of the queries
QR and QS is {E∗

T } and has size 1.

18

The situation is more interesting for the query Q̂. Recall that for the
left f-tree T1 in Figure 6, Q̂R = σBS=BT ,CS=SU ,DT=DU

(πBS ,CS
S×πBT ,DT

T ×
πCU ,DU

U), its attribute classes being NR = {B∗
S , C

∗
S ,D

∗
T }. The maximum

independent set for Q̂R has size 1, since any two of its attribute classes are
relevant to a common relation. However, the fractional relaxation of the
maximum independent set problem allows to increase the optimal cost to
3/2. In this relaxation, we want to assign nonnegative rational values to
the attribute classes, so that the sum of values in each relation is at most
one. By assigning to each attribute class the value 1/2, the sum of values
in each relation is equal to one, and the total cost of this solution is 3/2.
This is used in the proof of Lemma 6 to construct databases D for which the
identifiers from R appear at least (|D|/3)3/2 times in the T1-factorisation of
Q̂(D), thus proving the upper bound from Example 7 asymptotically tight.

Since all f-trees T for Q̂ have f(T) ≥ 1, the results in this subsection
show that for any such f-tree T we can find databases D for which the
readability of the T -factorisation of Q(D) is at least linear in |D|. ✷

7.3 Characterisation of Queries by Readability

For a fixed query, the obtained upper and lower bounds meet asymptoti-
cally. Thus our parameter f(Q) completely characterises queries by their
readability with respect to statically chosen f-trees.

Theorem 3. Fix a query Q. For any database D, the readability of Q(D) is
O(|D|f(Q)), while for any f-tree T of Q, there exist arbitrarily large databases
D for which the T -factorisation of Q(D) is read-Θ(|D|f(Q)).

Theorem 3 subsumes the case of hierarchical queries.

Corollary 6. Fix a query Q. If Q is hierarchical, the readability of Q(D)
for any database D is bounded by a constant. If Q is non-hierarchical, for
any f-tree T of Q there exist arbitrarily large databases D such that the
T -factorisation of Q(D) is read-Θ(|D|).

For non-repeating queries, the following result extends the above di-
chotomy to the case of readability irrespective of f-trees.

Theorem 4. Fix a non-repeating query Q. If Q is hierarchical, then the
readability of Q(D) is 1 for any database D. If Q is non-hierarchical, then
there exist arbitrarily large databases D such that the readability of Q(D) is
Ω(

√

|D|).

8 Algorithms for Query Characterisation

Given a query Q, we show how to compute the parameter f(Q) characteris-
ing the upper bound on readability. We give an algorithm that iterates over

19

AR, AS , AT

BR, BS

C

R

D

S

ET

T

BR, BS

AR, AS , AT

C

R

D

S

ET

T

BR, BS

AR, AS , AT

C ET

D

Figure 7: Left to right: Two f-trees and a tree which cannot be extended to
an f-tree, used in Example 9.

all f-trees T of Q to find one with minimum f(T). We further prune the
space of possible f-trees to avoid suboptimal choices.

The following lemma facilitates the search for optimal f-trees. Intuitively,
since the parameter f(T) depends on the costs of fractional covers of QR for
the relations R of Q, and since QR is the restriction of Q to the attributs of
Non-relevant(R) = Path(R) \ Relevant(R), by shrinking the sets Path(R),
the fractional cover number of QR and hence the parameter f(T) can only
decrease.

Lemma 7. If T1 and T2 are f-trees for a query Q, and Path(R) in T1 is a
subset of Path(R) in T2 for any relation R of Q, then f(T1) ≤ f(T2).

In any f-tree T , each relation symbol R lies under its lowest relevant node
A∗. By moving R upwards directly under A∗, Path(R) can only shrink, and
by Lemma 7, f(T) can only decrease. Thus, when iterating over all possible
f-trees T to find one with lowest f(T), we can assume that the leaves are as
close as possible to the root, and it is enough to iterate over all the possible
subtrees formed by the inner nodes of f-trees. We next denote by reduced
f-trees the f-trees where the leaves are removed. The only condition for a
rooted tree over the set of nodes labelled by the attribute classes of Q to be
a reduced f-tree, is that for each relation R, no two nodes relevant to R lie
in sibling subtrees. Call this condition C.

Example 9. Consider the relations R, S and T over schemas {AR, BR, C},
{AS , BS ,D} and {AT , ET } respectively, and the query Q = σϕ(R× S × T)
with ϕ = (AR = AS , AR = AT , BR = BS). Figure 7 depicts three trees.
Without their leaves, the first two are reduced f-trees. The third tree is not
a reduced f-tree as it violates condition C: the nodes A∗

S and D∗ lie in sibling
subtrees, yet they are both relevant to S. We cannot place the leaf S under
both of them. ✷

Any reduced f-tree is a rooted forest satisfying the condition C. Such a
forest can either be a single rooted tree, or a collection of rooted trees. In
the first case, the condition C on the whole tree rooted at A∗ is equivalent

20

Call a partition P1, . . . , Pn good if for each relation R in Q, the nodes relevant
to R lie in at most one Pi.

iter(node set S)

foreach A∗ ∈ S do (1)

foreach T ∈ iter(S \ {A∗}) do

output tree formed by root A∗ and child T

foreach good partition P1, . . . , Pn of S do (2)

foreach (T1, . . . , Tn) ∈ (iter(P1), . . . , iter(Pn)) do

output T1 ∪ · · · ∪ Tn

Figure 8: Iterating over all reduced f-trees.

to C on the collection of subtrees of A∗. In the second case, the condition
C must hold in the individual subtrees, but in addition, for each relation
R, the set of its relevant nodes Relevant(R) can only intersect one of the
subtrees. This recursive characterisation of the condition C is used in the
iter algorithm in Figure 8 to enumerate all reduced f-trees of a query with
the set S of attribute classes.

Example 10. Consider the query in Example 9. When algorithm iter

chooses the root {AR, AS , AT } in step 1, in the next recursive call it can
split the remaining notes into P1 = {B∗

R, C
∗,D∗} and P2 = {E∗

T }, since
Relevant(R) and Relevant(S) only intersect P1 and Relevant(T) only inter-
sects P2. The first tree in Figure 7 is created like this. However, when we
choose {BR, BS} in step 1, in the next recursive call there are no possible
partitions in step 2, since the node {AR, AS , AT } lies in all of Relevant(R),
Relevant(S), Relevant(T). The second tree in Figure 7 is created within this
call, while the third tree in Figure 7, which is not a valid reduced f-tree, is
never produced. ✷

However, some choices of the root in line (1) and some choices of parti-
tioning in line (2) of iter are suboptimal. Firstly we have

Lemma 8. Let T be an f-tree. For two nodes A∗ and B∗, if r(B) ⊂ r(A)
and B∗ is an ancestor of A∗, then by swapping them we do not violate the
condition C and do not increase f(T).

Thus, we do not need to consider trees with root B∗. The second tree in
Figure 7 is suboptimal, since B∗ is the root instead of A∗. If r(B) = r(A),
then A∗ and B∗ are interchangeable in any f-tree, and we need only consider
one of them as the root.

