
The Benefits of Relaxing Punctuality

RAJEEV ALUR

Bell Labomtories, Murray Hill, New Jersey

TOtiS FEDER

IBM Almaden Research Center, San Jose, California

AND

THOMAS A. HENZINGER

Cornell Unioersity, Ithaca, New York

Abstract. The most natural, compositional, way of modeling real-time systems uses a dense
domain for time. The satistiability of timing constraints that are capable of expressing punctuality
in this model, however, is known to be undecidable. We introduce a temporal language that can
constrain the time difference between events only with finite, yet arbitrary, precision and show the
resulting logic to be EXPSPACE-complete. This result allows us to develop an algorithm for the
verification of timing properties of real-time systems with a dense semantics.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]--real-
time systems; D.2.1 [Software Engineeriogk Requirements/Specifications-languages; F.3.1 [Lugics
and Meanings of ~rugmms]: Specifying and Verifying and Reasoning about Programs-lo& of
programs; mechanical verification; specification techniques; F.4.3 [Mathematical Logic and Formal
Languages]: Formal Languages-classes &fined by automata; decision problems

General Terms: Theory, Verification

Additional Key Words and Phrases: Model checking, real time, temporal logic, timed automata

A preliminary version of this paper appeared in the Pmceedings of the 10th Annual ACM
Symposium on Principles of Dism3uted Computing. ACM, New York, 1991, pp. 139-152.

T. A. Henzigel was supported in part by the Office of Naval Research Young Investigator award
NOOO14-95-l-0520, by the National Science Foundation CAREER award CCR 9501708, by the
National Science Foundation grants CCR 92-00794 and CCR 9504469, by the Air Force Office of
Scientific Research contract F49620-93-l-0056, and by the Advanced Research Projects Agency
grant NAG2-892.

Authors’ addresses: R. Alur, AT &T Bell Laboratories, 800 Mountain Avenue, Murray Hill, NJ
07974, e-mail: alur@research.att.com; T. Feder, IBM Almaden Research Center, San Jose, CA
95120, e-mail: tomas@almaden.ibm.com; T. A. Henzinger, Cornell University, Computer Science
Department, 4105C Upson Hall, Ithaca, NY 14853, e-mail: tah@cs.cornell.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery (ACM), Inc. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
0 1996 ACM 0004-5411/96/0100-0116 $03.50

Journal of the ACM, Vol. 43. No. 1, January 1996. pages 116-146.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227595.227602&domain=pdf&date_stamp=1996-01-01

The Benefits of Relaxing Punctuality

1. Introduction

117

The formal study of reactive systems has recently led to a number of sugges-
tions of how real-time requirements of systems ought to be modeled, specified,
and verified. Most of these approaches are situated at either extreme of the
trade-off between realistic modeling of time and feasible verification of timing
properties. Typically, they either use a continuous model of time at the eTense
of decidability’ or they sacrifice continuity to obtain decision procedures. This
paper shows how a slight relaxation of the notion of punctuality allows us to
combine the best of both worlds.

We use a linear or trace semantics for reactive systems. The linear semantics
of a system is a set of possible behaviors, each of which is represented by a
sequence of system states. This model is most naturally extended to incorpo-
rate real time by associating, with every state, an interval of the real line, which
indicates the period of time during which the system is in that state. We
represent the possible behaviors of a real-time system by such timed state
sequences, each of which defines a function from the nonnegative reals to the
system states.

Alas, even the satisfiability of a very simple class of real-time properties
turns out to be undecidable in this model [Alur and Henzinger 19941. An
inspection of the undecidability proof shows that the only timing constraints
required are of the form

q (p + O=,q), (t)

predicting that every p-state is followed by a q-state precisely 5 time units later.
This negative result has led us, at first, to weaken the expressiveness of the

model by adopting the semantic abstraction that, at every state change, we may
record only a discrete approximation-the number of ticks of a digital clock-to
the real time. Thus, we have interpreted the formula (t) to require only that
the p-state and the corresponding q-state are separated by exactly 5 clock
ticks; their actual difference in time may be as much as (say) 5.9 time units or
as small as 4.1 time units. We have shown that several interesting real-time
logics are decidable under this weaker, digital-clock, interpretation [Alur and
Henzinger 1993; 19941.

In this paper we pursue an alternative, syntactic, concession. Instead of
digitizing the meaning of a sentence, we prohibit timing constraints that predict
the time difference between two states with infinite accuracy. In particular, we
may not state the property given above, but only an approximation such as

q (P + o(�o,,.,,q)~
requiring that the p-state and the corresponding q-state are separated by more
than 4.9 time units and less than 5.1 time units. We define a language that can
constrain the time difference between events only with finite, yet arbitrary,
precision. This is accomplished by prohibiting singular time intervals, of the
form [a, a] from constraining temporal speakers. The resulting Metric Interval
Temporal Logic (MITL) is shown to be decidable in EXPSPACE. The complex-

‘See, for example, Koymans [1990], Lewis (19901, Alur et al. [1993], and Alur and Dill [1994].
‘See, for example, Jahanian and Mok [1986], Emerson et al. [1990], Hare1 et al. [1990], Ostroff
[1990], and Alur and Henzinger [1993; 19941. (For a discussion of this trade-off, see Alur and
Henzinger [19921.)

118 R.ALURETAL.

ity is PSPACE for the fragment of MITL that employs only time intervals of the
form [a, ~1, (a,~), LO, b), and [O, bl.

Properties of timed state sequences can, alternatively, be defined by timed
automata [Alur and Dill 19941. While the emptiness problem for timed au-
tomata is solvable, they are not closed under complement. MITL identifies a
fragment of the properties definable by timed automata that is closed under all
Boolean operations. The decision procedure for MITL leads to an algorithm for
proving that a real-time system that is given as a timed automaton meets a
requirements specification that is given in MITL. Thus, the novelty of our
results is that they provide a log&z/ formalism with a continuous interpretation
of time that is suitable for the automatic verification and synthesis of real-time
systems.

The remainder of the paper is organized as follows: In Section 2, we
introduce and motivate the logic MITL. In Section 3, we introduce a variant of
timed automata as a model for real-time systems. In Section 4, we reduce the
decision problem for MITL to the emptiness problem for timed automata. In
the concluding section, we present a model-checking algorithm for verifying
Mm-specifications of timed automata.

2. Metric Interval Temporal Logic

We define timed state sequences as formal representations of real-time behav-
ior. Then we introduce a temporal language to define properties of timed state
sequences.

2.1. TIME INTERVALS. We use the set R’ r ,, of the nonnegative real numbers
as time domain. A (time) interval is a nonempty convex subset of R rO.
Intervals may be open, half-open, or closed; bounded or unbounded. Each
interval has one of the following forms: [a, b], [a, b), [a, ml, (a, b], (a, b), (a, m),
where a I 6 for a,6 E IR.,. For an interval of the above form, a is its left
end-point, and b is its right end-point. The left end-point of Z is denoted by
Z(Z) and the right end-point, for bounded I, is denoted by r(Z).

The interval Z is singular iff it is of the form [a, a]; that is, Z is closed and
I(Z) = r(Z). The two intervals Z and I’ are adjacent iff (11 the right end-point
of Z is the same as the left end-point of I’, and (2) either Z is right-open and I’
is left-closed, or Z is right-closed and I’ is left-open. For instance, the two
intervals (1,2] and (2,2.5) are adjacent.

We freely use intuitive pseudo-arithmetic expressions to denote intervals.
For example, the expressions I b and > a denote the intervals [0, b] and
(a, m), respectively, and the expression < Z denotes the interval (tl for all
t’ E I, 0 I t < t’}. The expression t + I, for t E R L 0, denotes the interval
(t + t’lt’ E Z]. Similarly, Z - t and t *I stand for the intervals (t’ - tit’ E Z
and t’ 2 t} and {t * t’lt’ E I), respectively.

2.2. TIMED STATE SEQUENCES. Let P be a finite set of propositions. We
assume that, at any point in time, the observable state of a (finite-state) system
can be modeled by a truth-value assignment for P. A state, then, is a subset of
P. If s c P is a state and p E s is a proposition in s, we write s I= p and say
that s is a p-state.

The execution of a system results in an infinite sequence of states. We model
the timed execution of systems by associating a time interval with each state.

The Benefits of Relaxing Punctuality 119

We require that the interval associated with consecutive states be adjacent, and
that the union of all intervals partitions the nonnegative real line.

Definition 2.2.1. A state sequen_ce S = sOs,sz **. is an infinite sequence of
states si C P. An interval sequence Z = Z,Z, I2 ..* is an infinite sequence of time
intervals such that

-[Znitiaky] I, is left-closed and Z(Z,) = 0;
--[Adjacency] for all i 2 0, the intervals Z, and I,+, are adjacent;
-[Progress] every time t E Iw L 0 belongs to some interval Z,.

A timed state sequence T-= (5, Z) is a pair that consists of a state sequence S
and an interval sequence I. For i 2 O_ and t E Ii, the state T*(t) at time t is si.

The timed state sequence T = (S, Z) can thus be viewed as the function T*
from the time domain Iw hO to the states 2P, which provides a system state at
every time instant. (There is the alternative view that the timed execution of a
system alternates state changes and time delays. That view can be modeled by
pairing state sequences with sequences of closed intervals [Henzinger et al.
19941. It is routine to transfer all our results into that model.)

Definition 2.2.2. The two timed state sequences T, and r2 are equivalent iff
for all t E R t 0, .r:(t) = 72*(t).

Sometimes we represent the timed state sequence 7 = (S, Z> by the infinite
sequence

(s,,, I”> --) (s,, I,) -+ (s*, I,) --t as.

of state-interval pairs. It is also convenient to represent an infinite sequence of
state-interval pairs with identical state components by a single state-interval
pair with an unbounded interval: if sj = si for all i 2 i, we write

Cs(), z()) + Cs,3 1,) + ‘*’ 4 (S,-lv Ii-,> + St> U z,
(1 jki

for 7. The time t E R , 0 is a transition point of T iff t is the left end-point Z(I,>
of an interval in Z. The state s, is singular in T iff the associated interval Z, is
singular. Notice that in this case neither si- , nor si+ , can be singular, because
the interval Zi-, must be right-open and the interval I,+ 1 must be left-open.
Singular states are useful for modeling events by propositions that are true
only at transition points.

Definition 2.2.3. Let T = (i, f) be a timed state sequence. Given t E Z,, the
su@ T’ at time t is the timed state sequence

(Sj, Z, - t) j (si+l, Zi+, - t, --j (Si+2, Ii+* - t) j “‘.

In particular, T” = T and for all f,t’ E R,,,(T’)*(~‘) = T*(t + 1’1.

2.3. Mm. MITL is a linear temporal logic that is interpreted over timed
state sequences. A standard way of introducing real time into the syntax of
temporal languages constrains the temporal operators with time intervals
[Emerson et al. 1990; Koymans 1990; Alur and Henzinger 19931. For example,
the constrained eventually operator Ot2,41 is interpreted as “eventually within 2
to 4 time units.” We adopt this approach for MITL, with the restriction that
temporal operators cannot be constrained by singular intervals.

