
Tabled Evaluation with Delaying for General

Logic Programs

WEIDONG CHEN

Southern Methodist University, Dallas, Texas

DAVID S, WARREN

SUNY at Stony Brook Stony Brook New York

Abstract. SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpre-
tation of predicate calculus as a programming language and forms the computational basis for
Prolog systems. Despite its advantages for stack-based memory management, SLDNF is often not
appropriate for query evaluation for three reasons: (a) it may not terminate due to infinite
positive recursio~ (b) it may not terminate due to infinite recursion through negation, and (c) it
may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance.

We address all three problems for goal-oriented query evaluation of general logic programs by
presenting tabled evaluation with delaying, called SL.G resolution. It has three distinctive features

(0 SLG resolutionis a partial deductionprocedure,consistingof sevenfundamental transforma-
tions. A query is transformed step by step into a set of answers. The use of transformations
separates logicaf is-suesof query evaluation from procedural ones. SLG allows an arbitrary
computation rule for selecting a literal from a rule body and an arbitrary control strategy for
selecting transformations to apply.

(ii) SLG resolution is sound and search space complete with respect to the well-founded partial
model for all non-floundering queries, and preserves all three-valued stable models. To
evaluate a query under different three-valued stable models, SLG resolution can be en-
hanced by further processing of the answers of subgoals relevant to a query.

(iii) SLG resolution avoids both positive and negative loops and always terminates for programs
with the bounded-term-size property. It has a polynomial time data complexity for well-

A preliminary version of this paper as CHEN, w., AND WARREN,D.s. 1993. Query evaluation under
the well-founded semantics. In Proceedings of the Z2th Annual ACM SIGACT-SIGMOD-SIGART
Symposium on Binciples of Database Systems (Washington, D.C., May 25-28). ACM, New York
pp. 168-179.
W. Chen was supported in part by the National Science Foundation (NSF) under grant no. IRI
92-12074 and IRI 93-14897.
D. S. Warren was supported in part by the NSF under grant no. CCR 91-02159 and New York
State Science and Technology Foundation under grant no. RDG-90173.
Authors’ addresses: W. Chen, Computer Science and Engineering, Southern Methodist Univer-
sity, Dallas, TX 75275-0122; D. S. Warren, Department of Computer Science, SUNY at Stony
Brook, Stony Brook NY 11794-4400.
Permission to make digital/hard copy of part or all of this work for pemonal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery (ACM), Inc. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
@ 1996 ACM 0004-5411/96/0100-0020 $03.50

JournaloftheACM, Vol. 43,No.1,Janua~ 1%%,pp.20-74.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227595.227597&domain=pdf&date_stamp=1996-01-01

Tabled Evaluation with Delaying for General Log”c Programs 21

founded negation of function-free programs. Through a delaying mechanism for handling
ground negativeIiterals involvedin loops, SLG resolution avoidsthe repetition of any of its
derivationsteps.

Restricted forms of SLG resolution are identified for definite, IoeaIly stratified, and modulady
stratified programs, shedding light on the role each transformation plays.

SLG resolution makes many more rule specifications into effective programs. With simple (user
or computergenerated)annotations,both SLDNF resolution and SLG resolution can be used in a
single application,allowinga smooth integration of Prologcomputation and tabled evaluationof
queries.Furthermore,Prologcompilertechnologyhas been adapted for twoefficient implementa-
tion of SLG resolution. For all these reasons, we believe that SLG resolution will provide the
computationalbasis for the next generation of logicprogrammingsystems.

Categories and Subject Descriptors:F.4,1 [Mathematical Imgic and Formal Imsguages]: Mathe-
matical f-ngic-fo&”c programming, proof theory; H.2.3 [Database Management] Languages-quety
languages;H.2.4[Database Management]: Systems—quetyprocessirsg; 1.2.3 [Artificial Intelligence]:
Deduction and Theorem Providing—logicprogramming, nonmonotonic reasoning and beliefreLti-
sion

General Terms: Query Evaluation,DeductiveDatabases, LogicProgramming

Additional Key Words and Phrases: Program transformations,stable models, tabled evaluation,
well-foundedmodels

1. Introduction

The seminal work by Apt, Van Emden, and Kowalski [Apt and Van Emden
1982; Van Emden and Kowalski 1976] provided a foundation for both the
declarative and the procedural semantics of logic programs. According to Van
Emden and Kowalski [1976], a program rule can be viewed as a procedure
declaration, and a literal in a rule body can be viewed as a procedure call. This
operational interpretation is formalized in SLD resolution (Linear resolution
with Selection function for Definite programs), which is sound and complete
for positive queries with respect to the least model semantics of definite
programs [Apt and Van Emden 1982; Van Emden and Kowalski 1976].

Clark [1978] extended SLD resolution to SLDNF resolution-SLD resolution
with Negation as finite Failure. A ground negative literal succeeds if its positive
counterpart finitely fails, and fails if its positive counterpart succeeds. SLDNF
resolution serves well the purpose of an operational semantics for predicate
logic as a programming language. It has the advantage of goal-oriented
computation and efficient stack-based memory management and is the compu-
tation strategy used in Prolog systems.

Significant progress has been made in understanding default negation, lead-
ing to several variations of SLDNF resolution, including SLS resolution
[Przymusinski 1989c] and global SLS resolution [Przymusinski 1989a; Ross
1989]. These are ideal procedures for computing the perfect model [Przymusin-
ski 1989c] and the well-founded partial model [Van Gelder et al. 1991] of a
logic program. Like SLD resolution, SLDNF and (global) SLS resolution use a
top-down goal reduction search strategy. They may not terminate due to
infinite recursion (possibly through negation) even for function-free programs.
This prevents them from being used directly for query evaluation in data and
knowledge bases. When they do terminate, repeated computation of identical
subgoals may result in unacceptable performance.

Partial solutions have been proposed to improve the termination properties
of top-down computation and to avoid redundant evaluation of subgoals.

22 W. CHEN AND D. S. WARREN

Several extensions of SLD resolution with memoing have been studied, includ-
ing extension tables [Dietrich and Warren 1986], OLDT resolution [Tamaki
and Sato 1986], and QSQR [Vieille 1987]. The main idea is to keep a global
table of subgoals and their answers that have been computed. If a subgoal is
identical to or subsumed by a previous one, instead of being solved using rules
in a program, it is solved using answers computed for the previous subgoal.
This avoids infinite branches and redundant computation due to repeated
subgoals in the search space of SLD resolution. These techniques have been
generalized to stratified programs [Kemp and Topor 1988; Seki and Itoh 1988]
and modularly stratified programs [Ross 1991].

Nontermination may also occur due to infinite recursion through negation,
which has to be treated differently from infinite recursion in definite programs.
A positive loop, such as p + p, is considered failed as can be seen in the
well-founded partial model of p ~ p where p is false. In contrast, a negative
loop, such as p - N p, is considered indeterminate since p is undefined in the
well-founded partial model of p - N p.

Mechanisms for handling infinite recursion through negation have been
studied in tabled evaluation of queries, including WELL! [Bidoit and Legay
1990] and XOLDTNF resolution [Chen and Warren 1992]. The key idea is to
associate a set of ground negative literals, called the negative context, with each
subgoal. The negative context for the initial subgoal is empty. When a subgoal
A in a negative context N calls a ground negative literal - B, - B is replaced
with an undefined truth value u if - B c N. Otherwise, the truth value of
- B is determine by evaluating B in a larger negative context, namely

N U {- B). For a function-free program, the Herbrand base is finite and so the
size of a negative context is finite and infinite recursion through negation is
avoided. The use of negative contexts, however, prevents the full sharing of
answers of a subgoal across different negative contexts. In the worst case, a
subgoal may be evaluated in a number of negative contexts that is exponential
in the size of the Herbrand base of a function-free programs [Chen et al. 1995].

Techniques for effective set-at-a-time query evaluation have been studied in
deductive databases, including magic sets [Bancilhon et al. 1986; Beeri and
Ramakrishnan 1987], magic templates [Ramakrishnan 1991], and Alexander
templates [Sekl 1989]. The main idea is to simulate top-down SLD resolution to
avoid generation of tuples irrelevant to the given goal. In fact, tuples of magic
predicates correspond to subgoals maintained in OLDT resolution [Tamaki
and Sato 1986]. For definite programs, it has been shown [Bry 1990; Seki 1989]
that the top-down with memoing and the set-at-a-time approaches are essen-
tially equivalent.

Methods of query processing have been investigated for stratified and
modularly stratified programs [Bry 1989; Ramakrishnan et al. 1992; Ross 1989].
With negation, the major issue becomes maintaining dependencies among
magic tuples (or subgoals) so as to ensure that a positive subgoal be fully
evaluated before its negative counterpart is solved. Kemp et al. [1991] devel-
oped a technique that computes the well-founded partial model using a
doubled program, one for deriving definitely true answers and the other for
deriving potentially true answers. The doubled program technique may make
too many magic facts true, which means that more subgoals are evaluated than
necessary. Morishita [1992] proposed an alternating fmpoint semantics tailored
to magic sets computation, which generates fewer magic facts.

Tabled E1’aluation with Delaying for General Logic Programs 23

This paper presents a partial deduction framework for query evaluation,
called .!WG resolution (Linear resolution with Selection function for General
logic programs). SLG resolution addresses the problems of nontermination and
redundant computation of identical subgoals. Rather than detecting and han-
dling infinite recursion through negation, we focus on the complementary
problem of ensuring the complete evaluation of subgoals. We summarize the
main result as follows:

First, seven fundamental transformations are identified that can be applied
to transform a query step by step into a set of answers with respect to the
well-founded partial model. Restricted forms of SLG resolution are identified
for definite, locally stratified, and modularly stratified programs, shedding light
on the role each transformation plays. These programs do not have to pay the
overhead for transformations that are not needed.

Second, the separation of logical issues of query evaluation from procedural
ones results in the maximum freedom in control strategies. SLG resolution
allows a programmer or an implementer to choose an arbitrary computation
rule for selecting a literal from a rule body and to choose an arbitrary strategy
for selecting which transformation to apply.

Third, SLG resolution supports answer sharing of subgoals that are variants
of each other. A subgoal is guaranteed to be evaluated only once. SLG
resolution terminates for programs with the bounded-term-size property and
has a polynomial time data complexity for well-founded negation of function-
free programs.

Finally, SLG resolution delays ground negative literals that are involved in a
loop and simplified them away when their truth values become known to be
true or fake. The delaying mechanism is the key to the maximum freedom in
control strategies and enables SLG resolution to avoid the repetition of any
derivation step. More importantly, three-valued stable models, other than the
well-founded partial model, can be computed by further processing the answers
of subgoals relevant to a query, possibly with delayed Iiterals under the
well-founded semantics. However, it has been shown by Marek and Truszczyn-
ski [1991] that for propositional logic programs P, determining whether P has
a (two-valued) stable model is NP-complete.

From a software engineering point of view, the major advantage of SLG
resolution is its upward compatibility with existing Prolog systems. Although
Prolog is notorious for its nonlogical features, there is a real value in making
SLG resolution available to Prolog applications. Several implementations of
SLG resolutions have been carried out, including a Prolog meta interpreter
[Chen and Warren 1993], a partial implementation in a Prolog compiler called
XSB [Sagonas et al. 1994], and a partial implementation using Prolog program
transformation and Prolog-C interface [Ramesh and Chen 1994]. Experimental
results [Ramesh and Chen 1994; Sagonas et al. 1994] have demonstrated that
Prolog compiler technology can be adapted for an efficient implementation of
SLG resolution, providing impressive performance for in-memory query evalu-
ation of deductive databases.

2. Three-Valued Stable Models

This section reviews the notion of three-valued stable models of logic programs
[Przyrnusinski 1990]. The basic terminology of logic programs [Lloyd 1987] is
assumed.

24 W. CHEN AND D. S. WARREN

An atom is of the form p(tl,...,tn),where p is an n-ary predicate symbol
andtl, ..., tn are terms. A literal L is either an atom A or its negation -A.
The existential closure of a literal L is denoted by 3L, and the universal
closure of L is denoted by VL.

A n.de C is of the form:
HGL1,..., L~,

where the rule head H is an atom, and L ~,..., L.(n > O) in the rule body are
Iiterals. If n = O, C is also called a fact. A program P is a (possibly infinite)
multiset of rules. (Unique labeling or annotations will be used when there is a
need to distinguish between different occurrences of a rule in P,) An expres-
sion, which can be an atom, a literal or a rule, is ground if it is variable-free.

This paper considers query evaluation as a process of partial deduction,
which may involve multiple programs that are possibly infinite, even though the
original program is normally finite. Allowing a program to be infinite makes it
possible to consider the intermediate result of partial deduction as a program.
To relate the semantics of one program to another, we use a single Herbrand
universe for all programs.

Specifically, we assume a countable language -%7 of function symbols. ~
contains all function symbols that occur in programs involved in the evaluation
of a query, plus a unary function symbol f’ and a zero-ary function symbol c’
that do not occur in any of the programs being considered. The symbols f’ and
c’ are needed to cope with the “universal query problem” [Przymusinski 1989],
where the semantics of a program containing a single fact, p(a), may imply
VX.p(X) if the Herbrand universe is {a}. But the empty answer substitution
cannot be obtained for p(X) by SLD resolution. The introduction of new
symbols f’ and c’ eliminates such situations.

The Herbrand univene A?W is the set of all ground terms that can be
constructed using function symbols in -%3? An instance of an expression, which
can be an atom, a literal, or a rule, is obtained by replacing every variable in
the expression with a term constructed from function symbols in X7 and
variables.

Let P be a program. The Herbrand instantiation of P is the set of all the
ground instances of rules in P. The Herbrand base of P, denoted by %@P, is
the set of all ground atoms that are constructed using predicates in P and
terms in %%?.

Let f, u, t be truth values ordered by f < u < t. An interpn?tadon 1 of a
program P is a mapping from %%’P to {f, u, t). 1 can be represented by a
partition of 2%3’P, Pos(Z) u Und(l) u ~eg(l), where Pos(l) (respectively,
Und(Z), Neg(Z)) is the set of ground atoms A such that 1(A) is t (respectively
u, f). Any two of these sets will uniquely determine 1. 1 can also be viewed as
the set Pos(I) u {- BIB G ZVeg(l)) of ground literals.

Definition 2.1. Let PI and Pz be programs such that F@P, C%33’PZ,and let
I be an interpretation of P2. Then the resm”ction of I to PI, denoted by llP,, is
an interpretation of P, whose mapping is the restriction of the mapping 1 to
%22?p,.

Definition 2.2 [%zymusinski 1989]. Let I be an interpretation of a program
P.

—A ground atom A is true in 1 if A c Pos(l) and is fake in 1 if A = iVeg(I),
and is undefined if ~ G Und(1);

Tabled Evaluation with Delaying for General L~”c Programs 25

—A ground negative literal -A is true in I if A = Neg(l) and is false in 1 if
A E Pos(1), and is undefined if A E Und(1);

—The existential closure 3L of a literal L is [rue in 1, denoted by 1 K 3L, if
some ground instance of L is true in 1; and 3L is false in 1 if all ground
instances of L are false in 1;

—The universal closure VL of a literal L is true in 1, denoted by I 1=VL, if
every ground instance of L is true in 1; and VL is false in Z if some ground
instance of L is false in 1.

—A ground rule, H - L],..., L., is true in 1 if
—H is true in 1 when all Li’s in the rule body are true in I; and
—at least one of the Li’s in the rule body is false in 1 when H is false in 1.
—A rule G is true in 1 if every ground instance of G is true in /, and is

@lse in I if some general ground instance of G is false in 1.

I is a model of P if every rule in P is true in 1.

Definition 2.3 [Pnzymusinski 1990]. Let I and J be interpretations of a
program P. There are two natural orderings between interpretations, namely
the truth ordering s (also called Fitting-ordering) and the information ordering
G , where

—1 <.1 if Pos(l) G Pos(.1) and Neg(l) z Neg(.l);
—1 G 1 if Pos(l) G Pos(Y) and Neg(l) c Neg(J).

Models that are least in the sense of the truth ordering s are called least
models. Models that are smallest in the sense of information ordering c are
called smallest models.

Associated with each program F’ there is a mapping 9P over interpretations.
It is a generalization of the immediate consequence operator in Van Emden
and Kowalski [1976].

Definition 2.4 [&msinski 1990]. Let P be a program and 1 be an
interpretation of P. Then 3P(1) is an interpretation of P such that for every
H E%U?P,

—H = POS(YP(I)) if and only if there is a rule, H - L,,..., L., in the
Herbrand instantiation of P and every Li(l < i s n) is true in L

—H E Neg(YP(1)) if and only if for every rule with H in the head, H +
L,,.. ., L., in the Herbrand instantiation of P, some Li(l s i s n) is false
in 1.

Let @ be the least interpretation of P, in which all ground atoms in ,%%ZPare
false. The powers of 9P are defined as follows:

qT~=@

Ypt” =SP(SPT(”-l)) if n is a successor ordinal

—— U{qwk<n} if n is a limit ordinal

where 1-l is the least upper bound operation of interpretations of P with
respect to the truth ordering s .

We assume that there is a special ground atom u. Atom u is always
undefined, that is u G Und(1). Itcan appear only in rule bodies in a program.

26 W. CHEN AND D. S. WARREN

A nonnegatwe program is a multiset of rules whose bodies do not contain any
negative Iiterals, but may contain atom u.

THEOREM 2.5 [PRZYMUSINSn 1990]. Let P be a nonnegatwe program. Then P
has a unique least three-valued model, denoted by LPM(P). Furthermore, YP has
a least fixed point, which coincides with YPT‘“ and LPM(P).

An interpretation 1 can also be determined by speci&ing Pos(Z) and
.Vnd(Z). Let P be a nonnegative program and 1 be an interpretation of P. We
define ~P(1) such that for every H G &Z@P,

—H E PO.r(TP(I)) if and only if there is a rule, H t Ll,..., Ln, in the
Herbrand instantiation of P and every Li(l < i s n) is true in 1;

—H = Und(rP(I)) if H @ Po.s(rP(Z)) and there is a rule, H ~ L,,..., L., in
the Herbrand instantiation of P and every Li(l s i s n) is either true or
undefined in 1.

The powers of 7P are defined as those of =P.

LEMMA 2.6. Let P be a nonnegatwe program and Z be an interpretation of P.
Then 7P(I) = r[P(I). If P k a nonnegative program, then Tp has a least @point,
which coincides with T;” and LPM(P).

PROOF. Notice that Pos(7JI)) = POS(7P(Z)), and H = Neg(.!@ 1)) if and
only if H @ Pos(~P(Z)) U Und(rP(I)). Thus 7P(I) = TIP(l). The rest of the
lemma follows from Theorem 2.5. ❑

Dejinitwn 2.7 [Z%zymusinski 1990]. Let P be a program and Z be an
interpretation of P. The quotient of P modulo I, denoted by P/I, is the
nonnegative program obtained from the Herbrand instantiation of P by:

—deleting every rule with a negative literal in the body that is false in Z; and
—deleting every negative literal in a rule body that is true in f; and
—replacing with u every negative literal in a rule body that is undefined in 1.

