
ACM SIGSOFT Software Engineering Notes vol 21 no 2 March 1996 Page 84

The Wild-West Revisited

David R Pitts
Honeywel l Building Systems Center Europe

Dave.Pi t t s @ GERMANY.honeywe l l . corn
Barba ra H Miller

Honeywel l IAC

In t roduc t i on

In 1985 Mark Spinrad and Curt Abraham published; "The
Wild West i, ifecycle (WILI)" [1] which, although written with
a slightly irreverent tongue-in-cheek style, introduced a sig-
nificant metaphor for the software engineering lifecycle. In
this paper we will discuss briefly the importance of software
metaphors in general, and then revisit and expand the Wild
West analogy.

Software me taphor s

Steve McConnell [2] in his excellent book gives a very good
description of the importance of metaphors with respect to
software engineering, and although he makes reference to the
WILI model he does not expand upon it. The importance of
the metaphor must not be underestimated. Dictionaries give a
number of different definitions of the word metaphor. This in
itself reflects an underlying problem of science, and ultimately
the biggest problem of the use of the metaphor (but more on
that later). The definition we prefer was found in a small
pocket dictionary [3] and is: "Way of describing something
by suggesting it has the properties of something else." When
we wish to describe a new concept for the understanding of an
individual, we more often than not use analogy (or, probably
more correctly, metaphor).

Metaphors have a number of uses. A metaphor can be used
to explain to someone something that could be part of their
experience, but which they may have not yet experienced. A
metaphor can be used to theorize about processes not possi-
bly within the experience of any person; for example treatises
on multi-dimensions make analogy to the three spatial dimen-
sions of our experience and extrapolate from three to many
dimensions. A metaphor may be used to simplify complex
processes by making them analogous to simplistic process.

Analogy is a two edged sword, however, not only because of
the emotions that it evokes in the recipients, but also because
our ability to understand the allegory (or analogous object)
tempts us to draw inappropriate conclusions as to our ability
to understand the alluded object.

Just as there are many dictionaries with different definitions of
the word "metaphor" (just how different can be observed from
this alternative definition; "figure of speech in which word is
used to denote something different from its usual meaning"
[4]), there are many different metaphors being advocated for
the process of software engineering. All of these metaphors
are molded by the authors' own intolerances and propensi-
ties. Most of us, since we are educated in the 20th Century
Sciences, rather than the earlier more holistic philosophy of
Newton and Galileo, find ourselves naturally asking the ques-

tion: "Which is the correct definition?" The answer to this
question is, of course, "All of them." The search for and the
belief in a Holy Grail of single truth is perhaps one of the
most fallacious developments of the age of reason. As in the
legend of the search for the Holy Grail, it is not the object
itself but the process of the search which is the most impor-
tant. Even when models have been replaced by better models,
the former may have their uses. Newtonian dynamics is still
adequate enough to land a man on the moon, even though it
has generally been superseded by Einsteinian theory, which
itself is perhaps in the process of being superseded. Whereas
Newtonian dynamics and Ensteinian theory are substantially
more than metaphors, the same holds true that within a cer-
tain level of scrutiny all metaphors and models stand in their
own right. The degree of scrutiny may always be increased
to the point that the metaphor/model fails. As yet no-single
model has been substantiated to the extent and exclusion of
all other possible models. We believe, however, that if a per-
son has, for example, the whole of the Newtonian Dynamics
at his finger tips, he can justly be said to understand more
about the universe than a person with a superficial or pop-
ular knowledge of Einstein's theories. In the same way it
can be said that software engineers who adopt a metaphor
for software development, and apply it with success to their
own work, have a better understanding of their vocation than
those who do not. To quote McConnell: "Over time, the
person who uses metaphors to illuminate the software devel-
opment process will be perceived as someone who has a bet-
ter understanding of programming and produces better code
faster than people who don t use them."

