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The formal study of reactive systems has recently led to a number of sugges- 
tions of how real-time requirements of systems ought to be modeled, specified, 
and verified. Most of these approaches are situated at either extreme of the 
trade-off between realistic modeling of time and feasible verification of timing 
properties. Typically, they either use a continuous model of time at the eTense 
of decidability’ or they sacrifice continuity to obtain decision procedures. This 
paper shows how a slight relaxation of the notion of punctuality allows us to 
combine the best of both worlds. 

We use a linear or trace semantics for reactive systems. The linear semantics 
of a system is a set of possible behaviors, each of which is represented by a 
sequence of system states. This model is most naturally extended to incorpo- 
rate real time by associating, with every state, an interval of the real line, which 
indicates the period of time during which the system is in that state. We 
represent the possible behaviors of a real-time system by such timed state 
sequences, each of which defines a function from the nonnegative reals to the 
system states. 

Alas, even the satisfiability of a very simple class of real-time properties 
turns out to be undecidable in this model [Alur and Henzinger 19941. An 
inspection of the undecidability proof shows that the only timing constraints 
required are of the form 

q (p + O=,q), (t) 

predicting that every p-state is followed by a q-state precisely 5 time units later. 
This negative result has led us, at first, to weaken the expressiveness of the 

model by adopting the semantic abstraction that, at every state change, we may 
record only a discrete approximation-the number of ticks of a digital clock-to 
the real time. Thus, we have interpreted the formula (t) to require only that 
the p-state and the corresponding q-state are separated by exactly 5 clock 
ticks; their actual difference in time may be as much as (say) 5.9 time units or 
as small as 4.1 time units. We have shown that several interesting real-time 
logics are decidable under this weaker, digital-clock, interpretation [Alur and 
Henzinger 1993; 19941. 

In this paper we pursue an alternative, syntactic, concession. Instead of 
digitizing the meaning of a sentence, we prohibit timing constraints that predict 
the time difference between two states with infinite accuracy. In particular, we 
may not state the property given above, but only an approximation such as 

q (P + o(�o,,.,,q)~ 
requiring that the p-state and the corresponding q-state are separated by more 
than 4.9 time units and less than 5.1 time units. We define a language that can 
constrain the time difference between events only with finite, yet arbitrary, 
precision. This is accomplished by prohibiting singular time intervals, of the 
form [a, a] from constraining temporal speakers. The resulting Metric Interval 
Temporal Logic (MITL) is shown to be decidable in EXPSPACE. The complex- 

‘See, for example, Koymans [1990], Lewis (19901, Alur et al. [1993], and Alur and Dill [1994]. 
‘See, for example, Jahanian and Mok [1986], Emerson et al. [1990], Hare1 et al. [1990], Ostroff 
[1990], and Alur and Henzinger [1993; 19941. (For a discussion of this trade-off, see Alur and 
Henzinger [ 19921.) 
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ity is PSPACE for the fragment of MITL that employs only time intervals of the 
form [a, ~1, (a,~), LO, b), and [O, bl. 

Properties of timed state sequences can, alternatively, be defined by timed 
automata [Alur and Dill 19941. While the emptiness problem for timed au- 
tomata is solvable, they are not closed under complement. MITL identifies a 
fragment of the properties definable by timed automata that is closed under all 
Boolean operations. The decision procedure for MITL leads to an algorithm for 
proving that a real-time system that is given as a timed automaton meets a 
requirements specification that is given in MITL. Thus, the novelty of our 
results is that they provide a log&z/ formalism with a continuous interpretation 
of time that is suitable for the automatic verification and synthesis of real-time 
systems. 

The remainder of the paper is organized as follows: In Section 2, we 
introduce and motivate the logic MITL. In Section 3, we introduce a variant of 
timed automata as a model for real-time systems. In Section 4, we reduce the 
decision problem for MITL to the emptiness problem for timed automata. In 
the concluding section, we present a model-checking algorithm for verifying 
Mm-specifications of timed automata. 

2. Metric Interval Temporal Logic 

We define timed state sequences as formal representations of real-time behav- 
ior. Then we introduce a temporal language to define properties of timed state 
sequences. 

2.1. TIME INTERVALS. We use the set R’ r ,, of the nonnegative real numbers 
as time domain. A (time) interval is a nonempty convex subset of R rO. 
Intervals may be open, half-open, or closed; bounded or unbounded. Each 
interval has one of the following forms: [a, b], [a, b), [a, ml, (a, b], (a, b), (a, m), 
where a I 6 for a,6 E IR.,. For an interval of the above form, a is its left 
end-point, and b is its right end-point. The left end-point of Z is denoted by 
Z(Z) and the right end-point, for bounded I, is denoted by r(Z). 

The interval Z is singular iff it is of the form [a, a]; that is, Z is closed and 
I(Z) = r(Z). The two intervals Z and I’ are adjacent iff (11 the right end-point 
of Z is the same as the left end-point of I’, and (2) either Z is right-open and I’ 
is left-closed, or Z is right-closed and I’ is left-open. For instance, the two 
intervals (1,2] and (2,2.5) are adjacent. 

We freely use intuitive pseudo-arithmetic expressions to denote intervals. 
For example, the expressions I b and > a denote the intervals [0, b] and 
(a, m), respectively, and the expression < Z denotes the interval (tl for all 
t’ E I, 0 I t < t’}. The expression t + I, for t E R L 0, denotes the interval 
(t + t’lt’ E Z]. Similarly, Z - t and t *I stand for the intervals (t’ - tit’ E Z 
and t’ 2 t} and {t * t’lt’ E I), respectively. 

2.2. TIMED STATE SEQUENCES. Let P be a finite set of propositions. We 
assume that, at any point in time, the observable state of a (finite-state) system 
can be modeled by a truth-value assignment for P. A state, then, is a subset of 
P. If s c P is a state and p E s is a proposition in s, we write s I= p and say 
that s is a p-state. 

The execution of a system results in an infinite sequence of states. We model 
the timed execution of systems by associating a time interval with each state. 
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We require that the interval associated with consecutive states be adjacent, and 
that the union of all intervals partitions the nonnegative real line. 

Definition 2.2.1. A state sequen_ce S = sOs,sz **. is an infinite sequence of 
states si C P. An interval sequence Z = Z,Z, I2 ..* is an infinite sequence of time 
intervals such that 

-[Znitiaky] I, is left-closed and Z(Z,) = 0; 
--[Adjacency] for all i 2 0, the intervals Z, and I,+, are adjacent; 
-[Progress] every time t E Iw L 0 belongs to some interval Z,. 

A timed state sequence T-= (5, Z) is a pair that consists of a state sequence S 
and an interval sequence I. For i 2 O_ and t E Ii, the state T*(t) at time t is si. 

The timed state sequence T = (S, Z) can thus be viewed as the function T* 
from the time domain Iw hO to the states 2P, which provides a system state at 
every time instant. (There is the alternative view that the timed execution of a 
system alternates state changes and time delays. That view can be modeled by 
pairing state sequences with sequences of closed intervals [Henzinger et al. 
19941. It is routine to transfer all our results into that model.) 

Definition 2.2.2. The two timed state sequences T, and r2 are equivalent iff 
for all t E R t 0, .r:(t) = 72*(t). 

Sometimes we represent the timed state sequence 7 = (S, Z> by the infinite 
sequence 

(s,,, I”> --) (s,, I,) -+ (s*, I,) --t as. 

of state-interval pairs. It is also convenient to represent an infinite sequence of 
state-interval pairs with identical state components by a single state-interval 
pair with an unbounded interval: if sj = si for all i 2 i, we write 

Cs(), z()) + Cs,3 1,) + ‘*’ 4 (S,-lv Ii-,> + St> U z, 
( 1 jki 

for 7. The time t E R , 0 is a transition point of T iff t is the left end-point Z( I,> 
of an interval in Z. The state s, is singular in T iff the associated interval Z, is 
singular. Notice that in this case neither si- , nor si+ , can be singular, because 
the interval Zi-, must be right-open and the interval I,+ 1 must be left-open. 
Singular states are useful for modeling events by propositions that are true 
only at transition points. 

Definition 2.2.3. Let T = (i, f) be a timed state sequence. Given t E Z,, the 
su@ T’ at time t is the timed state sequence 

(Sj, Z, - t) j (si+l, Zi+, - t, --j (Si+2, Ii+* - t) j “‘. 

In particular, T” = T and for all f,t’ E R,,,(T’)*(~‘) = T*(t + 1’1. 

2.3. Mm. MITL is a linear temporal logic that is interpreted over timed 
state sequences. A standard way of introducing real time into the syntax of 
temporal languages constrains the temporal operators with time intervals 
[Emerson et al. 1990; Koymans 1990; Alur and Henzinger 19931. For example, 
the constrained eventually operator Ot2,41 is interpreted as “eventually within 2 
to 4 time units.” We adopt this approach for MITL, with the restriction that 
temporal operators cannot be constrained by singular intervals. 
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2.3.1. Syntax. The formulas of Mm. are built from propositions using 
Boolean connectives and a time-constrained version of the until operator SY. 
The until operator may be constrained by any nonsingular interval with integer 
end-points. The restriction to integer end-points simplifies the presentation; we 
later show that our results extend to the case of rational end-points. 

Definition 2.3.1.1. The formulas of MIX. are inductively defined by the 
grammar 

4: := PI- dh#q A Gh % 429 

where p E P is a proposition, and Z is a nonsingzhr interval with integer 
end-points (I may be unbounded). 

We say that the integer constant c appears in the Mr-rr=formula + iff c is an 
end-point of some interval that appears in 4, as a subscript of an until 
operator. 

2.3.2. Semantics. The formulas of Mm are interpreted over timed state 
sequences, which provide an interpretation for the propositions at every time 
instant. Informally, the formula 4, sY, c#+ hold at time t of a timed state 
sequence iff there is a later time t’ E CC + I) such that c#+ holds at time t’ and 
+i holds throughout the interval (t, t’). 

Defini$on 2.3.2.1. For an MI-t-L-formula 4 and a timed state sequence 
T = (S, I), the satisfaction relation 7 b 4 is defined inductively as follows: 

TkP iff s0 K p; 

Ti= lc#J iff T# c$; 

7 b 41 A $2 iff rk +i andri= 42; 

7 i= 41 % 42 iff for some t E I, T’ b c&, and for all t’ E (0, t), 7” I= +i. 

The timed state sequence T is a model of the formula 4, or T suti.#es 4, iff 
T I= 4. We write L(4) for the set of models of 4. The formula C$ is satisfZi.zble 
iff L(4) # D, the two formulas 4 and 4’ are equiualent iff L(4) = L(+‘). 
The satis&bilityproblem for MITL is to decide whether or not a given MI=-for- 
mula is satisfiable. 