I is a three-valued stable model of P if I = LPM(P/1). The set of all
three-valued stable models of P is denoted by -(P).

The notation of three-valued stable models is a generalization of both the
well-founded partial model [Van Gelder et al. 1991] and the two-valued stable
models [Gelfond and Lifschitz 1988].

THEOREM 2.8 [PRZYMUSINSIU1990]. Ler P be a program, and %?%(P) be the
well-founded partial model of P. Then 2Y’Y(P) is the smallest three-valued stable
model of P. Stable models as dejined by Gelfond and Lifschitz coincide with
two-valued stable models.

3. Que~ Evaluation as Partial Deduction

Partial deduction is a program transformation technique that specializes a logic
program with respect to a query to produce a more etlcient or simpler
program [Komorowski 1990; Lloyd and Shepherdson 1991]. The new program
should be equivalent to the original one as far as the query is concerned. This
paper uses partial deduction for query evaluation with respect to the well-
founded partial model. The primary motivation for using partial deduction is to
understand the fundamental transformations involved in query evaluation, and
to separate the logical issues from the procedural ones.

Tabled E@@ion with Delaying for General Lo~”c Programs 27

Recall that unification can be viewed as a process of transforming a system
of equations from a general form into a solved form [Martelli and Montanari
1982]. Each transformation presewes all solutions or unifiers. We follow a
similar approach to query evaluation, which is considered a process of trans-
forming a system of subgoals with associated rules into one that contains only
answers of subgoals. This section introduces by examples the representation of
systems of subgoals and various transformations.

3.1. PARTIALDEDUCTIONOF DEFINITE PROGRAMS. Without loss of general-
ity, we consider queries that are represented as atoms, and use “subgoal” as a
synonym for “atom”. For definite programs, the partial deduction of a subgoal
corresponds to SLD resolution with tabling such as OLDT resolution [Tamaki
and Sato 1986].

Consider an atomic query q(X) with respect to the following program:

(cl) q(x) -p(x).
(C2) q(a).
(C3) p(x) + q(x).

In all the examples, we will always label each rule in a program for conve-
nience of reference, and assume a left-to-right computation rule,

A system is a set of pairs of the form (A : p), where A is a subgoal and p is
a sequence of annotated rules for A. No two pairs in a system have the same
subgoal, where two subgoals are considered the same if they are renaming
variants of each other. The sequence p of annotated rules represents the
history of the addition and/or deletion of rules for subgoal A. The annotation
of each rule in p indicates where the rule is derived from and whether some
rule is disposed. Intuitively, a rule is disposed when it no longer has anything to
contribute to the derivation. In general, the sequence p can be transfinite,
which is necessary because the well-founded partial model of a program may
be transfinite.

Initially, the system is empty. The query atom q(X) is introduced as the first
subgoal. The initial sequence of q(X) is an arbitrary sequence of all rules
obtained by resolving q(X) - q(X) on q(X) in the body with rules in the
program. The following is the system after q(X) is introduced:

({o: q(x) +-p(x) (cl)
dx): ~. ~(a)))(C2) “

An annotated rule of the form G{ C), where C is (the label of) a rule in a
program, means that G is obtained by resolution with rule C in the program.
The sequence of a subgoal is written as a set of pairs a : AG where a is an
ordinal and AG is an annotated rule. In general, the annotation in A G
indicates where the rule in AG is derived from—a rule in a program or an

. earlier rule in the sequence, and in the latter case, whether the earlier rule in
the sequence is disposed.

For each nondisposed rule in the sequence of a subgoal, the head captures
variable bindings that have been accumulated, and the rule body contains
literals that remain to be solved in order to derive an answer for the subgoal. A
rule with the empty body is an answer, for example, q(a) in the above sequence
of q(X). For a rule with a nonempty body, a literal is selected from the rule

28 W. CHEN AND D. S. WARREN

body by a computation role. The atom of the selected literal is added as a new
subgoal if it is not in the current system. In the example above, p(X) is
selected from the body of q(X) - p(X) and is added as a new subgoal. Like
q(X), P(X) has its own sequence of annotated rules obtained by resolution of
P(X) - P(X) on P(X) in the body with rules in a program. So the system
becomes:

[{

o: q(x) -p(x) (cl)
9(X): 1. q(a)

})(C2) .

p(x): (o: p(x) + q(x) (C3))

The selected atom of p(X) G q(X) is q(X), which is a subgoal already in the
current system. Thus, it is solved using only answers of the subgoal q(X), such
as q(a) in the sequence of q(X). This avoids repeated evaluation of identical
subgoals.

By solving the selected atom of p(X) e q(X) using the answer q(a), the
sequence of p(X) is extended as follows:

(

o: p(x) - q(x) (C3)
p(x):

1: p(a))(O, q(a)) “

The annotated rule p(a)(O, q(a)) means that p(a) is obtained from an earlier
rule in the sequence of p(X), namely p(X) + q(X) corresponding to ordinal
O, by solving the selected atom using an answer q(a). Continuing in a similar
way, p(a) is an answer and is used to solve the selected atom p(X) in
q(X) + p(X). The sequence of q(X) is extended by adding the resulting rule:

(

o: q(x) -p(x) (cl)

q(X): 1: q(a)

I

(C2) .

2: q(a) (0, p(a))

The rule q(a) corresponding to ordinal 2 in the sequence of q(X) is an answer.
But it is a redundant answer and so is not used to solve the selected atom
q(X) in the ruleP(X) + q(x) for p(X).

At this point, all answers have been derived for subgoals relevant to a query.
No new subgoal can be introduced and no annotated rule can be added to the
sequence of any subgoal in the system. For definite programs, all annotated
rules with a selected atom can be disposed at the end, leaving only answers of
subgoals relevant to the original query. The final system of our example is as
follows:

(0: q(x) -p(x) (cl)

Iq(x): 1
: q(a) (C2)

2: q(a) (O, p(a))

3: disposed (o)

(
o: p(x) - q(x) (C3)

p(x): 1: p(a) (0, q(a))

2: disposed (o)

Tabled Evaluation with Delaying for General LOB”CPrograms 29

where &posed{ a) for some ordinal a indicates that an earlier rule corre-
sponding to a in a sequence of annotated rules is simply disposed.

Given a finite program P, an atomic query A, and a system of subgoals that
is constructed during the partial deduction of A with respect to f’, the set of
all rules that are not disposed in the system constitutes an intermediate
program for subgoals relevant to A. When a final system is reached in which
all rules that are not disposed are answers, partial deduction becomes query
evaluation in the sense that the program for subgoals corresponding to the
final system contains only answers.

3.2. PARTIAL DEDU~ION OF STRATIFIEDPROGRAMS. A subgoal B is com-
pleted when all the rules in its sequence that are not disposed are answers. For
stratified negation, a ground negative literal - B succeeds only if B is
completed and has no answers. However, when there is mutual recursion
among subgoals, these subgoals may have rules in their sequences that have
selected atoms but are not disposed, even though they cannot possibly have any
answers, These rules with selected atoms have to be disposed so that the
subgoals become completed and their negative counterparts can succeed.

Consider an atomic query m with respect to the following stratified program:

(Cl) m ~ N q(b).
(C2) q(x) -p(x).
(C3) q(a).
(C4) p(x) + q(x).

The first subgoal in the system is the initial atomic query m:

((m: O: m+- q(b) (Cl))}.

The selection of - q(b) in the rule body of m -- q(b) for m results in a new
subgoal q(b). The new subgoal q(b) is processed as in definite programs,
leading in two transformation steps to the following system:

[

m: (O: m - * q(b) (Cl))

q(b): (

I

O: q(b) ~p(b) (C2)) .

p(b): (O: p(b) + q(b) (C4))

Notice that neither q(b) nor p(b) can have any answers. But they are not
completed since they have rules in their sequences that have a selected atom
and are not disposed. On the other hand, - q(b) cannot succeed unless q(b) is
completed without any answers.

We introduce the COMPLETIONtransformation to handle this situation. It is
applied to a nonempty set of subgoals. It checks rules in the associated
sequences of annotated rules of the subgoals and, under certain conditions,
disposes all rules that are not answers. For the set of subgoals, (q(b), p(b)), two
properties are satisfied, both of which are required by the COMPLETIONtrans-
formation.

First, neither of them has a rule that has a selected negative literal but is not
disposed. Second, all nondisposed rules that have a selected atom have been
processed using all answers of the selected atom. The first condition ensures
that the situation is similar to tabled evaluation of definite programs, and the

30 W. CHEN AND D. S. WARREN

second condition guarantees that all answers of a selected atom have been
returned.

In the case of {q(b), p(b)}, neither q(b) nor p(b) has any answer. The
COMPLETIONtransformation is applied to {q(b), p(b)} and all rules of q(b) and
p(b) that are not answers are disposed:

[{

m: (o: m + - q(b) (cl))

o: q(b) -p(b) (CT!)
9(b): 1. d~posed

)1(o) .

I (o: p(b) + q(b) (C4)
P(b): 1. dbposed

(0))1

Both q(b) and p(b) are now completed without any answers. By negation as
failure, - q(b) can be removed so that the rule for m is disposed and an
annotated answer m is added, leading to a final system of subgoals:

m:
(

O: m + - q(b) (Cl)

1: m (0) }

(

o: q(b) -p(b) (C2)
d~): 1. dfiposed

(0))

{

o: p(b) - q(b) (C4)
P(b): 1. dkposed

(0))

The annotated rule m(0) in the sequence associated with m means that the
rule corresponding to ordinal O, namely m -- q(b), is disposed.

3.3. HANDLING NEGATIVE LOOPS wrrH DELAYING. With recursion through
negation, a set of subgoals may be waiting for each other in a circular fashion
through selected negative Iiterals. Each of them may be waiting for others to
become completed in order to solve the selected negative literals in its own
rules. but none of them can be comdeted. We introduce the DELAYING
transformation to skip selected negat~e
computation can proceed.

Consider an atomic query s with respect

(cl) s + -t.
(C2) f + -s.

literals that are ground

to the following program:

The evaluation of subgoal s leads to a system as follows

(

s: {o: s--t (cl)}

)
t: {o: t--s (C2)} “

so that

In the sequences associated with subgoals, rules that have a selected literal
can be viewed as directed edges in a dependency graph of subgoals. Each edge
is labeled positive or negative according to whether the selected literal is an
atom or the negation of an atom. In the system above, the rule s + - t in the
sequence for subgoal s can be viewed as a negative edge from s to t,and the
rule t + - s in the sequence of subgoal t can be viewed as a negative edge

Tabled El!aiuation with Delaying for General Lo@-c Programs 31

from t to s. There is a loop among s and t in the dependency graph involving
negative edges. Such a loop is called a negatiue loop. Each of s and r is waiting
for the other to be completed in order to solve the selected negative literal in
the body of its rule, which keeps either from ever proceeding.

Our approach is to delay selected negative ground literals so that computa-
tion can proceed. Delayed literals will not be selected by a computation rule,
even though they may be simplified away later if their truth values become
known to be true or false. Each delayed literal is annotated by the correspond-
ing subgoal, for example, N s’. The notion of rules is extended to allow delayed
Iiterals in rule bodies. When the selected ground negative literals of a rule is
delayed, the rule is disposed and replaced with a new rule that has a delayed
literal in the body. Suppose that - t is delayed in the rule for s. We derive the
following system:

1{

o: s-’-f (cl)
s:

1: }1S+-t’ (o) ,

1{t: o: t--s (C2)} J

where s + - t‘ (0) in the sequence of s means that the rule corresponding to
ordinal O in the sequence of s is disposed and replaced with s - - t’.

A rule with only delayed literals in its body is considered an answer. Subgoal
s becomes completed since all its rules that are not disposed are answers.
However, subgoal s neither succeeds with an answer that has an empty body,
nor fails without any answers. Accordingly the selected negative literal - s in
the rule for t neither succeeds nor fails. Our approach is to delay - s too,
which results in a new system:

1(

o: s+~t (cl)
s:

1: s--t’ (o))1

H }1o: t--s (C2) “
t:

1: t--s’ (0)

This is also the final system since no further processing can be done. Neither of
the subgoals succeeds or fails. In fact, both s and t are undefined in the
well-founded partial model of the given program.

3.4. PROPAGATIONOF DELAYEDLITERAM. When an answer is used to solve
the selected atom in a rule body, the variable bindings accumulated in the head
of the answer are propagated by unification with the selected atom. But the
answer may have delayed Iiterals in its body and there is a question whether
they should also be propagated. In our approach they are not. We next
illustrate how answers with delayed Iiterals are used to solve the selected atom
of a rule. After that, we give an example that shows that propagating delayed
literals of answers may cause an exponential explosion.

Consider the evaluation of an atomic query p(X) with respect to the
following program:

(cl) s + - t.
(C2) f + - s.
(C3) p(X) + q(X, Y), r(Y).
(C4) q(a, Y) + - s.
(C5) r(b).

32 W. CHEN AND D. S. WARREN

Following the procedures discussed in previous subsections (and assuming a
left-to-right computation rule), the evaluation of the query p(X) leads to the
following system:

p(x): (o: p(x) - q(x, Y), r(Y) (C3)}’

q(x, Y): { O: q(a, Y) + - s (C4))

{

o: s--f (cl)
s:

1: S--tr (o) }

(

o: t-’-s (C2)
t:

1: f--s’ (o) }

Subgoal s is completed with an answer that has a delayed literal - t’. Since
s neit~er succeeds ;or fails, the negative literal - s in ~he rule of q(X, Y) is
also delayed. The sequence associated with q(X, Y) is extended as follows:

{

o: q(a, Y) + -s (C4)
q(x>y): ~. ~(a, y) + -s’

}{o) “

The annotated rule q(a, Y) -- s’ (0) means that the rule corresponding to O,
namely q(a, Y) - - s, is disposed and replaced with q(a, Y) + - s’.

By definition, q(u, Y) -- s’ is an answer for subgoal q(X, Y) as it contains
only delayed literals in its body. This answer should be used to solve the
selected atom q(X, Y) in the rule for p(X). Our approach does not propagate
the delayed literal - s’ in the body of the answer. Instead, we introduce a
positive delayed literal. The sequence of annotated rules associated with p(X)
is extended as follows:

(

O: p(X) + q(X, Y), r(Y) (C3)

)‘(x): 1: p(a) ~ q(a, Y)~ti;!l, r(Y) (O, q(a, Y)) ‘

where q(a, Y)~~~~~) represents a positive delayed literal whose truth value
depends upon the truth value of some answer of subgoal q(X, Y) with q(a, Y)
in the head. The annotation (O, q(a, Y)) means that the corresponding rule is
obtained by solving the selected atom of an earlier rule corresponding to O
using some answer with q(a, Y) in the head. Since variable bindings in the
head of an answer have been propagated through unification, a delayed
positive literal serves only as a place holder that can be simplified away if and
when its truth value later becomes known. The annotation in a delayed positive
literal provides control information for such simplification.

Recall that a computation rule cannot select a delayed literal. Thus, r(Y) is
selected in the body of p(a) - q(a, Y)~~$~\), T(Y). A new subgoal r(Y) is
added to the system; its initial sequence contains one rule obtained by
resolution with rule labeled C5 in the program.

r(Y): {O: r(b) {C5)].

The rule r(b) is an answer. It is used to solve the selected atom r(Y) in the
rule corresponding to 1 in the sequence of p(X), The sequence of p(X) is

33Tabled Evaluation with Delaying for General Lo~”c Programs

extended to:

[

o: p(X) - q(X, Y), r(Y) (C3)

p(x): 1:

1

p(a) - q(a, Y)~&,’J’),r(Y) (O, q(a, Y)) .

2: p(a) - q(a, b)~%’~; {I, r(b))

Now the COMPLETIONtransformation can be applied to the set {P(X)} of
subgoals, which produces a final system in which all subgoals are completed:

(

p(x):

O: p(X) + q(X, Y), r(Y) (C3)) \

1: p(a) + q(a, Y)~t;,’J’l, r(Y) (O, q(a, Y))

2: p(a) + q(a, b):[%!’i) (l, r(b)))

3: disposed (0)
4: disposed (1) /

(o: q(a, Y) + *S (C4)
q(x, Y): ,

1: q(a, Y) + - s’ <0) }

(

o: s--: (cl)
s:

1: S+l’ (0) }

(:

o: t--s (C2)
(:

)
r(Y): {:: :(;) - {C5;;)

)

There are two reasons that we do not propagate delayed Iiterals in the body
of an answer when the answer is used ~o ~ol~e the s~lected atom of a rul~.
First, it is not necessary to propagate delayed literals for well-founded nega-
tion. We are interested in only whether an atom is definitely true or false in
the well-founded partial model, not in how many ways an atom may depend
upon other Iiterals. Second, for a subgoal A, there may be many answers for A
that have the same atom in the head, but different delayed literals in the body.
Propagating delayed literals may generate an exponential number of distinct
answers for a subgoal, as the following example shows.

Example 3.4.1. Let n be an arbitrary positive integer. Consider the follow-
ing program:

max(n).
Succ(o, 1). Succ(l, 2). “““ Succ(n – 1, n).
p(X) + succ(X, Y), r(X), p(Y).
P(x) + mu(X), r(X).
r(X) + - q(X, a).
r(X) + - q(X, b).
q(X, a) + r(X).
q(X, b) + r(X).

Notice that each r(i), where O < i s n, has two answers. One is r(i) --
q(i, a)q(;’“), and the other is r(i) + - q(i, b)q(i’b). For the evaluation of subgoal
p(0), our approach generates a polynomial number (in n) of answers for

34 W. CHEN AND D. S. WARREN

relevant subgoals. In contrast, propagating delayed literals of answers of each
r(i) would have led to an exponential number (in n) of answers for P(O). ❑

3.5. SIMPLIFICATIONOF DELAYED LITERALS. Not all delayed literals are
undefined in the well-founded partial model of a program. Some of them may
become known to be true or false later and should be simplified away.
SimplKlcation of delayed literals is necessary so that when a subgoal is
completed, a ground instance of the subgoal is true in the well-founded partial
model if and only if it is an instance of the head of an answer that has an
empty body, and is false if and only if it is not an instance of the head of any
answer of the subgoal.

Suppose that p is evaluated with respect to the folIowing program:

(cl) p -p.
(C2) p + -s.
(C3) s -- r.
(C4) r - -s, r.