Secondly, in line (2) of iter, among all the good partitions, there always
exists a finest one. That is, there always exists a finest partition P1, . . . , Pn

21

Define a partial order on the nodes of Q by A∗ > B∗ iff either r(A) ⊃ r(B), or
r(A) = r(B) andA∗ is lexicographically larger than B∗ (to break ties arbitrarily
among interchangeable nodes). Also, call a partition P1, . . . , Pn good if for each
relation R in Q, the nodes relevant to R lie in at most one Pi.

iter-pruned(node set S)

let P1, . . . , Pn be the finest good partition of S

if n = 1 then

foreach >-maximal A∗ ∈ S do

foreach T ∈ iter-pruned(S \ {A∗}) do

output tree formed by root A∗ with T as its child

else

foreach (T1, . . . , Tn) ∈ (iter-pruned(P1), . . . , iter-pruned(Pn)) do

output T1 ∪ · · · ∪ Tn

Figure 9: Pruned algorithm iter-pruned.

of the attribute classes such that Relevant(R) only intersects one Pi for each
relation R. We do not need to consider any coarser partitions in line (2): for
any such coarser partition, we could split one of its trees into two, while not
increasing Path(R) for any R and thus not increasing f(T) by Lemma 7.
Moreover, if n > 1, by a similar argument we do not need to execute line (1)
at all, increasing the fanout of a node is always better. These observations
lead to a pruned version of algorithm iter, given in Figure 9.

For the query in Example 9, algorithm iter-pruned does not output
the second tree in Figure 7. The node {BR, BS} is not considered for the
root since r(BR) ⊂ r(AR). In fact iter-pruned only produces the first tree
from Figure 7, and exhibits such behaviour for all hierarchical queries:

Proposition 6. For a hierarchical query Q, the algorithm iter-pruned has
exactly one choice at each recursive call, and outputs a single reduced f-tree
in polynomial time.

Using lazy evaluation, at any moment there are at most linearly many
calls of iter or iter-pruned on the stack. Between two consecutive output
trees, there are at most linearly many recursive calls. The following theorem
summarises our results so far.

Theorem 5. Given a query Q, the algorithms iter and iter-pruned enu-
merate reduced f-trees of Q with polynomial delay and polynomial space.
Algorithm iter enumerates all reduced f-trees, while iter-pruned only a
subset of these, which contains one with optimal f(T).

Both algorithms can enumerate exponentially many reduced f-trees.

22

B7, A8

B3, A4

B1, A2

A1 B2, A3

B5, A6

B4, A5 B6, A7

B10, A11

B9, A10

B8, A9

B11

Figure 10: A reduced f-tree for Q12 with f(T) = 2, the lowest possible.

For each constructed reduced f-tree, we can easily add the leaves with
relations under the lowest node from Relevant(R). For each such f-tree T ,
we need to compute f(T), the maximum of ρ∗(QR) over all relations R in
Q, which can be done in polynomial time, or using the simplex algorithm
for linear programming.

Example 11. Consider relations Ri over schemas {Ai, Bi} for 1 ≤ i < n,
let ϕ =

∧n−2
i=1 (Bi = Ai+1) and let Qn be the query σϕ

∏

Ri. This query is a
chain of n− 1 joins.

A reduced f-tree T for Q12 is shown in Figure 10. In the corresponding
f-tree, the leaves labelled by all relations apart from R10 hang from the
leaves of the reduced f-tree. For all relations Ri, the query QRi

has at most
two attributes, so ρ∗(QRi

) ≤ 2. However, for R1 (and most other Ri), each
of the four relations of the query QR1 only has one of the two attributes,
so the fractional edge cover number of QR1 is 2. It follows that f(T) = 2.
In fact, this is the lowest possible value, and f(Q12) = 2. For arbitrary n,
f(Qn) = ⌊log2 n⌋ − 1.

This example shows that branching in f-trees is key to low readability. An
alternative yet naive approach is to choose a minimal set of attributes such
that when these attributes are set to values from their domain, Qn becomes
hierarchical. We can then sum over all possible domain values for each such
attribute, and for each combination we create a read-once f-representation.
In case of Qn, a minimal set of such attributes has cardinality (⌊n4 ⌋), which is
linear in the size of Qn. The corresponding f-tree would have f(T) = Θ(n),
which is exponentially worse than the optimal value. ✷

9 Algorithms for Computing T -factorisations of

Query Results

Figure 3 gives a high-level recipe for producing the T -factorisation of Q(D),
given an f-tree T of a query Q, and a database D. We present here a more
detailed implementation of this algorithm and analyse its performance.

A naive implementation of the factorisation algorithm, exactly mimick-
ing the definition from Figure 3, is given in Figure 11. However, it contains
two obvious inefficiencies. In line (1), it is inefficient to explicitly iterate

23

Let T be an f-tree for a query Q and let D be a database. The T -factorisation
Q(D) is obtained by running gen(T ,⊤), where

gen(tree T , conjunctive condition γ)

if T is a tree with root A∗ and children U then

create f-representation S := an empty sum

foreach value a of any attribute from A∗ in the database D do (1)

append gen(U , γ ∧ (A∗ = a)) to S

return S

else if T is a collection of trees T1, . . . , Tn then

return gen(T1, γ) · . . . · gen(Tn, γ)

else if T is a leaf R then

create f-representation S := an empty sum

foreach tuple 〈ti〉 of R = R(D) satisfying γ do (2)

append ri〈πhead(Q)ti〉 to S

return S

Figure 11: Naive implementation of the factorisation algorithm.

over all values a of the attributes from A∗, which appear in the database
D, because for some of them, gen(U , γ ∧ (A∗ = a)) necessarily produces an
empty f-representation. Also, in line (2), it is inefficient to search every time
through the entire relation R for tuples satisfying γ.

We eliminate these inefficiencies in the implementation gen2 given in
Figure 12, by passing the ranges of tuples satisfying γ for each relation of
D, instead of the condition γ. At any call of gen, the set of attributes
constrained by γ forms a contiguous path ending at a root of the original
tree T . Therefore, if we sort the tuples of each relation first by the highest-
appearing attribute, then by the next-highest-one, and so on, then in each
call of gen, the set of tuples satisfied by γ will form a contiguous range
in each relation. Thus in gen2, we only need to pass the pointers to the
beginning and end of each such range.

Moreover, if T in gen2(T , ranges) is a tree with root A∗, for each relation
R with an attribute A ∈ A∗, the tuples of R in the corresponding range will
be sorted by the attribute A. When iterating over values a of A∗ in line (1),
using a mergesort-like strategy we can find those values a which appear at
least once in the relevant range of each relation in r(A). For each such a
we also find the corresponding range of tuples in each relation and recurse.
For other a, i.e. those for which at least one relation with an attribute in
A∗ has no tuples in the current range with value a in that attribute, the
f-representation generated at A∗’s children would be empty, and we do not

24

Let T be an f-tree for a query Q and let D be a database. Order the attributes
of each relation by their appearance in T from higest to lowest, and then sort
the tuples of each relation, by higher attributes first. The T -factorisation of
Q(D) is obtained by running gen2(T , {(1, |Ri|)}ni=1), where

gen2(tree T , ranges (starti, endi) for i = 1, . . . , n)

if T is a tree with root A∗ and children U then

create f-representation S := an empty sum

repeat

find the next ranges (start′i, end
′

i) ⊆ (starti, endi)

of tuples sharing the same value a on A∗, (1)

append gen2(U , {(start′i, end
′

i)}
n
i=1) to S

until no more such ranges exist

return S

else if T is a collection of trees T1, . . . , Tn then

return
∏n

j=1 gen2(Tj , {(starti, endi)
n
i=1})

else if T is a leaf Ri then

return
∑endi

j=starti
rj〈πhead(Q)tj〉 (2)

Figure 12: Improved implementation of the factorisation algorithm.

need to recurse.
Finally, if T is just a leaf R, the iteration in line (2) becomes trivial in

gen2, we simply iterate over the corresponding range in R.

Example 12. Consider the left f-tree T of Figure 2 and the database D

used in Example 6, also shown in Figure 13. Let us examine the execution
of the call gen2(T ,R), where R represents the full range in each relation
of D. The root of T is the node {AR, AS , AT }, relevant to the relations
R, S and T . The first execution of line (1) finds the ranges given in red in
Figure 13, with the common value of AR = AS = AT = 1. Notice that U
does not have an attribute in the root node, so its range remains unchanged.