120 R. ALUR ET AL.

2.3.1. Syntax. The formulas of Mm. are built from propositions using
Boolean connectives and a time-constrained version of the until operator SY.
The until operator may be constrained by any nonsingular interval with integer
end-points. The restriction to integer end-points simplifies the presentation; we
later show that our results extend to the case of rational end-points.

Definition 2.3.1.1. The formulas of MIX. are inductively defined by the
grammar

4: := PI- dh#q A Gh % 429

where p E P is a proposition, and Z is a nonsingzhr interval with integer
end-points (I may be unbounded).

We say that the integer constant c appears in the Mr-rr=formula + iff c is an
end-point of some interval that appears in 4, as a subscript of an until
operator.

2.3.2. Semantics. The formulas of Mm are interpreted over timed state
sequences, which provide an interpretation for the propositions at every time
instant. Informally, the formula 4, sY, c#+ hold at time t of a timed state
sequence iff there is a later time t’ E CC + I) such that c#+ holds at time t’ and
+i holds throughout the interval (t, t’).

Defini$on 2.3.2.1. For an MI-t-L-formula 4 and a timed state sequence
T = (S, I), the satisfaction relation 7 b 4 is defined inductively as follows:

TkP iff s0 K p;

Ti= lc#J iff T# c$;

7 b 41 A $2 iff rk +i andri= 42;

7 i= 41 % 42 iff for some t E I, T’ b c&, and for all t’ E (0, t), 7” I= +i.

The timed state sequence T is a model of the formula 4, or T suti.#es 4, iff
T I= 4. We write L(4) for the set of models of 4. The formula C$ is satisfZi.zble
iff L(4) # D, the two formulas 4 and 4’ are equiualent iff L(4) = L(+‘).
The satis&bilityproblem for MITL is to decide whether or not a given MI=-for-
mula is satisfiable.

Note that Mm. has no next-time operator, because the time domain is dense.
Instead, the until operator is strict in its first argument: if r(f) > 0, then for
&%‘, 42 to hold at time t of a timed state sequence, neither #i nor C& need to
hold at time t.

Also observe that MI. cannot distinguish equivalent timed state sequences.
This is because for a timed state sequence T = (S, I) and an Mm-formula 4,
the satisfaction relation T k 4 depends only on the function T*, and not on the
particular choice of the interval sequence I. We remember this observation as
the following remark.

Remark 2.3.2.2. Let 4 be a Mm-formula. If the two timed state sequences
TV and 72 are equivalent, then TV I= C$ iff T* I= 4.

2.3.3. Defined Operators We introduce some standard abbreviations for
additional temporal operators. The defined operators 0, C$ (time-constrained
euentuuffy) and 0 ,c$ (time-constrained always) stand for mse g[4 and

The Benefits of Relaxing Punctuality 121

10, 1 r$, respectively. It follows that the formula 0 ,c$ (or O,C$) holds at time
t of a timed state sequence iff C$ holds at all times (at some time, respectively)
within the interval t + I.

We usually suppress the interval (0,~) as a subscript. Thus, the MI=-oper-
ators 0, ~3, and ?Y coincide with the conventional unconstrained strict eventu-
ally, strict always, and stict until operators of linear temporal logic [Manna and
Pnueli 19921. The corresponding nonstrict operators are definable in Mm as

O,& = 4 ” 04,

q ,,+ = 4 A 0 4,
4,,%,42 = $2 � WI A 91W2).

Note that, on the other hand, the MrTL-operator %, cannot be defined in terms
of an until operator that is not strict in its first argument; this is why we choose
the strict versions of the temporal operators to be primitive.

We also define a time-constrained unless operator as the dual of the until
operator:

&w4, = -I((1 42) z, (14,)).

It follows that the formula c#+ ,?VC#J* holds at time t of a timed state sequence
iff either 4, is true throughout the interval t + I, or there is a time t’ > t such
that & is true at time t ’ and r$, holds throughout the interval [t, t’] n I. For
example, T k pIl,zFq iff either T’ t= p for all t E [l, 21, or T’ I= q for some
t E (0, 11, or T’ k= q for some I E [l, 2] and for all t’ E [l, t], 7” t= p. Note that
the unconstrained version 4I ?Yc$, of the unless operator of MITL differs
slightly from the conventional strict unless operator [Manna and Pnueli 19921,
which can be defined as c#J,V’X+, A &I.

We can apply the definition of the constrained unless operator to move
negations through constrained until operators. Thus we may obtain, from any
MrrL-formula, an equivalent formula, containing both until and unless opera-
tors, in which all negations are in front of propositions.

2.3.4. Examples. Let us consider a few examples of Mtn-formulas.

Example 2.3.4.1. The typical bounded-response requirement that “every
p-state is f 11 o owed by a q-state within 3 time units,” is expressed by the
MTn-formula

QJP + O,O,,]d.

Example 2.3.4.2. The following MrrL-formula asserts that the proposition p
is true in infinitely many singular states and nowhere else:

o,,# A q ,,+ --) bp)~p).
Such a requirement can be used to characterize events, and it cannot be
expressed with an until operator that is nonstrict in its first argument.

Example 2.3.4.3. Now we consider a time-out requirement. Suppose that p
is a state constraint, and q is the time-out event. We wish to specify the
requirement that “whenever p ceases to hold, either p becomes true again
within less than 5 time units, or at time 5 the time-out event q happens.” This
requirement is expressed by the Mm-formula

122 R.ALURETAL.

Additional examples of real-time requirements that are specifiable using
time-constrained temporal operators can be found in Koymans [19901.

2.3.5. Model Refinement. All timed state sequences obey the so-called fi-
nite-ouriability condition: between any two points in time there are only finitely
many state changes. This assumption is adequate for modeling discrete sys-
tems. We now show that the timed state sequences satisfy the finite-variability
condition not only with respect to the truth of propositions, but also with
respect to the truth of all MI=-formulas. That is, we show that the truth value
of every MrrL-formula 4 does not change more than o times along a given
timed state sequence T. This is done by splitting the intervals of r finitely often
until the truth value of 4 stays invariant over every interval. This process is
called the refinement of T.

Defin@on 2.3.5.1. Given a MI=-formula 4, the timed state sequence
T = (S, I) is &fine iff for all subformulas 9 of 4, for all i 2 0, and for all
t, t’ E Ii, 7’ t= + iff 7” k +.

For an MI-r-L-formula 4, then, the truth value of each subformula of 4 stays
invariant over every interval of a &fine timed state sequence.

LEMMA 2.3.5.2. Let I#J be an MI=-formula. For euery timed state sequence T,

there exists a @fine timed state sequence that is equivalent to T.

PROOF. The proof proceeds by induction on the structure of 4. Let T be a
timed state sequence. For each subformula Ic, of 4, we construct a $-fine
timed state sequence 7, that is equivalent to T. For the proposition + = p, let
T+ = T. For the negation J/ = 1 $‘, let T+ = rec. In case Of the COnjUnCtiOn
I) = $i A I+%~, the timed state sequence T+ is constructed by refining the timed
state sequence Q,. We split each interval of TV, into a finite sequence of
intervals, each of which is fully contained in an interval of T+,. In other words,
the interval sequence of T+, ,, 112 is obtained by intersecting the two interval
sequences of rJl, and T+,.

Now consider the case JI = $, ‘8, I+?~. First, we construct the refined timed
state sequence T+, A +*. Then, we construct inductively a diverging countable
sequence t, < t, < t, < **a of times ti E Iw zO: let t, = 0; for all i 5 0, let ti+,

be the least t > ti such that either t is a transition point of TV,,, #L2, or
t = fj + I(I) or t = tj + r(l) for some 0 rj I; i. We choose re = (s, I) to be
equtvalent to T with the interval sequence Z = [to, to],&, tl), [tl, tl],(tl, t2), . . .

Consider two times t and t’ that belong to the same interval of T , say,
ti < t’ < t < ti+l. Suppose that T’ I= $. Then there exists a time u E t + I) Q
such that 7” I= 1(1* and for all u’ E (t, u), 7” t; @i. Since t < ti+*, there exists
a time u’ E (ti, t,.+i) such that 7” L= 9,. Since the truth value of +i stays
invariant throughout the interval (ti, ti+l), we have 7” k +, for all u’ E
(ti, ti+ ,) and, hence, for all u’ E (t’, u). From the construction of the time
sequence t,, t,, . . . , it follows that u E (t’ + I). Therefore, 7” l= $. It follows
similarly that 7” F 1,6 implies T’ l= t/~. q

2.4. VARIATIONS OF MITL. We consider three variations of MITL. Recall
that all time intervals that appear in timed state sequences have real end-points,
and all time intervals that appear in Mrrr=formulas have integer end-points.

The Benefits of Relaxing Punctuality 123

First, a rational semantics does not change the satisfiability problem for MITL
and, second, neither does a rational syntax. Third, the admission of singular
intervals in Mm-formulas renders the satisfiability problem undecidable.

2.4.1. Real Time Versus Rational Time. While timed state sequences are
defined over the real numbers, with respect to interpreting Mr’rL-formulas, the
crucial property of the time domain is not its continuity, but only its denseness.
We show that replacing the time domain Iw tO with the set Q, 0 of the
nonnegative rational numbers does not change the satisfiability of any MITL-
formula. In other words, MITL cannot distinguish the time domain R ~ 0 from
the time domain Q ~ 0.

Definition 2.4.1.1. The timed stated sequence T is rational iff all transition
points of T are rational. The rational timed state sequence T ~-satisfies the
Mr-tx-formula 4 iff T /= (6, where the satisfaction relation t= of Definition
2.3.2.1 is redefined so that all time quantifiers range over Q, 0 only. The
Mm-formula 4 is Q-satisfiable iff there is a rational timed state sequence that
Q-satisfies 4.

The equivalence of the real and the rational semantics for MITL follows from
two lemmas.

LEMMA 2.4.1.2. Let $I be an MIn-formula and let r a rational +fine timed
state sequence. Then T &P-satisfies C#J iff T satisfies C#J.

PROOF. Let T be a rational and &fine timed state sequence. We use
induction on the structure of 4. We consider only the interesting case, for a
subformula 1+5 of C#J of the form I), V, (G;. Suppose that T Q-satisfies 4; that is,
7' Q-satisfies I,!$ for some rational t E I, and 7" Q-satisfies I), for all
rationals t’ E (0, t). By the induction hypothesis, we conclude that T’ @ I)* and
for all t’ E (0, t), 7” t= $,. Hence, to show that T b +!J, it suffices to show that
7” != I), for all reals 1” E (0, t). Consider an arbitrary real t” E (0, t), and
assume that t” E Z,, for an interval Zi for T. If Z, is singular then, since T is
rational, t” must be rational. Otherwise, Ii is nonsingular, and there is also a
rational t’ E Z, with t’ E (0, t). We know that T” I= J/, and, since T is +-fine,
it follows that 7” t= $,. Therefore, 7 E I). It follows similarly that 7 L= *
implies that T Q-satisfies $. Cl

The following lemma partitions the timed state sequences into blocks such
that the members of a block cannot be distinguished by Mm-formulas. Two
timed state sequences fall into the same block iff they agree on the state
components, on the integral parts of all transition points, and on the ordering
of the fractional parts of all transition points. For I E R’ zO, let (t) = t - It1

denote the fractional part of r.