Assuming a left-to-right computation rule, the evaluation of p leads to the
following system after the introduction of several subgoals:

[: li:~:::!?l

There is a negative loop involving subgoals s and r. The DELAYINGtransfor-
mation k applied to each of the selected negative lherals, namely - s and
- r. This result is a new system:

(
0: p+p (cl)

P: 1: P+-s (C2)

2: p--s’ (1) I

(

o: s--r (C3)
s:

1: s--r’ (o) }

{

o: r+-s, r (C4)
r:

1: r--sS,r (o) 1
Subgoal p has an answer with delayed Iiterals, namely p + z s’. The answer

is returned to the selected atom p in the rule p ‘-”p. The sequence of
annotated rules of p is extended as follows:

[1

0: p+p (cl)

1: p--s (C2)
p: 2: p+ -s’ (1) “

3: p+p; (o, p)

Tabled Euaiuation with Delaying for General Logic Programs 35

The singleton set {p) of subgoals is completely evaluated by definition. All
rules of p that are not answers are disposed by the transformation COMPLE-
TION:

‘o: p+p (cl)

1: p+-s {C2)

2: p+ -s’ (1)

3: P+P;

}

(O, p) “

,4: disposed (0)

The singleton set {r} of subgoals is completely evaluated by definition. All
rules of subgoal r that are not answers are disposed by the transformation
COMPLETION.The final sequence of annotated rules associated with r is as
follows:

r:

‘o: r~-s, r (C4)

1: r~mss,r

1

{o) .
2: disposed (1)

Since subgoal r is completed without any answers, all occurrences of the
delayed literal - r’ can be deleted. In particular, the sequence of annotated
rules of subgoals s is extended to the following:

(
O: s~-r (C3)

s: 1:

I

se-r’ (0) .

2: s (1)

Subgoal s succeeds with an answer that has s in the head and an empty
body, The rule p + - s’ of subgoal p can be disposed.

o: P6P (cl)

1: p+-s (C2)

2: p--s’ (1)

3: p+p; (0, p)

4: dkposed (0)

5: disposed (2)

The only answer for p is p - p;. In the well-founded semantics of the
original program, p is false. Notice that the answer p t p; was derived
because of the answer with a delayed literal, p e - s’. Even though p -- s’
has been deleted, p ~ p: remains. We introduce another transformation,
called ANSWER COMPLETION,which deletes answers with some positive delayed
Iiterals under certain conditions (to be defined later). For the example above,

36 W. CHEN AND D. S. WARREN

the final sequence of annotated rules of p is as follows:

P:

‘o: p+p (cl)

1: p~-s (C2)

2: p--s’ (1)

3: p~p: (o, p)

4: dkposed (0)

5: disposed (2)

,6: disposed (3)

where the answer p + p; has been disposed. Thus, subgoal p is completed
without any answers.

4. Transformations

This section presents the formal definitions of systems and transformations of
systems.

4.1. SYSTEMS

Definition 4.1.1. A subgoal is an atom. Two subgoals are considered the
same if they are renaming variants of each other.

A negative delayed literal is of the form - BB, where B is a ground atom. A
positive delayed literal is of the form B;, where B, H and A are atoms such
that B is an instance of H and H is an instance of A. If O is a substitution,
then (B~)@ is defined as (B6)~.

As we have discussed in Section 3, a positive delayed literal of the form B;
is created when the selected atom of a rule is solved using an answer of a
subgoal A that has H in its head and some delayed literals in its body, in
which case H must be an instance of A. The annotations A and H in B;
provide control information for the simplification of the delayed literal later.

Definition 4.1.2. An X-rule G is of the form:

H+~l,..., Ln

where H is an atom, and each Li(1 s i s n) is an atom, the negation of an
atom, or a delayed literal, and n >0. If n = O, G is called a fact. If every
Li(l s i s n, n > O) is a delayed literal, G is called an answer.

A computation de is an algorithm that selects from the body of an X-rule G
a literal L that is an atom or the negation of an atom (if there is any). L is
called the selected literal of G. if L is an atom, it is also called the selected atom
of G.

Notice that a computation rule never selects a delayed literal. However, it
may selected a negation literal that is not ground. We try to solve a nonground
negative literal by negation as failure if it is sound to do so.

Defiition 4.1.3. Let P be a finite program, C be a rule in P, G be an
X-rule, a be an ordinal, and H be an atom. Then an X-ekmzent is of the form
G(C), G(a), G(a, H), or disposed(a).

An X-sequence p is a mapping from all ordinals that are smaller than some
ordinal a to the set of X-elements. The ordinal a is the length of p.

Tabled Evaluation with Dehying for General Logic programs 37

Each subgoal in a system has an associated X-sequence. The X-sequence
captures the history of the addition \d@osal of X-rules for the subgoal during
its partial deduction (as shown in the examples in Section 3). Each X-element
in the X-sequence indicates from where an X-rule is derived—a rule in a
program or an X-rule earlier in the X-sequence—and/or whether the X-rule
earlier in the X-sequence is disposed.

More specifically, let p be the X-sequence of a subgoal A. Let p be an
ordinal such that p(@) = e for some X-element e, and a be an ordinal such
that a < ~.

—If e is of the form G(C), where G is an X-rule and C is a rule in a
program, then G is created by resolving A - A on .4 in the body with C;

—If e is of the form G(a), where G is an X-rule, then the X-rule correspond-
ing to a in p is disposed and replaced by G;

—If e is of the form G{ a, H), where G is an X-rule and H is an atom, then
G is obtained by solving the selected atom of the X-rule corresponding to a
in p using an answer with H in the head;

—If e is disposed{ a), then the X-rule corresponding to a in p is simply
disposed.

We consider two main operations over X-sequences: concatenation and the
least upper bound of an increasing chain of X-sequences. The former is used to
extend the X-sequence of a subgoal in a system, and the latter is needed for
the transfinite definition of the notion of SLG derivation given in Section 4.3
later.

Definition 4.2.4. Let pi and p2 be X-sequence of length al and al

respectively. The concatenation of pl and p2, denoted by pl “pz, is an
X-sequence of length al + az such that (pl . pz)(i) = pi(i) for every i(O s i
< al), and (p, . p2Xctl +j) = pz(j) for every j(O < j < cr2).

The X-sequence pl is said to be a prefi of pl . pz. If pz is a sequence of
length 1 such that p$O) = e for some X-element e, we also write p] “Pz as
pl . e.

There is a natural prefix partial order over X-sequences. Let PI and pz be
X-sequences. Then PI c p2 if PI is a prefix of pz. An X-sequence p of length
a can also be viewed as a set of pairs ((i, p(i)) D s i < a), in which case the
prefm relation reduces to the subset relation.

Definition 4.2.5. Let @ be an ordinal and pi(O s i < ~) be an increasing
chain of X-sequences (with respect to G), and let a be an ordinal such that
the length of each pi(O s i < ~) is less than a. Then the least upper bound of
the chain pi(O < i < /3), denoted by lJ {piD s i < @], exists since the length of
each pi(O < i < ~) is less than a. It is the X-sequence that is the union of all
pi(O < i < P) where an X-sequence is viewed as a set.

The intermediate state of the partial deduction of a query is represented by a
system.

Definition 4.1.6. Let P be a finite program, and R be a computation rule. A
system & is a set of pairs of the form (A : p), where A is a subgoal and p is its
X-sequence, such that no two pairs in &’ have the same subgoal. A subgoal A
is said to be in S’ if (A : p) = & for some X-sequence p.

38 W. CHEN AND D. S. WARREN

Let (A: p) =9, where A is a subgoal and p is its X-sequence. Let G be an
X-rule and a be an ordinal. G is said to be the X-rule of A corresponding to a
in&if p(a) is either G(C), G(i), or G(i, H), where C is a rule in P, i < a,
and H is an atom.

Let G be an X-rule of A corresponding to a in % Then

—G is disposed if for some j > a, p(j) is either disposed{ a) or G{ a) for
some X-rule G;

—G is an answer ofA if G is not disposed and all Iiterals in the body of G are
delayed Iiterals;

—G is an active X-rule of A if G is not disposed and has a selected literal.

A subgoal A in S is completed if all X-rules of A that are not disposed are
answers.

4.2. TRANSFORMATIONSOF SYSTEMSOF SUBGOALS. Starting with the empty
system of subgoals, each transformation transforms one system into another.
The initial X-sequence of a subgoal is obtained by resolution with rules in a
program. Without loss of generality, we consider only atomic queries that
contain a single atom.

Definition 4.2.1 (X-resolution). Let G be an X-rule, of the form H +
Ll, Ln, and Li be the selected atom of G for some i(l s i s n). Let C be
a rule and C’, of the form H’ + L’l, L’~, be a variant of C with variables
renamed so that G and C’ have no variables in common. Then G is X-resoZua-
ble with C if Li and H’ are unifiable. The X-rule:

is the X-resoluent of G with C, where 0 is the most general unifier of Li and
H’.

The selected atom in the body of an X-rule can be solved by an answer that
may or may not have delayed literals. If the answer does have delayed literals,
X-factoting is used to propagate variable bindings captured in the head atom of
the answer and create a positive delayed literal for propagating the truth values
of the delayed literals in the body of the answer.

Dejinitiorz 4.2.2 (X-factoting). Let 9’ be a system. Let G, of the form
H ~ L,, Ln, be an active X-rule of a subgoal A in ~, and let Li be the
selected atom of G for some i(l s i s n). Suppose that Li is a subgoal in Y’
and C is an answer of Li in Y, and C’, of the form H’ e L’l,. ... L’~, if a
variant of C with variables renamed so that G and C’ have no variables in
common, and m >0. Then the X-rule:

HO* LIO,..., Li_18, (Li 0)~,, Li+16>..., L~8

is the X-factor of G with C, where O is the most general unifier of Li and H’.

The selected negative literal, possibly containing variables, in the body of an
X-rule can be solved if the positive counterpart succeeds (without binding any
variables) or fails. A delayed literal can be simplified if it is successful or failed.

Tabied E1’aluation with Delaying for General Lo@”cPrograms 39

Definition 4.2.3. Let S’ be a system.

—A subgoal A in J% succeeds if A has an answer that has A in the head and
an empty body, and fails if A is completed in Y without any answers;

—A ground negative delayed literal - BB is successjid if subgoal B fails, and
is failed if subgoal B succeeds;

—A positive delayed literal B~ is successjid if subgoal A has an answer that
has H in the head and an empty body, and is failed if subgoal A is
completed and does not have any answer with H in the head.

The transformation COMPLETION requires the notion of a set of subgoals that

are completely evaluated so that it can dispose their active X-rules that are not

answers.

Definition 4.2.4. Let .9’be a system and A be a nonempty set of subgoals in
3’, none of which is completed. A is said to be completely euaiuated if for every
subgoal A E A, where (A : p) c 9 for some X-sequence p, either xl succeeds,
or for every active X-rule G of A corresponding to some ordinal a in S’, there
exists an atom A, such that:

—A, is the selected atom of G; and
—A, is a subgoal in F that is either completed or in A; and
—for every atom H that is the head of some answer of A ~ in S, there exists

an ordinal i > a and an X-rule G such that p(i) = G’{ a, H).

The transformation ANSWERCOMPLETIONis needed to get rid of answers of
subgoals that have positive delayed Iiterals in their bodies, provided that they
are not supported in the following sense,

Definition 4.2.5. Let Y be a system, A be a subgoal in Y’ and H be an
atom that occurs in the head of some answer of A. Then H is suppotied by A
in .Y if

(i) either A is not completed; or
(ii) there exists an answer C of A that has H in the head such that for eve~

positive delayed literal (B1)fl; in the body C, HI is supported by A ~.

No atom is supported by A in & unless it follows from (i) and (ii).

Notice that if a subgoal A in a system 9 has an answer C that has an atom
H in the head and only negative delayed Iiterals in the body, then H is
supported by A in S’.

Let P be a finite program, R be an arbitrary but freed computation rule, and
Q be an atomic query. The following are all the transformations of systems,
each of which transforms a current system S into a new one.

-B
Let A be a subgoal that is not in &’ and that satisfies one

of the following conditions:
—A is the initial atomic query Q; or
—there is an active X-rule of some subgoal in & whose selected literal is

either A or - A.

Let CO,C1,.. ., C~_, (k z O) be all rules in program P with which A G A
is X-resolvable, and G, (O s i < k) be the X-resolvent of A e A with C,.

40 W. CHEN AND D. S. WARREN

Let p be the X-sequence of length k such that p(i) = Gi(Ci) (O < i < k).
Then

9

5’U {(/4 :p)) “
Remark. Repeated subgoals are not solved by resolution with rules in a

program.

--
Let (A : p) ● S“, where A is a subgoal and p is its

X-sequence. Let G be an active X-rule of A corresponding to an ordinal a
in 9. Let Al be the selected atom of G, and let C be an answer of subgoal
Al in & that has H in its head. If there is no ordinal i > a such that
p(i) = Gl(a, H) for some x-rule Gl, then

.-Y

Y– ((A:-p)} u{(&dG2(a, H)))) ‘
where G2 is the X-resolvent of G with C if C has an empty body and is the
X-factor of G with C if C has some delayed literals in its body.

Remark. A ~ may have multiple answers with the same atom H in the
head. Only one of them is used by rmsrrnw RETURNto solve the selected
atom A ~ and G. So, in particular, redundant answers are not used.

— NEGATIVE RETURN . Let (A: p) G ~, where A is a subgoal and p is its
I I
X-sequence. Let G be an active X-rule of a subgoal A corresponding to an
ordinal a in Y, and let - A, be the selected literal of G, where A ~either
succeeds of fails. Then

9

Y– {(A: p)) U {(A: p“disposed(a))}
if A, succeeds,

9

s– {(A:p)) u {(A:p. G’{a))}
if A ~ fails,

where G is G with the selected literal - Al deleted.

-m
Let (A : p) e S, where A is a subgoal and p is its X-se-

1 1

quence. Let G be an active X-rule of subgoal A corresponding to an
ordinal a in S’, and let N B be the selected literal of G such that - B is
ground. Then

Y

5’– {(A:p)} U ((A:p”(G(cr)))}’

where G is obtained from G by replacing - B with - B ~.

Remark. Nonground negative literals are not delayed.

--
Let A be a nonempty set of subgoals in 9 that is

completely evaluated. Then

Y

forevery A = A,replace(A, p) -Ywith(A, p”p’) ‘

Tabled Evaluation with Delaying for General L,ogt”cPrograms 41

where p’ is an arbitrary sequence of all X-elements of the form dtiposed(a),
where a is an ordinal such that the X-rule of A corresponding to a in p is
an active X-rule.

Remark. COMPLETIONdoes not depend upon any a priori stratification
ordering of predicates or atoms. Instead, a set of subgoals k inspected and
completed dynamically.

‘-
Let (A : p) G Y’, where ,4 is a subgoal that k com-

, I

pleted and p is its X-sequence. Let G be the X-rule of A corresponding to
an ordinal cr in Y that k not disposed and that has a delayed literal L in
its body which is either failed or successful. Then

9

Y– {(A: p)) u {(~: p.disposed(a>)}
if L is failed,

Y

S– {(A: p)} u {(A:p. G’(a)))
if L is successful,

where G’ is G with L deleted from its body.

Remark. Simplifying a positive delayed literal does not generate variable
bindings. The reason is that variable bindings have already been propagated
by X-factoring in POSITIVE RETURN when a positive delayed literal is gener-
ated.

— ANSWERCOMPLETION. Let (A : p) G ~, where A k a subgoal that is

completed and p is its X-sequence. Let H be the head atom of some answer
of A in & such that H is not supported by A. Then

9

Y–{(r4: p))u{(A:p” p’}’

where p’ is an arbitrary sequence of all X-elements of the form disposed(a),
where a is an ordinal such that the X-rule of A corresponding to a in p is
an answer that is not disposed and that has H in the head.

4.3. DERIVATION AND SLG RESOLUTION

Definition 4.3.1. Let P be a finite program, R be an arbitrary but freed
computation rule, and Q be an atomic query. An SLG derivation for Q is a
sequence of systems SO, S,, ..., Y. such that:

—&” is the empty system {);
—for each successor ordinal ~ + 1 s a, J%,, is obtained from Y6 by an

application of one of the transformations, namely, NEW SUBGOAL,POSITIVE
RETURN,NEGATIVERETURN,DELAYING,COMPLETION,SIMPLIFICATION,Or AN-
SWERCOMPLETION;

—for each limit ordinal ~ s a, &B is such that (A : p) ●&P if A is a subgoal
in% forsomei<~ and p= U(p’l(A:p’)E~ andj </3).

If no transformation is applicable to Y., ~a is called a final system of Q.
SLG resolution is the process of constructing an SLG derivation for a query

Q with respect to a finite program P under a computation rule R.

42 W. CHEN AND D. S. WARREN

To show that a final system always exists, we prove that each SLG derivation
is a monotonically increasing sequence of systems with respect to some partial
ordering and each system in an SLG derivation is bounded in size by some
ordinal.

Definition 4.3.2. Let P be a finite program, and 5’1 and Y2 be systems.
Then &l G Sz if for eve~ (A: pl) = Yl, there exists (A : p2) = S2 such that
pl c pz, that is, pl is a pref~ of Pz.

THEOREM 4.3.3. Let P be a finite program, R be an arbitra~ but @d
computation rule, and Q be an atomic que~. Then

(a) there tits some ordinal h such that for any system 9 in any SLG derivation
for Q, the length of the X-sequence of each subgoal in 9 is bounded by A;

(b) everySLG derivation of Q k a monotonically increasing sequence of ~stems
with respect to E ; and

(c) there twits some SLG derivation for Q, =., S’l,..., Y=, for some ordinal a
such that pm is a final system.

PROOF. Let llp be the maximum number of literals in the body of a rule
in P.

(a) Let S be any system in an SLG derivation for Q, and (A: p) be any pair
in ~, where A is a subgoal and p is its X-sequence. The length of p is
bounded based upon the following observations:

—When subgoal .4 is added to a system, its initial X-sequence contains the
X-rules that are obtained by resolving A - A on A in the body with rules
in P. The number of literals in the body of each X-rule is bounded by IIP.
Since P is finite, the initial X-sequence of A is finite.

—When a transformation extends the X-sequence of A, X-elements are
appended to the end of the X-sequence. Let a be an ordinal and let G be
the X-rule of a subgoal A corresponding to a. We discuss the possible
forms of X-elements e that are appended.

(i) If e is dirposed(a), then G is disposed and can be disposed at most
once by the construction of an SLG derivation;

(ii) If e is of the form G{ a), where G is an X-rule, then G is disposed
and replaced by G (in NEGATIVERETURN,DELAYING,or SIMPLIFICATION).

(iii) If e is G’(cr, H), where G is an X-rule and H is an atom, then G is
obtained from G by solving the selected atom of G with an answer that
has H in the head, the G has one literal less than G that is not
delayed. The number of such X-rules G’ that can be obtained from G
by POSITIVERETURNis bounded by the number of distinct atoms (that
are not variants of each other), which is countable.

