Check for
Updates

ACM SIGSOFT

PRODUCTIVE MAINTAINABILITY

Manuel J. Barranco Garcia
Juan Carlos Granja Alvarez
Grupo de Lenguajes y Sistemas Informaticos e
Ingenieria del Software
(P.A.L. 7060) Universidad de Granada (Spain)
E-MAIL: GILSIISQUGR..ES

ABSTRACT

It is obvious the existence of a powerful connection between
quality and productivity in the software projects. Normally,
an increase of quality bring to a greater productivity. Main-
tainability is a very important factor of quality, considering
the enormous consumption of resources that is carried out
during the maintenance stage. We comment in this article
the relation between maintainability and productivity, and
when the maintainability result productive and when not.

Keywords: Maintainability, Productivity, Software Quality.
1 Introduction

The productivity, understood like a measurement of the effi-
ciency of the outputs gotten like function of the applied effort,
is one of the principal problems expounded in all project soft-
ware. How could we measure the productivity of the project?
How could we utilize the information of previous projects in
order to estimate the productivity of a future project? What
factors determine the productivity of the project? These are

some of the queries that should be considered in all software
project.

It is a verified act that, the maintenance stage is the most
resources consumer of the entire project. Investigating mani-
folds coincide telling that, in this stage, it is inverted between
the 60% and the 80% of the total cost of the project. Consid-
ering this act, if we pretend to act somehow on the produc-
tivity of a software software, there will be into account the
productivity during the stage of maintenance.

There is a quality factor that determines the productivity
during the maintenance, which is known with the name of
maintainability. It could be consider like a measurement of
the cost and difficulty that supposes the maintenance in a
software project [FROS85]

There are certain factors that could be manipulated during
the development of a project, with the end of making a prod-
uct more maintainable. But in the other hand, the act of
conferring to the product such characteristics is going to im-
plicate an additional cost. Thus, the work of increment the
maintainability of the product, must be properly planned be-
fore their realization, determining what is the maintainabil-
ity characteristics that the product should possess, and what
doesn’t result of interest.

1.1 Software Quality Economics

When we plan software quality (SQ) activities, we must con-
sider the evaluation of SQ economics, it is to say, costs and

Software Engineering Notes vol 21 no 2

March 1996 Page 89

benefits of SQ. SQ implies increasing costs: documentation,
tools, standards, additional activities, ... In order to justify in-
vestments in quality, a return on investment is necessary. The
best level of quality isn’t the optimal level, in the majority of
cases, but an Acceptable Software Quality Range (ASQR),
having into account the costs of the quality [ORLA92].

To determine the ASQR, we can consider a cost-quality ratio
constituted by the sum of quality costs and quality fault costs
(see Fig. 1).

Cost

__ ___ Quality Improvement
Costs

Quality Fault Costs

e Costs sum

ASQR Quality

Fig 1. Acceptable Software Quality Range (ASQR) [ORLA92]
2 Productive Maintainability

As other quality factors, maintainability, or maintenance fa-
cility, involve costs during the development stage: basically,
costs of applying maintainability characteristics to the prod-
uct, an costs of controlling it. There are three attributes that
conform the maintainability: understandability, modifiability
and testability. In order to assign, in a productive manner,
that attributes to the product, it is necessary to determine
the software components that needs this characteristics.

2.1 Economy of Maintainability

As we say previously, not all the components of the system
have the same needs of maintainability. The criterion is obvi-
ous: the components which are more used during maintenance
needs better maintainability than the others. But, how and
when can be determined the rate of use that a component
will have during maintenance? Well, that is the key question,
which we will study immediately.

The objective is to economize efforts in development, applying
maintainability characteristics only to those components that
need it. As we see in Fig. 2, the investment on maintainabil-
ity (Maintainability Improvement Cost) must have a return
during maintenance (Profit during Maintenance). Otherwise,
this is not a productive investment.

We consider a Amortization Period. This is the period in
which Maintainability Improvement Cost is equal to Profit
during Maintenance. In that moment, the investment is amor-
tized, and after this period, the profit of investment is a real
benefit.

2.2 Maintainability levels.

Previous to the development, it will be precise to carry out
an estimate of the change that they could surge, with certain

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227531.227547&domain=pdf&date_stamp=1996-03-01

ACM SIGSOFT

frequency, during the maintenance. So, the most frequent
change will demand a greater level of maintainability than
the less frequent changes, and then, unnecessary costs will be
avoided.

Effort in
T Low maintainability

Effort in
High maintainability

=7z Maintainability
Amortization I 554 Improvement Cost
period
m Profit during
Maintenance
DEVELOPMENT —_ MAINTENANCE —

Fig. 2. Productive Maintainability

Abridging this point, we will say that, the maintainability
depend on the type of change. It will be mission of a
collective decisions group, with judgements of experts, (see
part 1.1) to determine:

e What is the types of change that could give up during
the maintenance.

e Which is the frequency esteemed of each change.