LEMMA 2.4.1.3. Let r = (3;, I) and T’ = (S, if> be two timed state sequences
such that for all i, j 2 0, (1) ll(Z,)] = [l(Z,!)J and (2) (l(Z,)) < (ICI,)) iff (l(Z:))
I (f(Z,‘)). For ail Mrm-formula 4, T k 4 iff 7’ k qk

PROOF. We write T w T ’ iff the two timed state sequences 7 and T ’ satisfy
the premise of the lemma. The proof is by induction on the structure of 4: we
show that for all subformulas IJ of 4, and all timed state sequences T and T ‘, if
7” 7’ and 7 k Q!J, then 7’ /= cc/. The interesting case is again that of a
subformula 4 of the form I/J, ‘%, I&. Suppose that 7 h 7’ for T = (i, Z) and

124 R. ALUR ET AL.

’ = (9, I’) and that T l= I/J. Let t E Z be such that T’ i= I/J* and T’” t= I/J, for
Lll t” E (O,‘f). Choose t’ such that (1) lt’l = 1tJ and (2) for all i, (t) 5 (l(Z,))
iff ,(t’> I (Z(Z:)>, and (c) 2 (Z(Z,)> iff (t’) 2 (Z(Z,l)). Then t’ E Z and T’ N
7” . From the induction hypothesis applied to r’ and T”, we conclude that

“’ != &. By a similar argument, it follows that for all t” E (0, t ‘1,~“’ b I)~.
Lerefore, 7 ’ b I). 0

THEOREM 2.4.1.4. The Mm-formula 4 in Q-satis$able iff #J is satisfiable.

PROOF. Suppose that the rational timed state sequence T Q-satisfies 4.
First, we observe that Lemma 2.3.5.2 and Remark 2.3.2.2 apply to rational
timed state sequences also. It follows that there is a rational &fine timed state
sequence T’ that is equivalent to T and Q-satisfies 4. By Lemma 2.4.1.2, T’ is a
(real) model of 4.

For the other direction of the theorem, consider a (real) model T = (9, r) of
4. We construct a rational timed state sequence T ’ = (s, 1’) as follows. We
choose inductively a diverging sequence t, < t, < t, < +*. of rational times
t; E cl,,: let t, = 0; for all i 2 0, let (1) 1ti+ 11 = lZ(Z,+ ,>1 and (2) for all j I i,
Cfi+l) I ttj> iff CfCzi+,)) I C1(zj)>9 and (ti+l) L (ti> iff (l(Ii+,)) 2 (l(Zj)).
The denseness of Q t 0 allows us to choose such rational numbers ti, say, by
choosing the fractional part of each ti to be a multiple of l/2’. Then let the
interval (! have the left end-point ti, the right end-point fi+ i, and the type of Zi
(i.e., ji is left-open iff Zi is left-open, and right-open iff Zi is right-open). The
timed state sequences T and T’ satisfy the premise of Lemma 2.4.1.3, and
hence T’ b $A By the rational version of Lemma 2.3.5.2 and by Remark 2.3.2.2,
there is a rational +-fine timed state sequence T” that is equivalent to T’ and
satisfies $A By Lemma 2.4.1.2, T” Q-satisfies 4. 0

2.4.2. Rational Intervals. While defining the syntax of MITL, we required
the end-points of all time intervals that constrain until operators to be integers
or infinite. This restriction can be relaxed, without affecting the satisfiability
problem for Mm, by admitting intervals with rational end-points in Mrn-for-
mulas. For example, we may allow the formulae 0 (0.5,0,6Jp, which asserts that
p holds throughout the time interval (0.5,0.6X

LEMMA 2.4.2.1. Let C#J be a formula of MITL that contains intervals with
rational end-points, and let T = (S, Z) be a timed state sequence. For c E Q r ,,, let
& denote the formula obtained by replacing every interval in C) with the interval
c * I, and let TV = 6, 1’) denote the timed state sequence with I,! = c . Ii for all
i 2 0. Then, 7 I= gJ iff Tc t= (l+.

PROOF. The proof proceeds by a straightforward induction on the structure
of 4. cl

Given a formula 4 with rational constants, let c be the least common
multiple of all denominators appearing in 4. In order to check the satisfiability
of +, then, it suffices to check the satisfiability of the Mm-formula &, which
contains only integer constants. Notice that the size l+c,l of the description of
& is bounded by 1+1*.

2.4.3. Singular Intervals. Mm prohibits the use of singular intervals. For
example, the formula

q p + O,,q),

The Benefzts of Relaxing Punctuality 125

which expresses the requirement that “every p-state is followed by a q-state
after precisely 5 time units,” is not an MIn-formula. That is, in fact, no
MrrL-formula that expresses this requirement, and the restriction of MITL to
nonsingular intervals is essential for the decidability of the satisfiability prob-
lem. Before we prove this, we note that some forms of equality are expressible
in Mm. Let (14) PY,, r#~ stand for the Mm-formula (0 CO,Cj 7 4) A (0 0 ,,#).
Thus, the stronger requirement that “for every p-state the next fol owing i,
q-state occurs after precisely 5 time units,”

q (p 4 (19) %sq),

can be expressed in MITL.

Definition 2.4.3.1. MITL, is the extension of MITL that admits singular
intervals as subscripts of the until operator.

We show that the satisfiability problem for MITL, is complete for the
complexity class C’,, which is situated in the analytical hierarchy strictly above
all recursively enumerable sets (see, for example, Rogers [1967]). It follows that
MITL, is not recursively axiomatizable. The undecidability result depends on
the denseness of the time domain. If the formulas of Mm, are interpreted
over a discrete time domain, the resulting logic MTL has a decidable satisfiabil-
ity problem [Alur and Henzinger 19931.

THEOREM 2.4.3.2. The satisfiabilityproblem for Mm, is Ci-complete.

PROOF. We prove C:-hardness by reduction from the problem of deciding
whether a given nondeterministic 2-counter machine M has a recurring
computation (i.e., a computation in which a specified state repeats infinitely
often), which is C’,-hard [Hare1 et al. 19831. In Alur and Henzinger [1993], it is
shown how to construct a formula C$ of the discrete-time logic MTL such that C$
is satisfiable over dense-time models iff M has a recurring computation. The
construction, with trivial modifications, applies to MITL= . Indeed, only one
temporal operator with a singular subscript, 0, 1, is needed in the construction.

Now we prove containment in C:. Let C#J be a formula of MITL, . First
observe that Theorem 2.4.1.4 holds even in the presence of singular intervals in
formulas. Thus, if 4 has a model, then there is a rational timed state sequence
that Q-satisfies 4. The CP-satisfiability of C$ can be phrased as a Ci-sentence
asserting that some timed state sequence with rational transition points CD-
satisfies 4. It is routine to encode a rational timed state sequence by a set of
natural numbers, and to express the Q-satisfaction relation in first-order
arithmetic. q

Another possible variation of the syntax of MITL would permit interval
constraints on both arguments of the until operator. The intended meaning of
the formula & ,,%, &2 at time t of a timed state sequence is that there is a
later time t ’ E (t + I) such that C#J* holds at time t’ and +, holds throughout
the interval (t + I’) n (t, r’). This requirement can be expressed in temporal
logics that admit explicit references to time through variables (say, in the style
of the discrete-time logic TPTL of Alur and Henzinger [1994]. This extension,
however, leads again to undecidability over a dense time domain. This is
because the role of the formula O=, 4 in the undecidability argument for
MITL= can be replaced by the formula false >, kVz 1 4.

126 R.AJJJRETAL.

3. Timed Automata

We use a variant of timed automata as defined in Alur and Dill [1994] to model
finite-state real-time systems. Tied automata generalize nondeterministic
finite automata over infinite strings. While *automata accept infinite state
sequences (see, e.g., Thomas [1990]) timed automata are additionally con-
strained by timing requirements and accept timed state sequences.

3.1. DEFINITION OF TIMED AUTOMATA. A timed automaton operates with
finite control-a finite set of control locations and a finite set of real-valued
clocks. All clocks proceed at the same rate and measure the amount of time
that has elapsed since they were started (or reset). Each transition of the
automaton may start (or reset) some of the clocks. Each control location of the
automaton puts constraints on the values of the propositions and on the values
of the clocks: the control of the automaton can reside in a particular location
iff the values of the propositions and clocks satisfy the corresponding con-
straints.

3.1.1. Syntax. We permit arbitrary constraints on the values of propositions.
A propositional constraint, then, is a set of states. We usually denote proposi-
tional constraints as Boolean combinations of propositions. For instance, we
write p A 1 q for the set of states that contain p but not q.

We permit only simple constraints on the clock values. A clock constraint
z!G R,o is a finite union of (possibly unbounded) intervals with integer
end-points. The value a(x) E R -,,, of the clock x satisfies the clock constraint
9 iff a(x) ES? We usually denote clock constraints for the clock x as boolean
combinations of arithmetic expressions containing x. For instance, we write
llx<3Vx= 4 V x > 5 for the clock constraint [l, 3) U [4,4] U (5, ~1 that
restricts the value of x.

Definition 3.1.1.1. A timed automaton A is a tuple (V, V”, a, X, p, E) with
the following components:

--V is a finite set of (control) locations.
--I/O C V is a set of initial locations
-a is a location labeling function that assigns to each location u a proposi-

tional constraint cr(v) E 2’.
-X is a finite set of clocks.
-fi is a location labeling function that assigns to each location u and each

clock x a clock constraint p(u, x) c IT&’ Lo. A valuation CT for the clocks in X
satisfies the family p(u) of clock constraints for the location u E V iff for all
clocks .x E x, a(x) E p(u, x>.

--E c V X V X 2x is a set of transitions. Each transition (u, u’, y) E E, also
denoted u 4 u’, consists of a source location o, a target location u’, and a
set y of clocks that are reset with the transition.

3.1.2. Semantics. At every time instant during a run of the timed automa-
ton A, the configuration of A is completely determined by the location in
which the control resides and by the values of all clocks. The clock values are
given by clock interpretations, which are functions for X to R’ ~ o: the value of
the clock x under the clock interpretation u is a(x) E R,,,. Given a clock
interpretation u and t E R Lo, we write u + t for the clock interpretation that
assigns to each clock x E X the value a(x) + t. For y c X, by 01-y := 01 we

The Benefits of Relaxing Punctuality 127

denote the clock interpretation that assigns 0 to all clocks in y, and o(x) to all
other clocks x 66 y. We write C for the set of clock interpretations for the
automaton A.

Assume that, at time t E R r o, the control of A resides in the location ~1 and
the clock values are given by the clock interpretation (T. Suppose that the
control location of the automaton remains unchanged during the time interval
I and l(Z) = t. All clocks proceed at the rate at which time elapses. At all times
t’ E I, the value of each clock x is a(x) + (t’ - t); so the clock interpretation
at time t’ is cr + (t’ - t). Throughout the interval I the clock interpretation
satisfies the clock constraint that is associated with the location u; that is, for
each clock x, U.(X) + (t’ - t) E p(u, x1. Now suppose that the automaton
changes its control location at time r(l) = t” via the transition L’ L u’. This
location change happens in one of two possible ways. If I is right-closed, then
the location at time t” is still u; otherwise, the location at time t” is already ~1’.
The clocks in y are reset at time t”. Let a” be the clock interpretation
((T + (t” - t))[y := 01. The clock interpretation at the transition time t” de-
pends on whether the location at time t” is u or ~7’. If / is right-closed, then
the clock interpretation at time t” is (+ + (t” - t) and must satisfy p(c). If I is
right-open, then the clock values at time t” are given by a” and must satisfy
P(L”). The new location ~7’ stays unchanged during some time interval adjacent
to I, and the same cycle repeats.