So, where does that lead us? To a metaphor:

The Wi ld West Lifecycle Model

The Wild West lifecycle model makes the software develop-
ment process analogous to the process of territorial conquest
in the American west. Three different types of people are
identified has having participated in different phases of this
process. These are quoting directly from Spinrad [1]

Trailblazers carved out paths and brought back knowledge
about the dangers that lay ahead.

Pioneers followed in their paths and made the destination
safe for those who followed.

Sett lers came by caravan to establish residence in the des-
tination.

Spinrad does not identify the phases that these individuals
participated in by name, but it might be helpful to describe
them as the Exploration Phase, the Colonization Phase, and
the Civilization Phase respectively. The original paper sug-
gests that phases analogous to these exist in the software de-
velopment lifecycle, and that the skills required by the soft-
ware engineers during these phase are those skills exhibited
by the trailblazers, pioneers, and settlers in the Wild West A
further aspect of the analogy that may prove illuminating is
the amount of external direction needed.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227531.227545&domain=pdf&date_stamp=1996-03-01

ACM SIGSOFT Software Engineering Notes vol 21 no 2 March 1996 Page 85

Trailblazers, pioneers, and settlers required a different amount
of outside direction to do their jobs well. In the same manner,
software trailblazers, software pioneers, and software settlers
ought to have differing amounts and kinds of outside direction.

Trailblazers had only the barest of outside direction, and some
worked with none at all; others set their own. An overall view
of the ultimate goal was usually all they had. They had no
maps, no exact arrival times, no intermediate check-in points.
They vanished into the wilderness for years at a time, some
never to be seen again. Software trailblazers should have the
same kind of freedoms. They do not need to follow formal
procedures, because these are too focused and too restrictive.
They probably don't need naming rules or coding conven-
tions, because it is not certain just exactly what form the
code they write or the paths they create will take. As long as
the activities are those of the trailblazer, it is too early to set
up intermediate goals. Having been given the same freedoms,
however, they stand the same risk of suffering an untimely
and unknown end as their historical alter-egos.

The historical trailblazers were normally loners, who relied
not a little on luck, but also on their own ability and in-
dividual skills to survive the environment. They needed to
have consummate knowledge of the wilderness, to be able to
"read" the situation to avoid dangers wherever possible, and
where this was not possible, take the appropriate action. In
the same way software trailblazers are usually individualistic,
but in addition they need to be skilled in the theoretical as-
pects of software engineering, and practical enough to survive
the catastrophes that occur. They need to know what the
theories are and how and when to apply them to a particular
situation.

Pioneers used the rough map set up by the trailblazers. Based
on what the trailblazers shared, pioneers could set rough
timetables. They knew where the significant mileposts were.
Even though they probably did not follow the exact path of
the trailblazers, they could base their progress on the direc-
tions, however incomplete and crude, of the trailblazers. Soft-
ware pioneers need guidance in setting up their own rules and
conventions. The path has been blazed; it may need some
smoothing out The milestones are known, even though un-
expected pitfalls may arise along the way. The Wild West
pioneers were moving from a higher level of civilization to a
lower level. As such they could take a lot of existing mate-
rial with them, be that in terms of provisions or philosophies.
In addition, pioneers were generally like-minded groups of
individuals. These two facts - that they are a group of indi-
viduals, and they have support from and existing civilization
- mean that the pioneers do not have to rely so heavily on
individuals being multi-skilled. The skill set can be provided
by the group, not the individuals.

It should be noted, however, that many of the historical pio-
neering exploits were driven by a desire to establish a different
code of ethics or religion, or to escape from a regime that was
deemed to be oppressive. In some instances this is also true
for the software pioneers, and judgment should be made as

to what the driving force behind the exodus is - a desire to
escape or develop.