Note that Mm. has no next-time operator, because the time domain is dense. 
Instead, the until operator is strict in its first argument: if r(f) > 0, then for 
&%‘, 42 to hold at time t of a timed state sequence, neither #i nor C& need to 
hold at time t. 

Also observe that MI. cannot distinguish equivalent timed state sequences. 
This is because for a timed state sequence T = (S, I) and an Mm-formula 4, 
the satisfaction relation T k 4 depends only on the function T*, and not on the 
particular choice of the interval sequence I. We remember this observation as 
the following remark. 

Remark 2.3.2.2. Let 4 be a Mm-formula. If the two timed state sequences 
TV and 72 are equivalent, then TV I= C$ iff T* I= 4. 

2.3.3. Defined Operators We introduce some standard abbreviations for 
additional temporal operators. The defined operators 0, C$ (time-constrained 
euentuuffy) and 0 ,c$ (time-constrained always) stand for mse g[ 4 and 



The Benefits of Relaxing Punctuality 121 

10, 1 r$, respectively. It follows that the formula 0 ,c$ (or O,C$) holds at time 
t of a timed state sequence iff C$ holds at all times (at some time, respectively) 
within the interval t + I. 

We usually suppress the interval (0,~) as a subscript. Thus, the MI=-oper- 
ators 0, ~3, and ?Y coincide with the conventional unconstrained strict eventu- 
ally, strict always, and stict until operators of linear temporal logic [Manna and 
Pnueli 19921. The corresponding nonstrict operators are definable in Mm as 

O,& = 4 ” 04, 

q ,,+ = 4 A 0 4, 
4,,%,42 = $2 � WI A 91W2). 

Note that, on the other hand, the MrTL-operator %, cannot be defined in terms 
of an until operator that is not strict in its first argument; this is why we choose 
the strict versions of the temporal operators to be primitive. 

We also define a time-constrained unless operator as the dual of the until 
operator: 

&w4, = -I((1 42) z, (14,)). 

It follows that the formula c#+ ,?VC#J* holds at time t of a timed state sequence 
iff either 4, is true throughout the interval t + I, or there is a time t’ > t such 
that & is true at time t ’ and r$, holds throughout the interval [t, t’] n I. For 
example, T k pIl,zFq iff either T’ t= p for all t E [l, 21, or T’ I= q for some 
t E (0, 11, or T’ k= q for some I E [l, 2] and for all t’ E [l, t], 7” t= p. Note that 
the unconstrained version 4I ?Yc$, of the unless operator of MITL differs 
slightly from the conventional strict unless operator [Manna and Pnueli 19921, 
which can be defined as c#J,V’X+, A &I. 

We can apply the definition of the constrained unless operator to move 
negations through constrained until operators. Thus we may obtain, from any 
MrrL-formula, an equivalent formula, containing both until and unless opera- 
tors, in which all negations are in front of propositions. 

2.3.4. Examples. Let us consider a few examples of Mtn-formulas. 

Example 2.3.4.1. The typical bounded-response requirement that “every 
p-state is f 11 o owed by a q-state within 3 time units,” is expressed by the 
MTn-formula 

QJP + O,O,,]d. 

Example 2.3.4.2. The following MrrL-formula asserts that the proposition p 
is true in infinitely many singular states and nowhere else: 

o,,# A q ,,+ --) bp)~p). 
Such a requirement can be used to characterize events, and it cannot be 
expressed with an until operator that is nonstrict in its first argument. 

Example 2.3.4.3. Now we consider a time-out requirement. Suppose that p 
is a state constraint, and q is the time-out event. We wish to specify the 
requirement that “whenever p ceases to hold, either p becomes true again 
within less than 5 time units, or at time 5 the time-out event q happens.” This 
requirement is expressed by the Mm-formula 
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Additional examples of real-time requirements that are specifiable using 
time-constrained temporal operators can be found in Koymans [19901. 

2.3.5. Model Refinement. All timed state sequences obey the so-called fi- 
nite-ouriability condition: between any two points in time there are only finitely 
many state changes. This assumption is adequate for modeling discrete sys- 
tems. We now show that the timed state sequences satisfy the finite-variability 
condition not only with respect to the truth of propositions, but also with 
respect to the truth of all MI=-formulas. That is, we show that the truth value 
of every MrrL-formula 4 does not change more than o times along a given 
timed state sequence T. This is done by splitting the intervals of r finitely often 
until the truth value of 4 stays invariant over every interval. This process is 
called the refinement of T. 

Defin@on 2.3.5.1. Given a MI=-formula 4, the timed state sequence 
T = (S, I) is &fine iff for all subformulas 9 of 4, for all i 2 0, and for all 
t, t’ E Ii, 7’ t= + iff 7” k +. 

For an MI-r-L-formula 4, then, the truth value of each subformula of 4 stays 
invariant over every interval of a &fine timed state sequence. 

LEMMA 2.3.5.2. Let I#J be an MI=-formula. For euery timed state sequence T, 

there exists a @fine timed state sequence that is equivalent to T. 

PROOF. The proof proceeds by induction on the structure of 4. Let T be a 
timed state sequence. For each subformula Ic, of 4, we construct a $-fine 
timed state sequence 7, that is equivalent to T. For the proposition + = p, let 
T+ = T. For the negation J/ = 1 $‘, let T+ = rec. In case Of the COnjUnCtiOn 
I) = $i A I+%~, the timed state sequence T+ is constructed by refining the timed 
state sequence Q,. We split each interval of TV, into a finite sequence of 
intervals, each of which is fully contained in an interval of T+,. In other words, 
the interval sequence of T+, ,, 112 is obtained by intersecting the two interval 
sequences of rJl, and T+,. 

Now consider the case JI = $, ‘8, I+?~. First, we construct the refined timed 
state sequence T+, A +*. Then, we construct inductively a diverging countable 
sequence t, < t, < t, < **a of times ti E Iw zO: let t, = 0; for all i 5 0, let ti+, 

be the least t > ti such that either t is a transition point of TV,,, #L2, or 
t = fj + I(I) or t = tj + r(l) for some 0 rj I; i. We choose re = (s, I) to be 
equtvalent to T with the interval sequence Z = [to, to],&, tl), [tl, tl],(tl, t2), . . . 

Consider two times t and t’ that belong to the same interval of T , say, 
ti < t’ < t < ti+l. Suppose that T’ I= $. Then there exists a time u E t + I) Q 
such that 7” I= 1(1* and for all u’ E (t, u), 7” t; @i. Since t < ti+*, there exists 
a time u’ E (ti, t,.+i) such that 7” L= 9,. Since the truth value of +i stays 
invariant throughout the interval (ti, ti+l), we have 7” k +, for all u’ E 
(ti, ti+ ,) and, hence, for all u’ E (t’, u). From the construction of the time 
sequence t,, t,, . . . , it follows that u E (t’ + I). Therefore, 7” l= $. It follows 
similarly that 7” F 1,6 implies T’ l= t/~. q 

2.4. VARIATIONS OF MITL. We consider three variations of MITL. Recall 
that all time intervals that appear in timed state sequences have real end-points, 
and all time intervals that appear in Mrrr=formulas have integer end-points. 
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First, a rational semantics does not change the satisfiability problem for MITL 
and, second, neither does a rational syntax. Third, the admission of singular 
intervals in Mm-formulas renders the satisfiability problem undecidable. 

2.4.1. Real Time Versus Rational Time. While timed state sequences are 
defined over the real numbers, with respect to interpreting Mr’rL-formulas, the 
crucial property of the time domain is not its continuity, but only its denseness. 
We show that replacing the time domain Iw tO with the set Q, 0 of the 
nonnegative rational numbers does not change the satisfiability of any MITL- 
formula. In other words, MITL cannot distinguish the time domain R ~ 0 from 
the time domain Q ~ 0. 

Definition 2.4.1.1. The timed stated sequence T is rational iff all transition 
points of T are rational. The rational timed state sequence T ~-satisfies the 
Mr-tx-formula 4 iff T /= (6, where the satisfaction relation t= of Definition 
2.3.2.1 is redefined so that all time quantifiers range over Q, 0 only. The 
Mm-formula 4 is Q-satisfiable iff there is a rational timed state sequence that 
Q-satisfies 4. 

The equivalence of the real and the rational semantics for MITL follows from 
two lemmas. 

LEMMA 2.4.1.2. Let $I be an MIn-formula and let r a rational +fine timed 
state sequence. Then T &P-satisfies C#J iff T satisfies C#J. 

PROOF. Let T be a rational and &fine timed state sequence. We use 
induction on the structure of 4. We consider only the interesting case, for a 
subformula 1+5 of C#J of the form I), V, (G;. Suppose that T Q-satisfies 4; that is, 
7' Q-satisfies I,!$ for some rational t E I, and 7" Q-satisfies I), for all 
rationals t’ E (0, t). By the induction hypothesis, we conclude that T’ @ I)* and 
for all t’ E (0, t), 7” t= $,. Hence, to show that T b +!J, it suffices to show that 
7” != I), for all reals 1” E (0, t). Consider an arbitrary real t” E (0, t), and 
assume that t” E Z,, for an interval Zi for T. If Z, is singular then, since T is 
rational, t” must be rational. Otherwise, Ii is nonsingular, and there is also a 
rational t’ E Z, with t’ E (0, t). We know that T” I= J/, and, since T is +-fine, 
it follows that 7” t= $,. Therefore, 7 E I). It follows similarly that 7 L= * 
implies that T Q-satisfies $. Cl 

The following lemma partitions the timed state sequences into blocks such 
that the members of a block cannot be distinguished by Mm-formulas. Two 
timed state sequences fall into the same block iff they agree on the state 
components, on the integral parts of all transition points, and on the ordering 
of the fractional parts of all transition points. For I E R’ zO, let (t) = t - It1 

denote the fractional part of r. 

LEMMA 2.4.1.3. Let r = (3;, I) and T’ = (S, if> be two timed state sequences 
such that for all i, j 2 0, (1) ll(Z,)] = [l(Z,!)J and (2) (l(Z,)) < (ICI,)) iff (l(Z:)) 
I (f(Z,‘)). For ail Mrm-formula 4, T k 4 iff 7’ k qk 

PROOF. We write T w T ’ iff the two timed state sequences 7 and T ’ satisfy 
the premise of the lemma. The proof is by induction on the structure of 4: we 
show that for all subformulas IJ of 4, and all timed state sequences T and T ‘, if 
7” 7’ and 7 k Q!J, then 7’ /= cc/. The interesting case is again that of a 
subformula 4 of the form I/J, ‘%, I&. Suppose that 7 h 7’ for T = (i, Z) and 
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’ = (9, I’) and that T l= I/J. Let t E Z be such that T’ i= I/J* and T’” t= I/J, for 
Lll t” E (O,‘f). Choose t’ such that (1) lt’l = 1tJ and (2) for all i, (t) 5 (l(Z,)) 
iff ,(t’> I (Z(Z:)>, and (c) 2 (Z(Z,)> iff (t’) 2 (Z(Z,l)). Then t’ E Z and T’ N 
7” . From the induction hypothesis applied to r’ and T”, we conclude that 

“’ != &. By a similar argument, it follows that for all t” E (0, t ‘1,~“’ b I)~. 
Lerefore, 7 ’ b I). 0 

THEOREM 2.4.1.4. The Mm-formula 4 in Q-satis$able iff #J is satisfiable. 