Definition 3.1.2.1. A run p of the timed automaton A is an infinite
sequence

of locations (si E l’/, intervals Z, that form an interval sequence i#, = I,Z,Z, *** ,
clock sets ‘y, G X, and clock interpretations gi E C satisfying the following
constraints:

-[Znitiality] L:~ E V”.
-[Consecution] For all i 2 0, (u,, ui+i, yi+l) E E and a,,, = (a, + (r(I,) -

I(1,)))C Y, + , := 01. For i 2 0 and t E I;, the location up(t) at time t is ci, and

the clock interpretation o,(t) at time t is ai + (t - I(I,)).
-[Timing] For all t E R zo, up(t) satisfies /3(up(t)).

According to this definition, in a run the clocks may start at any real values
that satisfy the clock constraints of an initial location. The run p defines a
function L!~ from the time domain IR z o to the control locations V, and a
function uP from R , o to the clock interpretations C, providing both a control
location and clock values at every time instant. The location 1’ is reachable in
A iff I! = uP(t) for some run p of A and some t E R z 0.

Every run of a timed automaton generates timed state sequences. Singular
states can be enforced by clock constraints of the form x = c, for a constant c.

Definition 3.1.2.2. The run p of the timed automaton A generates all timed
state sequences T of the form (S, 1,) such that for all t E (w L ,,, T*(t) E a(c,(t)).

The timed automaton A accepts the timed state sequence T iff T is equivalent
to a timed state sequence that is generated by a run of A. We write L(A) for
the set of timed state sequences accepted by A. The emptiness problem for
timed automata is to decide whether or not a given timed automaton accepts a
timed state sequence.

128

3.1.3. Examples

R.ALURET&

Example 3.1.3.1. The timed automaton A, of Figure 1 has four control
locations, u. to u3, and one clock, x. In figures, we suppress the trivial
propositional constraint true and trivial clock constraints denoting Iw ,o.

The automaton A, starts in the initial location u. with the clock x set to 0
and the proposition p true. During the time interval (0,3), the automaton
loops finitely, but arbitrarily, often between the locations u, and u2 and, thus,
the proposition p may change its value finitely often in the interval (0,3). At
time 3, the automaton moves to the location uj to check that p is true. The
clock x is reset at this point and the whole cycle repeats. Thus, the automaton
A, requires p to hold at all time instants that are integer multiples of 3. A
sample prefix of a run of A, is

7 (“oJoJ)l) + hal.1)) 3 (u,,[1.1,3)) $+ (u,[3,3])

+ (U,,(3,4]) + . . .

(since there is only one clock, clock interpretations are given as values for x).
The set of timed state sequences accepted by A, is

L(A,) = {~]forall n E N,p E 7*(3-n)}.

The timed automaton A; of Figure 1 accepts the same timed state sequences
as A,.

Example 3.1.3.2. The timed automaton A, of Figure 2 has seven control
locations, u. to us, and two clocks, x and y.

The automaton A, starts in the initial location u. with the clock y set to 0.
At time 40, the automaton moves to the location u6 and stays there. The
proposition p denotes an external event that is true only at instantaneous
points t < 40 in time (and no more than once every S time units), namely,
whenever the automaton is in the location u2. The automaton responds to p by
resetting the clock x, and then it requires that the proposition q holds over the
interval t + [2,5). Thus the automaton A, models a system that responds,
until time 40, to the event p by setting q to true for the interval [2,5) following
p. A sample timed state sequence accepted by A, is

(0, to, 13)) -+ Up), 113,131) + (0, (13,15)) -+ ((41, [15,20))

+ (0,[20,40)) -+ (Iql, [40,9.

All timed state sequences that are accepted by A, satisfy the MI-ix-formula

cl <4O(P -+ q*,,f?) * •J 2409’

3.2. CHECKING EMPTINESS. The emptiness problem for timed automata is
solved in Alur and Dill [1994]. The algorithm given there can be adapted in a
straightforward way to our variant of timed automata. We only sketch the basic
idea behind the construction, and refer to Alur and Dill [1994] for the details.

Consider the timed automaton A = (V, V”, (Y, X, /3, E). With A we associ-
ate a transition relation d over the space V x C of automaton coufigura-

The Benefits of Relaxing Punctuality

“‘,a

129

FIG. I. The timed automata A, and A’,.

'PA9 C.-J-J Y 140
U3

FIG. 2. The timed automaton A,.

tions: (I’, u) * (I“, u ‘) iff there exist two times t, t’ E R , (,, a clock interpre-
tation a” E 1:. and a transition 11 A I” such that

-

-u (1 , _= (n + t)[y := 01;
- IT” + t’;

IL- all I” E [0, t), cr + t” satisfies /3(c~);
-for all t” E (0, t ‘I, ~7” + t” satisfies /3(r)‘);
-either CT + t satisfies @Cl.) or CT” satisfies p(t*‘).

Now the emptiness problem for A can be reduced to a search problem over
the infinite graph (V x C, =j 1, whose solution rests on the observation that the
uncountable configuration space V x C can be partitioned into finitely many
equivalence classes, as follows. Informally, two automaton configurations are
equivalent iff they agree on the location components, on the integral parts of
all clock values, and on the ordering of the fractional parts of all clock values.
For each clock x E X, let c, be the largest constant such that c, is an
end-point of an interval in a clock constraint for x at any location of A. We
define (13, UT) = (l*‘, u ‘> iff for all clocks x and y,

(1) I’ = r”;
(2) either lo(x)] = la’(x)], or both CT(X) > c, and u’(x) > cx;
(3) (u(x)) I (CT(~)) iff (u’(x)) 2 (CT’(Y)) (recall that (t> = t - ltlk
(4) (u(x)) = 0 iff (CT’(X)) = 0.

130 R.ALURETAL.

The equivalence relation = has two key properties:

(1) If (u,, a,) = (u;, 0;) and (u,, u,) * (uz, (~~1, then there is a configuration
(v;, a;) such that (uz, a,) = <L$, ai) and <v;, c() =+ <vi, a;) (that is, = is
a bisimulation);

(2) The number of equivalence classes of = is finite, namely, O(lV(- 1X1!-
I-I XE X4

The region graph for the timed automaton A is the quotient of the infinite
graph (V x C, 3) with respect to the equivalence = . The first property
allows us to reduce reachability problems over (V X C, *) to reachability
problems over the region graph. The second property ensures that the region
graph is finite.

It follows that the emptiness problem for timed automata can be solved in
time O((lVl + IEI) - 1X(!* l7 x E xc,). That is, the complexity is linear in the size
of the location-transition graph, exponential in the number of clocks, and
exponential in the (binary) encoding of the largest constant appearing in clock
constraints. For containment in PSPACE, the emptiness of the region graph
can be checked nondeterministically while storing only a constant number of
vertices. Each vertex of the region graph is described by listing a control
location and a set of clock constraints. The description of each vertex requires
space logarithmic in IVl, polynomial in 1x1, and polynomial in the encoding of
the largest constant. It follows that the emptiness problem for timed automata
is in PSPACE. The PSPACE-hardness follows from the corresponding result
proved in Alur and Dill [1994].

THEOREM 3.2.1. The emptiness problem for timed automata is PSPACE-com-
plete.

3.3. PARALLEL COMPOSITION. For describing real-time systems, it is useful
to describe individual system components separately. Timed automata that
describe system components can be put together using the following product
construction.

THEOREM 3.3.1. Let A, = <VI, VP, aI, X,, PI, E,) and A, =
CV,, VP, az, X2, &, E2) be two timed automata. There exists a timed automaton
A, x A, such that L(A, x AZ) = L(A,) n L(A,).

PROOF. Assuming that the clock sets X, and X, are disjoint (this can
always be achieved by renaming clocks), we define the product automaton
A, x A, = (V, V”, a, X, /3, El as follows: The location set V is the set V, X V2
of location pairs. The set V” of initial locations is the set VP x V: of pairs of
initial locations. The propositional constraint a(ur, UJ is the intersection
a,(ur) n a2(u2) of the component constraints. The clock set X is the (disjoint)
union X, U X, of clock sets. For each clock x1 E X,, the clock constraint
/3((u,, u2), x,) is &(ur, x,1; and for each clock x2 E X,, the clock constraint
p((u,, uz), x,> is &(u2, x,). For every pair of transitions ur 2 v’, and u2 2 u;

of A, ay$+ respectively, the product automaton has three transitions:

(up u2) - Cu;, vi>, (ul, u2) 2 <u;, u2), and cur, u2) -% (u,, ~$1. Thus,
the transitions in E simulate the joint execution of the two component
automata. 0

The Benefits of Relaxing Punctuality 131

3.4. FAIRNESS REQUIREMENTS. When verifying reactive systems, we are
generally interested only in properties of the fair executions [Manna and
Pnueli 19921. For example, for a system with two processes, we may wish to
consider only those behaviors in which each process executes infinitely often.
While concrete timing can usually replace abstract fairness, we need to
consider fair timed automata for solving the satisfiability problem for MI-K. We
add fairness to timed automata using generalized Biichi conditions.

Defmition 3.4.1. A fairness requirement for the timed automaton A is a set
of locations of A. A fairness condition for A is a set of fairness requirements
for A. A fair timed automaton B consists of a timed automaton A and a
fairness condition 9 for A. The run

of A is a fair run of B iff for all fairness requirements F E 9 there are
infinitely many i 2 0 with 11, E F. The fair timed automaton B accepts the
timed state sequence 7 iff T is equivalent to a timed state sequence that is
generated by a fair run of A. By L(B) we denote the set of timed state
sequences accepted by B.

The algorithm for checking the emptiness of timed automata can be ex-
tended to handle fairness conditions in the standard way [Alur and Dill 19941.
In particular, it can be decided in PSPACE whether or not a given fair timed
automaton accepts any timed state sequence. Similarly, the product construc-
tion for timed automata is easily extended to fair timed automata.

4. Deciding MITI.

We solve the satisfiability problem for MITL by reducing it to the emptiness
problem for timed automata. Our main result is that, given an ML-n--formula 4,
we construct a fair timed automaton B, that accepts precisely the models of 4.

In the following, let K E N be such that K - 1 is the largest integer
constant that appears in the given formula 4, and let N E N be the number of
propositions, Boolean connectives, and temporal operators in 4.

4.1. PRELIMINARY TRANSFORMATIONS. We begin with making some as-
sumptions that can be made without loss of generality, and without extra cost.
First, we assume that the given formula r#~ is in normal form. Second, it suffices
that all runs of B, generate timed state sequences that are in +-normal form.