Therefore, for each X-rule G of a subgoal A corresponding to an ordinal a,
the number of X-rules G that can be obtained directly from G is bounded by
the number of distinct atoms, which is countable. In both (ii) and (iii), either G
and G have the same number of literals in the body and G’ has fewer literals
that are not delayed, or G and G have the same number of Iiterals that are
not delayed and G has fewer literals that are delayed. For any chain of
X-rules, GO, GI,..., Gt, where each Gj+ ,(0 s j < f) is obtained from Gj by
some transformation, f s 211~. Thus there exists some countable ordinal A by

Tabied Evaluatwn with Delaying for General Logic Programs 43

which the length of the X-sequence p of A in & is bounded. The ordinal A
depends upon only the finite program P and the language -%27 (defined in
Section 2) that is countable, and is applicable to the X-sequence p of any
subgoal A in any system S, in an arbitrary SLG derivation for Q.

(b) Let SO, SI,..., S. be an SLG derivation for Q. By definition, YO is the
empty system { }. For each successor ordinal i + 1(0 < i + 1 s a), ~ L ~+ ~
since each transformation either adds a new subgoal to ~ or extends the
X-sequence of some subgoals in ~. For a limit ordinal i(O < i < cr), (A : p) =
~ ifandonlyif A isasubgoalin~ forsomej < i and p = U{p’[A: p’) ●%
and j < i}. By (a), there exists some ordinal A by which the length of p’ for
(xl : p’) ●% for each j < i is bounded. Thus, U{p’l(A : p’) =% and j < i) is
well defined. Clearly, ~ L ~ for every j < i. This concludes the inductive
proof of (b).

(c) The size of a system is bounded since the number of distinct subgoals
(that are not variants of each other) is countable and the length of the
X-sequence of a subgoal in a system is bounded. As each transformation
increases the size of a system, and each SLG derivation for Q is a monotoni-
cally increasing sequence of systems, there must exist some SLG derivation for
Q that ends with a final system. ❑

Theorem 4.1.1 shows that some final system can be derived for an atomic
query Q, given a finite program P and an arbitrary but f~ed computation rule
R. It turns out that for any final system Y for Q, either every subgoal in & is
completed or some active X-rule of some subgoal in ~ has a selected negative
literal that is not ground.

Definition 4.3.4. Let P be a finite program, and Y be a system. & is
completed if every subgoal in & is completed, and S“ is j70undered if for some
active X-rule G of some subgoal in Y’, G has a selected negative literal that is
not ground.

LEMMA 4.3.5. Let P be a jinite program, R be an arbitra~ but @d computa-
tion role, and Q be an atomic quety. Then, for eue~ final system Y for Q, 9 is
either completed or floundered.

PROOF. Follows from the definitions of transformations and floundered and
completed systems. ❑

5. Soundness and Completeness

This section establishes the soundness and search space completeness of SLG
resolution. First, SLG resolution is shown to preseme all three-valued stable
models. Seeond, SLG resolution computes the well-founded semantics in the
sense that in a final system that is completed, a ground instance of a subgoal is
true if and only if it is an instance of the head of some answer of the subgoal
that has an empty body, and is false if and only if it is not an instance of the
head of any answer of the subgoal. Third, we establish the termination of SLG
resolution for programs with the bounded-term-size property and the polyno-
mial time data complexity of SLG resolution for function-free programs.

5.1. RELATINGPARTIALANSWERSOF SUBGOALSTO A PROGRAM. I& P be a
finite program, R be an arbitrary but fixed computation rule, and & be a

44 W. CHEN AND D. S.WARREN

system in an SLG derivation for an atomic query. For each subgoal A in ~,
the multiset of X-rules of A in & that are not disposed constitutes the set of
partial answers for A. The head of each X-rule contains relevant variable
bindings that have been accumulated; delayed literals in the rule body are
partially solved and may be simplified away later; and the remaining Iiterals in
the rule body are yet to be solved with respect to the original program P.

To relate P to X-rules of subgoals in a system S, we introduce some new
predicates. But first, let us consider an example.

Ek-umple 5.1.1. Suppose that an atomic query p(X) is evaluated with
respect to the following program:

(Cl) p(a).
(C2) p(x) t -s, p(a).
(C3) s -- s, s.

Assuming a left-to-right computation rule, the following intermediate system .9’
may be constructed:

,‘1

O: p(a) (cl)

1: P(X) +- - s,p(a) (C2)
p(x):

2: p(x) + - S’, p(a) (1)

3: p(x) - -s’ (2, p(a))

(

o: S--s, s (C3)
s:

1: Stwss,s (o) }

\ (

O: p(a) (cl)
p(a):

1: p(a) + -s, p(a) (C2))

where - s has been delayed in X-rules of subgoals p(X) and s.
There are two observations on the treatment of X-rules of subgoals. First,

X-rules of different subgoals are treated independently, even if they are
subgoals of the same predicate. For instance, subgoal p(a) may be completed
before subgoal p(X) since p(a) already succeeds. Second, X-rules of a subgoal
that have distinct head atoms are treated independently, especially in POSITIVE
RETURN and SIMPLIFICATION and ANSWER COMPLETION. In POSITIVE RETURN,
when the selected atom ~ in the body of an X-rule has multiple answers that
have the same head atom, only one of them is used to solve A. However, if A
has two answers with distinct head atoms, both will be used to solve A, even if
the head atom of one answer subsumes the other. In both SIMPLIFICATION and
ANSWER COMPLETION, answers with the same head atom are grouped together,
in order to determine whether a delayed literal is successful or failed, or
whether the head atom of an answer is supported. ❑

In relating a ftite program P to X-rules of subgoals in a system S, we
introduce new predicates in a way that reflects the independent treatment of
X-rules of different subgoals and the independent treatment of X-rules of the
same subgoal that have different head atoms. Specifically, for every subgoal A
in Y’ and for eve~ instance H of A, we introduce a new predkate whose arity
is the number of distinct variables in H. Atoms of the new predicate will be

Tabled Evaluation with Delaying for General Lop”c Programs 45

written as B:, where B is an instance of H. They are derived using X-rules of
A in y that are not disposed and that have H in the head. There is a
one-to-one correspondence between ground atoms of the new predicate and
ground instances of H.

Definition 5.1.2. Let P be a finite program, R be an arbitra~ but fried
computation rule, and Q be an atomic query. Let & be a system in an SLG
derivation for Q.

Let G, of the form H - Ll, L., be an X-rule of a subgoal A in .% Then
we denote by G ~ the rule of the form, H: + L’l, ..., L., where for each
i(l S i < n).

—Ci is Li if Li is not a delayed literal;
—L’i is - B] if L, is a negative delayed literal of the form - B ~;
—L’i is B; if Li is a positive delayed literal of the form B;.

We denote by P(9) the program that is the multiset of all rules GA, where G
is an X-rule of a subgoal A in & that is not disposed.

Example 5.1.3. For the system &’ in Example 5.1.2, the corresponding
program P(J2’) is as follows:

/* from nondisposed X-rules of p(X)*/

/* from nondisposed X-rules of s*/
s; t - s;, s.

/* from nondisposed X-rules of p(a)*/
p(a)~~~~.

f’(a)+ -s, p(a).P@p(a)

In general, P(S) depends upon the original program, unless & is
completed. ❑

For technical reasons, we include in the Herbrand base %aP. ~(g) and
%l%’p(Y)all ground atoms of the form B; for every subgoal xl in s and for
every instance H of A and for every ground instance B of H. (An alternative
is to introduce useless rules in P(S? such that H: - H; for every subgoal --4
in S and every instance H of A.)

Dejinhion 5.1.4. Let P be a finite program, R be an arbitrary but fwed
computation rule, and Q be an atomic query. Let ~ be a system in an SLG
derivation for Q. We associate with ~ a set of ground Iiterals Z(&’) of
P U P(S) as follows:

—if a subgoal A in & has an answer that has an atom H in the head and an
empty body, then for every ground instance B of H, B = 1(S’) and B; E
I(Y);

—if a subgoal A in & is completed and H is an instance of A and A has no
answers with H in the head, then - B; = I(Y) for every ground instance
B of H;

46 W. CHEN AND D. S. WARREN

—if a subgoal ~ in Y k completed and B is a ground instance of A such that
B is not an instance of the head of any answer of A, then - B = I(Y) and
- B; ~ Z(S) for every instance H of A such that B is an instance of H.

The set Z(s) of ground literals captures subgoals that succeed or fail and
delayed Iiterals that are successful or failed. For example, if a subgoal A
succeeds in ~, then every ground instance of A is in l(~), and if a subgoal A
fails, then - B = 1(5’) for every ground instance B of A. Similarly, if a
positive delayed literal B; is successful, then every ground instance of B: is
in 1(S’), and if B~ is failed, then the negation of each ground instance of B;
is in 1(S). As we shall see later, for any system & in an SLG derivation for an
atomic query, 1(S? is an interpretation of P u P(S), that is, Z(S) is consis-
tent. At this point, we define Z(S) simply as a set of ground literals.

LEMMA5.1.5. Let P be a finite program, R be an arbitra~ but fized computa-
tion rule, and Q be an atomic que~. Let 90, YI,. ... 9. be an arbitray SLG
derivation of Q, where a k an ordinal. Then 1(9.) c I(S,) g “”. G I(S.).

PROOF. l%e lemma follows from two observations. One is that an answer of
a subgoal that has an empty body is never deleted by any transformations. The
other is that when a subgoal A is completed, answers of A can be simplified,
but no new answer can be added whose head atom is distinct from the head
atom of any existing answer of A. ❑

Let P be a finite program and S’ be a system in an SLG derivation for an
atomic query Q. To relate the semantics of P(Y) to that of P, we look at the
least partial model LPM(P U P(@/J), where J is an interpretation of P U

P(&) and P U P(~)/.l is the quotient of P U P(R) modulo J. For every
ground instance B of a subgoal A in S, we compare the truth value of B with
those of atoms of the form B~ in LPh4(P U P(..@/.l), where H is an instance
of A and B is also an instance of H, provided that Y satisfies certain
conditions. The correctness of transformations is expressed in terms of some
symmetry of LPM(P U P(&9/.l), which is defined as follows:

Definition 5.1.6. Let P be a finite program, R be an arbitrary but fried
computation rule, and Q be an atomic que~. Let ~ be a system in an SLG
derivation for Q. Let J be an interpretation of P U P(y).

J is partial@ symmetric if for every ground subgoal B in ~, J(B) = J(B~). J
is symmetric on a subgoal A in & if for every ground instance B of A,

—J(B) = t if and only if J(B~) = t for some instance H of A; and
—J(B) = f if and only if J(B~) = f for every instance H of A.

J is a symmetric inteqwetation of P u P(S) if J is symmetric on every subgoal
in R. & is a symmetric system if for every interpretation J of P U P(s) such
that J is partially symmetric and 1(9) G J, LPM(P U P(S’)/J) is symmetric.

The correctness of P(=) of a system Y with respect to a program P is
specitled by the notions of symmetric systems and symmetric interpretations. In
comparing P(s) with P in the least partial model LPM(P u P(&’)\J), where
J is an interpretation of P u P(Y), J is required to satisfy two conditions. The
condition](&) q J originates from the obse~ation that rules in P(S) are
essentially derived from rules in P by solving subgoals that succeed or fail and
by simplifying delayed Iiterals that are successful or failed. As mentioned

Tabled Evah@ion with Dekzying for General L~”c Programs 47

previously, 1(S’) represents subgoals that succeed or fail and delayed literals
that are successful or failed. The other condition that J is partially symmetric
is due to DELAYING,where a ground negative literal of the form * B may be
replaced by - BB in the body of a rule. Recall that a negative delayed literal
- B B is viewed as - B; in P(._Y). In P(R), all negative literals are either of
predicates in P or of the form - B;, where B is a ground subgoal. In
particular, when 9 is completed, all negative Iiterals in P(S), if any, are of
the form - B#, where B is a ground subgoal in Y.

Recall that P u P(&’)/.l is a ground nonnegative program that is obtained
from the Herbrand instantiation of P u P(S) by replacing eve~ ground
negative literal with its truth value in J. For each rule B * * in P U P(J@/J,
~ is a possibly empty conjunction of atoms and the special atom u. Also notice
that

P u P(s) P P(Y)
.——

J JUJ”

In the following, we establish several key properties relating P/J to P(&)/J,
which will be used later for proving the soundness and completeness of SLG
resolution.

LEMMA 5.1.7.Let P be a finite program, R be an arbitrary but jired computa-
tion rule, and Q be an atomic que~. Let YO, Y,, ..., ~. be an arbitra~ SLG
derivation of Q, where a is an ordinal. Then, for eve~ i(O s i s a), and for eve~
parrial~ symmehic inteqretation J of P U P(x) such that U ~.,.; l(~) c J,
and for eve~ subgoal A that is not completed in ~ and for euey ground instance
B of A, if B * @ k a rule in P/J, then B; ~ $ is a rule in P(~)/J for some
instance H of A such that B is a ground instance of H.

The intuition of Lemma 5.1.7 k as follows: Given a subgoal A that is not
completed, its initial X-rules are obtained by X-resolution with rules in P. For
each nondisposed X-rule G of A, if G has a selected atom, then G is never
disposed except by COMPLETION,and if G has a selected negative literal, say L,
then either L is solved by NEGATIVERETURN,or L is delayed by DELAYING(if
L is ground), or G remains a nondisposed X-rule of A. The assumption about
J ensures that Lemma 5.1.7 continues to hold after an application of NEGATIVE
RETURN or DELAYING.Notice that in LJo~ j <~l(~) G J, if i is a successor
ordinal of the form /3 + 1, then U o~ j. il(~) = I(&p) due to Lemma 5.1.5.
Lemma 5.1.7 is used in the next subsection to establish one direction in the
symmetry of LPM(P U P(~)/.l).

PROOF OF LEMMA 5.1.7. The proof is based on induction of i. The basis
case, i = O, holds trivially since SO is the empty system and has no subgoals.

Let i be a successor ordinal ~ + 1. Then ~ is obtained from YB by one of
the transformations. The cases of COMPLETION,SIMPLIFICATION,and ANSWER
COMPLETIONare trivial since they affect only X-rules of subgoals that are
completed in ~. The case of NEW SUBGOALfollows from the use of the most
general unifier in X-resolution in deriving the initial X-rules of a new subgoal.
The case of POSrTIVE RETURN follows from the inductive hypothesis since
POSITIVERETURNadds another X-rule to a subgoal that is not completed.

48 W. CHEN AND D. S. WARREN

Let A be a subgoal in Yp and G be an active X-rule of A corresponding to
an ordinal y, and let - A, be the selected literal of G.

‘NEGATIVE RETURN. If Al succeeds, then G is disposed in ~. By definition,
Al must have an answer in 9P that has Al in the head and an empty body.
Then for every ground instance B, of A,, BI = Z(SP) and (Bl)fl~ E Z(S~).
By assumption, l?l = J.

If A, fails, then G is replaced with G that is G with -A, deleted. By
definition, A ~ is completed in YP without any answers. Then, for every
ground instance B1 of A ~, - I?l = I(YB), and so - BI = J by assumption.

‘DEL4YING. If - A ~ is ground, then G is replaced with G’ that is G except
that - A ~ is replaced with N (Al)~’. In ~(~), a ground negative delayed
literal - (Al)~l is viewed as - (-41)j/. Since J is partially symmetric,
J(AI) = Y((A1)~;).

In each of the cases for NEGATIVERETURNand DELAYING,

P(q) P(Yp)— .—
J J’

and the lemma holds by inductive hypothesis.
Let i be a limit ordinal. If A is a subgoal in ~ that is not completed, then

A is a subgoal in J% for some /3 < i, and is not completed in every ~p such
that ~ < i and A is a subgoal in YP. For every ground instance B of A and for
every rule B - ~ in P/J, let G be an X-rule with the fewest negative literals
in its body that are not delayed such that for some /3 < i,

—G is an X-rule of A in &@, and
—there exists a rule B$ - @ in P(~)/J that is obtained from a ground

instance of GA, where H is the head atom of G.

The existence of G is ensured by the inductive hypothesis.
There are two cases:

—if G has a selected atom or is an answer, then G is also an X-rule of A in
~ since G can be disposed only by COMPLEmONor SIMPLIFICATIONand A is
not completed in ~. The lemma holds by inductive hypothesis;

—if G has a selected negative literal, then either G remains an X-rule of A in
~, in which case the lemma holds, or NEGATIVE RETURNor DELAYINGhas
been applied to G. The latter case, however, contradicts the assumption that
G has the fewest negative literals in its body that are not delayed. ❑

LEkiMA 5.1.8. Let P be a finite program, R bean arbitra~ but fired computa-
tion rule, and Q be an atomic query. Let YO, 91,...,9. be an arbitrary SLG
deriuatwn of Q, where a is an ordinal. For eue~ i(O < i s a) and for every
partiuliy ~mmetric inteqoretation J of P U P(%) such that U ~. j. iI(~) G J,
and for eue~ subgoal A that is not completed in ~ and for evety ground instance
B of A, ~B~ - ~ is a rule in P(~)/J for some instance H of A, then B - * is
a rule in P/J such that

where Undelay(~) = (Bl IB1 or (Bl)~; occum in @ for some subgoal A ~ and
some instance HI of A 1), and @ is uiewed as a set of atoms.

Tabled Euah@ion with Delaying for General Logic Programs 49

Lemma 5.1.8 reflects how the selected atom Al in the body of an X-rule G
of the subgoal A is processed. Suppose that C is an answer of A, with an atom
H, in the head. An application of POSITIVE RETURN to G using C has two
possibilities.

If C has an empty body, then every ground instance of H1 is in U ~.,., l(y).
An X-rule G’ is generated from G by X-resolution with C, where G’ is an
instance of G, of the form Gfl, with A, O deleted, and 0 is the most general
unifier of A, with (a new variant of) HI. The condition 4 – Undelayed(~) g

U o,,., K.?) meansthat evw atom in O that doesnot occurin 4 mustbe
(true) in U ~~j<~l(~).

If C has some delayed Iiterals in its body, then an X-rule G’ is generated
from G by X-factoring with C, where G’ is an instance of G, of the form Cd,
except that A ~8 is replaced with (A ~(?);;, and 0 is the most general unifier of
A, with (a new variant of) Ifl. The condition Undeiayed(+) g 4 means that
every atom that is delayed or unsolved in @ must come from ~.

Lemma 5.1.8 is used in the next subsection to establish one direction in the
symmetry of LPM(P U P(~)/.l), especially in the case of POSITIVE RETURN
which introduces a new rule in P(%).

PROOF OF LEMMA 5.1.8. The proof is based upon an induction on i. The
basis case, i = O, is trivial since YO is the empty system and has no subgoals.