PROOF. Suppose that the rational timed state sequence T Q-satisfies 4. 
First, we observe that Lemma 2.3.5.2 and Remark 2.3.2.2 apply to rational 
timed state sequences also. It follows that there is a rational &fine timed state 
sequence T’ that is equivalent to T and Q-satisfies 4. By Lemma 2.4.1.2, T’ is a 
(real) model of 4. 

For the other direction of the theorem, consider a (real) model T = (9, r) of 
4. We construct a rational timed state sequence T ’ = (s, 1’) as follows. We 
choose inductively a diverging sequence t, < t, < t, < +*. of rational times 
t; E cl,,: let t, = 0; for all i 2 0, let (1) 1ti+ 11 = lZ(Z,+ ,>1 and (2) for all j I i, 
Cfi+l) I ttj> iff CfCzi+,)) I C1(zj)>9 and (ti+l) L (ti> iff (l(Ii+,)) 2 (l(Zj)). 
The denseness of Q t 0 allows us to choose such rational numbers ti, say, by 
choosing the fractional part of each ti to be a multiple of l/2’. Then let the 
interval (! have the left end-point ti, the right end-point fi+ i, and the type of Zi 
(i.e., ji is left-open iff Zi is left-open, and right-open iff Zi is right-open). The 
timed state sequences T and T’ satisfy the premise of Lemma 2.4.1.3, and 
hence T’ b $A By the rational version of Lemma 2.3.5.2 and by Remark 2.3.2.2, 
there is a rational +-fine timed state sequence T” that is equivalent to T’ and 
satisfies $A By Lemma 2.4.1.2, T” Q-satisfies 4. 0 

2.4.2. Rational Intervals. While defining the syntax of MITL, we required 
the end-points of all time intervals that constrain until operators to be integers 
or infinite. This restriction can be relaxed, without affecting the satisfiability 
problem for Mm, by admitting intervals with rational end-points in Mrn-for- 
mulas. For example, we may allow the formulae 0 (0.5,0,6Jp, which asserts that 
p holds throughout the time interval (0.5,0.6X 

LEMMA 2.4.2.1. Let C#J be a formula of MITL that contains intervals with 
rational end-points, and let T = (S, Z) be a timed state sequence. For c E Q r ,,, let 
& denote the formula obtained by replacing every interval in C) with the interval 
c * I, and let TV = 6, 1’) denote the timed state sequence with I,! = c . Ii for all 
i 2 0. Then, 7 I= gJ iff Tc t= (l+. 

PROOF. The proof proceeds by a straightforward induction on the structure 
of 4. cl 

Given a formula 4 with rational constants, let c be the least common 
multiple of all denominators appearing in 4. In order to check the satisfiability 
of +, then, it suffices to check the satisfiability of the Mm-formula &, which 
contains only integer constants. Notice that the size l+c,l of the description of 
& is bounded by 1+1*. 

2.4.3. Singular Intervals. Mm prohibits the use of singular intervals. For 
example, the formula 

q p + O,,q), 
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which expresses the requirement that “every p-state is followed by a q-state 
after precisely 5 time units,” is not an MIn-formula. That is, in fact, no 
MrrL-formula that expresses this requirement, and the restriction of MITL to 
nonsingular intervals is essential for the decidability of the satisfiability prob- 
lem. Before we prove this, we note that some forms of equality are expressible 
in Mm. Let (14) PY,, r#~ stand for the Mm-formula (0 CO,Cj 7 4) A (0 0 ,,#). 
Thus, the stronger requirement that “for every p-state the next fol owing i, 
q-state occurs after precisely 5 time units,” 

q (p 4 (19) %sq), 

can be expressed in MITL. 

Definition 2.4.3.1. MITL, is the extension of MITL that admits singular 
intervals as subscripts of the until operator. 

We show that the satisfiability problem for MITL, is complete for the 
complexity class C’,, which is situated in the analytical hierarchy strictly above 
all recursively enumerable sets (see, for example, Rogers [1967]). It follows that 
MITL, is not recursively axiomatizable. The undecidability result depends on 
the denseness of the time domain. If the formulas of Mm, are interpreted 
over a discrete time domain, the resulting logic MTL has a decidable satisfiabil- 
ity problem [Alur and Henzinger 19931. 

THEOREM 2.4.3.2. The satisfiabilityproblem for Mm, is Ci-complete. 

PROOF. We prove C:-hardness by reduction from the problem of deciding 
whether a given nondeterministic 2-counter machine M has a recurring 
computation (i.e., a computation in which a specified state repeats infinitely 
often), which is C’,-hard [Hare1 et al. 19831. In Alur and Henzinger [1993], it is 
shown how to construct a formula C$ of the discrete-time logic MTL such that C$ 
is satisfiable over dense-time models iff M has a recurring computation. The 
construction, with trivial modifications, applies to MITL= . Indeed, only one 
temporal operator with a singular subscript, 0, 1, is needed in the construction. 

Now we prove containment in C:. Let C#J be a formula of MITL, . First 
observe that Theorem 2.4.1.4 holds even in the presence of singular intervals in 
formulas. Thus, if 4 has a model, then there is a rational timed state sequence 
that Q-satisfies 4. The CP-satisfiability of C$ can be phrased as a Ci-sentence 
asserting that some timed state sequence with rational transition points CD- 
satisfies 4. It is routine to encode a rational timed state sequence by a set of 
natural numbers, and to express the Q-satisfaction relation in first-order 
arithmetic. q 

Another possible variation of the syntax of MITL would permit interval 
constraints on both arguments of the until operator. The intended meaning of 
the formula & ,,%, &2 at time t of a timed state sequence is that there is a 
later time t ’ E (t + I) such that C#J* holds at time t’ and +, holds throughout 
the interval (t + I’) n (t, r’). This requirement can be expressed in temporal 
logics that admit explicit references to time through variables (say, in the style 
of the discrete-time logic TPTL of Alur and Henzinger [1994]. This extension, 
however, leads again to undecidability over a dense time domain. This is 
because the role of the formula O=, 4 in the undecidability argument for 
MITL= can be replaced by the formula false >, kVz 1 4. 
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3. Timed Automata 

We use a variant of timed automata as defined in Alur and Dill [1994] to model 
finite-state real-time systems. Tied automata generalize nondeterministic 
finite automata over infinite strings. While *automata accept infinite state 
sequences (see, e.g., Thomas [1990]) timed automata are additionally con- 
strained by timing requirements and accept timed state sequences. 

3.1. DEFINITION OF TIMED AUTOMATA. A timed automaton operates with 
finite control-a finite set of control locations and a finite set of real-valued 
clocks. All clocks proceed at the same rate and measure the amount of time 
that has elapsed since they were started (or reset). Each transition of the 
automaton may start (or reset) some of the clocks. Each control location of the 
automaton puts constraints on the values of the propositions and on the values 
of the clocks: the control of the automaton can reside in a particular location 
iff the values of the propositions and clocks satisfy the corresponding con- 
straints. 

3.1.1. Syntax. We permit arbitrary constraints on the values of propositions. 
A propositional constraint, then, is a set of states. We usually denote proposi- 
tional constraints as Boolean combinations of propositions. For instance, we 
write p A 1 q for the set of states that contain p but not q. 

We permit only simple constraints on the clock values. A clock constraint 
z!G R,o is a finite union of (possibly unbounded) intervals with integer 
end-points. The value a(x) E R -,,, of the clock x satisfies the clock constraint 
9 iff a(x) ES? We usually denote clock constraints for the clock x as boolean 
combinations of arithmetic expressions containing x. For instance, we write 
llx<3Vx= 4 V x > 5 for the clock constraint [l, 3) U [4,4] U (5, ~1 that 
restricts the value of x. 

Definition 3.1.1.1. A timed automaton A is a tuple (V, V”, a, X, p, E) with 
the following components: 

--V is a finite set of (control) locations. 
--I/O C V is a set of initial locations 
-a is a location labeling function that assigns to each location u a proposi- 

tional constraint cr(v) E 2’. 
-X is a finite set of clocks. 
-fi is a location labeling function that assigns to each location u and each 

clock x a clock constraint p(u, x) c IT&’ Lo. A valuation CT for the clocks in X 
satisfies the family p(u) of clock constraints for the location u E V iff for all 
clocks .x E x, a(x) E p(u, x>. 

--E c V X V X 2x is a set of transitions. Each transition (u, u’, y) E E, also 
denoted u 4 u’, consists of a source location o, a target location u’, and a 
set y of clocks that are reset with the transition. 

3.1.2. Semantics. At every time instant during a run of the timed automa- 
ton A, the configuration of A is completely determined by the location in 
which the control resides and by the values of all clocks. The clock values are 
given by clock interpretations, which are functions for X to R’ ~ o: the value of 
the clock x under the clock interpretation u is a(x) E R,,,. Given a clock 
interpretation u and t E R Lo, we write u + t for the clock interpretation that 
assigns to each clock x E X the value a(x) + t. For y c X, by 01-y := 01 we 
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denote the clock interpretation that assigns 0 to all clocks in y, and o(x) to all 
other clocks x 66 y. We write C for the set of clock interpretations for the 
automaton A. 

Assume that, at time t E R r o, the control of A resides in the location ~1 and 
the clock values are given by the clock interpretation (T. Suppose that the 
control location of the automaton remains unchanged during the time interval 
I and l(Z) = t. All clocks proceed at the rate at which time elapses. At all times 
t’ E I, the value of each clock x is a(x) + (t’ - t); so the clock interpretation 
at time t’ is cr + (t’ - t). Throughout the interval I the clock interpretation 
satisfies the clock constraint that is associated with the location u; that is, for 
each clock x, U.(X) + (t’ - t) E p(u, x1. Now suppose that the automaton 
changes its control location at time r(l) = t” via the transition L’ L u’. This 
location change happens in one of two possible ways. If I is right-closed, then 
the location at time t” is still u; otherwise, the location at time t” is already ~1’. 
The clocks in y are reset at time t”. Let a” be the clock interpretation 
((T + (t” - t))[y := 01. The clock interpretation at the transition time t” de- 
pends on whether the location at time t” is u or ~7’. If / is right-closed, then 
the clock interpretation at time t” is (+ + (t” - t) and must satisfy p(c). If I is 
right-open, then the clock values at time t” are given by a” and must satisfy 
P(L”). The new location ~7’ stays unchanged during some time interval adjacent 
to I, and the same cycle repeats. 