After these ranges are found in line (1), they are passed to a next call
of gen2 on the subtree formed by the children of {AR, AS , AT }. When this
call returns, the next execution of line (1) finds the ranges in R, S and T
with AR = AS = AT = 2, the range in U being again unchanged.

For further illustration, we list all recursively invoked calls gen2(S, ranges),
for which S is a subtree of T rooted at an internal node. We use indenta-
tion to express the recursion of the calls. For brevity, we only give the root
of S instead of S, and we specify the ranges by giving the characterising
condition γ.

25

AR, AS , AT

BR, BS

C

R

D

S

ET , EU

T F

U

R AR BR C
r111 1 1 1
r122 1 2 2
r212 2 1 2
r221 2 2 1

S AS BS D
s111 1 1 1
s112 1 1 2
s121 1 2 1
s211 2 1 1

T AT ET

t12 1 2
t21 2 1
t22 2 2

U EU F
u11 1 1
u21 2 1
u22 2 2

Figure 13: An f-tree T and a database D during the execution of gen2.

gen2(A∗,⊤) = (r111(s111 + s112) + r122s121)t12(u21 + u22)+

+ r212s211(t21u11 + t22(u21 + u22))

gen2(B∗, A∗ = 1) = (r111(s111 + s112) + r122s121

gen2(C,A∗ = 1 ∧B∗ = 1) = r111

gen2(D,A∗ = 1 ∧B∗ = 1) = (s111 + s112)

gen2(C,A∗ = 1 ∧B∗ = 2) = r122

gen2(D,A∗ = 1 ∧B∗ = 2) = s121

gen2(E∗, A∗ = 1) = t12(u21 + u22)

gen2(F,A∗ = 1 ∧ E∗ = 2) = (u21 + u22)

gen2(B∗, A∗ = 2) = r212s211

gen2(C,A∗ = 2, B∗ = 1) = r212

gen2(D,A∗ = 2, B∗ = 1) = s211

gen2(E∗, A∗ = 2) = t21u11 + t22(u21 + u22)

gen2(F,A∗ = 2 ∧ E∗ = 1) = t21u11

gen2(F,A∗ = 2 ∧ E∗ = 2) = t22(u21 + u22).

✷

We next investigate the time complexity of gen2 as well as the size of
the produced f-representation.

The first observation is that all lines apart from line (1) take time linear
in the output size. Consider now any particular call of gen2 on a subtree
rooted at node A∗ and denote by P the path from the root of the f-tree
to the node A∗. During the execution of the loop containing line (1), for
each relation Ri ∈ r(A), the tuples in the range (starti, endi) are sorted by
their attributes in P in the order they occur in P . Therefore the iteration

26

over all the maximal subranges (start′i, end
′
i) sharing the same value of A∗

can be done in a mergesort-like manner with a single simultaneous pass of
the pointers start′i and end′i through the corresponding ranges (starti, endi).
Since we assume that the tuples are of constant size, the time taken by line
(1) is linear in the number of tuples in these ranges (starti, endi), for those
i such that Ri ∈ r(A). (For other Ri we keep (start′i, end

′
i) = (starti, endi).)

Lemma 9. The time taken by line (1) of gen2 when computing the T -
factorisation of Q(D) is O(|Q| · |D|f(T)+1).

The time taken by the remaining lines is linear in the output size.

Lemma 10. For any f-tree T of a query Q and any database D, the T -
factorisation of Q(D) has size at most |D|f(T)+1.

Proof. By Corollary 1, for any relation R, each identifier r of a tuple from
R occurs at most |D|ρ

∗(QR) ≤ |D|f(T) times in the T -factorisation of Q(D).
There are at most |D| different identifiers in the T -factorisation, so the total
number of (occurrences of) identifiers is at most |D|f(Q)+1.

Additionally, we need to sort the relations ofD in the correct order before
executing gen2, which takes time O(|D| log |D|). Putting this together with
Lemma 9 and Lemma 10, we obtain a bound on the total running time of
our factorisation algorithm gen2.

Theorem 6. For any f-tree T of a query Q and any database D, the algo-
rithm gen2 computes the T -factorisation of Q(D) in time O(|Q|·|D| log |D|)
for hierarchical queries and f(T) = 0, and O(|Q| · |D|f(T)+1) otherwise.

There is a close parallel between our results and the results of [AGM08,
GM06]. They show that for a fixed query Q, the flat representation of Q(D)
has size O(|D|ρ

∗(Q)) and can be computed in time O(|D|ρ
∗(Q)+1) for any

database D, while in Lemma 10 and Theorem 6 we show that by allow-
ing factorised representations, we can find one of size O(|D|f(Q)) in time
O(|D|f(Q)+1).

The improvement in the exponent from ρ∗(Q) to f(Q) is quantified by
passing from a fractional edge cover of the whole query to the fractional edge
covers of the individual non-relevant parts for each relation in an optimal
f-tree of Q. If Q admits an f-tree with high degree of branching, this im-
provement can be substantial. There are queries for which ρ∗(Q) = Θ(|Q|)
while f(Q) = O(1), the simplest example being a product query of n rela-
tions. For such cases, the savings in both size of the representation and the
time needed to compute it are exponential in |Q|.

27

10 Equalities with Constants

We can extend our results to select-project-join queries whose selections
contain equalities with constants. In the following, we call such queries
simply queries with constants.

Consider any query Q = πĀ(σϕ(R1 × · · · ×Rn)) where ϕ contains equal-
ities with constants, and without loss of generality assume that ϕ is satisfi-
able. Denote by C the set of all attributes of Q which are equated in ϕ to
constants, either directly or transitively. Let ϕC be the conjunction of equal-
ities from ϕ which involve attributes from C and let ϕ′ be the conjunction of
equalities from ϕ which do not involve attributes from C. Then ϕ = ϕ′∧ϕC ,
and hence Q = πĀ(σϕ′σϕC

(R1 × · · · ×Rn)).
Define the query Q′ = πĀ(σϕ′(R1 × · · · × Rn)). Then for any database

D, we have Q(D) = Q′(σϕC
(D)). Since Q′ is now a select-project-join query

without constants, this enables us to describe the factorisation properties of
Q(D) using our existing results.

Let us first extend our main definitions to queries with constants.

Definition 8. For any query Q with constants, T is called an f-tree for Q
if it is an f-tree for Q′. ✷

Definition 9. The T -factorisation of Q(D) is defined to be the T -factorisa-
tion of Q′(σϕC

(D)). ✷

It follows immediately from Q′(σϕC
(D)) = Q(D) that this definition is

sound, i.e. that the T -factorisation of Q(D) is indeed an f-representation of
Q(D). Just as for queries without constants, we can now define f(Q) to be
the minimum f(T) over all f-trees T for Q. Equivalently, f(Q) = f(Q′).

Corollary 7 (Extends Corollary 3). For any query Q with constants and
any database D, the readability of Q(D) is at most M · |D|f(Q).

Corollary 8 (Extends Corollary 5). Let Q be a query with constants. For
any f-tree T of Q there exist arbitrarily large databases D for which the
T -factorisation Q(D) is at least read-(|D|/|Q|)f(Q).

The dichotomy between non-repeating queries of bounded and unbounded
readability extends to queries with constants with only a slight change.

Corollary 9 (Extends Theorem 4). Let Q be a non-repeating query with
constants. If Q′ is hierarchical, then the readability of Q(D) is 1 for any
database D. If Q′ is non-hierarchical, then there exist arbitrarily large
databases D such that the readability of Q(D) is Ω(

√

|D|).