Let i be a successor ordinal ~ + 1. Then ~ is obtained from Ffi by one of
the transformations. The cases of COMPLETION,SIMPLIFICATION,and ANSWER
COMPLETIONare trivial since they affect only X-rules of subgoals that are
completed in ~. The case of NEW SUBGOALfollows from the use of the most
general unifier in X-resolution in deriving the initial X-rules of a new subgoal.
If .Y: is obtained from YP by NEGATIVERETURNor DELAYING,then

P(q) P(Y8)
— .—

J J

holds following the same argument in the proof of Lemma 5.1.7, based upon
the assumption that J is partially symmetric and U ~~,., l(~) c J. The lemma
holds by inductive hypothesis.

For the case of POSITIVERETURN, let A be a subgoal in YP and G be an
active X-rule of A corresponding to an ordinal -y, and let A ~ be the selected
atom of G. Let C be an answer of subgoal A, in YP. If C has an empty body,
let G’ be the X-resolvent of G with C; if C has some delayed literals in its
body, let G’ be the X-factor of G with C. Let H be the head atom of G and
H’ be the head atom of G, and B be a ground instance of H’.

Suppose that Bfl - @ is a rule in P(~)/J that is obtained from a ground
instance of (G’)‘4. Then by the definition of POSITIVERETURN, there exists a
rule, B; + @, in P(WD)/J that is obtained from a ground instance of GA such
that Undelay(~’) c Undelay(~) and @ – Undelay(~’) c I(YP). By inductive
hypothesis, there exists a rule, B ~ ~, in P/J such that Undelay(d) g # and

– Unde~ay(@ ~ c U o, j. D~(~). Therefore, fJndelafl d’) c @ and @ –
Undelay(~’) ~ lJ ~~j< ~l(~). The lemma holds.

Let i be a limit ordinal. If A is a subgoal in ~ that is not completed, then
A is a subgoal in FP for some ~ < i, and is not completed in every &@ such
that p < i and A is a subgoal in &P. By definition, every X-rule G of A that is

50 W. CHEN AND D. S. WARREN

not disposed in ~ must be an X-role of A that is not disposed in 9B for some
~ <i. The lemma follows by inductive hypothesis. ❑

LEMMA5.1.9. Let P be a finite program, R be an arbitra~ but jited computa-
tion rule, and Q be an atomic que~. Let So, ~1, ..., 9. be an a~itiav SLG
derivation of Q, where a is an ordinal. i%en for eve~ i(O s i < a) and for eue~
partial~ Symmem”c interpretation J of P U P(%) such that U os ~ < i Z(%) G J,

and for subgoal A in ~ that is not completed, let (A: p) = ~ and the following
holds: For eve~ X-rule G of A corresponding to some ordinal u in ~, of the form

H + Left, Al, Right,

where A, b the selected atom of G, and for euey atom HI such that G(a, HI) is
an X+4ement in p for some X-rule G, there ai.rts some nondkposed X-rule G* of
A in ~ such that for eue~ rule in P(~)/J of the form

obtained fim a ground instance of G A such that BI h a ground instance of HI
(and A,), there &ts a mle in p(%)/J obtainedfiom a gound i~tance of (G*)A,
of the form

or

where H’ is the head atom of G*.

Recall that in the sequence p of annotated X-rules associated with a subgoal
A, G{ a, HI) means that PosrrIvE RETURNhas been applied to an X-rule of A
corresponding to some ordinal a by using an answer with HI in the head. In
Lemma 5.1.9, the X-rule G* is either G or some X-rule that is derived,
directly or indirectly, from G by solving or delaying some negative Iiterals in
the body of G. Lemma 5.1.9 describes essentially the relationship between an
active X-rule G that has a selected atom A ~and X-rules that are derived from
G by POSITIVERETURN. It is used in the next subsection to prove the correct-
ness of COMPLETION.

PROOF OF LEMMA 5.1.9. The proof is based upon an induction on i. The
basis case, i = O, is trivial.

Let i be a successor ordinal @ + 1. Then ~ is obtained from &@ by one of
the transformations. For the case of NEWSUBGOFW the initial X-rules of a new
subgoal, say A, are derived by X-resolution with rules in the program P.
Transformation POSITIVERETURN has not been applied to any initial X-rule of
A that has a selected atom. The lemma holds by inductive hypothesis. The
cases of COMPLEmON,SIMPLIFICATION,and ANSWERCOMPLETIONhold by induc-
tive hypothesis, because they affect only X-rules of subgoals that are completed
in ~. For the cases of NEGATIVERETURNand DELAYING,since J is partially
symmetric and U o~ j ~ ~l(~) c J, itcan be verified that

P(%) P(9p)
— .—

J J“

Thus the lemma holds by inductive hypothesis.

Tabled Evaluation with Delaying for General Lo@”cPrograms 51

For POSITIVERETURN,let G be an active X-rule of A in YP, of the form

H * Left, Al, Right,

where A ~ is the selected atom. Let C be an answer of A, with an atom H, in
the head in S6 such that POSITIVERETURNis applied to G by using C when ~
is derived from SP. Let G be the X-resolvent of G with C if C has an empty
body, and be the X-factor of G with C if C has some delayed literals in its
body. Then G’ satisfies the properties of G* as specified in the lemma, and the
lemma holds by inductive hypothesis.

If i is a limit ordinal, let A be a subgoal in ~ that is not completed and let
(A : p) = ~. Let G be an active X-rule of A in ~ with a selected atom A,,
and H, be an instance of A, such that G’(a, HI) is an element of p for some
X-rule G’. Then for some @ < i, both G and G are nondisposed X-rules of A
in Fp.

Let G* be an X-rule with the fewest negative Iiterals that are not delayed in
its body such that for some ~ < i,

—G* is a nondisposed X-rule of A in S6; and
—for every rule

B; + (4.fr, BI , +rig~,

in P(YP)/l, obtained from a ground instance of GA, there exists a rule

or

in P(46)/J, obtained from a ground instance of (G*)~, where H’ is the
head atom of G*.

The existence of G* is guaranteed by G.
If G* has a selected atom or is an answer, then G* remains in ~ since A is

not completed in ~, in which case the lemma holds by inductive hypothesis.
Otherwise, G* has a selected negative literal. Either G* remains in ~, in
which case the lemma holds by inductive hypothesis; or NEGATIVERETURNor
DELAYINGhas been applied to G*. In the latter case, since J is partially
symmetric and U,, ~, ~ ~ I(%) g J, there exists some ordinal y, where /3 < y <
i, and some X-rule in YY that satisfies all the properties of G*, but has one
less negative literal that N not delayed, a contradiction. ❑

5.2. PRESERVATION OF THREE-VALUED STABLE MODELS. The following key
theorem shows that every system in an SLG derivation for an atomic query Q
is a symmetric system.

THEOREM 5.2.1. Let P be a finite program, R be an arbitra~ but @d
computation rule, and Q be an atomic que~. Let J?O,SI, Pa be an arbitrary
SLG derivation for Q, where a is an ordinal. Then for every i(O < i < a),
l(~) g ‘%?%(P u P(%)) and ~ is a symmetric system.

PROOF. The proof is based upon an induction on i. For the basis case,
i = O, So is the empty system and l(S.) is the empty set and P(SO) is the
empty program. The lemma holds trivially,

52 W. CHEN AND D. S.WARREN

For the inductive case, we prove the following:

(a) LPM(P U P(~)/.l) is symmetric for every partially symmetric interpreta-
tion J of P U P(x) such that U o* j c iZ(q GJ;

(b) l(~) s %W(P U p(%)).

Let J be an arbitrary partially symmetric interpretation of P U P(.5f) such
that l(~) GJ. Then Uo<j<i l(~) G .l by Lemma 5.1.5. Thus, (a) implies that
~ is a symmetric system. We show that (a) implies (b) and then prove (a).

(a) - (b). By inductive hypothesis, l(~) g ZY(P U P(%)) for every j(O s.j
< i). Since P is independent of P(%) for every j(O <j s i), and Z(%) c l(~)
by Lemma 5.1.5, it follows that

uO<j<i l(y) C%??(P u P(q)).

We construct a partially symmetric interpretation 3 of P U P(@ as follows:

—.llp = 2!l@P);
—for every ground subgoal B in ~, l(B) = .l(ll~);
—for every subgoal A in ~ and every instance H of A and every ground

instance B Of H, if B~ ~ UO~jci I(%), then B; = J, and if - l?; =

U o< j<i~(~), then z B; = J.

Clearly U 0~ j ~ i l(~) G J. The existence of J is ensured by the fact that

uOsj<il(~) S=p u f’(~)).

Let M = L.PM(P U P(~.)/J). Since JIP = WY(P) and P is independent of
P(%), MIP = !WYIP) as %57(P) is a three-vaIued stable model of P. By (a), M
is symmetric. By the definition of 1(%), every literal of the form Bj or - B:
in l(~) is in M and in %27(P u P(%)), where A is a subgoal in ~., H is an
instance of A, and B is a ground instance of H. Since M is symmetric,
I(q)lp G MIP = -P). Thus, l(~) G -P u P(%)).

Now that we have established that (a) implies (b), we prove (a). Let i be a
successor ordinal @ + 1. Then ~ is obtained from SB by one of the transfor-
mations. By Lemma 5.1.5, J(YP) = U o~ j. i~(~). I-A Ml = LPM(P U
P(J@\J) and Mz = LPM(P U P(~)/J). By inductive hypothesis, Ml is a
symmetric interpretation of P U P(J%). We prove that M2 is symmetric by a
case analysis of the transformations.

NEWSUBGOAL. Suppose that A is a new subgoal that is introduced and f? is
an arbitra~ ground instance of A. Then the Herbrand instantiation of P
contains a rule of the form B - 4 if and only if the Herbrand instantiation of
P(%) contains a rule of the form B; t ~ for some instance H of A.
Therefore, M2 is symmetric on A. Subgoals in S8 are not affected, and (a)
holds by inductive hypothesis.

NEGATIVERETURN and DELAYING. Since J is a partially symmetric interpre-
tation of P u P(%) and U o. j. ;l(~) G J, itcan be ver~led that

P(S-j) P(x)
— .—

J J“

Thus, A4z = Ml and (a) holds by inductive hypothesis.

Tabled Evaluation with Delaying for General L~”c Programs 53

SIMPLIFICATION. Let ~ be a subgoal that is completed in J% and G be an
answer of A that is not disposed. Let L be a delayed literal in the body of G.
If L is a negative delayed literal, it can be verified that

P(SP) P(x)
— .—

J J’

based upon the assumption on J. Thus, Mz = Ml and (a) holds by inductive
hypothesis.

If L is a positive delayed literal of the form llfi~, where A, is a subgoal in
&P, HI is an instance of Al, and B is an instance of H,, there are two cases. If
L is successful, then Al has an answer C in S8 that has Hl in the head and
an empty body. Then L is deleted from the body of G. Clearly for every
ground instance h of B, h~’ can always be derived using C~’ in ~(~). Thus,
Mz = Ml and (a) holds by inductive hypothesis. The case that L is failed is
similar.

ANSWER COMPLETION. Let U be the set of all pairs (A, H) in S6 such that
A is a subgoal and H is the head atom of some answer of A and H is not
supported by A. Then ~ is obtained from YP by de!eting all the answers of A
that have H in the head, for some (A, H) E U.

By definition, for every pair (A, 1?) = U, A is completed, and for every
answer G of A that has H in the head, there exists a positive delayed literal in
the body of G, of the form (El);:, where H, is not supported by A*. Then, for
evexy ground instance B of H, - B: = Ml and - B: ● Mz. Hence, Ml = Ml
and (a) holds by inductive hypothesis.

POSITIVERETURN. First, POSITIVERETURNdoes not affect subgoals that are
completed in &p. ln particular, for every completed subgoal A in Y and eve~

fanswer c of A that is not disposed in &p, and for every positive de ayed literal
in the body of C, of the form B~:. A ~ N also completed. The reason is that a
positive delayed literal is created by POSITIVERETURN from an active X-rule
with a selected atom, and an active X-rule of a subgoal with a selected atom is
disposed only by COMPLETION.By inductive hypothesis, Af2 remains symmetric
on all completed subgoals in ~, which are precisely completed subgoals in J%.

Second, let A be an arbitrary subgoal in ~ that is not completed, and let B
be an arbitrary ground instance of A. By Lemma 5.1.7, B ● Mz implies
B; = M2 for some instance lf of A, and if w B~ = M2 for every instance /-l
of A, then - B ● Mz.

For the other direction, let P’ = P U P(~)/J. Recall that M2 = T;,’. We
show by induction on k that for every k >0, and for every subgoal A in ~
and every ground instance B of ~, if B~ E Und(r$ ~) for some instance H of
A, then B s Und(Mz) U POS(M2), and if B~ E Po.s(7J k) for some instance H
of A, then B = Pos(Mz).

T0 = 0, in which every ground atom isThe basis case, k = O, is trivial since rpt
false. For the inductive case, k + 1, consider any rule of the form B~ - @ in
P’ for some instance H of A. By Lemma 5.1.8, there is a rule B + + in P’
such that Undelay(~) c $ and + — Undelay(+) ~ U os j < i ~(q) = I(SP). By

the definition of 1(S6), every literal in 1(S6) of the form (B,)~: or - (B1)fl:
is in Ml, where A, is a subgoal in SP and HI is an instance of A, and B1 is a
ground instance of B1. Since Ml is symmetric by inductive hypothesis, every

54 W. CHEN AND D. S. WARREN

ground atom in @– Unde@(+) is in Ml. As Ml IF = Mz IP, every ground atom
in @– UndeZay(@) is in M2 too. If B; = Und(r~~+ 1, due to a rule Bjf + +,
then B is in Und(Mz) U Pos(iW2) due to the rule B + @ by inductive
hypothesis. Similarly, if B; = Pos(7~t k+1), then B ● Pos(M2).

This concludes the induction on k. Thus for every subgoal A that is not
completed in ~ and for every ground instance B of A, if Z3~ = Mz for some
instance H of A, then B = Mz, and if - B ● A42, then - B~ E iWz for evely
instance H of A.

This concludes the proof that Mz is symmetric, and so (a) holds.

COMPLETION. Following the same argument as in Posm RETURN, com-

pletiOn does not affect subgoals that are completed in 9B. In particular, M2
and Ml coincide on all literals of the form B: or - B~, where A is a subgoal
that is completed in &p. In addition, Ml [P = iU21 ~. By inductive hypothesis, Mz
remains symmetric on all subgoals that are completed in YP.

By definition, COMPLETIONdisposes all active X-rules of some subgoals (that
are not answers), and so ~(~) can be obtained from P(&p) by deleting some
rules. Therefore, M2 s A41 (with respect to the truth ordering). Lemma 5.1.7
together with M2 < Ml implies by inductive hypothesis that M2 is symmetric
on all subgoals that are not completed in ~.

Let A be a nonempty set of subgoals that are completely evaluated in .5%
such that all active X-rules of subgoals in A are disposed by COMPLETION.It
remains to show that i14zis symmetric on subgoals in A. Let P’ = P u P(~)/J.
Since Mz s Ml and MIIP = MZIP, itsuffices to prove that for every k ~ O, and
for every subgoal A = A and every ground instance B of A,

(1) if B ~ Und(7~ ~), then B~ ~ Und(r$’) u Pos(7~ ~) for some instance H
of A; and

(2) if B = Pos(7$ ~), then B; = POS(TJ’) for some instance H of A.

The basis case, k = O, is trivial since TJ 0 = 0. For the inductive case,
suppose that B = Und(7J k+1, U Pos(r~ k+]), and the derivation of B uses a
rule of the form B - # E P’. However, B - @ is also a rule in P U P(YP)/.l.
By Lemma 5.1.7, B; ~ @ is a rule in P U P(J%)\.1.

If B~ + @ is a rule in P’, then (1) and (2) hold by inductive hypothesis.
Otherwise, since A is in A, either A succeeds, in which case (1) and (2) hold,
or A has an active X-rule G corresponding to some ordinal a in &@ of the
form

H - Lefi, Al, Right

with a selected atom A ~, and B: - @ is obtained from a ground instance of
GA and is of the form

where BI is a ground instance of Al. By assumption on B, B, ~ Und(7~ ~) U
Pos(~& ~). By inductive hypothesis on k, (1) and (2) hold for B, and (Bl)~: for
some instance HI of Al. Since A is completed in ~, HI must be the head
atom of some answer of A in ~ that is not disposed. By the definition of A,
the X-sequence of A in&d must contain an X-element of the form C(a, HI)

Tabled Evaluation with Delaying for General Logt”cPrograms 55

for some X-rule G’. By Lemma 5.1.9, there exists some instance Z-1’of A such
that

‘~’ + @lcf/~Orlghl

or

B~, * ~tef, , (BI)~; , +,,g~(

is a rule in P(&P)/J.
The number of positive Iiterals in the body of an active X-rule is bounded by

the maximum number of literals in the body of a rule in P, which is finite. By
repeatedly applying the same argument for B~ + @ to B~, - +lc~,, (B1)~;,
@,,~~,, we will eventually obtain some B~* for some instance H* of ,4 such
that (1) and (2) hold for B and B:.. This concludes the induction on k.

This concludes the proof for the case of COMPLETION.
The other inductive case for i is that i is a limit ordinal other than O. Let

M = LPM(P U P(~)/J).
Let A be a subgoal that is completed in ~. Then A must be completed in

S6 for some /3 < i, and A remains completed in ~ for all j(~ s j < i). After
A becomes completed in SD, the only transformations that can be applied to A
are SIMPLIFICATIONand ANSWERCOMPLETION,which either delete some answers
of ,4 or deletes some successful delayed literals in the body of an answer of .4.
The following two properties hold:

—First, the answers of A in ~ that are not disposed can be obtained from
those of A in &P by repeatedly applying SIMPLIFICATIONand ANSWER
COMPLETION.

—Second, by the argument for the case of a successor ordinal, LPM(P U

P(FJ)/J) and LPM(P U P(%+,)/J) coincide on all ground Iiterals of the
form B~ or N B;, where /3 s j < i and .4 is a subgoal that is completed in

P; “

Thus, M coincides with LPM(P U P(YP)/J) on all Iiterals of the form B; or
- B:, where A is a subgoal in ~ that is completed, H is an instance of A
and B is a ground instance of H.

Let A be a subgoal that is not completed in ~, and let B be an arbitrary
ground instance of ,4. By Lemma 5.1.7, B = M2 implies B; = Mz for some
instance H of A, and if - Bfl = Mz for every instance H of A, then
- B ● M2. For the other direction, let P’ = P U P(~)/.f. The argument is the
same as in the case of POSITIVE RETURN, by using Lemma 5.1.8 and an
induction on k in TJ’, with an additional observation. That is, for each B; in
hd(~~, k) U Pos(TJ, k), there is a corresponding derivation represented as a
finite sequence of rules r,,,. ... rl in P’ such that

—the head of r, is B;; and
—for each rj(O s j s 0, every atom in the body of r, is either u or is the head

of rjr for some j’ < j.