Definition 3.1.2.1. A run p of the timed automaton A is an infinite 
sequence 

of locations (si E l’/, intervals Z, that form an interval sequence i#, = I,Z,Z, *** , 
clock sets ‘y, G X, and clock interpretations gi E C satisfying the following 
constraints: 

-[Znitiality] L:~ E V”. 
-[Consecution] For all i 2 0, (u,, ui+i, yi+l) E E and a,,, = (a, + (r(I,) - 

I( 1, )))C Y, + , := 01. For i 2 0 and t E I;, the location up(t) at time t is ci, and 

the clock interpretation o,(t) at time t is ai + (t - I( I,)). 
-[Timing] For all t E R zo, up(t) satisfies /3(up(t)). 

According to this definition, in a run the clocks may start at any real values 
that satisfy the clock constraints of an initial location. The run p defines a 
function L!~ from the time domain IR z o to the control locations V, and a 
function uP from R , o to the clock interpretations C, providing both a control 
location and clock values at every time instant. The location 1’ is reachable in 
A iff I! = uP( t) for some run p of A and some t E R z 0. 

Every run of a timed automaton generates timed state sequences. Singular 
states can be enforced by clock constraints of the form x = c, for a constant c. 

Definition 3.1.2.2. The run p of the timed automaton A generates all timed 
state sequences T of the form (S, 1,) such that for all t E (w L ,,, T*(t) E a(c,(t)). 

The timed automaton A accepts the timed state sequence T iff T is equivalent 
to a timed state sequence that is generated by a run of A. We write L(A) for 
the set of timed state sequences accepted by A. The emptiness problem for 
timed automata is to decide whether or not a given timed automaton accepts a 
timed state sequence. 
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3.1.3. Examples 

R.ALURET& 

Example 3.1.3.1. The timed automaton A, of Figure 1 has four control 
locations, u. to u3, and one clock, x. In figures, we suppress the trivial 
propositional constraint true and trivial clock constraints denoting Iw ,o. 

The automaton A, starts in the initial location u. with the clock x set to 0 
and the proposition p true. During the time interval (0,3), the automaton 
loops finitely, but arbitrarily, often between the locations u, and u2 and, thus, 
the proposition p may change its value finitely often in the interval (0,3). At 
time 3, the automaton moves to the location uj to check that p is true. The 
clock x is reset at this point and the whole cycle repeats. Thus, the automaton 
A, requires p to hold at all time instants that are integer multiples of 3. A 
sample prefix of a run of A, is 

7 (“oJoJ)l) + hal.1)) 3 (u,,[1.1,3)) $+ (u,[3,3]) 

+ (U,,(3,4]) + . . . 

(since there is only one clock, clock interpretations are given as values for x). 
The set of timed state sequences accepted by A, is 

L(A,) = {~]forall n E N,p E 7*(3-n)}. 

The timed automaton A; of Figure 1 accepts the same timed state sequences 
as A,. 

Example 3.1.3.2. The timed automaton A, of Figure 2 has seven control 
locations, u. to us, and two clocks, x and y. 

The automaton A, starts in the initial location u. with the clock y set to 0. 
At time 40, the automaton moves to the location u6 and stays there. The 
proposition p denotes an external event that is true only at instantaneous 
points t < 40 in time (and no more than once every S time units), namely, 
whenever the automaton is in the location u2. The automaton responds to p by 
resetting the clock x, and then it requires that the proposition q holds over the 
interval t + [2,5). Thus the automaton A, models a system that responds, 
until time 40, to the event p by setting q to true for the interval [2,5) following 
p. A sample timed state sequence accepted by A, is 

(0, to, 13)) -+ Up), 113,131) + (0, (13,15)) -+ ((41, [15,20)) 

+ (0,[20,40)) -+ (Iql, [40,9. 

All timed state sequences that are accepted by A, satisfy the MI-ix-formula 

cl <4O(P -+ q*,,f?) * •J 2409’ 

3.2. CHECKING EMPTINESS. The emptiness problem for timed automata is 
solved in Alur and Dill [1994]. The algorithm given there can be adapted in a 
straightforward way to our variant of timed automata. We only sketch the basic 
idea behind the construction, and refer to Alur and Dill [1994] for the details. 

Consider the timed automaton A = (V, V”, (Y, X, /3, E). With A we associ- 
ate a transition relation d over the space V x C of automaton coufigura- 
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FIG. I. The timed automata A, and A’,. 

'PA9 C.-J-J Y 140 
U3 

FIG. 2. The timed automaton A,. 

tions: (I’, u) * (I“, u ‘) iff there exist two times t, t’ E R , (,, a clock interpre- 
tation a” E 1:. and a transition 11 A I” such that 

- 

-u (1 , _= (n + t)[y := 01; 
- IT” + t’; 

IL- all I” E [0, t), cr + t” satisfies /3(c~); 
-for all t” E (0, t ‘I, ~7” + t” satisfies /3(r)‘); 
-either CT + t satisfies @Cl.) or CT” satisfies p(t*‘). 

Now the emptiness problem for A can be reduced to a search problem over 
the infinite graph (V x C, =j 1, whose solution rests on the observation that the 
uncountable configuration space V x C can be partitioned into finitely many 
equivalence classes, as follows. Informally, two automaton configurations are 
equivalent iff they agree on the location components, on the integral parts of 
all clock values, and on the ordering of the fractional parts of all clock values. 
For each clock x E X, let c, be the largest constant such that c, is an 
end-point of an interval in a clock constraint for x at any location of A. We 
define (13, UT) = (l*‘, u ‘> iff for all clocks x and y, 

(1) I’ = r”; 
(2) either lo(x)] = la’(x)], or both CT(X) > c, and u’(x) > cx; 
(3) (u(x)) I (CT(~)) iff (u’(x)) 2 (CT’(Y)) (recall that (t> = t - ltlk 
(4) (u(x)) = 0 iff (CT’(X)) = 0. 
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The equivalence relation = has two key properties: 

(1) If (u,, a,) = (u;, 0;) and (u,, u,) * (uz, (~~1, then there is a configuration 
(v;, a;) such that (uz, a,) = <L$, ai) and <v;, c() =+ <vi, a;) (that is, = is 
a bisimulation); 

(2) The number of equivalence classes of = is finite, namely, O(lV( - 1X1!- 
I-I XE X4 

The region graph for the timed automaton A is the quotient of the infinite 
graph (V x C, 3) with respect to the equivalence = . The first property 
allows us to reduce reachability problems over (V X C, *) to reachability 
problems over the region graph. The second property ensures that the region 
graph is finite. 

It follows that the emptiness problem for timed automata can be solved in 
time O((lVl + IEI) - 1X(!* l7 x E xc,). That is, the complexity is linear in the size 
of the location-transition graph, exponential in the number of clocks, and 
exponential in the (binary) encoding of the largest constant appearing in clock 
constraints. For containment in PSPACE, the emptiness of the region graph 
can be checked nondeterministically while storing only a constant number of 
vertices. Each vertex of the region graph is described by listing a control 
location and a set of clock constraints. The description of each vertex requires 
space logarithmic in IVl, polynomial in 1x1, and polynomial in the encoding of 
the largest constant. It follows that the emptiness problem for timed automata 
is in PSPACE. The PSPACE-hardness follows from the corresponding result 
proved in Alur and Dill [1994]. 

THEOREM 3.2.1. The emptiness problem for timed automata is PSPACE-com- 
plete. 

3.3. PARALLEL COMPOSITION. For describing real-time systems, it is useful 
to describe individual system components separately. Timed automata that 
describe system components can be put together using the following product 
construction. 

THEOREM 3.3.1. Let A, = <VI, VP, aI, X,, PI, E,) and A, = 
CV,, VP, az, X2, &, E2) be two timed automata. There exists a timed automaton 
A, x A, such that L(A, x AZ) = L(A,) n L(A,). 

PROOF. Assuming that the clock sets X, and X, are disjoint (this can 
always be achieved by renaming clocks), we define the product automaton 
A, x A, = (V, V”, a, X, /3, El as follows: The location set V is the set V, X V2 
of location pairs. The set V” of initial locations is the set VP x V: of pairs of 
initial locations. The propositional constraint a(ur, UJ is the intersection 
a,(ur) n a2(u2) of the component constraints. The clock set X is the (disjoint) 
union X, U X, of clock sets. For each clock x1 E X,, the clock constraint 
/3((u,, u2), x,) is &(ur, x,1; and for each clock x2 E X,, the clock constraint 
p((u,, uz), x,> is &(u2, x,). For every pair of transitions ur 2 v’, and u2 2 u; 

of A, ay$+ respectively, the product automaton has three transitions: 

(up u2) - Cu;, vi>, (ul, u2) 2 <u;, u2), and cur, u2) -% (u,, ~$1. Thus, 
the transitions in E simulate the joint execution of the two component 
automata. 0 
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3.4. FAIRNESS REQUIREMENTS. When verifying reactive systems, we are 
generally interested only in properties of the fair executions [Manna and 
Pnueli 19921. For example, for a system with two processes, we may wish to 
consider only those behaviors in which each process executes infinitely often. 
While concrete timing can usually replace abstract fairness, we need to 
consider fair timed automata for solving the satisfiability problem for MI-K. We 
add fairness to timed automata using generalized Biichi conditions. 

Defmition 3.4.1. A fairness requirement for the timed automaton A is a set 
of locations of A. A fairness condition for A is a set of fairness requirements 
for A. A fair timed automaton B consists of a timed automaton A and a 
fairness condition 9 for A. The run 

of A is a fair run of B iff for all fairness requirements F E 9 there are 
infinitely many i 2 0 with 11, E F. The fair timed automaton B accepts the 
timed state sequence 7 iff T is equivalent to a timed state sequence that is 
generated by a fair run of A. By L(B) we denote the set of timed state 
sequences accepted by B. 

The algorithm for checking the emptiness of timed automata can be ex- 
tended to handle fairness conditions in the standard way [Alur and Dill 19941. 
In particular, it can be decided in PSPACE whether or not a given fair timed 
automaton accepts any timed state sequence. Similarly, the product construc- 
tion for timed automata is easily extended to fair timed automata. 

4. Deciding MITI. 

We solve the satisfiability problem for MITL by reducing it to the emptiness 
problem for timed automata. Our main result is that, given an ML-n--formula 4, 
we construct a fair timed automaton B, that accepts precisely the models of 4. 