4.1.1. Normal-fovn Formulas

Definition 4.1.1.1. The MITL-formula #J is in normal form iff it is built from
propositions and negated propositions using conjunction, disjunction, and tem-
poral subformulas of the following six types:

(1) O,J/’ with I = (0, b) or I = (0, b];
(2) q ,$’ with I = (0, b) or I = (0, b];
(3) $,%,I)~ with bounded I and l(Z) > 0;
(4) I/I, ,Wiz with bounded I and l(I) > 0;
(5) $,%$2;
(6) 0 +‘.

132 R.ALURETAJa.

Using a series of four transformations, every Mm-formula + can be
transformed into an equivalent formula +* in normal form. First, every
interval must not contain 0. This can be achieved by applying the following
equivalence: if 0 E I, then

$1 % $2 - (@EIz v $1 %(O,rn) +A

Second, all unbounded intervals are of the form (0, m). This can be achieved by
applying the following equivalences: if a > 0, then

$1 ql,rn) 9% * q (0,&l * 41 WA

$1 q2,-;, ☺I2 - qo,,,☺I! A qo,,] ($2 v (*, A $1 w+*)).

Third, only eventually and always operators are constrained with bounded
intervals Z such that l(Z) = 0. This can be achieved by applying the following
equivalence: if l(Z) = 0, then

$1 g- +2 t* o,+, A e, Zh*

Fourth, we push all negations to the inside (see Section 2.3.3) and use the
following equivalence to eliminate each subformula of the form t&r WJI,:

It is easy to check that the resulting formula c$* is in normal form.
Observe that the number of distinct subformulas of d* is linear in the length

of 4. This is because with each transformation step, only a constant number of
new subformulas is created. Therefore, if formulas are represented as directed
acyclic graphs, thus avoiding the duplication of shared subformulas, then the
representation of 4* is only a constant factor larger than the representation
of ip.

LEMMA 4.1.1.2. For euery Mm-formula 4 there exists an equivalent formula
c$* in normal form such that

-the largest constant in 4* is the same as the largest constant K - 1 in 4, and
-if N is the number of propositions, Boolean connectiues, and temporal operators

in #, then the number of distinct syntactic subformulas of #* is O(N).

Henceforth, we assume that all MrTr=formulas under consideration are in
normal form.

4.1.2. Normal-form Models

Definition 4.1.2.1. The timed state sequence T is in +normal form, for the
Mm-formula 4, iff (1) r is +fine and (2) all intervals of r are either singular
or open.

To check the satisfiability of 4, it suffices to consider timed state sequences
in &rormal form. First, by Lemma 2.3.5.2 and Remark 2.3.2.2, for every model
of C$ there is an equivalent +-fine model. Second, by Remark 2.3.2.2, every
&fine model of C#J can be refined into an equivalent model in +-normal form;
for instance, the interval [a, b) can be split into the two intervals [a, a] and
(a, b). It follows that C$ is satisfiable iff 4 has a model in +normal form.

The Benefits of Relaxing Punctuality 133

Henceforth, we assume that all timed state s_equences under consideration
are in &normal form. It follows that, if r = (S, I), and + is a subformula of 4,
we may write ri t= I++ for “7’ t= I) for all t E Zi.” We also introduce a new
proposition psing such that 7i != psing iff the interval Z, is singular; that is, iff i
is even. Then:

--r b JI, %, I& iff for some i with Z, n Z # 0, (1) both 7i l= I,$ and T’ b gl

’ Psingy and(2)rjb $, forallO<j<i,and(3)~~~ I), Vpsing.

--7 I= $, ,‘YJI, iff TO l= $, if Z, n Z = 0, and either (1) TO t= t& A 7 pslng, or
(2) 7i l= I)~ for some i > 0, and ~j l= I), for all 0 < j I i with Zj n Z # 0,
or (3) ~j t= ((i, for all j > 0 with Z, n Z # 0.

4.2. CHECKING SUBFORMULAS. The six types of temporal subformulas of d,
are handled differently. The simplest case is that of type-5 and type-6 formulas;
they are treated essentially in the same way in which tableau decision proce-
dures for linear temporal logic handle unconstrained temporal operators. The
most involved cases are those of type-3 and type-4 formulas. We begin with the
simpler cases of type-l and type-2 formulas.

4.2.1. Type-l and Type-2 Formulas

4.2.1 .l. TYPE 1. Consider the type-l formula I$ = 0, I)‘, where Z = (0, b)
or Z = (0, b]. Whenever the automaton B+ needs to check that I) holds, say at
time t, it starts a clock x and writes a proof obligation into its memory-namely,
the obligation to verify that I&’ holds at some later location with the clock
constraint x E Z. The obligation is discharged as soon as an appropriate
$‘-state is found. If the automaton encounters another estate in the mean-
time, at time t’ > t before the obligation is discharged, it does not need to
check the truth of I) separately for this state. This is because if there is a
+‘-state after time t’ within the interval t + I, then both 7’ i= O,+’ and
T” b O,+’ (recall that I(Z) = 0). Once the proof obligation is discharged, the
clock x can be reused. Thus one clock suffices to check the formula I) as often
as necessary.

This strategy works for checking the truth of JI at singular intervals. There
is, however, a subtle complication when the truth of I) during open intervals
needs to be checked, as is illustrated by the following example. Consider the
timed state sequence

(t),[O,Ol) + (O,(O,l)) --+ (tpLLw;

it satisfies the formula O(,, ,,p at all times in the open interval (0,1X To check
the truth of O,, I,p during the interval (O,l), the automaton starts a clock x
upon entry, at time 0. However, the proof obligation that p holds at some later
location with the clock constraint x E (0,l) can never be verified. On the other
hand, if the automaton were to check, instead, the truth of the formula O(,, ,]p
during the interval (0, 11, then our strategy works and the corresponding proof
obligation can be verified, because there is a p-state while x E (0, l] holds.
Furthermore, observe that the truth of OCo,IIp throughout the open interval
(0,l) implies that O(,, ,,p is also true throughout the interval (0,1X

LEMMA 4.2.1.1.1. Let J/ and 4 be the type-l fo-mulas O,+’ and O,U(l(,j,+‘,
respectively. For eu<v timed state sequence r = (S, Z) and euery open interval Z, in
f, 7’ != l,!l ifl Ti t= $.

134 R. ALUR ET AL.

PROOF. First note that, for all t 2 0, if 7’ I= I/J, then T’ t= $. This is because
Z G Z U (r(Z)).

Now con$der an open interval Zi and assume that 7i L I$. If I is right-closed,
then II, = I). So suppose that Z is right-open, and IEt t E Zi. Since Ii is open,
there exists some t’ E Zi with t’ < t. Since T” I= 1,9, there exists some i r i
such that I. n (t’ + (I u {r(Z)]))
0 and, hence, that T’ t= I).

0 and ~j t= I/J’. It follows that Zj n (t + I)
0

Consequently, to check the truth of a type-l formula I) dyring an open
interval, it suffices to check the truth of the weaker formula +. Accordingly,
the automaton we construct writes only the proof obligation that corresponds
to checking + into its memory.

4.2.1.2. TYPE 2. For checking the type-2 formula I) = 0 I+‘, where I =
(0, b) or Z = (0, bl, the situation is symmetric. The automaton uses again a
single clock x to check this formula. Whenever the formula JI needs to be
verified, say at time t, the automaton starts the clock x with the proof
obligation that as long as the clock constraint x E I holds, so does $ ‘. The
proof obligation is discharged as soon as x > I. If the automaton encounters
another estate within the interval t + I, say at time t’, it simply resets the
clock x, and thus overwrites the previous proof obligation. This strategy is
justified by the observation that if 9’ holds throughout the interval (t, t’] and
T” t= 0 ,I)‘, then also T’ t= 0 ,I)‘. Once the proof obligation is discharged, the
clock x can be reused to check 4 again whenever necessary.

As in the case of type-l formulas, we need to be more careful when_checking
9 during open intervals. For the type-2 formula + = 0 ,$ ‘, let 9 be the
formula •I ,-t,(I1l+‘. From Lemma 4.2.1.1 and duality, it follows th$t for every
timed state sequence T = (S, I), if Zi is open, then 7i I= (I/ iff ri i= #. Hence, to
check the truth of I,!J duringAan open interval, it suffices again to chesk the
truth of the weaker formula #. Accordingly, only a proof obligation for I) is set
up. This is because the corresponding clock x is started at time r(ZJ, and for rl,
to hold during the open interval Zi, J, ’ need not hold at time r(Ii) + r(I), even
if Z is right-closed.

4.2.2. Type-3 and Type-4 Formulas

4.2.2.1. A SAMPLE CONSTRUCTION. Consider the Mm-formula

40 = q (O.1) P + O,l.z,q (1.

The subformula O,,, *I9 is a type-3 formula, because the left end-point of the
interval [l, 21 is greater than 0. Let us assume, for simplicity, that both p and q
are true in singular intervals only. Furthermore, we assume that there is at
least one q-state in the time interval (1,2), at least one q-state in the time
interval (2,3), and q is false at time 2. Let us try to build a timed automaton
Z3,+ that accepts, under these assumptions, precisely the models of +o.

Whenever the automaton visits a p-state, it needs to make sure that within 1
to 2 time units a q-state is visited. This can be done by starting a clock x when
the p-state is visited, and demanding that some q-state is visited later in a

The Benefits of Relaxing Punctuality 135

location with the clock constraint 1 I x 5 2. This strategy requires one clock
per visit to a p-state within the interval (0,l). The number of such visits,
however, is potentially unbounded and, hence, there is no automaton with a
fixed number of clocks that can start a new clock with every visit: this simple
strategy cannot be made to work.

Instead, we have the automaton guess the times of future q-states in
advance. The automaton nondeterministically guesses two times f, and t,
within the interval (0,l); this is done by starting a clock x at time t, and
another clock y at time t,. The guess is that the last q-state within the interval
(1,2) is at time t, + 1, and that the first q-state within the interval (2,3) is at
time t2 + 2 (both such states exist by assumption). If the guesses are correct,
then the formula O[,,,,q holds during the intervals (0, t, 1 and [t2, 11, and does
not hold during the Interval (t,, t2). The resulting automaton is shown in Figure
3. The clock z is used to count the global time. If the guessed value of t, is
smaller than t,--the clock x is started before the clock y-then the automa-
ton requires that there are no p states in the interval (r,, 12). Later the
automaton checks that its guesses are correct: if x = 1 or y = 2, then q is
required to hold; and between x = 1 and y = 2, q is required not to hold.

The strategy of guessing times of future q-states requires only two clocks for
the interval (0, 1) of length 1, irrespective of the number of p-states within
(0,lI. We say that the guessed times t, + 1 and t, + 2 “witness” the formula
O,,,,,q throughout the intervals (0, t,] and [t2, l), respectively. In general, it is
necessary to have witnesses that may be open intervals, instead of singular
intervals. To see this, let us relax the assumption that q holds only in singular
intervals. Let 0 < t, < t’, < 1 be such that q is true during the interval
I, = (f, + 1, t; + 11, and false during the interval [t; + 1,2]. Let 0 < t2 < ti < 1
be such that q is false during [2, t, + 21 and true during I, = (t2 + 2, t; + 2).
Thus I, is the last q-interval within (1,2), and I, is the first q-interval within
(2,3). The formula O,, 21q holds during the intervals (0, t; I and (t,, 1 I, and does
not hold during the ‘interval [t’,, rz]. To check the formula &, then, the
automaton B,” must nondeterministically guess four times, t,, r’,, t,, and t;: it
requires that no p-state lies within [t;, t2], and it checks that the guesses are
correct. In this case, we say that the intervals I, and I, witness the formula
O,,,,,q throughout the intervals (0, t{> and (t,, I), respectively. Notice that we
cannot choose a particular time instant from I, as a witness for (0, t’,); only if
I, is right-closed, can we choose its right end-point as the witness.