Since 1 is finite, there exists some ~ < i such that every rule rj(O s j s 1) is a
rule in P U P(J%)/1. Then B~ is in .!lnd(LPM(P U P(@fl)\J)) U
Pos(LPM(P u P(SP)/J)). The inductive step in the induction of k holds since
LPM(P U P(&~)/J) is symmetric by the inductive hypothesis, ❑

56 W. CHEN AND D. S. WARREN

Theorem 4.3.3 shows that some final system S’ can be derived for an atomic
que~ Q, given a finite program P and an arbitrary but fxed computation rule
1?. By Lemma 4.3.5, Y is either completed, that is, every subgoal in Y is
completed with only answers, or floundered, that is, some subgoal in 9 has an
active X-rule with a selected non-ground negative literal. The following theo-
rem shows by using Theorem 5.2.1 that every three-valued stable model of P is
preserved when a completed system is reached. We discuss later in Section 7.2
how floundering may be avoided by imposing certain conditions on a program
and the computation rule.

THEOREM 5.2.2. Let P be a finite program, R be an arbitrary but @d
computation rule, and Q be an atomic quety, and 9 be a final ~stem for Q thut is
completed. Then

(a) for every I E 593(P), there ~ists a symmetric inteqoretation M of P U P(s)
such that Ml p = 1 and Ml P(Y) e X73(P(&));

(b) for eve~ Z ● =(P(S)), there erists a tymmetric in~eqoretation M of P u
P(Y’) such that MIP{Y) = 1 and MIP G J?Y3(P).

PROOF. Since & is a final system that is completed, all X-rules of subgoals
in 9 that are not disposed are answers, Thus P(y) and P are independent of
each other. By Theorem 5.2.1, Y is a symmetric system.

For (a), let 1 = E73(P). By Theorem 2.8, %9’(P) g Z. By Theorem 5.2.1,
1(59 G 7#91 P u P(Y)). Since P and P(S? are independent of each other,
%2?(P U P(S)) = %?%(P) U W9(P(&)). Thus K9)lp C WY(P) G 1. We con-
struct a partially symmetric interpretation J of P U P(&’) as follows:

—Jlp = h and
—for every ground subgoal B in Y, J(B) = Y(B:); and
—Z(S’)IP(Y) G J.

The existence of J is ensured by the fact that 1(.7) c %?71P U P(Y)) and
%$37(P) G 1.

Notice that 2(7) G J. Let M = LPM(P U P(&)/J). By Theorem 5.2.1, Y is
a symmetric system and so M is symmetric. Since P and P(y) are indepen-
dent of each other, MIP = LPi14(P/JIP) and AllP(Y) = LPM(P(Y)/JIP(S-)).
As .lIp = i ‘=9273(P), Mlp = z.

Both M and J are partially symmetric and Ml p = JI p = 1. Thus for every
ground subgoal B in S’, M(B~) = .l(B~) = I(B). Since 9’ is completed, all
negative literals occurring in P(&’) are of the form - B:. TtNIS, P(&’)/Jl p(y)
= P(&’)/M IP(Y). Hence, MIP(Y) = LPM(P(~)\.llP(s)) = LPM(P(~)/

MP(Y)J and so MIP(Y) = =(P(&)).
This concludes the proof for Part (a) of the theorem, and we now show that

Part (b) of the theorem holds. Let 1 =-(P(S)). First, we show that there
exists a symmetric interpretation MO of P U P(=) such that Ml P(Y) = 1.

By Theorem 2.8, W5?(P(S’)) q Z. By Theorem 5.2.1, Z(9) Q %9(P U P(W)).
Since P and P(Y) are independent of each other, %9(P U P(s)) = 5K51P)
u %lY(P(&’)). Thus I(y)[p(y) q 3K?(P(S)) q 1. Let J be an interpretation of
P u P(Y) such that

—Pos(J) = Pos(I(S?) U {B, B~lB~ ● Pos(l) for some ground subgoal 1? in
S’); and

—Neg(.1) = Neg(1(5’)) U {B, B~lB~ E Neg(l) for some ground subgoal B in
*.

Tabled Evaluation with Delaying for General Logic programs 57

The existence of J is ensured by the fact that 1(S) c %?YIP U P(y)). Also
notice that J is partially symmetric and 1(S) c J.

Let

‘O=LPM(PU:(V
By Theorem 5.2.1, M, is symmetric. Since P and P(F) are independent of
each other,

()P(s)
Mol Pt.y) = LpM = .

Notice that for every ground subgoal B in Y, Y(ll:) = 1(B]). Therefore,

P(Y) P(s)
— .—
JIP(Y) I

and so

()P(s)
MO IP(y) = LPM ~ .

Since Z =X%3(P(S)), MOIP(WJ= 1.
We partition the Herbrand universe J%@P into ~ U %2, where ~ is the set

of all atoms B = A?2%’Psuch that B is a ground instance of a subgoal in 7, and
%2 = 2?UYP– ~. We construct a symmetric interpretation M of P U P(y) as
follows:

—Ml ~(Y) = 1; and
—M(B) = MO(B) for every B e ~, where B is a ground instance of a subgoal

in 9.

For atoms in %Z, their truth values in M are chosen as follows. We construct a
program P,,~P, from the Herbrand instantiation of P by

—deleting every rule whose head is an atom in ~;
—deleting every rule whose body contains a positive literal B such that

B =% and M(B) = ~
—deleting every rule whose body contains a negative literal - B such that

B =% and M(B) = t;

—replacing each positive literal B in the body of a rule with u if B G ~ and
M(B) = U;

—replacing each negative literal - B in the body of a rule with u if B = ~
and M(B) = u.

Consider each ground atom in P,i~ , as a new propositional symbol, and let
LMl be an arbitrary three-valued sta Ie model of P,i~P, viewed as a proposi-

tional program. Then for every atom B = %Z,

—if B occurs in P,i~Pl, M(B) = MI(B);
—othexwise, M(B) = f.

Notice that M is a symmetric interpretation of P U P(S) such that Ml p(~)

= I and l(y) q M. Let

“=LPM(PU:(7

58 W. CHEN AND D. S. WARREN

By Theorem 5.2.1, M’ is symmetric. We show that M = M’. First, since
Ml~(Y) = Z and 1 ● -(P(Y)) and P and P(5’) are independent of each
other, M’ IP(Y) = 1 = Ml p(~l. Second, for every atom B ~ ~, M’(B) = M(B)
as both M and M’ are symmetric and M’ IP(Y) = MI P(Y). Third, for every atom
B = %Z, M’(B) = M(B), which can be verified by the construction of P,i~pl
and the usage of a three-valued stable model Ml of P,i~Pl in the definition of
M. ThUS, M = M’.

Since

‘=M’=LpM(pu~(y))
and P and P(S) are independent of each other,

()PMIP = LPM ~ ,

which implies that Ml p ● S?7’3(P). Furthermore,
metric, and so (b) holds. •I

Ml P(Y) = 1 and M is sym-

5.3. COMPUTATIONOF THE WELL-FOUNDED PARTIAL MODEL. The primary
purpose of SLG resolution is to compute answers of a query with respect to the
well-founded partial model of a finite program. Let &’ be a final and com-
pleted system that is derived for an atomic query with respect to a finite
program P. We show that %2?(P) coincides with 5KY(P(&)) as far as ground
instances of subgoals in & are concerned. Moreover, for every ground instance
B of any subgoal A in 5’, B is true in%??(P) if and only if B is an instance of
the head of an answer of A that has an empty body, and B is false in %9(P) if
and only if B is not an instance of the head of any answer of A. In other
words, the truth values of ground instances of subgoals relevant to a query can
be determined directly from the answers in S, without any further derivation.
Finally we show that SLG resolution satisfies the most general answer property
in the sense that if for some instance H of an atom Q, VH is true in the
well-founded partial model, then there is an answer of Q whose head has H as
an instance and whose body is empty.

THEOREM 5.3.1. Let P be a jinite program, R be an arbitra~ but ji.wd
computation rule, and Q be an atomic que~, and Y be a final system for Q that k
completed. Then there exists a symmetric interpretation J of P U P{&’) such that
JIp = %&(P) and.ll~(~) = -P(S)).

PROOF. By Theorem 2.8, %27(P) = d7i73(P). By Theorem 5.2.2, there exists
a symmetric interpretation M of P u P(S) such that Ml p =%2?(P) and
MIP(Y) G S5’3(P(S’)). By Theorem 2.8, %&(P(&)) G MI P(Y). Therefore for
every subgoal A in Y’ and for every ground instance B of A in Y.

—if Bfl = %1’21P(@) for some instance H of A, then Bfi = MIP(Y). Since M
is symmetric, B = Mlf = %$27(P); and

—if - B; = ‘3%9(P(Y)) for every instance H of A, then - B; = MI P(Y) for
every instance H of A. Since M is symmetric, N B ● Ml p = 2K%P).

For the other direction, %T2’(P(&’)) = .l%73(P(&)). By Theorem 5.2.2, there
exists a symmetric interpretation M of P U P(Y) such that MI P(Y) =

Tabled Evaluation with Delaying for General Log”c Programs 59

2’9(P(S)) and Ml P G 593(~). By Theorem 2.8, %??(P) ~ Ml ~. Therefore
for every subgoal A in &’ and for every ground instance B of A in Y,

—if B = %7%(P), then B G MIP. Since M is symmetric, there exists an
instance H of A such that B~ s MI P(Y) = %%Y(P{&’));

—if * B = 5?2+’(P), then - B ● Ml ~. Since M is symmetric, for every in-
stance H of A, - B~ = Ml P(Y) = m P(S)).

Let J be an interpretation of P U P(&) such that .llP = %3?(P) and
J IFfy) = ZV31P(S)). Then J is a symmetric interpretation by the arguments
above. ❑

Theorem 5.3.1 says only that the set of answers in a final system Y preserves
the well-founded partial model as a whole as far as instances of subgoals
relevant to a query are concerned. The following theorem establishes further
that the truth values of ground instances of subgoals in the well-founded
partial model of the original program can be determined by simply looking at
the syntactic format of the set of answers in S, without any further derivation.

THEOREM 5.3.2. Let P be a jinite program, R be an arbitra~ but fixed
computation rule, and Q be an atomic query, and Y be a final system for Q that is
completed. Then for eveqv subgoal A in P and every ground instance B of A,

(a) B = %?9’(P) if and only ifB is an instance of the head of an answer of A in 9
that has an empty body; and

(b) * B ~ %@P) if and on~ ifB is not an instance of the head of any answer of
A in 9.

PROOF. Let z be the interpretation of P(S9 such that Z = 1(~)1 p(y). BY
Theorem 5.3,1, it suffices to prove that 1 = 2%?%(P(Y)). Clearly, 1 ~ %?Y(P(Y))
by the definition of l(~) in Definition 5.1.4.

For the other direction, it suffices to show that 1 = L@’3(P(&’)), that is,

()

P(Y)
l= LPM—

r“

Since & is a final system, no transformation can be applied. For every negative
literal - B; that occurs in P(Y), since - B B cannot be simplified using
SIMPLIFICATION,1(Bj) = u. Since ANSWER COMPLETION cannot be applied to

S’, for every subgoal A in &’ and for every atom H that occurs in the head of
some answer of A, H is supported by A. Let

()

P(s)
J= LPM—

I“

By a structural induction over the definition of H being supported by A,

—J(B:) = t for every ground instance B of Z-Zif and only if A has an answer
that has H in the head and an empty body.

—J(B:) = u for every ground instance B of H if and only if A has some
answers that have H in the head and all answers of A that have H in the
head have some delayed literals.

Therefore I = J and 1 ● =(P(&)). By Theorem 2.7, 539(P(y)) g 1. ❑

60 W. CHEN AND D. S. WARREN

SLG resolution produces answers of queries that may contain variables. The
following theorem shows that if the universal closure, VIZ, of some instance H
of a subgoal A is true in the well-founded partial model, then SLG resolution
is able to derive an answer of A that is at least as general as l-f, provided that a
completed final system can be constructed.

THEOREM 5.3.3. Let P be a jinite program, R be an arbitra~ but jkred
computah”on rule, and Q be an atomic que~, and 9 be a jinal system for Q that is
completed. Then if for some instance H of a subgoal A in 9, VH is true in%% P),
then there h an answer of A in Y whose head has H as an instance and whose
bo~ is empty.

PROOF. Recall that the Herbrand universe ~ is constructed from a
language -$& that contains all function symbols in P and Q. In addition, S37
contains a unary function f’ and a constant c’ that do not occur in P or Q. Let
xl, Xn be all the distinct variables in H, and H* be the ground atom
obtained from H by replacing each variable Xi with the term (f ‘)i(c’). Then,
H* is true in %9(P) since VH is true in %27(P). By Theorem 5.3.2, there is an
answer C of subgoal A in S whose head has H* as an instance and whose
body is empty. Since f’ and c’ never occur in any SLG derivation, the head of
C must also have H as an instance. •I

5.4. TERMINATION AND DATA COMPLEXITY. SLG resolution terminates for
all function-free programs, and more generally, all programs with the
bounded-term-size property [Van Gelder 1988]. The following definition is
adapted from Van Gelder [1988], with the difference that every variable is
treated as of size 1 due to variant checking of subgoals.

Definition 5.4.1 (Bounded-Term-Size Propem). The size of a term is defined
recursively as follow5

—The size of a variable or a constant is 1.
—The size of a compound term f(tl,..., t“) is one plus the sum of the sizes of

its arguments.

A finite program P has the bounded-term-size prope~ if there is a function
f(n) and a (computable) computation rule R such that whenever an atomic
query Q has no arguments whose sizes exceed n, no atom in any X-rule of any
subgoal in S’ has an argument whose size exceeds f(n), where & is any system
in any SLG derivation for Q with respect to P.

Definition 5.4.2. Let P be a finite program. Then (Pi denotes the number of
rules in P, and II ~ denotes the maximum number of literals in the body of a
rule in P. Let s be an arbitrary positive integer. Then Xs) denotes the
number of atoms of predicates in P that are not variants of each other and
whose arguments do not exceed s in size.

THEOREM 5.4.3 (TERMINATION). Let P be a finite program with the bounded-
term-sue prope~, R be an arbitra~ but @ed computation rule, and Q be an
atomic query. Then a final system for Q can be constructed in Otis) x IPI x
Xs)n’) transformation steps for somes >0.

Tabled Evaluation with Delaying for General L~”c programs 61

PROOF. Let n be the maximum size of arguments in Q. Let & be any
system in an SLG derivation for Q. By definition, no atom in any X-rule of any
subgoal in 9’ has an argument whose size exceeds f(n) for some function f.
Let s = f(n).

The number of distinct subgoals in Y’ is bounded by~s). For each subgoal
A in .-Y, the length of the initial X-sequence for A introduced by NEWSUBGOAL

is bounded by IPI. Let G be an X-rule G of a subgoal A in & that is not
disposed. The number of Iiterals in the body of G is bounded by IIP. This is
due to the fact that delayed literals of an answer are not propagated in
POSITIVERETURN.The number of X-rules that can be generated directly from
G is

—at most .4’(s) if G has a selected atom, and
—at most 1 otherwise.

Each of the resulting X-rules that is generated directly from G either

—has the same number of delayed literals as G and has one literal less than G
that is not delayed; or

—has the same number of literals that are not delayed as G and has one
delayed literal less than G.

Finally each X-rule corresponding to an ordinal in the X-sequence of A in &
can be disposed only once. Therefore, the size of a system & is bounded by
O@ls) x IPI X#’l X)n P). As each transformation increases the size of a sys-
tem, a final system can be constructed in O(#(s) x IPI x.4’(s)” P) steps. ❑

ln the framework of deductive databases, a query can be represented by an
intentional database (lDB), P,, which can be any finite function-free program.
The predicates that occur in the rule bodies in P,, but not in the rule heads in
P,, are the extensional database (EDB) predicates. An EDB is represented as a
finite set of ground atoms over the EDB predicates. Given an EDB P~, we can
form a program PI u P~. P, can be viewed as a function that maps PE to the
well-founded partial model %KY(Pl U P~).

Van Gelder et al. [1991] has shown that for function-free programs, comput-
ing the well-founded semantics has a polynomial time data complexity. The
notion of data complexity, as defined by Vardi [1982], is the complexity of
evaluating a database query when the query is f~ed and the database is
regarded as input.

Definition 5.4.4 [Van Gelder et al. 1991]. The data complexity of an IDB is
defined as the computational complexity of deciding the answer to a ground
atomic query as a function of the size of the EDB; in the context of well-founded
semantics, this means deciding whether the ground atom is positive in the
well-founded partial model.

THEOREM 5.4.5. Let P, be an IDB that is an arbitrary finite function-flee
P-m, p~ be a finite EDB, and P be PI u P~. Let R be an arbitraty but fk?d
computation rule, and Q be a jhnction-fie ground atomic que~. Then, a final
system Y for Q can be constructed in polynomial time in the size of the EDB.

PROOF. For function-free programs and atomic queries, the size of each
argument is 1. Then x 1) denotes the number of distinct function-free atoms
that are not variants of each other. Since the number of predicates in P and

62 W. CHEN AND D. S. WARREN

their arities are fixed. Xl) is a polynomial in the size of P~. By Theorem 5.4.3,
a final system 9 for Q can be constructed within OL%’11)X IPI XW(l)np)
steps. Let k =Al) x IPI x Y’ll)nP. We show that the total time for construct-
ing & is polynomial in the size of P~.

We assume that a global table of subgoals and their answers are maintained.
Answers of the same subgoal that have the same atom in the head are grouped
together since only one of them is used in POSITIVERETURN.Thus, the time for
searching and inserting a subgoal is O(logXl)). Similarly it takes time
O(fogAl)) to insert an answer and check whether the inserted answer has the
same head atom as some previous answer already in the table.

Since the EDB P~ is a finite set of ground facts, all literals of EDB
predicates can be solved directly and so subgoals of EDB predicates do not
have to be maintained. In the following all subgoals refer to subgoals of IDB
predicates.

Each application of NEW SUBGOAL takes time O(Zogxl)) for checking
whether a subgoal is new and a constant amount of time to construct all initial
X-rules of a subgoal (since P, is fried).

Each application of POSITIVERETURNand NEGATIVERETURNcan be carried
in a data-driven manner. When an X-rule G is generated that has a selected
atom A, POSITIVE RETURN is performed on G with all existing answers of A.
When an answer for A is derived whose head atom is distinct from that of all
previous answers, Posm RETURNcan be performed on all active X-rules that
have a selected atom A using the new answer. Thus the time for each
application Of POSITIVERETURNOr NEGATIVERETURNis at most ~(~ogtil)) if
we include the time to check whether a newly generated answer of a subgoal
has a head atom that is distinct from all previous answers. Similarly each
application of DELAYINGis at most O(log-J’(1)).