In the following, let K E N be such that K - 1 is the largest integer 
constant that appears in the given formula 4, and let N E N be the number of 
propositions, Boolean connectives, and temporal operators in 4. 

4.1. PRELIMINARY TRANSFORMATIONS. We begin with making some as- 
sumptions that can be made without loss of generality, and without extra cost. 
First, we assume that the given formula r#~ is in normal form. Second, it suffices 
that all runs of B, generate timed state sequences that are in +-normal form. 

4.1.1. Normal-fovn Formulas 

Definition 4.1.1.1. The MITL-formula #J is in normal form iff it is built from 
propositions and negated propositions using conjunction, disjunction, and tem- 
poral subformulas of the following six types: 

(1) O,J/’ with I = (0, b) or I = (0, b]; 
(2) q ,$’ with I = (0, b) or I = (0, b]; 
(3) $,%,I)~ with bounded I and l(Z) > 0; 
(4) I/I, ,Wiz with bounded I and l(I) > 0; 
(5) $,%$2; 
(6) 0 +‘. 
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Using a series of four transformations, every Mm-formula + can be 
transformed into an equivalent formula +* in normal form. First, every 
interval must not contain 0. This can be achieved by applying the following 
equivalence: if 0 E I, then 

$1 % $2 - (@EIz v $1 %(O,rn) +A 

Second, all unbounded intervals are of the form (0, m). This can be achieved by 
applying the following equivalences: if a > 0, then 

$1 ql,rn) 9% * q (0,&l * 41 WA 

$1 q2,-;, ☺I2 - qo,,,☺I! A qo,,] ( $2 v (*, A $1 w+*)). 

Third, only eventually and always operators are constrained with bounded 
intervals Z such that l(Z) = 0. This can be achieved by applying the following 
equivalence: if l(Z) = 0, then 

$1 g- +2 t* o,+, A e, Zh* 

Fourth, we push all negations to the inside (see Section 2.3.3) and use the 
following equivalence to eliminate each subformula of the form t&r WJI,: 

It is easy to check that the resulting formula c$* is in normal form. 
Observe that the number of distinct subformulas of d* is linear in the length 

of 4. This is because with each transformation step, only a constant number of 
new subformulas is created. Therefore, if formulas are represented as directed 
acyclic graphs, thus avoiding the duplication of shared subformulas, then the 
representation of 4* is only a constant factor larger than the representation 
of ip. 

LEMMA 4.1.1.2. For euery Mm-formula 4 there exists an equivalent formula 
c$* in normal form such that 

-the largest constant in 4* is the same as the largest constant K - 1 in 4, and 
-if N is the number of propositions, Boolean connectiues, and temporal operators 

in #, then the number of distinct syntactic subformulas of #* is O(N). 

Henceforth, we assume that all MrTr=formulas under consideration are in 
normal form. 

4.1.2. Normal-form Models 

Definition 4.1.2.1. The timed state sequence T is in +normal form, for the 
Mm-formula 4, iff (1) r is +fine and (2) all intervals of r are either singular 
or open. 

To check the satisfiability of 4, it suffices to consider timed state sequences 
in &rormal form. First, by Lemma 2.3.5.2 and Remark 2.3.2.2, for every model 
of C$ there is an equivalent +-fine model. Second, by Remark 2.3.2.2, every 
&fine model of C#J can be refined into an equivalent model in +-normal form; 
for instance, the interval [a, b) can be split into the two intervals [a, a] and 
(a, b). It follows that C$ is satisfiable iff 4 has a model in +normal form. 
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Henceforth, we assume that all timed state s_equences under consideration 
are in &normal form. It follows that, if r = (S, I), and + is a subformula of 4, 
we may write ri t= I++ for “7’ t= I) for all t E Zi.” We also introduce a new 
proposition psing such that 7i != psing iff the interval Z, is singular; that is, iff i 
is even. Then: 

--r b JI, %, I& iff for some i with Z, n Z # 0, (1) both 7i l= I,$ and T’ b gl 

’ Psingy and(2)rjb $, forallO<j<i,and(3)~~~ I), Vpsing. 

--7 I= $, ,‘YJI, iff TO l= $, if Z, n Z = 0, and either (1) TO t= t& A 7 pslng, or 
(2) 7i l= I)~ for some i > 0, and ~j l= I), for all 0 < j I i with Zj n Z # 0, 
or (3) ~j t= ((i, for all j > 0 with Z, n Z # 0. 

4.2. CHECKING SUBFORMULAS. The six types of temporal subformulas of d, 
are handled differently. The simplest case is that of type-5 and type-6 formulas; 
they are treated essentially in the same way in which tableau decision proce- 
dures for linear temporal logic handle unconstrained temporal operators. The 
most involved cases are those of type-3 and type-4 formulas. We begin with the 
simpler cases of type-l and type-2 formulas. 

4.2.1. Type-l and Type-2 Formulas 

4.2.1 .l. TYPE 1. Consider the type-l formula I$ = 0, I)‘, where Z = (0, b) 
or Z = (0, b]. Whenever the automaton B+ needs to check that I) holds, say at 
time t, it starts a clock x and writes a proof obligation into its memory-namely, 
the obligation to verify that I&’ holds at some later location with the clock 
constraint x E Z. The obligation is discharged as soon as an appropriate 
$‘-state is found. If the automaton encounters another estate in the mean- 
time, at time t’ > t before the obligation is discharged, it does not need to 
check the truth of I) separately for this state. This is because if there is a 
+‘-state after time t’ within the interval t + I, then both 7’ i= O,+’ and 
T” b O,+’ (recall that I(Z) = 0). Once the proof obligation is discharged, the 
clock x can be reused. Thus one clock suffices to check the formula I) as often 
as necessary. 

This strategy works for checking the truth of JI at singular intervals. There 
is, however, a subtle complication when the truth of I) during open intervals 
needs to be checked, as is illustrated by the following example. Consider the 
timed state sequence 

(t ),[O,Ol) + (O,(O,l)) --+ (tpLLw; 

it satisfies the formula O(,, ,,p at all times in the open interval (0,1X To check 
the truth of O,, I,p during the interval (O,l), the automaton starts a clock x 
upon entry, at time 0. However, the proof obligation that p holds at some later 
location with the clock constraint x E (0,l) can never be verified. On the other 
hand, if the automaton were to check, instead, the truth of the formula O(,, ,]p 
during the interval (0, 11, then our strategy works and the corresponding proof 
obligation can be verified, because there is a p-state while x E (0, l] holds. 
Furthermore, observe that the truth of OCo,IIp throughout the open interval 
(0,l) implies that O(,, ,,p is also true throughout the interval (0,1X 

LEMMA 4.2.1.1.1. Let J/ and 4 be the type-l fo-mulas O,+’ and O,U(l(,j,+‘, 
respectively. For eu<v timed state sequence r = (S, Z) and euery open interval Z, in 
f, 7’ != l,!l ifl Ti t= $. 
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PROOF. First note that, for all t 2 0, if 7’ I= I/J, then T’ t= $. This is because 
Z G Z U (r(Z)). 

Now con$der an open interval Zi and assume that 7i L I$. If I is right-closed, 
then II, = I). So suppose that Z is right-open, and IEt t E Zi. Since Ii is open, 
there exists some t’ E Zi with t’ < t. Since T” I= 1,9, there exists some i r i 
such that I. n (t’ + (I u {r(Z)])) 
# 0 and, hence, that T’ t= I). 

# 0 and ~j t= I/J’. It follows that Zj n (t + I) 
0 

Consequently, to check the truth of a type-l formula I) dyring an open 
interval, it suffices to check the truth of the weaker formula +. Accordingly, 
the automaton we construct writes only the proof obligation that corresponds 
to checking + into its memory. 

4.2.1.2. TYPE 2. For checking the type-2 formula I) = 0 I+‘, where I = 
(0, b) or Z = (0, bl, the situation is symmetric. The automaton uses again a 
single clock x to check this formula. Whenever the formula JI needs to be 
verified, say at time t, the automaton starts the clock x with the proof 
obligation that as long as the clock constraint x E I holds, so does $ ‘. The 
proof obligation is discharged as soon as x > I. If the automaton encounters 
another estate within the interval t + I, say at time t’, it simply resets the 
clock x, and thus overwrites the previous proof obligation. This strategy is 
justified by the observation that if 9’ holds throughout the interval (t, t’] and 
T” t= 0 ,I)‘, then also T’ t= 0 ,I)‘. Once the proof obligation is discharged, the 
clock x can be reused to check 4 again whenever necessary. 

As in the case of type-l formulas, we need to be more careful when_checking 
9 during open intervals. For the type-2 formula + = 0 ,$ ‘, let 9 be the 
formula •I ,-t,(I1l+‘. From Lemma 4.2.1.1 and duality, it follows th$t for every 
timed state sequence T = (S, I), if Zi is open, then 7i I= (I/ iff ri i= #. Hence, to 
check the truth of I,!J duringAan open interval, it suffices again to chesk the 
truth of the weaker formula #. Accordingly, only a proof obligation for I) is set 
up. This is because the corresponding clock x is started at time r(ZJ, and for rl, 
to hold during the open interval Zi, J, ’ need not hold at time r( Ii) + r(I), even 
if Z is right-closed. 

4.2.2. Type-3 and Type-4 Formulas 

4.2.2.1. A SAMPLE CONSTRUCTION. Consider the Mm-formula 

40 = q (O.1) P + O,l.z,q ( 1. 

The subformula O,,, *I9 is a type-3 formula, because the left end-point of the 
interval [l, 21 is greater than 0. Let us assume, for simplicity, that both p and q 
are true in singular intervals only. Furthermore, we assume that there is at 
least one q-state in the time interval (1,2), at least one q-state in the time 
interval (2,3), and q is false at time 2. Let us try to build a timed automaton 
Z3,+ that accepts, under these assumptions, precisely the models of +o. 

Whenever the automaton visits a p-state, it needs to make sure that within 1 
to 2 time units a q-state is visited. This can be done by starting a clock x when 
the p-state is visited, and demanding that some q-state is visited later in a 
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location with the clock constraint 1 I x 5 2. This strategy requires one clock 
per visit to a p-state within the interval (0,l). The number of such visits, 
however, is potentially unbounded and, hence, there is no automaton with a 
fixed number of clocks that can start a new clock with every visit: this simple 
strategy cannot be made to work. 