In the following, we develop an algorithm based on this idea of guessing, in
advance, time intervals that witness temporal formulas and, later, checking the
correctness of these guesses. The crucial fact that makes this strategy work,
with a finite number of clocks, is that the same interval may serve as a witness
for many points in time. In particular, the strategy fails if we were to allow
singular intervals in formulas. Consider, for example, the formula

There, for each p-state at time t in the interval (0, II, the automaton needs to
check that there is a q-state at time t + 1. The strategy of guessing witnesses is
not helpful: a q-state at time t in the interval (1,2) serves as a witness only for
the single time instant t - 1; hence, there is a potentially unbounded number
of witnesses.

136 R. ALLJR ET AL.

IW
z=o r<l 2<2

I:::”
Z<

tl-*

y := 0 I := 0

-.c&

z<l

FIG. 3. The timed automaton B,,

4.2.2.2. WITNESSING INTERVALS

Definition 4.2.2.2.1. Let 7 be a timed state sequence and let t E R r o. The
interval I’ witnesses the type-3 formula I,$ %, & under 7’ iff I’ n (t + I) # 0
and T’ k +I FY-, & for every nonempty interval J c I’. The interval I’
witnesses the type-4 formula I,$~ ,S%“I,!J, under 7’ iff (t + I) c I’ and T’ I=

$4 I’-[Wh

Observe that if I’ witnesses +I %‘, (cIz under T’, then 9, holds throughout
the interval (t, r(Z’)), and I& holds throughout the interval I’. Witnessing
intervals are defined to have the following property.

LEMMA 4.2.2.2.2. Let $ be a type-3 or type-4 formula, let r be a timed state
sequence, and let t E R ;r ,,. There is a witnessing interval for ~9 under rt iff
7’ I= l+!l.

PROOF. If T’ k 1(, for the type-3 formula JI = I/Q %!, JIz, then T” I= & for
some t’ E t + Z and the singular interval [t’, t’] witnesses r(r under 7’. If
T’ k $ for the type-4 formula 1,5 = I& ,4vvt&, then the interval t + Z witnesses I,$
under 7’.

The other direction of the lemma follows from the semantic clauses for the
until and unless operators. 0

Next, we show that the same interval may serve as a witness for a temporal
formula under (infinitely) many suffixes of a timed state sequence.

4.2.2.3. TYPE 3

Example 4.2.2.3.1. Consider the following timed state sequence T over the
two propositions p and q:

(IpI, [0,1.21) + (Ip, q), (1.2,1.6)) + (IpI, t1.6,~)).

Along T the proposition p is always true, and the proposition q is true only
during the interval Zq = (1.2,1.6). The interval Z9 witnesses the formula
p %(, 2 q under T’ for every time t E [0,0.6). On the other hand, the interval
[1.6,3{ witnesses the formula q (,,2J 7 q under T’ for every time t E [0.6,1].

The Benefits of Relaxing Punctuality 137

LEMMA 4.2.2.3.2. Let (I, be a type-3 formula. For ecery timed state sequence T,

there are two bounded (singular or open) intervals I’ and I” such that, for all
t E [O, 11, T’ i= (I, iff either I’ or I” witnesses Cc, under T’. Furthermore, r(Z’) I
r(Z) + 1 and r(Z”) I r(Z) + 1.

PROOF. Let T = (S, I) be a @fine timed state sequence with only singular
and open intervals, including the singular interval [r(Z) + 1, r(Z) + 11 (split
intervals if necessary). Recall that the Z(Z) and r(Z) are integers such that
r(Z) > Z(Z) > 0. We choose the two intervals I’ and I” as follows:

-Let i be the maximal i 2 0 such that Ii (1 Z # 0, both r’ k I+$ and T’ K 4,

v Ps,ng, and rk K +, for all 0 I k < i. If no such i exists, let I’ = 0;
otherwise, let I’ = Z;.

-Let j be the minimal j 2 0 such that Z, n (1 + I) f 0, both 7’ @ I& and

TJ I= 9, v PWIR and rk @ 1(1, for all 0 I k < j with Zk n (< (1 + I)) # 0.
If no such j exists, let I” = 0; otherwise, let I” = Zj.

Assume that T’ I= t,b for some f E [0, 1). Then T” C= 1(1, for all t’ < I. If
I’ f~ (t + I) # 0, then I’ witnesses + under 7’. Otherwise, let t’ E ft + I) be
such that 7” I= & and 7” b I/+ for all t” E (t, t’). In this case, I” is
nonempty, and if t ’ E Zk, then j I k. Hence, Zi n (t + I) # 0, and I” wit-
nesses $ under T’.

Conversely, if either I’ or I” witnesses rj under T’, then T’ k $J by Lemma
4.2.2.2.2. Cl

Now we can be more precise about how we construct the timed automaton
B+ that accepts the models of 4. To check the truth of type-3 subformulas of
4, the automaton guesses corresponding witnessing intervals. The boundaries
of a witnessing interval are marked by clocks: a clock intenlal is a bounded
interval that is defined by its type (e.g., left-closed and right-open) and a pair of
clocks. Given a time t and a clock interpretation u, the clock interval
C = [x, y], for two clocks x and y, represents the closed witnessing interval
[t + K - a(x), t + K - a(y)]; the clock interval C = [x, y) represents the
corresponding half-open interval, etc. (recall that K - I is the largest constant
appearing in 4). We write K - C for the interval (K - UT(X), K - V(Y)), for
any type of clock interval C = Ix, y).

For simplicity, let us consider a type-3 formula $I of the form 0, $’ (with
Z(Z) > 0). The automaton starts, nondeterministically, any of its clocks at any
time. When guessing a witnessing interval I’, it writes the prediction that “the
clock interval C = (x, y) witnesses the formula I/J” into its memory. If the clock
x is started at time t,, and y is started at time t, 2 t,, then the guess is that the
interval I’ = (r, + K, t, + K) witnesses $I. To check the truth of $ at time
t 2 I,, the automaton needs to check that its guess I’ is indeed a witness. The
condition I’ n (t + I) # 0 translates to verifying the clock constraint (K - C)
n I f 0. It remains to be checked that $’ is true throughout the interval I’;
that is, the automaton needs to verify that I/J’ holds at all states for which the
clock constraint 0 E (K - CI is true.

Lemma 4.2.2.3.2 is the key to constructing an automaton that needs only
finitely many clocks. For each type-3 formula Cc, = +, %, I&, at most two
witnessing intervals need to be guessed per time interval of unit length.
Furthermore, the fact that the right end-point of a witnessing interval is
bounded allows the automaton to reuse every clock after a period of length

138 R. ALUR ET AL.

r(Z) + 1. Tbus, to check the formula JI everywhere, we need, at any point in
time, at most 2r(Z) + 2 active clock intervals; that is, clock intervals that
represent guesses of witnessing intervals and, therefore, have to be verified
later. Consequently, 4K clocks suffice to check any type-3 subformula of 4.

4.2.2.4. TYPE 4

LEMMA 4.2.2.4.1. Let I/J be a type-4 formula. For every timed state sequence T,

there is a bounded interval I’ such that, for all t E [0, 11, rt @ $ iff either rt

satisfies the type-l formula OCo,pJn (i I) & or I’ witnesses $ under 7'. Further-
more, r(Z’) I r(Z) + 1.

PROOF. Let T = 6, I> be a J/-fine timed state sequence with only singular
and open intervals, including the singular interval Z,, = [r(Z) + 1, r(Z) + 11.
We choose the interval I’ as follows:

-Let i be the minimal i r 0 such that Zi n Z # 0 and either
(1) Tk b +r for all k 2 i with Zk fl Z # 0, or
(2) there is some i I j I n such that ri != I& A I&, and rk t= @r for ah
i<k<j.

-Given i, let j be the maximal ids j I n such that either rk != 9, for all
i s k -< j, or Tk I= (1/r A Q$ for some i I k I j. Note that if i exists, then so
does j; in particular, if i exists because of clause (21, then j = n.

If no appropriate i exists, let I’ = 0, otherwise, let I’ be the union of all Zk
for E 5 k I j.

Assume that t E [O,l); then T’ I= $I iff either (1) ri I= Jl, for all i with
Zi n (t + I) f 0, or (2) # t= t& A GcIz for some i with Zi n (t + I) # 0, and
Ti I= I), for all j < i with Zj n (t + I) f 0, or (3) 7” I= & for some t < t’ <
t + I. In either of the first two cases, I’ witnesses + under 7’; the third case is
equivalent to T’ satisfying the formula O(,,,,. (< ,) I)?.

Conversely, if 7’ satisfies O(,, =) n (< ,) lclz7 then T’ I= +. If I’ witnesses I)
under T’, then T’ t= II, by Lemma 4.2.2.2.2. 0

It follows that for each type-4 formula, a single witness per unit interval
suffices. Thus, to check the type-4 formula 9, ,T&, we need, at any point in
time, no more than r(Z) + 1 active clock intervals. Consequently, 2 K clocks
suffice to check any type-4 subformula of 4.

4.3. CONSTRUCTING THE TIMED AUTOMATON. Now we define the fair timed
automaton B,. For type-l and type-2 subformulas II, of 4, the automaton uses
one clock, x9, p er formula. For each type-3 subformula, the automaton uses
2K pairs of clocks. These clocks always appear in pairs, to form clock intervals.
From any pair of clocks x and y, four different clock intervals can be formed:
(x, y), [x, y), (x, y], and [x, y]. By Lemma 4.2.2.3.2, for checking type-3 formu-
las we need only open and singular witnessing intervals. Thus, associated with
each type-3 subformula I/J of 4, the automaton uses 4K clock intervals; they
are denoted C,(+), . . . , C,,(g). For each type-4 subformula of 4, the automa-
ton uses K clocks pairs giving 4K clock intervals. In addition to these clocks,
the automaton uses the clock xSing to enforce that all runs alternate singular
and open intervals.

The Benefits of Relaxing Punctual&y

43.1. Closure Set

139

Definition 4.3.1.1. The closure set Closure(+) of the Mm-formula 4 con-
sists of the following elements:

-All subformulas of 4; for each proposition p appearing in 4, the nega$on
1 p; for each type-l subformula I+% = O,+’ of 4, the type-l formula + =
9, U cTc,,r$ ‘; for each type-2 subformula I) = 0 ,$ ’ of 4, the type-2 formula

1(1 = 0 I-(r(,))V; and for each type-4 subformula I), ,WI+$ of 4, the type-l

formula qo.m)n(< ,,h
-For each type-l and type-2 formula + in the closure set, the clock xs; and

for each type-3 and type-4 formula 9 in the closure set, the clock intervals
C,($) through C,,(I)).