In order to take such decisions, it will be necessary to use the
available historic information from similar projects.

The proposed levels are the next:
(Level 3) High maintainability
(Level 2) Middle maintainability
(Level 1) Low maintainability
The maintainability characteristics are of two types:

1. Fixed characteristics: Every software component or
module must have some fixed characteristics, so that
effort estimates over modules be possible. (i.e., Module
size).

2. Variable characteristics: Every software component or
module of the same maintainability level, must have the

same variable characteristics. (i.e., Number of commen-
taries in a module).

Example: We could consider, as an example, the next
characteristics:

Module size: Fixed: Less than 150 lines of code (com-
mentaries excluded)

No. of commentaries (per module): Variable:
Level 3 — More than 20 lines of commentaries

Level 2 — More than 10 lines of commentaries

Level 1 — No commentaries need.
The best assignment of maintainability levels is that which
maximize the difference between the areas “profit during
maintenance” and “maintainability improvement cost”.

3 Conclusions

Maintainability or ease of maintenance is a factor that needs
to be taken into account in the study of the productivity

Software Engineering Notes vol 21 no 2

March 1996 Page 90

of software projects, given the enormous consumption of re-
sources of the maintenance stage with respect to the remain-
der of the project.

Several factors, which could be intervened during the first
stages of the project, determine the final maintainability of
the product. On the other hand, the contribution of main-
tainability characteristics to a product rebound an additional
cost, like any other characteristic of quality. Therefore, one
could not give the maintainability characteristics in a indis-
criminated form to any product, but rather one must enter to
the detail and carry out this contributions module by module;
so that useless expenses could be avoid.

4 Futures Research

There are some aspects, related with the proposed model,
pendent of investigating:

1. A productivity model based on maintainability

2. A technique to summarize the great amount of data
included in the HDB (Historic data base), so that, the
result information be more useful to the QCG (Quality
Control Group).

3. A technique to help in the MLA (maintainability level
assignment) activity, so that, if it is possible, this activ-
ity can be automated.

References
ALBRS83 Albretch, A.J.; Gaffney, J.E. “Software Function, Source
Lines of Code and Development Effort Prediction: A Soft-
ware Science Validation”, IEEE Trans. Software Engineer-
ing. Nov.1983.

Banker, R.D.; Datar, 5.M.; Kemerer, C.F.; Zweig, D. “Soft-
ware complexity and maintenance costs”. Communications
of the ACM. Vol 36, No.11. Nov.1993.

Barranco, M.J.; Granja, J.C. “Control de versiones: Un
enfoque practico”. NOVATICA, No.111, Sep-Oct. 1994
Barranco, M.J.; Granja, J.C. “Estudio grifico para el
andlisis de la calidad del software”. NOVATICA, No.111,
sep/oct. 1994.

Barranco, M.J.; Granja, J.C. “Estudio de factores de cal-
idad del software partiendo de la ERCU"”. NOVATICA,
No.111, sep/oct. 1994.

Barranco, M.J.; Granja, J.C. “Proyectos Informaticos”.
ISBN: 84-600- 8855-3. DL: J-183-94. UNED, 1995.
Barranco, M.J.; Granja, J.C. “Control of versions: a prac-
tical approach oriented to improve the software quality”,
Proc. of SQM 95, Sevilla, April 1995.

Basili, V.R., Turner, A.J. “Iterative enhancement: a prac-
tical technique for software development”. 1975.

Boehm, B.W. “Software Engineering Economics”. 1981.
Conte, S.D.; Dunsmore, H.D.; Shen,V.Y. “Software Engi-
neering Metrics and Models”. 1986.

Frost, D. “Software maintenance and modifiability”,
Proc.1985 Phoenix Conference on Computers and Commu-
nications, Phoenix, Az: 1985

Granja, J.C. “Planificacién de Sistemas Informdticos en
Ia gestidn empresarial: desarrollo del software y su opti-
mizacién.” Rev. Estudios Empresariales / 4

Granja, J.C. “Contribucién al estudio de las técnicas de
garantia de calidad”. Novitica. Vol XVIII, No. 99. Sep-
Oct. 1992.

Granja Alvarez, Juan Carlos. “Aportacién a las técnicas de
garantia de calidad de software: su incidencia en la planifi-
cacién”, Facultad de Informatica de Madrid, U.P.M., 1992.
Granja, J.C. “Gestién de la Calidad en Informaética”, Proc.
of USI 92, 1992..

BANK93

BARR94/1
BARR94/2

BARR94/3

BARRS5/1
BARR95/2

BASI7S
BOEHS1
CONTS6
FROS85
GRAN91
GRAN92/1

GRAN92/2

GRAN92/3

ACM SIGSOFT

GRAN92/4
GRAN92/5
GRAN92/6
GRAN92/7
GRAN92/8
GRAN93/1
GRAN94/1
GRAN94/1

GRAN®5/1

GRAN95/2
GRAN95/3

GRAN95/4

GRANO5/5
JONES6
MCCAT76
ORLA92

PICK93

WALST77

Granja, J.C. “Planificacién de Sistemas Informsticos en la
Gestién Empresarial: Desarrollo del Software y su opti-
mizgacién”, Revista de Estudios Empresariales, 1992.
Granja, J.C. “Performability”, Proc. of IFIP 92. 1992.
Granja J.C. “Software Development”, Proc. of IFIP 92.
1992,

Granja J.C. “Contribucion al estudio de las técnicas de im-
plementacién”, Proc. of PRODE 92. 1992.