Instead, we have the automaton guess the times of future q-states in 
advance. The automaton nondeterministically guesses two times f, and t, 
within the interval (0,l); this is done by starting a clock x at time t, and 
another clock y at time t,. The guess is that the last q-state within the interval 
(1,2) is at time t, + 1, and that the first q-state within the interval (2,3) is at 
time t2 + 2 (both such states exist by assumption). If the guesses are correct, 
then the formula O[,,,,q holds during the intervals (0, t, 1 and [ t2, 11, and does 
not hold during the Interval (t,, t2). The resulting automaton is shown in Figure 
3. The clock z is used to count the global time. If the guessed value of t, is 
smaller than t,--the clock x is started before the clock y-then the automa- 
ton requires that there are no p states in the interval (r,, 12). Later the 
automaton checks that its guesses are correct: if x = 1 or y = 2, then q is 
required to hold; and between x = 1 and y = 2, q is required not to hold. 

The strategy of guessing times of future q-states requires only two clocks for 
the interval (0, 1) of length 1, irrespective of the number of p-states within 
(0,lI. We say that the guessed times t, + 1 and t, + 2 “witness” the formula 
O,,,,,q throughout the intervals (0, t,] and [t2, l), respectively. In general, it is 
necessary to have witnesses that may be open intervals, instead of singular 
intervals. To see this, let us relax the assumption that q holds only in singular 
intervals. Let 0 < t, < t’, < 1 be such that q is true during the interval 
I, = (f, + 1, t; + 11, and false during the interval [t; + 1,2]. Let 0 < t2 < ti < 1 
be such that q is false during [2, t, + 21 and true during I, = (t2 + 2, t; + 2). 
Thus I, is the last q-interval within (1,2), and I, is the first q-interval within 
(2,3). The formula O,, 21q holds during the intervals (0, t; I and ( t,, 1 I, and does 
not hold during the ‘interval [t’,, rz]. To check the formula &, then, the 
automaton B,” must nondeterministically guess four times, t,, r’,, t,, and t;: it 
requires that no p-state lies within [t;, t2], and it checks that the guesses are 
correct. In this case, we say that the intervals I, and I, witness the formula 
O,,,,,q throughout the intervals (0, t{> and (t,, I), respectively. Notice that we 
cannot choose a particular time instant from I, as a witness for (0, t’,); only if 
I, is right-closed, can we choose its right end-point as the witness. 

In the following, we develop an algorithm based on this idea of guessing, in 
advance, time intervals that witness temporal formulas and, later, checking the 
correctness of these guesses. The crucial fact that makes this strategy work, 
with a finite number of clocks, is that the same interval may serve as a witness 
for many points in time. In particular, the strategy fails if we were to allow 
singular intervals in formulas. Consider, for example, the formula 

There, for each p-state at time t in the interval (0, II, the automaton needs to 
check that there is a q-state at time t + 1. The strategy of guessing witnesses is 
not helpful: a q-state at time t in the interval (1,2) serves as a witness only for 
the single time instant t - 1; hence, there is a potentially unbounded number 
of witnesses. 
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FIG. 3. The timed automaton B,, 

4.2.2.2. WITNESSING INTERVALS 

Definition 4.2.2.2.1. Let 7 be a timed state sequence and let t E R r o. The 
interval I’ witnesses the type-3 formula I,$ %, & under 7’ iff I’ n (t + I) # 0 
and T’ k +I FY-, & for every nonempty interval J c I’. The interval I’ 
witnesses the type-4 formula I,$~ ,S%“I,!J, under 7’ iff (t + I) c I’ and T’ I= 

$4 I’-[ Wh 

Observe that if I’ witnesses +I %‘, (cIz under T’, then 9, holds throughout 
the interval (t, r(Z’)), and I& holds throughout the interval I’. Witnessing 
intervals are defined to have the following property. 

LEMMA 4.2.2.2.2. Let $ be a type-3 or type-4 formula, let r be a timed state 
sequence, and let t E R ;r ,,. There is a witnessing interval for ~9 under rt iff 
7’ I= l+!l. 

PROOF. If T’ k 1(, for the type-3 formula JI = I/Q %!, JIz, then T” I= & for 
some t’ E t + Z and the singular interval [t’, t’] witnesses r(r under 7’. If 
T’ k $ for the type-4 formula 1,5 = I& ,4vvt&, then the interval t + Z witnesses I,$ 
under 7’. 

The other direction of the lemma follows from the semantic clauses for the 
until and unless operators. 0 

Next, we show that the same interval may serve as a witness for a temporal 
formula under (infinitely) many suffixes of a timed state sequence. 

4.2.2.3. TYPE 3 

Example 4.2.2.3.1. Consider the following timed state sequence T over the 
two propositions p and q: 

(IpI, [0,1.21) + (Ip, q), (1.2,1.6)) + (IpI, t1.6,~)). 

Along T the proposition p is always true, and the proposition q is true only 
during the interval Zq = (1.2,1.6). The interval Z9 witnesses the formula 
p %(, 2 q under T’ for every time t E [0,0.6). On the other hand, the interval 
[ 1.6,3{ witnesses the formula q (,,2J 7 q under T’ for every time t E [0.6,1]. 



The Benefits of Relaxing Punctuality 137 

LEMMA 4.2.2.3.2. Let (I, be a type-3 formula. For ecery timed state sequence T, 

there are two bounded (singular or open) intervals I’ and I” such that, for all 
t E [O, 11, T’ i= (I, iff either I’ or I” witnesses Cc, under T’. Furthermore, r(Z’) I 
r(Z) + 1 and r(Z”) I r(Z) + 1. 

PROOF. Let T = (S, I) be a @fine timed state sequence with only singular 
and open intervals, including the singular interval [r(Z) + 1, r(Z) + 11 (split 
intervals if necessary). Recall that the Z(Z) and r(Z) are integers such that 
r(Z) > Z(Z) > 0. We choose the two intervals I’ and I” as follows: 

-Let i be the maximal i 2 0 such that Ii (1 Z # 0, both r’ k I+$ and T’ K 4, 

v Ps,ng, and rk K +, for all 0 I k < i. If no such i exists, let I’ = 0; 
otherwise, let I’ = Z;. 

-Let j be the minimal j 2 0 such that Z, n (1 + I) f 0, both 7’ @ I& and 

TJ I= 9, v PWIR and rk @ 1(1, for all 0 I k < j with Zk n ( < (1 + I)) # 0. 
If no such j exists, let I” = 0; otherwise, let I” = Zj. 

Assume that T’ I= t,b for some f E [0, 1). Then T” C= 1(1, for all t’ < I. If 
I’ f~ (t + I) # 0, then I’ witnesses + under 7’. Otherwise, let t’ E ft + I) be 
such that 7” I= & and 7” b I/+ for all t” E (t, t’). In this case, I” is 
nonempty, and if t ’ E Zk, then j I k. Hence, Zi n (t + I) # 0, and I” wit- 
nesses $ under T’. 

Conversely, if either I’ or I” witnesses rj under T’, then T’ k $J by Lemma 
4.2.2.2.2. Cl 

Now we can be more precise about how we construct the timed automaton 
B+ that accepts the models of 4. To check the truth of type-3 subformulas of 
4, the automaton guesses corresponding witnessing intervals. The boundaries 
of a witnessing interval are marked by clocks: a clock intenlal is a bounded 
interval that is defined by its type (e.g., left-closed and right-open) and a pair of 
clocks. Given a time t and a clock interpretation u, the clock interval 
C = [x, y], for two clocks x and y, represents the closed witnessing interval 
[t + K - a(x), t + K - a(y)]; the clock interval C = [x, y) represents the 
corresponding half-open interval, etc. (recall that K - I is the largest constant 
appearing in 4). We write K - C for the interval (K - UT(X), K - V(Y)), for 
any type of clock interval C = Ix, y). 

For simplicity, let us consider a type-3 formula $I of the form 0, $’ (with 
Z(Z) > 0). The automaton starts, nondeterministically, any of its clocks at any 
time. When guessing a witnessing interval I’, it writes the prediction that “the 
clock interval C = (x, y) witnesses the formula I/J” into its memory. If the clock 
x is started at time t,, and y is started at time t, 2 t,, then the guess is that the 
interval I’ = (r, + K, t, + K) witnesses $I. To check the truth of $ at time 
t 2 I,, the automaton needs to check that its guess I’ is indeed a witness. The 
condition I’ n (t + I) # 0 translates to verifying the clock constraint (K - C) 
n I f 0. It remains to be checked that $’ is true throughout the interval I’; 
that is, the automaton needs to verify that I/J’ holds at all states for which the 
clock constraint 0 E (K - CI is true. 

Lemma 4.2.2.3.2 is the key to constructing an automaton that needs only 
finitely many clocks. For each type-3 formula Cc, = +, %, I&, at most two 
witnessing intervals need to be guessed per time interval of unit length. 
Furthermore, the fact that the right end-point of a witnessing interval is 
bounded allows the automaton to reuse every clock after a period of length 
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r(Z) + 1. Tbus, to check the formula JI everywhere, we need, at any point in 
time, at most 2r(Z) + 2 active clock intervals; that is, clock intervals that 
represent guesses of witnessing intervals and, therefore, have to be verified 
later. Consequently, 4K clocks suffice to check any type-3 subformula of 4. 

4.2.2.4. TYPE 4 

LEMMA 4.2.2.4.1. Let I/J be a type-4 formula. For every timed state sequence T, 

there is a bounded interval I’ such that, for all t E [0, 11, rt @ $ iff either rt 

satisfies the type-l formula OCo,pJn ( i I) & or I’ witnesses $ under 7'. Further- 
more, r(Z’) I r(Z) + 1. 

PROOF. Let T = 6, I> be a J/-fine timed state sequence with only singular 
and open intervals, including the singular interval Z,, = [r(Z) + 1, r(Z) + 11. 
We choose the interval I’ as follows: 

-Let i be the minimal i r 0 such that Zi n Z # 0 and either 
(1) Tk b +r for all k 2 i with Zk fl Z # 0, or 
(2) there is some i I j I n such that ri != I& A I&, and rk t= @r for ah 
i<k<j. 

-Given i, let j be the maximal ids j I n such that either rk != 9, for all 
i s k -< j, or Tk I= (1/r A Q$ for some i I k I j. Note that if i exists, then so 
does j; in particular, if i exists because of clause (21, then j = n. 

If no appropriate i exists, let I’ = 0, otherwise, let I’ be the union of all Zk 
for E 5 k I j. 

Assume that t E [O,l); then T’ I= $I iff either (1) ri I= Jl, for all i with 
Zi n (t + I) f 0, or (2) # t= t& A GcIz for some i with Zi n (t + I) # 0, and 
Ti I= I), for all j < i with Zj n (t + I) f 0, or (3) 7” I= & for some t < t’ < 
t + I. In either of the first two cases, I’ witnesses + under 7’; the third case is 
equivalent to T’ satisfying the formula O(,,,,. ( < ,) I)?. 