By definition, the transformation SIMPLIFICATIONis applied to only subgoals
that are completed. It can be done in a data-drive manner based upon whether
a delayed literal is successful or failed. The time for each application of
SIMPLIFICATIONis a constant.

We assume that COMPLETIONis postponed until no other transformation can
be applied to subgoals that are not completed. A linear traversal of all active
X-rules of all subgoals that are not completed can determine subgoals that are
not completely evaluated, that is,

—a subgoal that has an active X-rule with a selected negative literal;
—a subgoal that has an active X-rule whose selected atom A is a subgoal that

is not completely evaluated.

The complement of the set of subgoals that are not completely evaluated, with
respect to the set of all subgoals that are not completed, gives the largest
possible set of subgoals that are completely evaluated. Thus, the time of one
application of COMPLETION is O(k). The total number of applications of
COMPLJZITONis 00Y71)), and so the total time spent on COMPLETIONis 0041)
X k).

We assume that ANSWERCOMPLETIONis postponed until no other transfor-
mation is applicable. A linear traversal of all answers of subgoals that are
completed can determine all pairs (xl, H), where H is the head of an answer
of a subgoal A and H is supported by A. Then, answers of a completed
subgoal A whose heads are not supported by A are deleted by ANSWER

Tabled Evaluation with Delaying for General LOB-CPrograms 63

COMPLETION.me time Of One application Of ANSWERCOMPLETIONiS O(k). me
total number of applications of ANSWER COMPLETIONis the total number
O(J4 1)) of distinct subgoals times the total number OGt’11)) of distinct head
atoms in answers of a subgoal. Hence the total time spent on ANSWER
coMPLE_rtoN is 0Q/’(l)2 X k).

ln summary, the time for constructing a final system &is O(k x fog~l) +
.~l) x k +41)2 X k), where k =41) X IPl X.X(1)”’, and it is polynomial in
the size of P~. Notice that P, in P = P, U P~ is fixed, and so IPI is linear in
the size of P~ and II ~ is a constant since every rule in PE is a ground fact, with
an empty body. In addition, 41) is polynomial in the size of P~. U

In practice, efficient incremental algorithms have been developed that detect
subgoals that are completely evaluated or are possibly involved in loops
through negation in a constant amount of time [Chen et al. 1995]. We believe
that the freedom of choosing an arbitra~ computation rule and choosing an
arbitrary strate~ of selecting transformations in SLG resolution offers the
maximum flexibility for practical implementations.

6. Restricted SLG Resolution

SLG resolution provides a general framework for effective query evaluation of
logic programs with respect to the well-founded partial model. In this section,
we show that SLG resolution can be simplified for restricted classes of
programs without compromising its soundness and search space completeness.
In particular, we consider definite programs, locally stratified programs, and
modularly stratified programs. For any program in these classes, the well-
founded partial model is two-valued and is the only stable model of the
program.

6.1. DEFINITE PROGRAMS. Definite programs are programs without nega-
tion. The well-founded partial model [Van Gelder et al. 1991] of a definite
program coincides with the least Herbrand model [Van Emden and Kowalski
1976]. Any transformation that deals with negative Iiterals is no longer needed.
Without negation, no delayed Iiterals will be introduced. Thus, all X-rules in a
system are just rules.

The following transformations are needed and sufficient for definite pro-
grams:

—NEW SUBGOAL for introducing a new subgoal and resolution with rules in a
program;

—POSITIVE RETURN for solving the selected atom of an X-rule using an answer
(that has an empty body);

—COMPLETIONfor disposing active X-rules of subgoals that are completely
evaluated.

The results in Section 5 can be specialized to definite programs and the
corresponding least Herbrand model semantics.

Since COMPLETION does not affect answers of subgoals, all applications of
COMPLETION for definite programs can be postponed until the last step. Even
then, it is not necessary since all answers have already been generated. That is,
only NEW SUBGOAL and POSITIVE RETURN are really necessary for definite
programs. This restriction of SLG resolution to definite programs results in a

64 W. CHEN AND D. S. WARREN

query evaluation strategy that is equivalent to OLDT [Tamaki and Sato 1986]
and SLD-AL [Vieille 1989], modulo differences in variant checking or sub-
sumption checking of subgoals.

In practice, if a subgoal is completed, there is no need for a choice point for
potentially new answers of the subgoal. That is, active X-rules that have a
selected atom A, where A is completed, can be disposed after all answers of A

have been used in POSITIVE RETURN to solve the selected atom. The use of
COMPLETIONmay allow early disposal of such active X-rules.

6.2. LOCALLY STRATIFIEDPROGRAMS. Stratified programs are programs in
which there is no negation through recursion [Apt et al. 1988]. Przymusinski
[1988] extended the class of stratified programs to a wider class, called locally
stratified programs, and introduced the perfect model semantics. There is no
infinite recursion through negation in locally stratified programs. The perfect
Herbrand model of a locally stratified program coincides with the well-founded
partial model.

Let P be a finite program. P is localfy stratified [Przymusinski 1988; Ross
1991] if there is an assignment of ordinal levels to ground atoms such that
whenever a ground atom appears negatively in the body of an instantiated rule,
the head of the ground rule is of strictly higher level, and whenever a ground
atom appears positively in the body of an instantiated rule, the atom in the
head has at least its level.

Due to stratification, for every selected ground negative literal - B, subgoal
B can be completed before - B needs to be solved using NEGATIVERETURN.
Since the well-founded partial model of a stratified program is two-valued, B
either succeeds or fails when it is completed. Thus, DELAYING k not needed.

In summary, the following transformations are necessa~ and sufficient for
locally stratified programs:

—NEW SUBGOAL for introducing a new subgoal and resolution with rules in a
program;

—POSITIVE RETURN for solving the selected atom of an X-rule using an answer
(that has an empty body);

—NEGATIVE RETURN for solving the selected ground negative literal of an
X-rule when its positive counterpart either succeeds or fails;

—COMPLETION for disposing active X-rules of subgoals that are completely
evaluated.

By an induction on the strata of ground subgoals, it can be shown that all
ground subgoals can be completed and either succeed or fail before the
corresponding negative literal is solved by NEGATIVE RETURN. Thus, the results
in Section 5 can be specialized to locally stratified programs and the corre-
sponding perfect Herbrand model.

Extension of OLDT [Tamaki and Sato 1986] and SLD-AL [Vieille 1989] have
been developed for stratified programs [Kemp and Topor 1988; Seki and Itoh
1988]. Our restriction of SLG resolution to locally stratified programs differs in
that a single system of subgoals is maintained, which guarantees that each
subgoal be evaluated only once.

6.3. MODULARLYStratified PROGRAMS. Ross [1991] studied a more gen-
eral class of programs that can be evaluated in a subgoal-at-a-time fashion,
called modular~ stratified programs. Consider the well known game-playing

Tabled Evaluation with Delaying for General Lo@”cPrograms 65

program [Gelfond and Lifschitz 1988]:

win(X) ~ moue(X, Y), - win(Y),

where X is a winning position if there is a move from X to Y that is not a
winning position. The program is not locally stratified in general. However, if
move is acyclic, the program is modularly stratified. For modularly stratified
programs, the same transformations of locally stratified programs can be used,
except that a certain computation rule must be assumed.

Let P be a program. We say that a predicate p calf.s a predicate q if there is
a rule in P such that p occurs in the head and q occurs in the rule body. Let
DG be the corresponding calling graph of P. The set of predicates in P can be
partitioned into equivalence classes according to the strongly connected com-
ponents of DG. A program P can be broken into complete components
following the partition of predicates. There is a natural partial ordering +
over components, where F1 + Fz if some predicates in Fz call directly or
indirectly some predicates in F].

Definition 6.3.1 (Modular Stratification [Ross 1991]). Let P be a finite
program and < be the partial ordering over complete components of P. P is
moduiar~ stratified if, for every component F of P,

—There is a total well-founded model M for the union of all components
F’ + F, and

—The quotient of F modulo M, F/M, is locally stratified.

For queq evaluation of modularly stratified programs, we must ensure that
literals whose predicates are defined in a lower component be solved first.
Therefore, an arbitrary but fixed computation rule does not work. Consider a
query p with respect to the following program:

p+-p, -q.

q.

If the computation rule selects - p, there will be an infinite negative loop, in
which case delaying transformation must be applied. To avoid delaying, we
need to use a computation rule that selects Iiterals of lower components first.

Ross [1991] introduced the notion of lefi-to-right modularly stratified pro-
grams. Each modularly stratified program can be converted into a left-to-right
modularly stratified program by putting in the body of each rule all Iiterals of
lower components before Iiterals of the same component as the head of the
rule.

Let P be a left-to-right modularly stratified program, and R be the left-to-
right computation rule and Q be an atomic query. Then the same transforma-
tions for locally stratified programs are necessary and sufficient for construct-
ing SLG derivations for Q with respect to P under R.

By an induction on the level of components and the levels of ground atoms
in each component, it can be shown that all ground subgoals can be completed
and either succeed or fail before the corresponding negative literal is solved by
NEGATIVE RETURN. Thus the results in Section 5 can be specialized to left-to-
right modularly stratified programs under a left-to-right computation rule.

All modularly stratified programs are also weakly stratified [Przymusinska
and Przymusinski 1988], but the converse is not true [Ross 1991]. The major
difference between modularly stratified and weakly stratified programs is in the

66 W. CHEN AND D. S. WARREN

notion of components. In modularly stratified programs, components are
defined in terms of the dependency relationship among predicates, while in
weakly stratified programs, components are defined in terms of the depen-
dency relationship among ground atoms. As a result, when a query is evaluated
with respect to a finite nonground program, literals in rule bodies of a
modularly stratified programs can be put in a sequential order so that literals
of lower components are always solved first. Such a static ordering is not
possible for weakly stratified programs because the level of a component to
which a literal belongs depends upon the variable bindings at run time.
Therefore, the full SLG resolution is needed for query evaluation of (non-
ground) weakly stratified programs.

7. Discussion

This section discusses two decisions that are made in the design of SLG
resolution, namely variant checking of subgoals and answers and an arbitrary
computation rule. We compare with related work and present experiences in
three implementations of SLG resolution that have been developed.

7.1. VARIANT VERSUS SUBSUMPTION CHECKING. To guarantee termination,
SLG resolution checks for repeated subgoals and repeated answers. Repeated
subgoals are solved using only answers from previous calls and repeated
answers are not returned to solve the selected atom of an X-rule. In SLG
resolution, variant checking is used to detect both repeated subgoals and
repeated answers. Two subgoals are identical if they are variants of each other.
If two answers of the same subgoal have head atoms that are variants of each
other, only one of them is used in POSITIVE RETURN to solve the selected atom
of an X-rule.

Another approach is to use subsumption checking for subgoals and answers.
If a subgoal B is an instance of a previous subgoal A, then B is solved using
answers of A. Similarly if an answer is subsumed by a previous one, only the
more generaI answer is kept.

The choice of variant checking in SLG resolution is motivated by two
advantages. One is that variant checking allows easier and efilcient implemen-
tation of indexing of tables of subgoals and answers. By using a ground
representation of variables, variant checking of atoms can be reduced to
equality of ground atoms. An efficient table lookup operation is crucial to the
efficiency of an implementation of SLG resolution. The other advantage of
variant checking of subgoals is that Prolog-style meta programming using
builtin predicates such as var/1 can be supported.

The main disadvantage of variant checking is repeated computation among
subgoals that subsume each other.

E.mmple 7.1.1. Consider the following simple program:

edge(fz, b). edge(b, c). edge(c, d). edge(d, a).

pfzth(X, Y) ~ effge(X, Y).

path(X, Y) e edge(X, Y), path(Z, Y).

Suppose that a query path(X, Y) is evaluated and a left-to-right computation
rule is used. Then the following set of subgoals of path/2 will be evaluated:

{path(X, Y), path(b, Y), palh(c, Y), path(d, Y), path(a, Y))

Tabled El !aluation with Delaying for General Logic Programs 67

Clearly answers of path(X, Y) include those of the other subgoals of
path/2. R

Even with subsumption checking of subgoal, repeated computation cannot
be fully avoided in general when a more specific subgoal, say p(X, X), is
encountered before a more general one such as P(X, Y).

7.2. COMPUTATION RULE AND SEARCH STRATEGIES. SLG resolution allows
an arbitrary computation rule for selecting a literal from a rule body. Given a
finite program P, an arbitraV but fixed computation rule R, and an atomic
query Q, it is possible that a nonground negative literal - B may be selected
by R from a rule body during the evaluation of Q with respect to P. Such a
situation may lead to jlounden’ng. SLG resolution is able to solve - B only if
either B has an answer that has B in the head and has an empty body, or
subgoal B is completed without any answers. Without mechanisms such as
constructive negation [Chan 1988; Chen and Adams 1994; Przymusinski 1989b;
Stuckey 1991], nonground negative Iiterals cannot be solved in general. In SLG
resolution, a final system for Q with respect to P may not be completed and
may contain active X-rules that have a selected nonground negative literal.

One may reduce floundering by using computation rules that select positive
Iiterals before negative ones. One may also avoid floundering by imposing
conditions on programs. A finite program is range restricted if for every rule in
the program, all variables in the rule head must occur in the rule body, and
every variable that occurs in a negative literal in the rule body must also oeeur
in a positive literal in the rule body. By using a computation rule that always
selects positive literals before negative ones, floundering can be avoided for
range restricted programs.

SLG resolution avoids imposing any restrictions on the computation rule an
implementation may use or on programs with respect to which queries may be
evaluated. The main reason is that an implementation of SLG resolution is
free to choose any computation rule, such as the left-to-right computation rule
in Prolog systems. in left-to-right modularly stratified program [Ross 1991], for
example, the left-to-right computation rule must be used to guarantee that
Iiterals of predicates from lower components be selected first. This mayor may
not be consistent with requirements that positive Iiterals be selected before
negative ones. Also programmers can use their knowledge of the computation
rule in an implementation to control floundering and to write more efficient
programs. Negative Iiterals may be used as guard conditions to determine if
some expensive computation in the rest of a rule body should be evaluated.

SLG resolution also allows an arbitrary strategy for selecting which transfor-
mation to apply when multiple transformations are applicable to a system. In
other words, the definition of SLG resolution does not dictate any particular
strategy that should be used. In several implementations [Chen and Warren
1993; Ramesh and Chen 1994; Sagonas et al. 1994], a greedy strategy is used in
which

—whenever a new answer C of a subgoal ,4 is created, POSITIVE RETURN k

applied using C to every X-rule in the system that has a selected atom A;
and

—whenever an active X-rule G of a subgoal is created that has a seleeted atom
A, POSITIVE RETURN k applied to G using every existing answer of A; and

68 W. CHEN AND D. S. WARREN

—whenever a new subgoal A is encountered, its initial X-rules are generated
by mw SUBGOALand are transformed.

This greedy strate~ is close to the top-down tuple-at-a-time computation.
A different strategy has been implemented in a version of XSB [Sagonas

et al. 1994], which computes as many answers as possible for a subgoal before
any of the answers is returned through Posrrmm RETURN.This strategy is close
to the bottom-up set-at-a-time computation in ordered_search [Ramakrishnan
et al. 1992].

Different implementations may choose different search strategies, according
to specific applications, and SLG resolution offers the flexibility of such
choices.

7.3. RELATED WORK. SLS resolution is the early work on an operational
procedure for the well-founded semantics [Przymusinski 1989a; Ross 1991]. It
does not incorporate any tabling mechanism. Every selected atom is solved by
resolution with program rules, and every selected ground negative literal is
solved by computing the corresponding positive literal up to a f~int. Without
tabling, it serves only as an ideal top-down procedural semantics since it may
go into infinite loops even for function-free programs. Without tabling, it
requires a positiue and negative¶llel computation rule in order to guaran-
tee search space completeness (for nonfloundering queries). That is, positive
literals are selected before negative ones, and when only negative literals
remain in a rule body, all the negative literals are selected and evaluated. The
latter is required because the evaluation of one ground negative literal may go
into an infinite loop while the evaluation of another may fail.

WELL! [Bidoit and Legay 1990] and XOLDTNF resolution [Chen and
Warren 1992] represent a simple modification of SLS resolution with tabling to
handle loops through negation. By maintaining a negative context with each
subgoal, both can detect loops through negation, treat the ground negative
literal involved in such a loop as undefined, and avoid non-termination. An
answer consists of both an atom and a truth value that can be either tor u. The

use of negative contexts, however, prevents the full sharing of answers across
different negative contexts. In the worst case, a subgoal maybe evaluated in an
exponential number of distinct negative contexts.

Two methods of query evaluation have been developed for left-to-right
modularly stratified programs. One is an extension of SLS resolution, called
QSQR/SLS by Ross [1991] and the other is an extension of supplementary
magic templates, called order_ search [Ramakrishnan et al. 1992]. Both main-
tain subgoal dependency information to check whether subgoals are completely
evaluated. Ross [1991] showed that QSQR/SLS procedure has the same
complexity as supplementary magic rewriting.

An interesting aspect of bottom-up computation such as magic templates
[Ramakrishnan 1991] is that its checking of repeated subgoals is neither variant
nor subsumption checking. Subgoals that have the same binding patterns are
treated the same. For the program and query in Example 7.1.1, subgoals
path(b, Y), path(c, Y), path(d, Y) and path(a, Y) all have the same binding
pattern, while path(X, Y) has a different binding pattern. Subgoals of the same
binding pattern will share the same table of answers. For programs with
function symbols, an argument is considered bounded if one of the variables in

Tabled Evaluation with Delaying for General L~”c Programs 69

the argument is bounded. Thus, subgoals q(f(g(Y))) and q(f(g(a))) may be
treated as calls of the same binding pattern when they are obtained from
q(f(X)) by binding X to g(Y) and g(a) respectively, even though one
subsumes the other.

For general programs, the magic sets transformation does not always pre-
serve the well-founded semantics [Kemp et al. 1991]. The proposed solutions in
[Kemp et al. [1991; 1992] use a doubled program, one for computing definitely
true facts and the other for computing not definitely false facts. The separate
computation of these two classes of facts may cause redundant inferences since
the sets of not definitely false facts are decreasing, but are computed in an
increasing manner. The doubled program method also tends to make too many
magic facts true, which means that more subgoals are evaluated than neces-
sary. An alternating fixpoint tailored to magic-sets in Morishita [1992] allevi-
ates this problem, but still generates many irrelevant magic facts in the initial
stages of the fixpoint computation [Chen et al. 1995].