Since the f-trees for Q are the same as for Q′, to enumerate the f-trees
for Q and to find an optimal one and hence f(Q), it suffices to compute Q′

from Q and use the existing algorithms from Section 8.

28

Finally, to compute the T -factorisation of Q(D), it is sufficient to com-
pute Q′ from Q and σϕC

(D) from D, and then to use existing algorithms
from Section 9 to compute the T -factorisation of Q′(σϕC

(D)). Computing
Q′ takes time O(|Q|2) and computing σϕC

(D) takes time O(|Q| · |D|).

Corollary 10 (Extends Theorem 6). For any f-tree T of a query Q with
constants and any database D, we can compute the T -factorisation of Q(D)
in time O(|Q| · |D| log |D|+ |Q|2) for hierarchical queries and f(T) = 0, and
O(|Q| · |D|f(T)+1 + |Q|2) otherwise.

11 Conclusion

This work is the start of a research agenda on a new kind of representation
systems and query evaluation techniques, where the logical model is that of
relational databases yet the actual physical model is that of factorised repre-
sentations. As a necessary first step, this paper classifies select-project-join
queries based on their worst-case result size as factorised representations.
We consider bag semantics for query evaluation here. We plan to further
study the problems of query evaluation on factorised representations, de-
signing a factorisation-aware storage manager, as well as approximations of
queries with non-polynomial readability by lower and upper bound queries
with polynomial readability. We also plan to develop a visualisation ap-
proach of query results based on factorised representations.

References

[AGM08] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds
and query plans for relational joins. In FOCS, pages 739–748,
2008.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[DS07a] Nilesh Dalvi and Dan Suciu. “Efficient Query Evaluation on
Probabilistic Databases”. VLDB Journal, 16(4), 2007.

[DS07b] Nilesh Dalvi and Dan Suciu. “The Dichotomy of Conjunctive
Queries on Probabilistic Structures”. In PODS, 2007.

[EMR09] Khaled M. Elbassioni, Kazuhisa Makino, and Imran Rauf. On
the readability of monotone boolean formulae. In COCOON,
2009.

[FO11] Robert Fink and Dan Olteanu. On the Optimal Approximation
of Queries Using Tractable Propositional Languages. In ICDT,
2011.

29

[GGL+09] M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt,
J. Tyszkiewicz, and J. V. den Bussche. Database query pro-
cessing using finite cursor machines. TCS, 44(4), 2009.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Prove-
nance semirings. In PODS, 2007.

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree
decompositions and tractable queries. In Proceedings of the eigh-
teenth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, PODS ’99, pages 21–32, New York,
NY, USA, 1999. ACM.

[GLV09] Georg Gottlob, Stephanie Tien Lee, and Gregory Valiant. Size
and treewidth bounds for conjunctive queries. In PODS, 2009.

[GM06] Martin Grohe and Dániel Marx. Constraint solving via fractional
edge covers. In In Proceedings of the of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 289–298. ACM
Press, 2006.

[GMR08] Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. An
improvement on the complexity of factoring read-once boolean
functions. Discrete Applied Mathematics, 156(10), 2008.

[GPR06] Martin Charles Golumbic, Uri N. Peled, and Udi Rotics. Chain
graphs have unbounded readability. Technical report, University
of Haifa, 2006.

[GTK01] Lise Getoor, Ben Taskar, and Daphne Koller. Selectivity estima-
tion using probabilistic models. In SIGMOD, 2001.

[MD88] M. Muralikrishna and D. Dewitt. Equi-depth histograms for
estimating selectivity factors for multi-dimensionnal queries. In
SIGMOD, 1988.

[OH08] Dan Olteanu and Jiewen Huang. “Using OBDDs for Efficient
Query Evaluation on Probabilistic Databases”. In SUM, 2008.

[OHK09] Dan Olteanu, Jiewen Huang, and Christoph Koch. “SPROUT:
Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic
Databases”. In ICDE, 2009.

[OKA08] Dan Olteanu, Christoph Koch, and Lyublena Antova. “World-
set Decompositions: Expressiveness and Efficient Algorithms”.
Theoretical Computer Science, 403(2-3), 2008.

[PI97] V. Poosala and Y. Ioannidis. Selectivity estimation without the
attribute value independence assumption. In VLDB, 1997.

30

[RS10] Christopher Ré and Dan Suciu. Understanding cardinality es-
timation using entropy maximization. In PODS, pages 53–64,
2010.

[Vad01] SP Vadhan. The Complexity of Counting in Sparse, Regular,
and Planar Graphs. SIAM J. Comput., 32(2), 2001.

31

A Deferred Proofs

Proofs from Section 5

Proof of Proposition 3

We show that the tuples of an f-representation Φ can be enumerated with
O(|Φ| log |Φ|) delay and space.

Each tuple represented by the f-representation Φ corresponds to a mono-
mial of the polynomial of Φ, and each such monomial consists of the iden-
tifiers reached by recursively choosing one summand at each sum and all
factors at each product.

We can use pointers to keep track of the choice of summand at each
sum. In general, we may have O(|Φ|) sums, and need O(log |Φ|) space per
pointer. Any choice of pointers corresponds to a monomial of Φ obtained
by recursively exploring Φ, following the chosen summands and multiplying
together all the reached identifiers. This can be done in time O(|Φ| log |Φ|)
by a simple depth-first search. Not all sums are reached by this process,
since some of them lie inside other summands which were not chosen. Call
such sums disabled, and call the reachable sums enabled.

Initially, the pointer at each sum is set to the first summand of the sum.
This choice of pointers defines the first monomial. Consider any order π of
the sums that is consistent with their nesting in Φ, i.e. such that outer sums
appear earlier in π than inner sums. To advance to the next monomial, we
advance the pointer of the last enabled sum in π. Advancing the pointer
of a sum S consists of updating it to point to the next summand of S. In
case it already points to the last summand, we update it back to the first
summand, and recursively advance the last enabled sum preceding S in π.
If S is already the first enabled sum, we terminate.

Updating a pointer of a sum potentially disables and enables other sums,
but only sums appearing later in π. The above process proceeds backwards
in π, traversing the enabled sums until finding one which is not pointing at
its last summand. Therefore, when advancing to the next monomial, we can
first find the enabled sums using a depth-first search in time O(|Φ| log |Φ|),
and then use this information when advancing the pointers in time O(|Φ|).
Finally, finding the next monomial using the updated pointers takes time
O(|Φ| log |Φ|). The total delay between outputting two monomials is thus
O(|Φ| log |Φ|).

Proof of Lemma 1

We show that the polynomial pN =
∑N

i,j=1 risijtj has readability
N
2 +O(1).

We first show that pN has readability at least N
2 . Let ψ be any poly-

nomial equivalent to pN and consider its parse tree, where adjacent sum

32

nodes are aggregated into a single node. If we expand ψ by distributivity
of product over sum, we must obtain the expression pN =

∑N
i,j=1 risijtj.

Therefore, there must be exactly one occurrence of sij in the parse tree, and
it can have at most two multiplications on its path to the root. If there are
two multiplications, ψ is of the form

((sij + ψ1)(ri + ψ2) + ψ3)(tj + ψ4) + ψ5 or

((sij + ψ1)(tj + ψ2) + ψ3)(ri + ψ4) + ψ5,

but then necessarily, ψ1, ψ2 and ψ4 are empty (because if any two of ri, sij,
or tj appear in a monomial in the result, the monomial must be risijtj).
Similarly, if there is one multiplication, ψ is of the form

(sij + ψ1)((ri + ψ2)(tj + ψ3) + ψ4) + ψ5,

but then necessarily all of ψ1, ψ2, ψ3 and ψ4 are empty. In any case, sij
appears in one of the forms

(sijri + . . .)tj + . . . or (sijtj + . . .)ri +

Therefore, each sij appears directly in a binary product with a r- or t-
identifier. Since there are N2 of the s-identifiers, and 2N different r- and
t-identifiers, at least one of the latter occurs at least N

2 times in the expres-
sion ψ.