-For each clock x+ in the closure set, where I) is 0, I) ’ or 0 ,I) ‘, the clock
constraints x E I and x > I; and for each clock interval C = Cj< $1 in the
closure set, where Cc, is +, 9, & or I), ,WI)~, all clock constraints of the
fo~O~(K-C~,OE(K-C),O=(K-C),(K-C)=0,I~~K-C),
and (K - Cl n I f 0.
It should be noticed that these conditions are indeed clock constraints. For
instance, the condition 0 E (K - [x, y)) stands for the clock constraint
x I K A y > K; the condition 0 = (K - [x, y)) is false.

-The clock constraint xSing = 0.

The number of subformulas of 4 is U(N) and the number of clocks is O(K)
for each subformula of $. Hence, the size of the closure set Closure(4) is
O(N- K).

4.3.2. Automaton Locations. The control locations of B, are the subsets of
Closure(4). A location L’ c Closure(4) is initial iff both (b and x,~,,,~ = 0 are in
u. For each location L’, the propositional constraint (Y(P) is the conjunction of
all propositions and negated propositions in L’. The clock constraint P(L~) is the
conjunction of all clock constraints in U.

Notice that the propositional constraint of each location contains a single
state. Hence, every run of B, generates, up to equivalence, a unique timed
state sequence. For each location U, the temporal formulas in L’ represent
temporal conditions on the future of all runs through U. The clocks in u
indicate which clocks are currently active and represent proof obligations for
type-l and type-2 formulas. The clock intervals in I: indicate which clock
intervals are currently active and represent witnessing intervals for type-3 and
type-4 formulas.

4.3.3. Automaton Transitions. The transitions of B, are the triples ~1 4 c’
that satisfy the following catalog of consistency criteria.

4.3.3.1. LOGICAL CONSISTENCY

-For each proposition p in Closure(g5), precisely one of p and 1 p is in L’.
-If the formula 9, A +,z is in U, then both I,+ and It/z are in u.
---If the formula IJ, V t,l+ is in u, then either I), or I)~ is in c’.

These conditions ensure that no reachable location contains subformulas of
4 that are mutually inconsistent.

140 R.ALURETAL.

4.3.3.2. TIMING CONSISTENCY

-For each type-l and type-2 formula $ in Closure(#), u contains at most one
of the clock constraints xg E I and xs > I.

-For each clock interval C in Closure(4), u contains at most one of the clock
constraints 0 < (K - 0, 0 E (K - 0, 0 = (K - 0, and (K - C) = 0.
Furthermore, no two clock intervals in u share clocks; for instance, u does
not contain both the clock intervals (x, y) and [x, y].

--If 0 contains xsin
then xsing E y an d

= 0, then xsing e y. If u does not contains xsing = 0,
u ’ contains xsing = 0.

These conditions ensure that no reachable location contains clock constraints
that are mutually inconsistent. The location u is singular iff it contains the
clock constraint xsing = 0; otherwise, we say that u is open. The third condition
ensures that singular and open locations alternate along all runs.

4.3.3.3. TYPE-~ FORMULAS. Let I& = O,$’ be a type-l formula in
Closuret 4).

First, if $ is in U, then either

--u is singular and xJI is in u’, or
-u is open and Z is right-open and 6 is in U, or
--u is open and Z is right-closed and x9 is in u.

These conditions activate a clock to represent a proof obligation. Lemma
4.2.1.1.1 jpstifies the decision to start a clock corresponding to the weaker
formula $ when u is open.

Second, if x# is in u, then

-x$ E Z is in u, and
-erther + ’ is in u, or xQ is in u ’ and x9 e y.

These conditions verify the proof obligation that is represented by the clock x+
and keep it active as long as necessary.

4.3.3.4. TYPE-~ FORMULAS. Let ~9 = 0 ,I) ’ be a type-2 formula in
Closure{ 4).

First, if I/I is in u, then either

-u is singular and x+, is in u ’ and xs ,E y, or
-u is open and Z is right-closed and $ is in u, or
-u is open and Z is right-open and x+ is in u and x+ is in u ’ and xs E y.

These conditions activate a clock to represent a proof obligation, and reset it,
as is justified in Section14.2.1. Recall that if u is open, then instead of checking
t,k it suffices to check 9.

Second, if xg is in u, then

-I)J’ is in u, and
-either xs or x > Z is in u’.

The first condition verifies the proof obligation that is represented by the clock
x&, and the second condition keeps it active as long as necessary.

The Benefits of Relaxing Punctuality 141

4.3.3.5. TYPE-~ FORMULAS. Let I,!I = +, %[I,$ be a type-3 formula in Clo-
sure(4).

First, if I(, is in u, then there is some clock interval C = CjC$/> such that

-(K - C) IT Z # 0 is in u, and
-either C is in U, or u is singular and C is in u ’ and the clocks associated

with C are not in y.

The first condition checks that the interval K - C is an appropriate candidate
for witnessing the formula tj~. The second condition activates the clock interval
C to represent a witnessing interval for I++. Note that if c is singular, the
corresponding clock interval is activated only in the following open location.
This is because, to check that the interval K - C is indeed a witness, no
conditions are required of a singular state.

Second, if some clock interval C = C,<ti) is in ~1, then

-either 0 < (K - C) or 0 E (K - C) or 0 = (K - C) is in u, and
-if either 0 < (K - C) or 0 E (K - C) is in U, then cc/, is in u, and
--if either 0 E (K - C) or 0 = (K - C) is in c, then I& is in u, and
-the clocks associated with C are not in y and either C or (K - C) = 0 is

in ~1’.

These conditions ensure that the active clock interval C represents indeed a
witness for the formula I) and that it is kept active as long as necessary.

4.3.3.6. TYPE-~ FORMULAS. Let I,!I = +, ,%+‘$I, be a type-4 formula in Clo-
sure($I 1.

First, if + is in 11, then either

(1) 0 (O*m)n(< I) I& is in I!, or
(2) there is some clock interval C = Cj(I)) such that

-Z c (K - C) is in o, and
-either C js in L’, or u is singular and C is in c ’ and the clocks associated

with C are not in y.

If O0 qn(< I)+2 holds, then so does 9. The second clause corresponds to
guessing a witness: the first condition checks that the interval K - C is an
appropriate candidate for witnessing the formula 1(1; the second condition
activates this clock interval C to represent a witnessing interval for 1/1.

Second, if some clock interval C = Cj(+) is in 17, then

-either 0 < (K - C) or 0 E (K - C> or 0 = (K - C) is in L’, and
-if either 0 E (K - C) or 0 = (K - C) is in U, then +, is in u, and
-either I,$ is in ~1, or the clocks associated with C are not in y and either C

or (K - C) = 0 is in L”.

These conditions ensure that the active clock interval C represents indeed a
witness for the formula I/I and that it is kept active as long as necessary.

4.3.3.7. TYPE-~ FORMULAS. Let + = I/I, %/JIz be a type-5 formula in Clo-
sure(q56). Whenever I) is in u, then either

-u is singular and I) is in ~1') or
-u is open and I/+ is in U, and either I& is in u or I)~ is in U’ or both q+ and

* are in ~7’.

142 R.ALURETAL.

These conditions ensure that unconstrained u&I formulas are propagated
correctly (remember that singular and open intervals alternate). These condi-
tions, however, admit the possibility that a run consists of locations containing
$ and ct/, without ever visiting a location containing JIz. We use a fairness
requirement to ensure that whenever a run p visits a location u containing the
type-5 formula $, then some later location u” along p contains I,&.

4.3.3.8. TYPE-~ FORMULAS. Let I/I = •I I++’ be a type-6 formula in
Closure(4). Whenever I) is in u, then either

-u is singular and I) is in u’, or
-u is open and I)’ is in u and both +’ and +!I are in u ‘.

These conditions guarantee that unconstrained always formulas are propa-
gated forever.

4.3.4. Fairness Requirements. For each type-5 formula $ = JI1 %I+$ in Clo-
sure(+), we define the fairness requirement

FJI = {u c Closure(cj)l((12 E u or I& $!! u).

The fairness condition of B, consists of the fairness requirements F,, one for
each type-5 formula + in Closure(+).

This concludes the definition of the fair timed automaton B,.

4.3.5. Comcmess. The following main lemma states the correctness of our
construction by relating the fair runs of the automaton B, to the models of the
formula 4.

LEMMA 4.3.5.1. For euery Mr-rL-$ormula 4 in normal form, L(B+) = L(4).

COROLLARY 4.3.5.2. The MIn-forrnula 4 is satisfiable iff L(B,) f 0.

PROOF. Let p be a fair run of B,, and let 7P be a timed state sequence that
is generated by p. We first prove, by induction on the structure of 4, that for
all formulas JI in Closure(+) and all t E [w r o, if rF, is contained in the location
u,(t), then T; E $. By Remark 2.3.2.2, it follows that the timed state sequences
accepted by B4 are models of 4.

We consider only the case that $ is the type-3 formula $, 9,)(12. Let

tE &O and assume that Cc, is contained in u,(t). Also assume that the clock
interval C = Cj(+) satisfies the consistency conditions for type-3 formulas in
u,(t). By Lemma 4.2.2.2.2, it suffices to show that the interval I’ = t + (K - C>
is a witness for J, under ~pl. The clock constraint (K - C) IT Z # 0 is in u,(t)
and, therefore, I’ n (t + I) # 0. If the location u&t> is open, then u,(t)
contains C, and if u,(t) is singular, then the successor location contains C. All
following locations contain C until a location with the clock constraint (K -
C) = 0 is reached, marking the end of I’. Since the clocks associated with C
are not reset, they continue to represent the same witness I’. Since I’ n (t +
I) # 0, each location u&t’) with t < t’ < Z contains C. The consistency
conditions, then, require that u&t’) contains the clock constraint 0 < (K - C>
and, hence, the formula el. Therefore, by the induction hypothesis, ~6’ I= $,.
Similarly, each location u&t”) with t” E I’ contains the clock constraint
0 E (K - C) or 0 = (K - C) and, hence, the formula I/J~. Furthermore, if
t” # r(Z’), then u,(P) contains 0 E (K - C> and &. Therefore, by the induc-
tion hypothesis that T-’ k J12 and, if t” # r(Z’), then $’ I= 9,. Thus, I’
satisfies all criteria to be a witness for $ under T-.

The Benefits of Relaxing Punctuality 143

Conversely, let T be a timed state sequence in +-normal form. We construct
a fair run p of Bd, such that for all formulas IJJ in Closure(4) and all t E IR t o,
if T' I= $, then u,(t) contains $. It follows that B+, accepts all models of 4.

We consider again the type-3 case of J/ = $I %!I I&. Let t E R’ Lo such that
T’ /= 9. By Lemma 4.2.2.3.2, the automaton B+ can, at time t, either share an
already activated clock interval C.($1, or it has enough clocks to activate an
unused clock interval Cj(I)). If k is the activated clock interval and K - C
stands for the guessed witness, then all the consistency conditions for type-3
formulas are satisfied. In the first location that contains the clock constraint
(K - C) = 0, the automaton discards the clock interval C from the location,
and the associated clocks may be reused later. o

We therefore have an algorithm for checking the satisfiability of a given
Mm-formula $: first, we construct the fair timed automaton B,, and then we
check if L(B,) is nonempty.