Settlers had a map that was drawn with all the care and ex-
pertise available to the pioneers. The pioneers at tempted to
catalog not only the major mileposts, but also all of the inter-
mediate stopping places. As far as they could, the pioneers
took care of the dangerous places in the passage, either by
eliminating the danger, by posting sentries, or, if the danger
could not be eliminated, providing careful instructions as to
how to behave and thus make it through. Software settlers
should have a Pert chart or timeline, with all major and most
minor mileposts marked. If the pioneers have done their work
well, settlers will find very few unexpected dangers along the
implementation road. The software pioneers will either re-
move the danger (maybe by suggesting a different tack in the
coding); post sentries (in-line comments, warnings about crit-
ical interactions, etc.); or provide instruction as to what pre-
cautions the settlers should take at the critical points. Thus,
the settlers can set for themselves a dependable schedule, with
the confidence that everything has been done to ensure that
they can meet the schedule. The drive for settlers is differ-
ent from that of pioneers, in as much as they desire to take
advantage of tangible benefits that the new terri tory has to
offer, and are less ideologically driven.

Spinrad identified only the three classifications of individuals
discussed so far. Of course the Wild West metaphor is filled
with many more possible allusions than those. No mention
has been made of significant role models such as Cowboy, the
Native American, the US Cavalry, the Railroad Company, etc.
Indeed, what about the individual legends such as "Buffalo
Bill," "General Custer," and "Billy the Kid?" Although it
may well be argued that these are sub-classes of the original
metaphor, some further insight could be gained from explor-
ing these characters in the metaphor further.

Before we can pursue the metaphor much further and discuss
the software equivalent to "Custer's Last Stand" or "The Bat-
tle of the Alamo" (remember that?), or draw a parallel be-
tween Bill Gates and a historical counterpart, we must side-
track slightly here, the reason being that we must define our
base of reference. When we are discussing the Wild West, are
we referring to the factual account, or the Hollywood interpre-
tation? Dependent upon your base of reference, a cowboy is a
champion of the ordinary folk, with an innate understanding
of morality and a high sense of justice. Highly skilled with a
gun, he is usually to be seen wearing a white hat and maybe
singing to his horse. Or he is an ignorant dirty itinerant, unre-
liable and untrustworthy 1°. In fact there were probably never
more than 10,000 cowboys [5] in total throughout the whole
of the period known as the Wild West. It is a sobering fact
that there have probably been more actors and stunt men who
have played cowboys than there ever were cowboys. Thanks
to Hollywood however, the Wild-West metaphor is recognized

l ° I t is in te res t ing to no t e t h a t a n in formal def ini t ion of Cowboy in an
Engl i sh (as opposed to an A m e r i c a n Engl i sh) d ic t ionary is "Bad work-
m a n who charges too much . " Yet a n o t h e r ind ica t ion of t h e power of the
Wi ld Wes t m e t a p h o r to apply to sof tware engineer ing.

ACM SIGSOFT Software Engineering Notes vol 21 no 2 March 1996 Page 86

and understood worldwide, but the Hollywood interpretation
only 11.

This in itself has a striking parallel with software engineering,
around which there is a large popular mythology as large as
that surrounding the Wild West, and just as with the Wild
West mythology some worthy principles can be conveyed, so
also many dangerous messages can be imparted. So which to
use? As with the many dictionary definitions of "metaphor,"
the word, many interpretation of the Wild West are also valid.
We suggest here that initially the Hollywood interpretation be
used, since it is easily available, universally recognized, and
widely accepted. As the familiarity with the metaphor and
the software lifecycle increases, much more insight may be
gained by beginning to explore the more factual histories of
the period.

Who are the software Native Americans? This is difficult, but
let us submit that a good analogy would be those individuals
that were there even before Software Engineering existed as a
concept - the self-taught garage programmers. Is ISO9000 the
equivalent of the US Cavalry, bringing law and order to the
troubled frontier? And who are the cowboys? Considering
the definition given earlier, perhaps we all are. Where was
"Custer 's Last Stand?" Maybe it is yet to be fought. A couple
of our experiences could come close, but that is another story.
Which historical figure is Bill Gates? It is left for the reader
to decide.