Conversely, if 7’ satisfies O(,, =) n ( < ,) lclz7 then T’ I= +. If I’ witnesses I) 
under T’, then T’ t= II, by Lemma 4.2.2.2.2. 0 

It follows that for each type-4 formula, a single witness per unit interval 
suffices. Thus, to check the type-4 formula 9, ,T&, we need, at any point in 
time, no more than r(Z) + 1 active clock intervals. Consequently, 2 K clocks 
suffice to check any type-4 subformula of 4. 

4.3. CONSTRUCTING THE TIMED AUTOMATON. Now we define the fair timed 
automaton B,. For type-l and type-2 subformulas II, of 4, the automaton uses 
one clock, x9, p er formula. For each type-3 subformula, the automaton uses 
2K pairs of clocks. These clocks always appear in pairs, to form clock intervals. 
From any pair of clocks x and y, four different clock intervals can be formed: 
(x, y), [x, y), (x, y], and [x, y]. By Lemma 4.2.2.3.2, for checking type-3 formu- 
las we need only open and singular witnessing intervals. Thus, associated with 
each type-3 subformula I/J of 4, the automaton uses 4K clock intervals; they 
are denoted C,( +), . . . , C,,(g). For each type-4 subformula of 4, the automa- 
ton uses K clocks pairs giving 4K clock intervals. In addition to these clocks, 
the automaton uses the clock xSing to enforce that all runs alternate singular 
and open intervals. 
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43.1. Closure Set 
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Definition 4.3.1.1. The closure set Closure(+) of the Mm-formula 4 con- 
sists of the following elements: 

-All subformulas of 4; for each proposition p appearing in 4, the nega$on 
1 p; for each type-l subformula I+% = O,+’ of 4, the type-l formula + = 
9, U cTc,,r$ ‘; for each type-2 subformula I) = 0 ,$ ’ of 4, the type-2 formula 

1(1 = 0 I-(r(,))V; and for each type-4 subformula I), ,WI+$ of 4, the type-l 

formula qo.m)n( < ,,h 
-For each type-l and type-2 formula + in the closure set, the clock xs; and 

for each type-3 and type-4 formula 9 in the closure set, the clock intervals 
C,($) through C,,(I)). 

-For each clock x+ in the closure set, where I) is 0, I) ’ or 0 ,I) ‘, the clock 
constraints x E I and x > I; and for each clock interval C = Cj< $1 in the 
closure set, where Cc, is +, 9, & or I), ,WI)~, all clock constraints of the 
fo~O~(K-C~,OE(K-C),O=(K-C),(K-C)=0,I~~K-C), 
and (K - Cl n I f 0. 
It should be noticed that these conditions are indeed clock constraints. For 
instance, the condition 0 E (K - [x, y)) stands for the clock constraint 
x I K A y > K; the condition 0 = (K - [x, y)) is false. 

-The clock constraint xSing = 0. 

The number of subformulas of 4 is U(N) and the number of clocks is O(K) 
for each subformula of $. Hence, the size of the closure set Closure(4) is 
O(N- K). 

4.3.2. Automaton Locations. The control locations of B, are the subsets of 
Closure(4). A location L’ c Closure(4) is initial iff both (b and x,~,,,~ = 0 are in 
u. For each location L’, the propositional constraint (Y(P) is the conjunction of 
all propositions and negated propositions in L’. The clock constraint P(L~) is the 
conjunction of all clock constraints in U. 

Notice that the propositional constraint of each location contains a single 
state. Hence, every run of B, generates, up to equivalence, a unique timed 
state sequence. For each location U, the temporal formulas in L’ represent 
temporal conditions on the future of all runs through U. The clocks in u 
indicate which clocks are currently active and represent proof obligations for 
type-l and type-2 formulas. The clock intervals in I: indicate which clock 
intervals are currently active and represent witnessing intervals for type-3 and 
type-4 formulas. 

4.3.3. Automaton Transitions. The transitions of B, are the triples ~1 4 c’ 
that satisfy the following catalog of consistency criteria. 

4.3.3.1. LOGICAL CONSISTENCY 

-For each proposition p in Closure(g5), precisely one of p and 1 p is in L’. 
-If the formula 9, A +,z is in U, then both I,+ and It/z are in u. 
---If the formula IJ, V t,l+ is in u, then either I), or I)~ is in c’. 

These conditions ensure that no reachable location contains subformulas of 
4 that are mutually inconsistent. 



140 R.ALURETAL. 

4.3.3.2. TIMING CONSISTENCY 

-For each type-l and type-2 formula $ in Closure(#), u contains at most one 
of the clock constraints xg E I and xs > I. 

-For each clock interval C in Closure(4), u contains at most one of the clock 
constraints 0 < (K - 0, 0 E (K - 0, 0 = (K - 0, and (K - C) = 0. 
Furthermore, no two clock intervals in u share clocks; for instance, u does 
not contain both the clock intervals (x, y) and [x, y]. 

--If 0 contains xsin 
then xsing E y an d 

= 0, then xsing e y. If u does not contains xsing = 0, 
u ’ contains xsing = 0. 

These conditions ensure that no reachable location contains clock constraints 
that are mutually inconsistent. The location u is singular iff it contains the 
clock constraint xsing = 0; otherwise, we say that u is open. The third condition 
ensures that singular and open locations alternate along all runs. 

4.3.3.3. TYPE-~ FORMULAS. Let I& = O,$’ be a type-l formula in 
Closuret 4). 

First, if $ is in U, then either 

--u is singular and xJI is in u’, or 
-u is open and Z is right-open and 6 is in U, or 
--u is open and Z is right-closed and x9 is in u. 

These conditions activate a clock to represent a proof obligation. Lemma 
4.2.1.1.1 jpstifies the decision to start a clock corresponding to the weaker 
formula $ when u is open. 

Second, if x# is in u, then 

-x$ E Z is in u, and 
-erther + ’ is in u, or xQ is in u ’ and x9 e y. 

These conditions verify the proof obligation that is represented by the clock x+ 
and keep it active as long as necessary. 

4.3.3.4. TYPE-~ FORMULAS. Let ~9 = 0 ,I) ’ be a type-2 formula in 
Closure{ 4). 

First, if I/I is in u, then either 

-u is singular and x+, is in u ’ and xs ,E y, or 
-u is open and Z is right-closed and $ is in u, or 
-u is open and Z is right-open and x+ is in u and x+ is in u ’ and xs E y. 

These conditions activate a clock to represent a proof obligation, and reset it, 
as is justified in Section14.2.1. Recall that if u is open, then instead of checking 
t,k it suffices to check 9. 

Second, if xg is in u, then 

-I)J’ is in u, and 
-either xs or x > Z is in u’. 

The first condition verifies the proof obligation that is represented by the clock 
x&, and the second condition keeps it active as long as necessary. 
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4.3.3.5. TYPE-~ FORMULAS. Let I,!I = +, %[ I,$ be a type-3 formula in Clo- 
sure(4). 

First, if I(, is in u, then there is some clock interval C = CjC$/> such that 

-(K - C) IT Z # 0 is in u, and 
-either C is in U, or u is singular and C is in u ’ and the clocks associated 

with C are not in y. 

The first condition checks that the interval K - C is an appropriate candidate 
for witnessing the formula tj~. The second condition activates the clock interval 
C to represent a witnessing interval for I++. Note that if c is singular, the 
corresponding clock interval is activated only in the following open location. 
This is because, to check that the interval K - C is indeed a witness, no 
conditions are required of a singular state. 

Second, if some clock interval C = C,<ti) is in ~1, then 

-either 0 < (K - C) or 0 E (K - C) or 0 = (K - C) is in u, and 
-if either 0 < (K - C) or 0 E (K - C) is in U, then cc/, is in u, and 
--if either 0 E (K - C) or 0 = (K - C) is in c, then I& is in u, and 
-the clocks associated with C are not in y and either C or (K - C) = 0 is 

in ~1’. 

These conditions ensure that the active clock interval C represents indeed a 
witness for the formula I) and that it is kept active as long as necessary. 

4.3.3.6. TYPE-~ FORMULAS. Let I,!I = +, ,%+‘$I, be a type-4 formula in Clo- 
sure( $I 1. 

First, if + is in 11, then either 

(1) 0 (O*m)n( < I) I& is in I!, or 
(2) there is some clock interval C = Cj( I)) such that 

-Z c (K - C) is in o, and 
-either C js in L’, or u is singular and C is in c ’ and the clocks associated 

with C are not in y. 

If O0 qn( < I)+2 holds, then so does 9. The second clause corresponds to 
guessing a witness: the first condition checks that the interval K - C is an 
appropriate candidate for witnessing the formula 1(1; the second condition 
activates this clock interval C to represent a witnessing interval for 1/1. 

Second, if some clock interval C = Cj(+) is in 17, then 

-either 0 < (K - C) or 0 E (K - C> or 0 = (K - C) is in L’, and 
-if either 0 E (K - C) or 0 = (K - C) is in U, then +, is in u, and 
-either I,$ is in ~1, or the clocks associated with C are not in y and either C 

or (K - C) = 0 is in L”. 

These conditions ensure that the active clock interval C represents indeed a 
witness for the formula I/I and that it is kept active as long as necessary. 

4.3.3.7. TYPE-~ FORMULAS. Let + = I/I, %/JIz be a type-5 formula in Clo- 
sure(q56). Whenever I) is in u, then either 

-u is singular and I) is in ~1') or 
-u is open and I/+ is in U, and either I& is in u or I)~ is in U’ or both q+ and 

* are in ~7’. 



142 R.ALURETAL. 

These conditions ensure that unconstrained u&I formulas are propagated 
correctly (remember that singular and open intervals alternate). These condi- 
tions, however, admit the possibility that a run consists of locations containing 
$ and ct/, without ever visiting a location containing JIz. We use a fairness 
requirement to ensure that whenever a run p visits a location u containing the 
type-5 formula $, then some later location u” along p contains I,&. 

4.3.3.8. TYPE-~ FORMULAS. Let I/I = •I I++’ be a type-6 formula in 
Closure(4). Whenever I) is in u, then either 

-u is singular and I) is in u’, or 
-u is open and I)’ is in u and both +’ and +!I are in u ‘. 

These conditions guarantee that unconstrained always formulas are propa- 
gated forever. 

4.3.4. Fairness Requirements. For each type-5 formula $ = JI1 %I+$ in Clo- 
sure(+), we define the fairness requirement 

FJI = {u c Closure(cj)l((12 E u or I& $!! u). 

The fairness condition of B, consists of the fairness requirements F,, one for 
each type-5 formula + in Closure(+). 

This concludes the definition of the fair timed automaton B,. 

4.3.5. Comcmess. The following main lemma states the correctness of our 
construction by relating the fair runs of the automaton B, to the models of the 
formula 4. 

LEMMA 4.3.5.1. For euery Mr-rL-$ormula 4 in normal form, L(B+) = L(4). 