To complete the proof, it is enough to exhibit a read-(N2 +O(1)) factori-
sation of pN . Defining aN and bN as

aN =
∑N

i=1

∑⌊N/2⌋−1
j=0 risi(i+j)ti+j

=
∑N

i=1 ri

(

∑⌊N/2⌋−1
j=0 si(i+j)ti+j

)

, (A)

bN =
∑N

i=1

∑N−1
j=⌊N/2⌋ risi(i+j)ti+j

=
∑N

i=1

∑N−1
j=⌊N/2⌋ ri−js(i−j)iti

=
∑N

i=1

(

∑N−1
j=⌊N/2⌋ ri−js(i−j)i

)

ti, (B)

where all indices are considered modulo N , we get pN = aN + bN . Each sij
occurs once either in expression A or expression B. Each ri occurs once in
A and ⌈N2 ⌉ times in B, and each tj occurs ⌊N2 ⌋ times in A and once in B.
Thus, writing pN as the sum of expressions A and B, we get a read-(⌈N2 ⌉+1)
factorisation.

Proof of Theorem 2

We show that the readability of the polynomial qN =
∑N

i,j=1;i 6=j aibj is

Ω(logN
log logN) but O(logN).

33

We first prove the lower bound. Any factorisation of the polynomial qN =
∑N

i,j=1;i 6=j aibj is of the form
∑

iAiBi, where each Ai is a sum of a-variables
and each Bi a sum of b-variables. Represent each monomial aibj as an edge
in the bipartite graph KN,N and each sum of such monomials as a union
of the corresponding edges. Each product AiBi then represents a complete
bipartite subgraph (called a biclique) ofKN,N , and the factorisation

∑

iAiBi

represents an edge-disjoint union of such bicliques.
If

∑

iAiBi = qN , this union must be equal to the graph represented by
qN , that is, the crown graph GN = {(ai, bj) | i 6= j} ⊂ KN,N . The number
of occurrences of a variable in the factorisation is the number of its bicliques
containing the corresponding vertex of KN,N .

The readability of qN , denote it ρN , is then the smallest k for which GN

can be written as a union of bicliques in such a manner that each its vertex
is included in at most k of these bicliques.

Let Mk be the largest N for which GN can be written as a union of
bicliques in such a manner that each its vertex is included in at most k of
these bicliques. Then ρN is the smallest k for which Mk ≥ N .

Lemma 11. M1 = 2.

Proof. On one hand, G2 = K1,1 + K1,1 can be written as a vertex-disjoint
union of bicliques. On the other hand, G3 clearly cannot be written as a
vertex-disjoint union of bicliques.

Lemma 12. For k > 1, Mk < k2Mk−1.

Proof. First introduce some notation: if A = {ai1 , ai2 , . . . , aik} is a set
of vertices of GN all coming from one partition, by A we will denote the
opposite set {bi1 , bi2 , . . . , bik}. Similarly we define B for a set B of vertices
from the other partition.

Let k > 1, N = k2Mk−1, and suppose that GN can be written as a union
of bicliques such that each vertex is contained in at most k of them.

Consider one such collection C of bicliques. The vertex a1 is contained
in at most k bicliques {Ai × Bi}i ⊆ C, and the vertex b1 is contained in at
most k bicliques {A′

i ×B′
i}i ⊆ C. Since

⋃

C = Gn, we must have
⋃

i

Bi = {b2, . . . , bN} and
⋃

i

A′
i = {a2, . . . , aN}.

Since |
⋃

iBi| = N − 1 = k2Mk−1 − 1, and since k > 1, by the pigeon-
hole principle there exists some Bj such that |Bj | ≥ kMk−1. But

⋃

iA
′
i =

{a2, . . . , aN} implies
⋃

iA
′
i = {b2, . . . , bN} ⊇ Bj , so there exists some A′

i

such that |A′
i ∩ Bj| ≥ Mk−1. Denote A = (A′

i ∩ Bj). This means that
A ⊆ A′

i and A ⊆ Bj . And |A| ≥Mk−1.
Now consider the collection C restricted to A×A, i.e.

D = C ↾A×A= {(X × Y) ∩ (A×A) | X × Y ∈ C}.

34

This is still a collection of bicliques, and it covers the graph induced by
A× A, which is in fact isomorphic to G|A|. Since |A| ≥ Mk−1, at least one
vertex v of this subgraph is contained in at least k bicliques in D. Since
all bicliques in D are restrictions of bicliques in C, v is also included in the
corresponding bicliques from C. However, v is also included in the biclique
Aj×Bj or A

′
i×B

′
i (depending on the partition it is in). But since Aj∩A = ∅

and A ∩B′
i = ∅, the restrictions of these two bicliques to A×A are empty,

and thus neither of them is one of our original k bicliques containing v.
Therefore, v is in fact included in at least k+1 bicliques from C, which is a
contradiction to our assumption.

Corollary 11. For k ≥ 1, Mk ≤ 2(k!)2.

Lemma 13. With k = logN
log logN , we have 2(k!)2 < N for large enough N .

Corollary 12. ρN = Ω(logN
log logN).

For the upper bound on readability, we prove the following lemma.

Lemma 14. For any N > 1, ρN ≤ ρ⌈N/2⌉+1.

Proof. Write qN as

qN =
∑⌈N/2⌉

i,j=1,i 6=j ritj +
∑N

i,j=⌈N/2⌉+1,i 6=j ritj +

+ (
∑⌈N/2⌉

i=1 ti)(
∑N

j=⌈N/2⌉+1 rj) +

+ (
∑N

i=⌈N/2⌉+1 ti)(
∑⌈N/2⌉

j=1 rj).

The first two sums are equivalent to q⌈N/2⌉ and q⌊N/2⌋ respectively, so they
are both equivalent to at most read-ρ⌈N/2⌉ expressions, but they contain dif-
ferent variables. In the rest of the expression, each variable appears at most
once. Therefore, the whole expression is equivalent to a read-(ρ⌈N/2⌉ + 1)
expression. This completes the proof.

Corollary 13. By induction, ρN = O(logN).

Proofs from Section 6

Proof of Proposition 4

We show that for any f-tree T of a query Q, Φ(T) is an f-representation of
Q(D) for any database D.

To convert Φ(T) into a sum-of-products form, we repeatedly choose any
sum

∑

A∗ appearing inside a product and distribute all the other factors to
each of the summands. However, for each attribute class A∗, all relations
with any attribute from A∗ must appear as leaves of the subtree rooted at

35

A∗, and hence all tuples from these relations must already appear inside
the sum

∑

A∗ . Therefore, when moving factors into a sum
∑

A∗ , we can
also extend the conditions A∗ = a to these factors, as it will not affect the
selections on relations contained in them. We can then move all the products
downwards, obtaining an expression

∑

A∗
1

· · ·
∑

A∗
n

∏

R

∑

tj∈σγ(R) idj〈πhead(Q)(tj)〉, (1)

where the sums are over all equivalence classes of attributes and the product
over all relations of Q. This is equivalent to the sum-of-products represen-
tation of Q(D).

Proof of Proposition 5

We show that a query is hierarchical if and only if it has an f-tree T such
that Non-relevant(R) = ∅ for each relation R.