Granja J.C. “The vulnerability of information society: So-
cial, Legal and Security aspects”, Proc. of IFIP 92. 1992.
Granja J.C. “Software Control Project”, Proc. of
TELETEACHING 93. 1993.

Granja, J.C. “Performability”,” Software
Development”,”Security in Computer Products”, Proc. of
Fourth European Conference on Software Quality, Basilea,
Oct. 1994.

Granja, J.C. “Analisis y desarrollo de proyectos in-
formdticos en la gestién empresarial”, Revista de Estudios
Empresariales, Julio, 1994.

Granja, J.C. “Configuracién y Dimensionamiento de
Equipos Informéticos”. ISBN: 84-600-8856-1. DL: J-124-
1994. UNED, 1995.

Granja, J.C. “Software Development”, Proc. of SQM 95,
Sevilla, April 1995.

Granja, J.C. “Elementos y herramientas en el desarrollo de
Sistemas Informéticos: una visién actual de la tecnologia
CASE”, ra-ma, 1995.

Granja, J.C. “Técnicas de evaluacién de la productividad
del Software. Exposicién de las posibles tendencias de este
campo”. Jornadas sobre desarrollo de Sistemas de Infor-
macién, Madrid, 1995.

Granja, J.C. “Nuevas aportaciones a la garantia de calidad
del Software” Actas del VI contreso nacional de la calidad.
Mayo. 1995.

C.Jones. “Software Productivity”. McGraw-Hill. 1987.
McCabe, T. “A Software Complexity Measure”. IEEE
Trans. Software Engineering, vol. 2, Dec. 1976.

Orlandi, E. “Software Quality Economics”. 3rd. European
Conference on Software Quality. (Madrid - Spain) Novem-
ber 1992.

M.M.Pickard, B.D.Carter. “Maintanibility: What Is It And
How Do We Measure It?” Software Engineering Notes
(ACM SIGSOFT). Vol 18, no. 3. Jul.1993.

C.E.Walston. “The Estimation of Software Size and Effort:
an Approach based on the Evolution of Software Metrics”.
1977.

Software Engineering Notes vol 21 no 2

March 1996 Page 91

Book Reviews

Information Modeling — An Object-Oriented
Approach

Haim Kilov and James Ross

Information Modeling — An Object-Oriented Approach is writ-
ten by Haim Kilov and James Ross, and published by
Prentice-Hall, 1994. ISBN 0-13-083033-X 252 pp. (plus ref-
erences and the index) $42.00.

With this book, the authors offer a genuinely useful introduc-
tion to the discipline of analysis, attempting to bring rigor to
the process of analysis. But when I say ‘introduction’, I don’t
mean that the book will serve only the inexperienced reader.
As someone with substantial experience, I still found the book
beneficial and entertaining. And I believe that it can serve as
a valuable refresher on analysis as well as a sound introduction
to object-oriented modeling.

In the introduction to their book, the authors write: “This
book is about making analysis as disciplined as programming.
We show how the analyst may use the same concepts of good
thinking’ as the programmer — abstraction, precise under-
standing of behavior, and reuse — to end up with a specifi-
cation that is understandable and formal. The book is not
about drawing pictures; it is about formal specification of be-
havior, at the right level of abstraction, as an approach to
system analysis.” (p xv)

The authors establish early and return frequently to the
essence of analysis: the production of unambiguous models;
based on the business knowledge of subject matter experts;
with a degree of precision and abstraction appropriate for
the intended audience. “Customers are not interested in pro-
grams; they are interested in solutions to their information
management problems.” (p 8) “The job of the analyst is to
define and communicate business rules. The singular goal of
information modeling is to formulate business rules.” (p 19)

The authors make pointed comparisons between software en-
gineering and other branches of engineering. They highlight
the ubiquitous problem of complexity, which Brooks identifies
as an inherent facet of software: “As an illustration, a single
line of code is perhaps eight orders of magnitude smaller than
the software system of which it is a part, yet programmers cre-
ate and maintain both complete software systems and their
building blocks, which may be a single line of code. In civil
engineering, an atom is perhaps eight orders of magnitude
smaller than the structure of which it is part, yet civil engi-
neers do not create or maintain atoms or even molecules”
(p 3) The book suggests useful techniques, identifies thinking
patterns, and points out traps.

The authors use as their base the notion of Contracts based
on assertions. These assertions identify the pre- and post-
conditions for operations, and also identify what does not
change as the result of an operation — what remains invari-