COROLLARY 4.3.5.2. The MIn-forrnula 4 is satisfiable iff L(B,) f 0. 

PROOF. Let p be a fair run of B,, and let 7P be a timed state sequence that 
is generated by p. We first prove, by induction on the structure of 4, that for 
all formulas JI in Closure(+) and all t E [w r o, if rF, is contained in the location 
u,(t), then T; E $. By Remark 2.3.2.2, it follows that the timed state sequences 
accepted by B4 are models of 4. 

We consider only the case that $ is the type-3 formula $, 9, )(12. Let 

tE &O and assume that Cc, is contained in u,(t). Also assume that the clock 
interval C = Cj(+) satisfies the consistency conditions for type-3 formulas in 
u,(t). By Lemma 4.2.2.2.2, it suffices to show that the interval I’ = t + (K - C> 
is a witness for J, under ~pl. The clock constraint (K - C) IT Z # 0 is in u,(t) 
and, therefore, I’ n (t + I) # 0. If the location u&t> is open, then u,(t) 
contains C, and if u,(t) is singular, then the successor location contains C. All 
following locations contain C until a location with the clock constraint (K - 
C) = 0 is reached, marking the end of I’. Since the clocks associated with C 
are not reset, they continue to represent the same witness I’. Since I’ n (t + 
I) # 0, each location u&t’) with t < t’ < Z contains C. The consistency 
conditions, then, require that u&t’) contains the clock constraint 0 < (K - C> 
and, hence, the formula el. Therefore, by the induction hypothesis, ~6’ I= $,. 
Similarly, each location u&t”) with t” E I’ contains the clock constraint 
0 E (K - C) or 0 = (K - C) and, hence, the formula I/J~. Furthermore, if 
t” # r(Z’), then u,(P) contains 0 E (K - C> and &. Therefore, by the induc- 
tion hypothesis that T-’ k J12 and, if t” # r(Z’), then $’ I= 9,. Thus, I’ 
satisfies all criteria to be a witness for $ under T-. 
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Conversely, let T be a timed state sequence in +-normal form. We construct 
a fair run p of Bd, such that for all formulas IJJ in Closure(4) and all t E IR t o, 
if T' I= $, then u,(t) contains $. It follows that B+, accepts all models of 4. 

We consider again the type-3 case of J/ = $I %!I I&. Let t E R’ Lo such that 
T’ /= 9. By Lemma 4.2.2.3.2, the automaton B+ can, at time t, either share an 
already activated clock interval C.( $1, or it has enough clocks to activate an 
unused clock interval Cj( I)). If k is the activated clock interval and K - C 
stands for the guessed witness, then all the consistency conditions for type-3 
formulas are satisfied. In the first location that contains the clock constraint 
(K - C) = 0, the automaton discards the clock interval C from the location, 
and the associated clocks may be reused later. o 

We therefore have an algorithm for checking the satisfiability of a given 
Mm-formula $: first, we construct the fair timed automaton B,, and then we 
check if L(B,) is nonempty. 

4.4. COMPLEXITY OF MITL. We show that the time complexity of our 
algorithm for checking the satisfiability of $ is doubly exponential in the 
length log K of the integer constants that appear in 4, and singly exponential 
in the number N of logical and temporal operators in 4. Moreover, the 
algorithm also implies an upper bound of EXPSPACE for deciding Mm. A 
matching lower bound of EXPSPACE for MITL can be obtained along the lines 
of the proof that the discrete-time logic MTL is EXPSPACE-hard [Alur and 
Henzinger 19931. 

THEOREM 4.4.1. The satisfiability problem for MI-II. is EXPSPACE-complete. 
In particular, the proposed algorithm checks the satisjkbility of the MI=-formula 
q3 in time 0(2N’K”“s’N’K’), h w ere K - 1 is the largest integer constant appearing in 
4, and N is the number of propositions, Boolean connectiues, and temporal 
operators in 4. 

PROOF. The first step of the algorithm transforms the given formula 4 into 
the equivalent formula +* in normal form. By Lemma 4.1.1.2, the number of 
subformulas of +* is O(N), and the size of the closure set Closure(+*) is 
O(N * K). Hence the number of locations of the automaton B+. is 0(2’v.K). 
The number of clocks of B,. is O( N * K). Furthermore, for every clock x, the 
largest integer constant appearing in a clock constraint for x is bounded by K. 
Consequently, the size of the region graph for B,. is O(2N’K * (N . K )! *(N * KjK ) 
(see Section 3.2). Hence the algorithm that checks the emptiness of L(B,.) 
runs in time U(( N * K)N’K). 

For containment in EXPSPACE, observe that the automaton B,. need not 
be constructed explicitly. The emptiness of L( B+.) can be checked nondeter- 
ministically by repeated testing that there is an edge between two vertices of 
region graph for B+., while only a constant number of vertices needs to be 
stored [Alur and Dill 19941. Recall that a vertex of the region graph is 
described using space logarithmic in the number of locations of B,., polyno- 
mial in the number of clocks of B,., and polynomial in the length of the largest 
constant appearing in the clock constraints of B,.. It follows that a vertex of 
the region graph is described using space polynomial in N * K. The transitions 
of the automaton B,, are defined locally, and all consistency conditions are 
easy to check. Consequently, given the descriptions of two vertices of the 
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region graph for B,., it can be tested in polynomial time if there is an edge 
between the two vertices. It follows that the satisfiability of 4 can be decided 
in space polynomial in N * K, that is, in EXPSPACE. 0 

4.5. A PSPACE-FRAGMENT OF MITL. The main source of complexity for 
the construction of the automaton B+ are the type-3 and type-4 formulas. 
Disallowing these formulas reduces the complexity by one exponential. 

Definition 4.5.1. MITL,,,, is the fragment of MITL that consists of all 
formulas 4 such that for each interval I appearing in 4, either l(1) = 0 or 
r(Z) = 03. 

Equivalently, MITL,, -o is the fragment of MITL where all interval subscripts 
are of the form 2 a, > a, < b, or I 6. 

THEOREM 4.52. The satisfiability problem for MITL,,, ~ is PSP’CE-complete. 
In particular, the proposed algorithm checks the satisfiability of the MITL~, =-for- 
mula C$J in time O(2N”“g(N’K)), wh ere K - 1 is the largest integer constant 
appearing in 4, and N is the number of propositions, Boolean connectives, and 
temporal operators in 4. 

PROOF. By transforming the MITL~,~ -formula #J into normal form, we 
obtain an equivalent formula (p* that does not contain type-3 and type-4 
subformulas. Each type-l and type-2 subformula introduces only one clock and 
two clock constraints in the closure set Cfosure(+*); the size of Closure(4*) is 
therefore bounded by N. Consequently, the automaton B+. has U(2N) loca- 
tions and O(N) clocks. The size of the largest integer constant that appears in 
the clock constraints of B,, is K. From the region-graph construction, it 
follows that the emptiness of UB,.) can be checked in time 0(2N. N!.KN). 
The PSPACE upper bound follows, as before, by the observation that the 
search in the region graph can be performed without explicitly constructing the 
automaton B,.. 

The PSPACE-hardness of MITL~,~ follows from the PSPACE-hardness of 
propositional temporal logic with until [Sistla and Clarke 19851. q 

Thus, the complexity of MITL decreases from EXPSPACE to PSPACE if we 
prohibit bounded intervals with nonzero left end-points. This phenomenon has 
been observed also by Emerson et al. [1990] for discrete-time logics. 

5. MrrL-Based Real-Time Veri$xtion 

Model checking is a powerful and well-established technique for the automatic 
verification of finite-state systems: it compares a temporal-logic specification of 
a system against a state-transition description of the system. In the untimed 
case, the system is modeled by its state-transition graph, and the specification 
may be presented either as a branching-time formula [Clarke et al. 19861 or as 
a linear-time formula [Lichtenstein and Pnueli 1985; Sistla and Clarke 19851. In 
the discrete-time case, the untimed model-checking algorithms can be ex- 
tended to real-time logics using a special tick transition [Emerson et al. 1990; 
Alur and Henzinger 1993; Alur and Henzinger 19941. In the continuous-time 
case, model-checking algorithms are known for branching-time specifications 
of timed automata [Alur et al. 19931. We present the first model-checking 
algorithm for a linear-time logic with a continuous-time semantics, by compar- 
ing Mr-rr,-specifications against system descriptions given as timed automata. 



The Benejits of Relaxing Punctuality 145 

We model a real-time system by a timed automaton A and write the 
requirements specification as a formula $I of MITL. 

Definition 5.1. The model-checkingproblem for MITL is to decide whether or 
not all timed state sequences that are accepted by a given timed automaton A 
satisfy a given Mrm-formula 4: 

L(A) t L($J). 

We use our construction for testing the satisfiability of Mtn-formulas to 
solve the model-checking problem. First, we construct the fair timed automa- 
ton B_, that accepts precisely the models of the negated formula 7 (6. Hence, 
the model-checking problem can be reformulated as follows: 

L(A) G L(4) iff L(A) n L(B_,) = 0. 

Second, we construct the product automaton A X B_ 4 and check it for 
emptiness (see Sections 3.3 and 3.2). The size of the product automaton is 
polynomial in the sizes of A and B7 b; that is, the description of A x By + is 
exponential in the length of 4, and polynomial in the length of the description 
of A. Since the emptiness problem for fair timed automata can be solved in 
PSPACE, the model-checking problem for Mm can be solved in EXPSPACE. 

THEOREM 5.2. The model-checking problem for MITL is EXPSPACE-com- 
plete. 

PROOF. We have already outlined how the model-checking problem can be 
solved in EXPSPACE. To prove EXPSPACE-hardness, we observe that, as 
with all linear-time logics, the satisfiability problem for MITL can be reduced to 
the model-checking problem: the MI%-formula # is unsatisfiable iff L(A,) G 
L( --I 4) for the universal timed automaton A,, which accepts all possible 
timed state sequences. q 

The time complexity of the model-checking algorithm for MITL is polynomial 
in the qualitative part of the system description, exponential in the qualitative 
part of the specification, exponential in the timing part of the system descrip- 
tion, and doubly exponential in the timing part of the specification (this double 
exponential disappears for MITL,,, r -specifications). Compared to this the 
model-checking algorithm for propositional linear temporal logic is polynomial 
in the size of the system description and exponential in the size of the 
specification. Thus, in the general case the move to real time adds an 
exponential. This blow-up seems, however, unavoidable for formalisms for 
quantitative reasoning about time; it occurs already in the simplest, discrete- 
time, case of synchronous systems that proceed at the rate of one transition per 
time unit [Emerson et al. 1990; Alur and Henzinger 1993; Alur and Henzinger 
19941. 
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