Let Q be a hierarchical query. By Proposition 6, when computing the
f-tree T , the algorithm iter-pruned only has a single choice for the root of
each subtree. This means that for each node A∗ in the tree, all its children
B∗ satisfy r(A) ⊇ r(B). Therefore, the nodes relevant to each relation R
not only lie on a path from the root of T , but form a contiguous path from
the root of T . The leaf labelled by R is put directly under the lowest node
of this path, and we get Non-relevant(R) = ∅.

Conversely, suppose that T is an f-tree forQ such that Non-relevant(R) =
∅ for each relation R. For any two attribute classes A∗ and B∗ of Q, either
one is an ancestor of the other, or they appear in sibling subtrees. In the
latter case, r(A) and r(B) are disjoint. In the former case, suppose wlog
that A∗ is an ancestor of B∗. Any relation R ∈ r(B) must appear in a leaf
under the node B∗. However, since Non-relevant(R) = ∅, all nodes on the
path from R to its root are relevant to R, and we must also have R ∈ r(A).
This shows that r(B) ⊆ r(A) and completes the proof.

Proofs from Section 7

Proof of Lemma 2

Let Q = πĀσϕ(R1 × · · · × Rn) be a query, T be an f-tree of Q, and Φ(T)
be the T -factorisation of Q(D). Also let R = Ri be a relation of Q. By
NR we denote the set Non-relevant(R) and by S(R) = 〈t〉 we denote the
conjunction of equalities of all attributes of R to corresponding values in 〈t〉.
Lemma 2 claims that for any database D, the number of occurrences of the
identifier r of a tuple 〈t〉 from R in Φ(T) is equal to the number of distinct
tuples in

(

πNR(σS(R)=〈t〉σϕ(R1 × · · · ×Rn))
)

(D).

36

In Φ(T), each time an expression Jleaf RK(γ) is generated from the leaf
R, it appears inside the summations

∑

A∗ over all the values of attribute
classes A∗ from Path(R). Thus, each time an identifier r of a tuple 〈t〉 from
R appears in Φ(T), it appears inside a Jleaf RK(γ) with a different condition
γ on the attributes from Path(R).

However, not all γ yield the identifier r in the expression Jleaf RK(γ).
Firstly, all the attributes in the nodes relevant to R must be assigned the
corresponding value from 〈t〉 in the condition γ, otherwise the expression
will not contain the identifier r.

Secondly, even if the expression Jleaf RK(γ) contains r〈t〉, it may happen
that this expression is inside a product with an empty sum, and hence does
not appear in the output Φ(T). In particular, r〈t〉 from Jleaf RK(γ) appears
in Φ(T) if and only if it appears in at least one monomial in the sum-
of-products form of Φ(T). From the expanded form of Φ(T) given in the
expression (1) in the proof of Proposition 4, we see that each such monomial
corresponds to an extension γ′ of the condition γ to all attribute classes, for
which all other relations also give a nonempty selection.

Thus, each occurrence of r〈t〉 in Φ(T) corresponds to a condition γ on the
attributes from NR, such that 〈t〉 satisfies γ and there exists an output tuple
of Q(D) satisfying the condition γ. Each such condition γ is determined by
the choice of values of the attributes from NR, and each such choice of
values corresponds to a tuple in

(

πNR(σS(Ri)=〈t〉σϕ(R1 × · · · ×Rn))
)

(D).

Proof of Lemma 5

We show that for any equi-join queryQ, there exist arbitrarily large databases
D such that ||Q(D)|| ≥ (|D|/|Q|)ρ

∗(Q). We essentially repeat the proof given
in [AGM08], fixing a minor omission and extending it to repeating queries.

Suppose first that Q is non-repeating. Denote by a(R) the set of at-
tribute classes containing attributes of a relation R. The linear program
with variables yA∗ labelled by the attribute classes of Q,

maximising
∑

A∗ yA∗

subject to
∑

A∗∈a(R) yA∗ ≤ 1 for all relations R, and

yA∗ ≥ 0 for all A∗,

is dual to the program given in Definition 7.
By this duality, any optimal solution {yA∗} to this linear program has

cost
∑

A∗ yA∗ = ρ∗(Q). We also know that there exists an optimal solution
with rational values. Thus, there exist arbitrarily large N such that NyA∗

is an integer for all A∗.
For any such N , we can construct a database D as follows. For each

attribute class A, let NA = NyA∗ , and let [NA] = {1, . . . , NA} be the domain

37

for the attributes in A∗. For each relation R of Q, let the relation instance
R contain all tuples t for which t(A) ∈ [NA] for all attributes A, but t(A) =
t(B) for any attributes A and B equated in Q (i.e. such that A∗ = B∗). For
each attribute class A∗ in a(R) there are NA possible values of the attributes
in A∗, so the size of R will be

|R| =
∏

A∗∈a(R)NA =
∏

A∗∈a(R)N
yA∗ = N

∑
A∗∈a(R) yA∗ ≤ N.

This implies that |D| ≤ |Q| · N . However, we have
∑

A∗∈a(R) yA∗ = 1 for
at least one relation R (otherwise we could increase any yA∗ to produce a
better solution to the linear program), so |D| ≥ N .

Any tuple t in the result Q(D) is given by its values t(A1) = · · · =
t(Ak) ∈ [NA1]} for each attribute class A∗

1 = {A1, . . . , Ak}, and any such
combination of values gives a valid tuple in the output. The size of the
output is thus

|Q(D)| =
∏

A∗ NA = N
∑

A∗ yA∗ = Nρ∗(Q) ≥ (|D|/|Q|)ρ
∗(Q).

Since all tuples in each relation are distinct, all tuples in the output are
distinct, and we also have ||Q(D)|| = |Q(D)| ≥ (|D|/|Q|)ρ

∗(Q). The outer
projection of Q does not reduce the cardinality of Q’s result, since we con-
sider bag semantics.

Now suppose that Q is repeating, that is, contains multiple relations
mapping to the same name. In that case, such relations require the same
relation instance as their interpretation, while the database D constructed
in the above proof may assign them different relation instances. However,
consider the database D′ constructed as follows. For any class {R1, . . . , Rk}
of relations mapping to the same name R, replace the relation instances
R1, . . . ,Rk in D by a single relation instance R =

⋃

iRi in D′.
Firstly, we have |D′| ≤ |D|, since |

⋃

i Ri| ≤
∑

i |Ri|. Secondly, we still
have |D′| ≥ N , since the size of the largest relation in D′ is at least the size
of the largest relation in D. Finally, we have Q(D′) ⊇ Q(D), because for
any relation symbol Ri of Q, its interpretation R in D′ is a superset of its
interpretation Ri in D. Thus we get

||Q(D′)|| ≥ ||Q(D)|| ≥ (|D|/|Q|)ρ
∗(Q) ≥ (|D′|/|Q|)ρ

∗(Q),

which completes the proof.

Proof of Lemma 6

Let Q = πĀ(σϕ(R1×· · ·×Rn)) be a query, T be an f-tree of Q, and Φ(T) be
the T -factorisation of Q(D). Also let R be a relation in Q. We show that
there exist arbitrarily large databases D such that each identifier r from R
occurs in Φ(T) at least (|D|/|Q|)ρ

∗(QR) times.

38

Recall that the query QR is obtained by restricting Q to the attributes
of NR = Non-relevant(R), and omitting the projection πĀ.