An extension of ordewd_search to compute the well-founded semantics,
called well-founded ordered search, was developed by Stuckey and Sudarshan
[1993]. Both SLG resolution and well-founded ordered search support goal-ori-
ented query evaluation and allow an arbitrary computation rule. The main
difference is in the treatment of negative literals possibly involved in loops
through negation. Our implementation of SLG resolution checks only potential
loops through negation and may delay ground negative literals more than
necessary. But it avoids repeated computation by keeping delayed literals
explicitly and simplifying them later. In contrast, well-founded ordered search
maintains precise dependency information among subgoals, by essentially run
time reorganization of a stack of subgoals, and is able to detect genuine loops
through negation. For portions of programs that involve loops through nega-
tion, it uses alternating fixpoint computation such as Morishita [1992], which
may repeat certain steps of computation.

In Bol and Degerstedt [1993], a method of top-down tabulated resolution for
well-founded semantics was presented. Like SLG resolution, it uses several
transformations to construct a search forest, which em-responds to our notion
of a system of subgoals. There are some major differences, though, between
SLG resolution and tabulated resolution in Bol and Degerstedt [1993].

In SLG resolution, let G be an X-rule of a subgoal and ~ B be the selected
negative literal of G. When - B is solved in NEGATIVERETURNor DELAYING,

G is disposed and possibly replaced by another X-rule. In other words, G has
at most one child due to the selection of - B. Even when - B is delayed, it is
never selected again by the computation rule. A delayed negative literal is only
simplified later when its truth value becomes known.

In the tabulated resolution in Bol and Degerstedt [1993], let G be a node in
a search forest and - B be the selected ground negative literal of G. Then G
may have two child nodes. One is derived through erten.rion by u-assumption, in
which - B is essentially replaced with the undefined truth value u. The other
is derived through extension by negation as failure, in which B is known to be
successful or failed and - B is solved by negation as failure. As a result, the
conjunction of the remaining literals in the body of G may have to be
evaluated twice.

Another difference between SLG resolution and the tabulated resolution in
Bol and Degerstedt [1993] is in the treatment of nonground negative Iiterals.

70 W. CHEN AND D. S. WARREN

SLG resolution selects a nonground negative literal only once and tries to solve
it when it can be solved by negation as failure. In contrast, the tabulated
resolution in Bol and Degerstedt [1993] may select a nonground negative literal
twice, once when it is initially selected and the other when the nonground
negative literal beeomes ground later. In addition, an answer may contain
nonground negative literals in its body. These nongxound negative literals are
propagated when the answer is used to solve the selected atom of a node. A
small variation of Example 3.4.1 can be used to show that propagation of
nonground negative literals may cause an exponential number of distinct
conditional answers for a subgoal. Thus, the polynomial data complexity of the
well-founded semantics for function-free programs is not preserved by the
tabulated resolution in Bol and Degerstedt [1993].

A unique feature of SLG resolution is the handling of ground negative
literals that may be involved in loops by using DELAYING, SIMPLIFICATION, and
ANSWER COMPLETION. There are several advantages. First, DELAYINGprovides
SLG resolution the freedom of an arbitraxy computation rule without compro-
mising the soundness and search space completeness of SLG resolution. Even
when the truth value of a ground negative literal cannot be decided, for
example, in the case of loops through negation, DELAYING allows SLG resolu-
tion to proceed and solve remaining Iiterals in a rule body. In a certain sense, it
achieves the same effect of the positivistic and negatively parallel computation
rule in (global) SLS resolution [Przymusinski 1989a; Ross 1989], yet without
imposing any condition on the computation rule. Second, by maintaining
delayed literals explicitly and simplifying them later, no derivation steps in
resolution are repeated. Finally, SLG keeps delayed literals in answers of
subgoals that are undefined in the well-founded semantics. This allows query
evaluation with respect to other three-valued stable models by further process-
ing of the answers under the well-founded semantics.

The decision in SLG resolution not to propagate negative delayed Iiterals in
the bodies of answers is necessary in order to guarantee the polynomial data
complexity of SLG resolution for function-free programs. On the other hand,
this leads to the creation of positive delayed literals in POSITIVE RETURN, and
the need for ANSWER COMPLETION to delete, under certain conditions, answers
that have positive delayed literals in their bodies. The transformation ANSWER
COMPLETION is an expensive operation since it may require traversing the
answers of subgoals. An interesting topic for future work is to investigate
conditions under which the use of ANSWER COMPLETION can be avoided or
minimized.

7.4 IMPLEMENTATIONS OF SLG ItESOLUTION. Perhaps the most important
aspect of SLG resolution is the availability of its implementations and their
performance. All of them use the left-to-right computation rule.

The first implementation is a Prolog meta interpreter [Chen and Warren
1993]. A major implementation issue is to detect subgoals that are completely
evaluated for COMPLETION and potential loops through negation for DELAYING.

The latter is needed so that DELAYING can be avoided when ground negative
Iiterals can be solved using NEGATIVE RETURN. Both require the dependency
information about subgoals in a system. It turns out that with DELAYING and
SIMPLIFICATIONh k not necessary to compute precisely loops through negation
in a system, which is likely to be very expensive at run time. Instead, we have

Tabled Evaluation with Delaying for General Logic Programs 71

developed an efficient approximate algorithm for incremental maintenance of
the dependency information of subgoals [~hen et al. 1995]. The top-down
framework of SLG resolution leads to a stack of subgoals based upon the
sequence in which they are encountered and lends it naturally to incremental
maintenance of dependencies among subgoals. By inspecting the dependenq
information of a singie subgoal A, it is possible to determine whether all
subgoals from the top of the stack to A are completely evaluated or are
possib@ involved in loops through negation. The performance of the meta
interpreter implementation is competitive with others that handle arbitrary
negation.

The second implementation is a Prolog compiler, called XSB [Sagonas et al.
1994]. XSB modified the Warren Abstract Machine (WAM) of Prolog to
implement SLG resolution restricted to modularly stratified programs. By
taking advantage of WAM technology and efficient indexing of tables of
subgoals and answers at WAM level, XSB has demonstrated impressive perfor-
mance for query evaluation of deductive databases [Sagonas et al. 1994].

The most recent implementation uses source program transformation and
tabling primitives external to Prolog WAM [Ramesh and Chen 1994]. A
program P is transformed into another program P’ by inserting tabling
primitives, and Prolog execution of P’ yields SLG resolution. The tabling
primitives are independent of the underlying Prolog WAM. They maintain
tables of subgoals and answers and implement the control strate~ that is
needed for SLG resolution. It is much more efficient than the meta interpreter
and portable across different Prolog systems.

All these implementations support an integration of SLG resolution and
Prolog computation. A distinction can be made between predicates that are
solved using SLG resolution and those that are solved as in Prolog. Ordina~
Prolog computation can be incorporated into SLG resolution in a simple
manner, without any overhead. In the other direction, predicates solved by
SLG resolution can also be called by Prolog predicates.

8. Conclusion

SLG resolution serves as both a foundation and a practical framework for
computing the well-founded semantics of logic programs. Theoretically, a
number of fundamental transformations are identified, cleanly separating
logical issues from procedural information. Restricted versions of SLG resolu-
tion have been developed for programs with limited uses of negation, including
definite, locally stratified, and modularly stratified programs. These programs
do not have to pay for the overhead of transformations that are not needed.
This sheds light on the role that each transformation plays. SLG resolution
preserves all three-valued stable models, including the well-founded partial
model as a special case. It terminates for all programs with the bounded-terrn-
size property.

SLG resolution guarantees the polynomial time data complexity for well-
founded negation of function-free programs. It can be enhanced by further
processing of the answers of subgoals relevant to a query under the well-founded
semantics to deliver answers that are specific to other three-valued stable
models [Chen and Warren, to appear].

Practically, SLG resolution is upward compatible with existing Prolog sys-
tems. This facilitates the integration of SLG resolution with Prolog applica-

72 W. CHEN

tions. More importantly, Prolog compiler technology can
efficient implementation of SLG resolution.

AND D. S. WARREN

be adapted for an

We firml~ believe that SLG resolution will have an important impact on the
theory and practice of logic-based computational systems. Its termination
properties on stratified function-free programs make it a good strategy for
deductive database query processing; its ability to be integrated seandessly with
Prolog evaluation makes it a good logic programming strategy, and its polyrto-
mial data complexity for handling nonstratified programs makes it a good
strategy for nonmonotonic reasoning in knowledge-based systems.

REFERENCES

APT,K. R., BIAIR, H., AND WALKER,A. 1988. Towards a theory of declarative knowledge. In
Foundations of Deductive Databases and L~”c Programming, J. Minker, ed. Morgan-Kaufmann
Publishers, Los Altos, Calif.

APT, K. R., ANDVAN EMDEN,M. H. 1982. Contributions to the theory of logic programming. J.
ACM 29,3 (July), 841-862.

BALBIN,L, PORT,G. S., RAMAMOHANARAO,K., ANDMEENAKSHI,K 1991. Efficient bottom-up
amputation of queries on stratified databases. J. Logic Prog. 11, 295–344.

BANCILHON, F., M.MER, D., SAGIV, Y., AND ULLMAN, J. 1986. Magic sets and other strange ways
to implement logic programs. In Proceedings of the 5th Annual ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (Cambridge, Mass., Mar. 24-26). ACM, New York,
pp. 1–15.

BEERI, C. AND RAMAKRMHNAN,R. 1987. On the power of magic. In Proceedings of the 6th
Annual ACM SIGACT-SIGMOD-SIGART Symposium on ticiples of Database Systems (San
Diego, Calif., Mar. 23-25). ACM, New York pp. 269-283.

BIDOIT, N., AND LEGAY, P. 1990. WELL!: An evaluation procedure for all logic programs. In
Proceedings of the International Conference on Database lkeo~. Springer-Verlag, New York,
pp. 335-348.

BOL, R., AND DEGERSTEDT, L. 1993. Tabulated resolution for well-founded semantics. In
Proceedings of the International Logic Programming Symposium. MIT Press, Cambridge, Mass.,
pp. 199-219.

BRY, F. 1990. Query evaluation in recursive databases: Bottom-up and top-down reconciled.
Data ffiowl. Eng. 5,4, 289-312.

CHAN, D. 1988. Constructive negation based on the completed database. In Proceedings of the
5th lntemationai Conference and Symposium on Logic Programming. Robert A. Kowalski and
Kenneth A. Bowen, eds., MIT Press, Cambridge, Mass., pp. 111-125.

CHEN, W., AND ADAMS, L. 1994. Constructive negation of general logic programs. Tech. Rep.
94-CSE-16, Department of Computer Science and Engineering, Southern Methodist Univ.,
Dallas, Tex.

CHEN, W., SWIFT, T., AND WARREN, D. S. 1995. Efficient top-down computation of queries
under the well-founded semantics. J. Logic Prog. 24, 3, 161-199.

CHEN, W., AND WARREN, D. S. Computation of stable models and its integration with logical
query processing. IEEE Trans. bowl. Data Engin., to appear.

CliEN, W., AND WARREN,D. S. 1993. The SLG System. Southern Methodist Univ., Dallas, Tex.,
August. Available by anonymous FIT from seas.smu.edu or cs.sunysb.edu.

CHEN, W., AND WARREN, D. S. 1992. A goal-oriented approach to computing well founded
semantics. In Proceedings of the Joint International Confenmce and Symposium on Logic Program-
ming. MIT Press, Cambridge,Mass.,pp. 589–603.

CLARIG K. L. 1978. Negation as failure. In Logk and Databases. H. Gallaire and J. Minker,
eds. Plenum, New York, pp. 293-322.

DIETRICH,S. W. ANDWARREN,D. S. 1986. Extension tables: Memo relations in logic program-
ming. Tech. Rep. 86/18. Dept. Computer Science, SUNY at Stony Brook Stony Brook, N.Y.

GELFOND, M., AND L[mCHITZ, V. 1988. The stable model semantics for logic programming. In
Proceedings of the Joint International Conference and Symposium on Logic Programming. R. A.
Kowalski and K A. Bowen, eds. MIT Press, Cambridge, Mass., pp. 1070-1080.

KEMP, D. B., STUCXEY,P. J., ANDSRIVASTAVA,D. 1991. Magic sets and bottom-up evaluation
of well-founded models. In Proceedings of the International L~”c Programming Symposium. MIT
Press, Cambridge, Mass., pp. 337-351.

Tabled Evaluation with Delaying for General Lo@”cPrograms 73

KEMP,D. B., STUCKEY,P. J., ANDSRIVASTAVA,D. 1992. Query restrictedbottom-upevaluation
of normal logicprograms.[n Proceedings of the Joint [nternatwna[Conference and Symposium on
Logic Pragrumming. MIT Press, Cambridge, Mass., pp. 288-302.

KEMP, D. B., AND TOPOR, R. W. 1988. Completeness of a top-down query evaluation procedure
for stratified databases. In Proceedings of the Joint [ntemationa[Conference and Symposium on
Logic hgramming. MIT Press,Cambridge,Mass.,pp. 178-194.

KOMOROWSKL,J. 1990. Towards a programming methodology founded on partial deduction. In
Proceedings of the European Conference on Artificial Intelligence.

LLOYD,J. W. 1987. Foundations of Logic Programming, Springer-Verlag, New York.
LLOYD,J. W. ANDSHEPHERDSON,J. C. 1991. Partial evaluation in logic programming. J. Logic

Prag. 11, 217-242.
MARFiK,W., ANDTRUSZCZYNSKI,M, 1991. Autoepistemic logic. J. ACM 38, 3, 588-619.
MARTELL1,A., AND MONTANARI,U. 1982. An efficient unification algorithm. ACM Trans.

Prog. Lang. Syst. 4, 2 (Apr.), 258-282.
MORISHITA,S. 1992. An alternating fixpoint tailored to magic programs, In Proceedings of rhe

Deducti[’e Database Workshop at Joint International Conference and Symposium on Lo&’c Pro-
gramming.

PRZYMUSINSKA,H. AND PRZYMUSINSSO,T, C. 1988. Weakly perfect model semantics for logic
programs. In Proceedings of tire Joint International Conference and Symposium on Lo~”c Program-
ming, R, A. Kowalski and K. A. Bowen, eds. MIT Press, Cambridge, Mass., pp. 1lot– 1120.

PRZYMUSINSKI,T. C. 1988. On the declarative semantics of deductive databases and logic
programs. In Proceedings of the Foundations of Deductiue Databases and Log’c Programming, J.
Minker, ed. Morgan-Kaufmann Publishers, Los Altos, Calif.

PRZYMUSINSKI,T. C. 1989a. Every logic program has a natural stratification and an iterated
least tlxed point model. In Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium
on principles of Database Systems (Philadelphia, Pa., Mar, 29–31). pp. 11–21.

PRZYMUSINSKI,T. C, t989b. On constructive negation in logic programming. In Proceedings of
the North American Conference on Lo~’c Programming (Oct.), MIT Press, Cambridge, Mass.

PRZYMUSINSKI,T. C. 1989c. On the declarative and procedural semantics of logic programs. J.
Automated Reas. 5, 167-205,

PRZYMUSINSKI,T. C. 1990. The well-founded semantics coincides with the three-valued stable
semantics. Fund. Inf. 1.3, 445-463.

RAMAKRISHNAN,R. 1991, Magic templates: A spellbinding approach to logic programs. ~.
Logic Prog. II, 189-216.

RAMAKRISHNAN,R,, SRLVASTAVA,D., AND SUDARSHAN,S. 1992. Controlling the search in
bottom-up evaluation. In Proceedings of the Joint International Conference and Symposium on
Logic Programming. MIT Press, Cambridge, Mass., pp. 273-287.

RAMMH, R., ANDCH~N, W. 1994. A portable method of integrating SLG resolution into prolog
systems. In Proceedings of the International Logic Programming Symposium. MIT Press, Cam-
bridge, Mass., pp. 618-682.

ROSS, K. A. 1989. A procedural semantics for well founded negation in logic programs. In
I%oceedings of the 8th Annua[ACM SIGACT-SIGLUOD-SiGART Symposium on principles of
Database Systems (Philadelphia, Pa., Mar. 29-31). ACM, New York, pp. 22-33.

ROSS, K. A. 1991. The semantics of deductive databases. Ph.D. dissertation. Department of
Computer Science, Stanford University, August.

SAGONAS,K., SwIr=r,T., ANDD. S. WARREN,D. S. 1994. XSB as an efficient deductive database
engine. In Proceedings of the 1994 ACM SIGMOD international Conference on Management of
Data (Minneapolis, Minn., May 24-27). ACM, New York, pp. 442-453.

SEKI, H. 1989. On the power of Alexander templates. In Proceedings of the 8th ACIU SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (Philadelphia, Pa., Mar. 29-31).
ACM, New York, pp. 150-159.

SEKI, H., AND ITOH, H. 1988. A query evaluation method for stratified programs under the
extended CWA. In Proceedings of the Joint International Conference and Symposium on Logic
Programming. MIT Press, Cambridge, Mass., pp. 195-211.

STUCKEY,P.J, 1991. Constructive negation in constraint logic programming. In Proceedings of
the 6th lEEE Annual Symposium on Lo~”c in Computer Science. IEEE, New York, 328-339,

STUrKEY, P., AND SUDARSHAN,S. 1993. Well-founded ordered search. In Proceedings of the
13th Conference on Foundations of Soflware Technology and Theoretical Computer Science,
Lecture Notes in Computer Science, vol. 761. Springer-Verlag, New York, pp. 161-171.

74 W. CHEN AND D. S. WARREN

TAMAKI,H.,AND SA’I’0,T. 1986. OLD resolution with tabulation. In Proceedingsof the
International Confemrce on Logic Programming. MIT Press, Cambridge, Mass., pp. 84-98.

VAN EMDEN, M. H., ANO KOWWXO, R. A. 1976. The semantics of predicate logic as a
programming language. J. ACM 23,4 (Oct.), 733-741.

VANGELDER,A. 1988. Negations as failure using tight derivations for general logic programs.
In Proceedings of the Foun&tions of Deductwe Databases and Logic Rogramming, J. Minker, ed.
Morgan-Kaufmann Publishers, Los Altos, Calif.

VAN GELDER, A., Ross, K, A, ANDSCHLIPF,J.S. 1991. The well-founded semantics for general
logic programs. J. ACM 38,3 (July), 620-650.

VARDr, M. 1982. The complexity of relational query languages. In Proceedings of the 14th
Annual ACM Symposium on ?7wory Computing (San Francisco, Calif., May 5-7). ACM, New
Yoriq 137-146.

VIEILLE, L. 1987. A database-complete proof procedure based upon SLD-resolution. In Ro-
ceedings of the International Conference on Lop”c Pmgmmming. MIT Press, Cambridge, Mass.,
pp. 74-103.

VIEmLE, L. 1989. Recursive query processing: The power of logic. lhoret. Comput. ,Sci. 69,
1-53.

RECEIVEDAPRIL 1993; REVJSED MARCH 1995; ACCEflXD AUGUST1995

loumal of theACM, Vol. 43, No. 1, January 1996.