4.4. COMPLEXITY OF MITL. We show that the time complexity of our
algorithm for checking the satisfiability of $ is doubly exponential in the
length log K of the integer constants that appear in 4, and singly exponential
in the number N of logical and temporal operators in 4. Moreover, the
algorithm also implies an upper bound of EXPSPACE for deciding Mm. A
matching lower bound of EXPSPACE for MITL can be obtained along the lines
of the proof that the discrete-time logic MTL is EXPSPACE-hard [Alur and
Henzinger 19931.

THEOREM 4.4.1. The satisfiability problem for MI-II. is EXPSPACE-complete.
In particular, the proposed algorithm checks the satisjkbility of the MI=-formula
q3 in time 0(2N’K”“s’N’K’), h w ere K - 1 is the largest integer constant appearing in
4, and N is the number of propositions, Boolean connectiues, and temporal
operators in 4.

PROOF. The first step of the algorithm transforms the given formula 4 into
the equivalent formula +* in normal form. By Lemma 4.1.1.2, the number of
subformulas of +* is O(N), and the size of the closure set Closure(+*) is
O(N * K). Hence the number of locations of the automaton B+. is 0(2’v.K).
The number of clocks of B,. is O(N * K). Furthermore, for every clock x, the
largest integer constant appearing in a clock constraint for x is bounded by K.
Consequently, the size of the region graph for B,. is O(2N’K * (N . K)! *(N * KjK)
(see Section 3.2). Hence the algorithm that checks the emptiness of L(B,.)
runs in time U((N * K)N’K).

For containment in EXPSPACE, observe that the automaton B,. need not
be constructed explicitly. The emptiness of L(B+.) can be checked nondeter-
ministically by repeated testing that there is an edge between two vertices of
region graph for B+., while only a constant number of vertices needs to be
stored [Alur and Dill 19941. Recall that a vertex of the region graph is
described using space logarithmic in the number of locations of B,., polyno-
mial in the number of clocks of B,., and polynomial in the length of the largest
constant appearing in the clock constraints of B,.. It follows that a vertex of
the region graph is described using space polynomial in N * K. The transitions
of the automaton B,, are defined locally, and all consistency conditions are
easy to check. Consequently, given the descriptions of two vertices of the

144 R.ALURETAL.

region graph for B,., it can be tested in polynomial time if there is an edge
between the two vertices. It follows that the satisfiability of 4 can be decided
in space polynomial in N * K, that is, in EXPSPACE. 0

4.5. A PSPACE-FRAGMENT OF MITL. The main source of complexity for
the construction of the automaton B+ are the type-3 and type-4 formulas.
Disallowing these formulas reduces the complexity by one exponential.

Definition 4.5.1. MITL,,,, is the fragment of MITL that consists of all
formulas 4 such that for each interval I appearing in 4, either l(1) = 0 or
r(Z) = 03.

Equivalently, MITL,, -o is the fragment of MITL where all interval subscripts
are of the form 2 a, > a, < b, or I 6.

THEOREM 4.52. The satisfiability problem for MITL,,, ~ is PSP’CE-complete.
In particular, the proposed algorithm checks the satisfiability of the MITL~, =-for-
mula C$J in time O(2N”“g(N’K)), wh ere K - 1 is the largest integer constant
appearing in 4, and N is the number of propositions, Boolean connectives, and
temporal operators in 4.

PROOF. By transforming the MITL~,~ -formula #J into normal form, we
obtain an equivalent formula (p* that does not contain type-3 and type-4
subformulas. Each type-l and type-2 subformula introduces only one clock and
two clock constraints in the closure set Cfosure(+*); the size of Closure(4*) is
therefore bounded by N. Consequently, the automaton B+. has U(2N) loca-
tions and O(N) clocks. The size of the largest integer constant that appears in
the clock constraints of B,, is K. From the region-graph construction, it
follows that the emptiness of UB,.) can be checked in time 0(2N. N!.KN).
The PSPACE upper bound follows, as before, by the observation that the
search in the region graph can be performed without explicitly constructing the
automaton B,..

The PSPACE-hardness of MITL~,~ follows from the PSPACE-hardness of
propositional temporal logic with until [Sistla and Clarke 19851. q

Thus, the complexity of MITL decreases from EXPSPACE to PSPACE if we
prohibit bounded intervals with nonzero left end-points. This phenomenon has
been observed also by Emerson et al. [1990] for discrete-time logics.

5. MrrL-Based Real-Time Veri$xtion

Model checking is a powerful and well-established technique for the automatic
verification of finite-state systems: it compares a temporal-logic specification of
a system against a state-transition description of the system. In the untimed
case, the system is modeled by its state-transition graph, and the specification
may be presented either as a branching-time formula [Clarke et al. 19861 or as
a linear-time formula [Lichtenstein and Pnueli 1985; Sistla and Clarke 19851. In
the discrete-time case, the untimed model-checking algorithms can be ex-
tended to real-time logics using a special tick transition [Emerson et al. 1990;
Alur and Henzinger 1993; Alur and Henzinger 19941. In the continuous-time
case, model-checking algorithms are known for branching-time specifications
of timed automata [Alur et al. 19931. We present the first model-checking
algorithm for a linear-time logic with a continuous-time semantics, by compar-
ing Mr-rr,-specifications against system descriptions given as timed automata.

The Benejits of Relaxing Punctuality 145

We model a real-time system by a timed automaton A and write the
requirements specification as a formula $I of MITL.

Definition 5.1. The model-checkingproblem for MITL is to decide whether or
not all timed state sequences that are accepted by a given timed automaton A
satisfy a given Mrm-formula 4:

L(A) t L($J).

We use our construction for testing the satisfiability of Mtn-formulas to
solve the model-checking problem. First, we construct the fair timed automa-
ton B_, that accepts precisely the models of the negated formula 7 (6. Hence,
the model-checking problem can be reformulated as follows:

L(A) G L(4) iff L(A) n L(B_,) = 0.

Second, we construct the product automaton A X B_ 4 and check it for
emptiness (see Sections 3.3 and 3.2). The size of the product automaton is
polynomial in the sizes of A and B7 b; that is, the description of A x By + is
exponential in the length of 4, and polynomial in the length of the description
of A. Since the emptiness problem for fair timed automata can be solved in
PSPACE, the model-checking problem for Mm can be solved in EXPSPACE.

THEOREM 5.2. The model-checking problem for MITL is EXPSPACE-com-
plete.

PROOF. We have already outlined how the model-checking problem can be
solved in EXPSPACE. To prove EXPSPACE-hardness, we observe that, as
with all linear-time logics, the satisfiability problem for MITL can be reduced to
the model-checking problem: the MI%-formula # is unsatisfiable iff L(A,) G
L(--I 4) for the universal timed automaton A,, which accepts all possible
timed state sequences. q

The time complexity of the model-checking algorithm for MITL is polynomial
in the qualitative part of the system description, exponential in the qualitative
part of the specification, exponential in the timing part of the system descrip-
tion, and doubly exponential in the timing part of the specification (this double
exponential disappears for MITL,,, r -specifications). Compared to this the
model-checking algorithm for propositional linear temporal logic is polynomial
in the size of the system description and exponential in the size of the
specification. Thus, in the general case the move to real time adds an
exponential. This blow-up seems, however, unavoidable for formalisms for
quantitative reasoning about time; it occurs already in the simplest, discrete-
time, case of synchronous systems that proceed at the rate of one transition per
time unit [Emerson et al. 1990; Alur and Henzinger 1993; Alur and Henzinger
19941.

ACKNOWLEDGMENT. We wish to thank an anonymous referee for pointing out
the PSPACE-fragment of Section 4.5.

REFERENCES

ALUR, R., COURCOUBETIS, C., AND DILL, D. L. 1993. Model checking in dense real time. lnf.
Comput. 104, 1, 2-34.

146 R. ALUR ET AL.

ALuR, R., AND D~ls, D. L. 1994. A theory of timed automata. Theoret. Comput. Sci., 126,
183-235.

ALUR, R., AND HENWNGER, T. A. 1992. Logics and models of real time: a survey. In Real Time:
Theory in Pm&e, .I. W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenbeg, eds.
Lecture Notes in Computer Science, vol. 600. Springer-Verlag, New York, pp. 74-106.

ALUR, R., AND HENZINGER, T. A. 1993. Real-time logics: complexity and expressiveness. hf.
Comput. 104, 1, 35-77.

ALUR, R., AND HENZINGER, T. A. 1994. A really temporal logic. J. ACM 41, 1 (Jan.), 181-204.
CuuucE, E. M., EMERSON, E. A., AND SISTLA, A. P. 1986. Automatic verification of finite-state

concurrent systems using temporal-logic specifications. ACM TM~s. Prog. Lung. Syst. 8, 2,
244-263.

EMERSON, E. A., MOK, A. K., SISTLA, A. P., AND SRINIVASAN, J. 1990. Quantitative temporal
reasoning. CAV 90: Computeraided Verification, R. P. Kurshan and E. M. Clarke, eds., Lecture
Notes in Computer Science, vol. 531. Springer-Verlag, New York, pp. 136-145.

HAREL, E., LICHTENSTEIN, O., AND PNUELI, A. 1990. Explicit-clock temporal logic. In Proceedings
of the 5th Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, New
York, pp. 402-413.

HENZINGER, T. A., NICOUIN, X., SIFAKIS, J., AND YOVINE, S. 1994. Symbolic model checking for
real-time systems. If. Comput. 111, 2, 193-244.

HAREL, D., PNuEu, A., AM) STAVI, J. 1983. Propositional dynamic logic of regular programs. 1.
Comp. Syst. Sci. 26, 2, 222-243.

JAHANIAN, F., AND MOK, A. K. 1986. Safety analysis of timing properties in real-time systems.
IEEE TMPU. Sow. Eng. SE-12,9,89Q-904.

KOYMANS, R. 1990. Specifying real-time properties with metric temporal logic. Real-time Syst. 2,
4,255299.

LEWIS, H. R. 1990. A logic of concrete time intervals. In Proceedings of the 5th Annual
Symposium on Logic in Computer Science. IEEE Computer Society Press, New York, pp.
380-389.

LICHTENSTEIN, O., AND F’NUELI, A. 1985. Checking that finite-state concurrent programs satisfy
their linear specification. In Proceedings of the 12th Symposium on Principles of Programming
Languages (New Orleans, La., Jan. 14-16). ACM, New York, pp. 97-107.

MANNA, Z., AND PNuELI, A. 1992. The Tempoml Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York.

OSTROFF, J. S. 1990. Tempoml Logic of Real-time Systems. Research Studies Press, Taunton, UK.
ROGERS, H. JR. 1%7. Theory of Recursive Functions ana’ Efiectiue Computability. McGraw-Hill,

New York.
SISTLA, A. P., AND CLARKE, E. M. 1985. The complexity of propositional linear temporal logics.

1. ACM 32, 3 (July), 733-749.
THOMAS, W. 1990. Automata on infinite objects. In Handbook of Theonztical Computer Science,

volume B, J. van Leeuwen, ed. Elsevier Science Publishers (North-Holland), Amsterdam, The
Netherlands, pp. 133-191.

RECEIVED DECEMBER 1991; REVISED JUNE 1995; ACCEF-TED SEF’IEMBER 1995

Journal of the ACM, Vol. 43, No. 1, January 19%.