Applying Lemma 5 to the query QR, we obtain that there exist ar-
bitrarily large databases DR such that ||QR(DR)|| ≥ (|DR|/|QR|)

ρ∗(QR).
Construct the database D by extending DR: for each new attribute A al-
lowing a single value 1, and extending each tuple in each relation by this
value in the new attributes. For relations appearing in Q but with no at-
tributes in QR, the relation instance in D will consist of a single tuple with
value 1 in each attribute. Notice that |QR| ≤ |Q| and |D| = |DR|, so that
||QR(DR)|| ≥ (|D|/|Q|)ρ

∗(QR).
Finally, a tuple from DR satisfies ϕR if and only if the corresponding

extended tuple satisfies ϕ, since the values in all attributes outside NR are
equal. Moreover, since R has no attributes in NR, each identifier r from R
corresponds to the tuple 〈t〉 = 〈1, . . . , 1〉, and each tuple from (R1×· · ·×Rn)
satisfies σS(R)=〈t〉. By Lemma 2, the number of occurrences of any r from
R in the T -factorisation of Q(D) is

||πNR(σS(R)=〈t〉σϕ(R1 × · · · ×Rn))||

=||πNR(σϕ(R1 × · · · ×Rn))||

=||σϕR
(πNR(R1 × · · · ×Rn))||

=||QR(DR)||

≥(|D|/|Q|)ρ
∗(QR).

Proof of Corollary 6

We show that if Q is hierarchical, the readability of Q is bounded by a
constant, while if Q is non-hierarchical, for any f-tree T of Q there exist
databases D such that the T -factorisation of Q(D) is read-Θ(|D|).

By Proposition 5, if Q is hierarchical, there exists an f-tree T of Q such
that Non-relevant(R) = ∅ for all relations R. For any such tree T we have
f(T) = 0, hence f(Q) = 0, and by Theorem 3, the readability of Q(D) is
O(1).

If Q is non-hierarchical, for any f-tree T there is a relation R such that
Non-relevant(R) is nonempty. Then the query QR contains at least one
attribute, and hence ρ∗(QR) ≥ 1. Therefore f(T) ≥ 1 and also f(Q) = 1.
The result then follows from Theorem 3.

Proof of Theorem 4

We show that for a fixed non-repeating query Q, the following holds. If
Q is hierarchical, the readability of Q(D) is 1 for any database D. If Q
is non-hierarchical, there exist arbitrarily large databases D such that the
readability of Q(D) is Ω(

√

|D|).

39

In case Q is hierarchical, then by Proposition 5, there exists an f-tree
such that Non-relevant(R) = ∅ for any relation R of Q. By Lemma 2 it
follows that hierarchical queries admit f-representations with readability 1.

If Q is not hierarchical, there exist attribute classes A∗ and B∗ such that
r(A) 6⊆ r(B), r(B) 6⊆ r(A) and r(A) ∩ r(B) 6= ∅. Thus there must exist
a relation S with attributes from A∗ and B∗, a relation R with attributes
from A∗ but not B∗, and a relation T with attributes from B∗ but not A∗.

Fix any positive integer N . Consider a database instance D in which
the domains of attributes in A∗ and B∗ are {1, . . . , N} and the domains of
all other attributes are {1}. For each relation R, let its interpretation R

be the set of all possible tuples with the above domains, which respect the
equivalence classes of attributes. We annotate the tuple in R with A∗-value
i by ri, tuple in T with B∗-value j by tj, and tuple in S with A∗-value
i and B∗-value j by sij. All relations contain N2, N , or only one tuple,
depending on whether they contain attributes from A∗, B∗, both or none.
Thus, |D| = Θ(N2).

The polynomial of the flat f-representation of Q(D), restricted to the
identifiers from R, S and T , is

∑N
i,j=1 risijtj, which is exactly the polynomial

pN defined in Lemma 1. By Lemma 1, this polynomial has readability Ω(N).
Since any f-representation of Q(D) restricted to the identifiers of R, S and
T is equivelant to pN , Q(D) also has readability Ω(N) = Ω(

√

|D|).

Proofs from Section 8

Proof of Lemma 7

For any f-tree T and relation R labelling a leaf of T , denote by PathT (R) the
set of ancestor nodes of R in T (thus emphasising the role of the tree T in our
previous notation Path(R)), and similarly for Non-relevantT (R). We show
that for any two f-trees T1 and T2 for a query Q, if PathT1(R) ⊆ PathT2(R)
for any relation R of Q, then f(T1) ≤ f(T2).

For any relation R of Q, if PathT1(R) ⊆ PathT2(R), then also
Non-relevantT1(R) ⊆ Non-relevantT2(R). If we let Q

T1
R be the query induced

by Non-relevantT1(R), and QT2
R the query induced by Non-relevantT2(R),

QT1
R is an induced subquery of QT2

R , i.e. the hypergraph of QT1
R is an induced

subhypergraph of QT2
R .

If we denote by L1 the fractional-cover linear program for QT1
R , as defined

in Definition 7, and by L2 the fractional-cover linear program for QT2
R , then

the variables of L1 are just a subset of variables of L2, and the linear con-
ditions of L1 are respective restrictions of the conditions of L2. Thus, any
optimal solution of L2 can be restricted to a feasible solution of L1. The cost
of such a restricted solution in L1 is always at most the cost of the original
solution in L2, which implies that ρ∗(QT1

R) ≤ ρ∗(QT2
R). By minimising over

40

R, we obtain f(T1) ≤ f(T2).

Proof of Lemma 8

Let T be an f-tree. For two nodes A∗ and B∗, we show that if r(B) ⊂ r(A)
and B∗ is an ancestor of A∗, then by swapping them we do not violate the
condition C and do not increase f(T).

For any relation R /∈ r(A), the positions of nodes from Relevant(R)
remain unchanged. For any relation R ∈ r(A), the leaf labelled by R is
under A∗ and hence by swapping A∗ and B∗, all nodes relevant to R stay on
the path from R to the root. Therefore, the condition C remains satisfied.

It remains to prove that by this swap, the parameter f(T) does not
increase. The only relations R for which the set Path(R) changes (and thus
ρ∗(QR) can change), are those lying in the subtree under B∗ but not in the
subtree under A∗. For such R, we replace the node B∗ in Path(R) by the
node A∗. Consider the fractional-cover linear program for QR, defined as

minimise
∑

i xi

subject to
∑

i:Ri∈r(A) xi ≥ 1 for all attributes A, and

xi ≥ 0 for all i.

in Definition 7. By replacing B∗ with A∗, the only change to this program
is the strenghtening of the condition

∑

i:Ri∈r(B) xi ≥ 1 to
∑

i:Ri∈r(A) xi ≥ 1.
Therefore, the cost ρ∗(QR) of the optimal solution can only decrease. By
minimising over all relations R of Q, we conclude that f(T) can also only
decrease.

Proof of Proposition 6

We show that for a hierarchical query Q, the algorithm iter-pruned has
exactly one choice at each recursive call, and outputs a single reduced f-tree
in polynomial time.

The standard algorithm for recognising hierarchical queries (described
in [DS07b], though in the language of conjunctive queries) is as follows.

• Find the connected components of the query, in the sense that two
relation symbols are connected if some of their attributes are equated
by the query.

• For each connected component, there must exist an attribute class
with attributes in each relation in the component. If not, the query is
not hierarchical. Create a node labelled by this attribute class, make
it the root of an f-tree, and recurse on the rest of the component to
produce its children subtrees.

• Output the disjoint union of the trees produced for each component.

41

The connected components of the query correspond to the finest partition
P1, . . . , Pn of the attribute classes such that each relation only has attributes
from one Pi. If the considered query is hierarchical, for each such Pi there
exists an attribute class with attributes in each relation of Pi. That is, there
exists at least one A∗ ∈ Pi such that for other classes B∗ ∈ Pi, r(A) ⊇ r(B).
The lexicographically greatest such A∗ will be the maximum element in the
>-order. The algorithm iter-pruned will therefore only consider this A∗

for the root of the subtree formed by Pi.
We have thus shown that for hierarchical queries, iter-pruned essen-

tially follows the recognising algorithm given above, never branching when
picking the root node, and hence outputting a single reduced f-tree. This
also means that there are at most linearly many recursive calls of iter-

pruned. Since each call takes polynomial time, the total running time is
also polynomial (in the size of the query).