In conclusion, consider one more facet of the history of the
Wild West, and the characters described here. The history
was written against the fact that the Wild West was moving
from a chaotic unknown state to a civilized developed state.
As Spinrad points out, it was the participation of the peo-
ple that defined these phases, but in addition they drove the
process. The transition boundaries were times of great social
upheaval and ult imately the people that made each step pos-
sible were no longer needed or indeed desirable commodities
in the world that they created. Only if the individuals were
able to adapt and change, to go from trailblazer to pioneer to
settler was there a continued role for them to play. Otherwise
they became an anachronism.

It remains to be seen whether the Wild West metaphor holds,
and if the above scenario is the case with Software Engineer-
ing in general. But even if there is an infinite terri tory to
conquer, the process of Software Engineering matur i ty is on
going within industry, and unless individual software engi-
neers are lucky enough to be employed by a company large
enough (or enlightened enough) to support all the phases of
the model, they will more than likely encounter the above so-
cial issues. The question is now, as it was then, do you up
stakes and move on, or stay and make the best of it?

l lSpinrad himself gave a clue to the fact that he had in mind the
popular image of the Wild West when he alluded to pioneers "circling
their wagons," a practice that was invented by the movie industry, with
no historical precedent.

R e f e r e n c e s

1. Spinrad, Mark, and Curt Abraham. 1985. The Wild-West Lifecy-
cle (WILI). A CM SIGSOFT Software Engineering Notes 10.no.3
(July): 47-48.

2. McConnell, Steve. 1993. Code Complete, Washington: Microsoft
Press: %11

3. Collin, P. H., 1988. Harrap's Mini English Dictionary. London:
Hare'up Ltd.

4. Caswell D.M., and R. Batchelor-Smith. 1980. Hugo English Dic-
tionary. Bungay, Suffolk, England: Richard Clay (The Chaucer
Press) Ltd.

5. Bryson, Bill. 1995. Made in America, London: Reed Consumer
Books Ltd. Page 155 Honeywell

Structural Defects in Object-Oriented
Programming

D a v i d R i n e
C o m p u t e r Sc i ence D e p a r t m e n t

G e o r g e M a s o n U n i v e r s i t y
Fa i r f ax , VA 22030-4444

d r i n e @ c n e . g m u . e d u

T H E S H A R I N G O F O B J E C T S S T R U C T U R A L D E -
F E C T S

A recent s tudy (Offutt, 1995) indicates that over fifty percent
of common structural defects found in the testing of C + +
code would never have occurred had the code been writ ten
in a safer programming language such as Ada83, having a
very strong typing and type checking model. The purpose of
this paper is to report on structural defects in object-oriented
programming due to object sharing.

There are a number of s tructural errors common to object
oriented programming (e.g., in C + +) when objects are dy-
namically introduced by pointers. Examples are (1) use of a
pointer before it is initialized, (2) reference of an object as a
parent after it has polymorphically changed to a child, and (3)
various memory resource errors. A fourth (4) s tructural er-
ror common to many object-oriented programming languages
such as C + + , Smalltalk and Eiffel occurs when an object o is
shared by two owners x and y. This is often introduced when,
first, o is created for owner x (x points to o) and, second, x
is assigned to y. Sharing can, also, be carried out through
parameter passing by procedure calls, o can be created for
owner x, x can be, for example, ' read' , and x can be 'write '
to y. If the object-oriented language does not prevent such
sharing and, also, does not support effective object garbage
collection, then the later deallocation of o to x may leave the
allocation of o to y in place as an undesirable side- effect.
Furthermore, x and y may have different security at t r ibutes
which may cause one of the owners to illegally leak informa-
tion. When multiple ownership is allowed its use should be
carefully policed.

P R E V E N T I N G T H E S H A R I N G D E F E C T I N A D A .

It is easy to prevent this s tructural error from occurring