Proofs from Section 9

Proof of Lemma 9

We show that the total amount of time taken by line (1) of gen2 when
computing the T -factorisation of Q(D) is O(|Q| · |D|f(T)+1).

Let A∗ be any node in T , let U be the subtree of T rooted at A∗ and let
Path(A) be the set of ancestor nodes of A∗. Consider any call gen2(U ,R),
whereR is a collection of ranges of tuples inD. For each such call, the tuples
in R agree on the values of attributes from Path(A), moreover, the ranges
R contain all tuples of D with these values. Denote by γ the condition on
the attributes from Path(A) with the values given by tuples in R. For each
call gen2(U ,R), the ranges R are different and hence this condition γ is
different. Conversely, for any γ such that the corresponding ranges in the
relations of D are all nonempty, gen2 will be called with these ranges in the
second parameter and U in the first parameter.

We will now calculate the total amount of time taken by line (1) in all
calls of gen2(U ,R) for a fixed U , rooted at A∗. We have argued before the
statement of the Lemma that the amount of time taken by line (1) in any
single call gen2(U ,R) is linear in the number of tuples in the ranges R.
Instead of summing the number of tuples in R for each such call, we will
fix a tuple 〈t〉 and find the number of calls for which R contains this tuple.
Equivalently, we will find the number of the corresponding conditions γ
satisfied by 〈t〉.

For a condition γ, the ranges R corresponding to γ in D are nonempty iff
(

σγ(R1×· · ·×Rn)
)

(D) is nonempty. Furthermore, the corresponding ranges
are nonempty and γ is satisfied by 〈t〉 iff

(

σS(R)=〈t〉(σγ(R1 × · · · ×Rn))
)

(D)
is nonempty. Equivalently, this is true iff

(

πPath(A)(σS(R)=〈t〉(σγ(R1 × · · · ×
Rn)))

)

(D) is nonempty, but moreover, in such case that set contains pre-

42

cisely one element, which uniquely corresponds to the condition γ. There-
fore, the total number of conditions γ on the attributes of Path(A), for which
the corresponding ranges are nonempty, and which are satisfied by 〈t〉, is

∑

γ ||
(

πPath(A)(σS(R)=〈t〉(σγ(R1 × · · · ×Rn)))
)

(D)||

= ||
⋃

γ πPath(A)(σS(R)=〈t〉(σγ(R1 × · · · ×Rn)))
)

(D)||

= ||
(

πPath(A)(σS(R)=〈t〉(σα(R1 × · · · ×Rn)))
)

(D)||,

where
∑

γ and
⋃

γ range over all possible conditions γ assigning values from
D to attribute classes of Path(A), and α expresses the equality of attributes
in each attribute class of Path(A), without assigning them particular values.
However, if we let NA = Path(A) \ Relevant(R), we get

||
(

πPath(A)(σS(R)=〈t〉(σα(R1 × · · · ×Rn)))
)

(D)||

= ||
(

πNA(σS(R)=〈t〉(σα(R1 × · · · ×Rn)))
)

(D)||

≤ ||
(

πNA(σα(R1 × · · · ×Rn))
)

(D)||

≤ ||
(

σϕNA
(πNA(R1 × · · · ×Rn))

)

(D)||

= ||QNA(DNA)||,

where QNA and DNA are defined analogously to QR and DR. By Lemma 4,
this number is at most |DNA|

ρ∗(QNA) = |D|ρ
∗(QNA). However, since QNA is

an induced subquery of QR, we have ρ
∗(QNA) ≤ ρ∗(QR), which is in turn at

most f(T). We can thus conclude that for a fixed tuple 〈t〉 from a relation
R ∈ r(A), the total number of conditions γ on the attributes of Path(A),
for which the corresponding ranges are nonempty, and which are satisfied
by 〈t〉, is at most |D|f(T).

There are at most |D| tuples in the relations of r(A), so the total amount
of time taken by line (1) in all calls of gen2(U ,R), for U rooted at a fixed
node A∗, is linear in |D|f(T)+1. Since there are at most |Q| different nodes
A∗, so the total time taken by line (1) is linear in |Q| · |D|f(T)+1.

Proofs from Section 10

Proof of Corollary 7

We show that for any query Q with constants and any database D, the
readability of Q(D) is at most M · |D|f(Q).

Recall that M is the maximal number of relations of Q mapping to the
same name, and is the same for Q as for Q′. By Corollary 3, the readability
of Q(D) = Q′(σϕC

(D)) is at mostM ·|σϕC
(D)|f(Q

′). Since f(Q′) = f(Q) ≥ 0
and |σϕC

(D)| ≤ |D|, this is at most M · |D|f(Q
′).

43

Proof of Corollary 8

We show that for any query Q with constants and any f-tree T of Q, there
exist arbitrarily large databases D for which the T -factorisation Q(D) is at
least read-(|D|/|Q|)f(Q).

The attributes in C do not appear in any equalities in Q′, so each at-
tribute is only relevant to one relation. In any f-tree of Q′, we can move
these attributes downwards towards their respective relations, thus only de-
creasing the non-relevant sets for other relations, and hence not increasing
f(T). It follows that there exists an f-tree T with f(T) = f(Q′), such that
for any relation R, Non-relevant(R) does not contain any attributes from C.

Now by Corollary 5, there exists arbitrarily large databases D for which
the T -factorisation Q′(D) is at least read-(|D|/|Q′|)f(Q

′). Moreover, from
the proof of Lemma 6 it follows that D can be constructed in such a way
that for some relation R, all attributes not in Non-relevant(R) have domain
of size one. In particular, all attributes from C have domain of size one.
By renaming the values of these attributes to the respective constants from
ϕC we can arrange that σϕC

(D) = D. Since |Q| = |Q′| and f(Q) = f(Q′),
it follows that the T -factorisation Q(D) = Q′(σϕC

(D)) is at least read-
(|D|/|Q|)f(Q).

Proof of Corollary 9

Let Q be a non-repeating query with constants. We show that if Q′ is
hierarchical, the readability of Q(D) is 1 for any database D, and if Q′

is non-hierarchical, there exist arbitrarily large databases D such that the
readability of Q(D) is Ω(

√

|D|).
For hierarchical queries we have f(Q) = 0 and the result follows from

Corollary 7. For non-hierarchical queries, by Theorem 4 there exist arbitrar-
ily large databases D such that the readability of Q′(D) is Ω(

√

|D|). More-
over, from the proof of Theorem 4 it follows that apart from two attribute
classes A∗ and B∗ such that r(A) 6⊆ r(B), r(B) 6⊆ r(A) and r(A)∩r(B) 6= ∅,
we can arrange that all attributes have domains of size one. We cannot have
A ∈ C or B ∈ C, since each attribute in C is only relevant to one relation, so
we can in fact arrange that all attributes from C have domains of size one.
Again by simple renaming of values, we obtain D = σϕC

(D), and hence the
readability of Q(D) = Q′(σϕC

(D)) is Ω(
√

|D|).

44

	1 Introduction
	2 Contributions
	3 Related Work
	4 Preliminaries
	5 Factorised Representations
	6 Factorisation Trees
	7 Readability of Query Results
	7.1 Upper Bounds
	7.2 Lower Bounds
	7.3 Characterisation of Queries by Readability

	8 Algorithms for Query Characterisation
	9 Algorithms for Computing T-factorisations of Query Results
	10 Equalities with Constants
	11 Conclusion
	A Deferred Proofs

