
Equational Specifications, Complete Term Rewriting

Systems, and Computable and Semicomputable Algebras

J. A. BERGSTRA

University of Amsterdam, Amsterdam, and Universi@ of Utrecht, Utrecht, The Netherlands

AND

J. V. TUCKER

University of Wales Swansea, Swansea, Wales

Abstract. We classify the computable and semicomputable algebras in terms of finite equational
initial algebra specifications and their properties as term term rewriting systems, such as
completeness. Further results on properties of these specifications, such as on their size and
orthogonality, are provided which show that our main results are the best possible.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features; F. 1.1 [Computation by Abstract Devices]: Models of Computation; F.3.2 [Logics and

Meanings of Programs]: Semantics of Programming Languages; F.3.3 [Logics and Meanings of

Programs]: Studies of Programming Constructs; F.4.1 [Mathematical Logic and Formal Lan-

guages]: Mathematical Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: Abstract data types, complete term rewriting systems,

computable and semicomputable algebras, equational specifications with hidden functions, many
sorted algebras, term rewriting systems

1. Introduction

In algebraic data type theory, data types are modelled semantically by many

sorted universal algebras, and are specified by means of equational or condi-

tional equational axioms, most commonly up to isomorphism using initial

algebra semantics for the specification. Algebras of particular interest are the

Authors’ addresses: J. A. Bergstra, Programming Research Group, University of Amsterdam,
Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands and Department of Philosophy, University
of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; J. V. Tucker, Department of
Computer Science, University of Wales Swansea, Singleton Park, Swansea SA2 8PP Wales.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
@ 1995 ACM 0004-5411/95/1100-1194 $03.50

Journal of the Association for Computing Machine~, Vol. 42, No. 6, November 1995, pp. 1194-1230.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227683.227687&domain=pdf&date_stamp=1995-11-01

Equational Specifications 1195

computable and semicomputable algebras. The algebras that can be alge-

braically specified using initial algebra semantics are precisely the semicom-

putable algebras [Bergstra and Tucker 1987].

We examine the term rewriting properties of finite equational hidden func-

tion specifications of data types and we give an algebraic characterization of

the computable data types in terms of complete term rewriting systems. A

complete term rewriting system is one whose reductions or rewrites satisfy the

Church–Rosser property and are strongly terminating. The first theorem we

prove is this:

THEOREM 1.1, Let A be a jinitely generated minimal Z algebra. Then, the

following are equivalent:

(1) A is computable.
(2) There is a finite equational specification (~0, EO) such that

(i) Sort(z) = Sort(ZO) and X G X,;

(ii) (Z,, EO) is a complete term rewriting system;

(iii) I(z@ EO)lx = A.

Furthermore, the (20, EO) may be taken to bean orthogonal term rewriting system,

and the sizes 120 I and IEO I depend upon the algebra A.

The fact that (2) implies (1) is straightforward and is a principal reason for the

usefulness of complete term rewriting systems. The fact that (1) implies (2) is

more difficult.

The specific properties of the equational specification (2., EO) constructed

in the theorem suggest a number of questions. Of special interest is the fact

that the size of the specification (2., EO) is large and depends on the algebra

A. In our previous studies, we showed that any computable algebra could be

given a very small equational specification: for example, in Bergstra and
Tucker [1983b], we constructed a finite equational specification (El, El) in

which the number of hidden functions needed is 3n and the number of

equations is 2n, where n is the number of sorts in the signature Z of the

algebra A. In particular, we note that the size of (Zl, El) is independent of A

and, indeed, independent of the number of constants and operations in the

signature 2 of A. Can any computable algebra be given such a small finite

equational specification that is also a complete term rewriting system? We

show that there is a finite data type such that any equational specification

which is a complete term rewriting system must be dependent on the algebra

and must be large (Theorem 6.1.1). Thus, the specification in the main theorem

above cannot be improved in this regard.

To further complement the theorem and to provide a comprehensive picture

of its scope we examine the term rewriting properties of computable and

semicomputable algebras.

We show that a computable algebra can have an infinite recursive equational

specification without hidden jimctions that is an orthogonal complete term

rewriting system (Theorem 4.3. 1). From this construction, we obtain a finite

equational specification without hidden functions for a finite algebra that is an
orthogonal complete term rewriting system (corollary 4,3,2), We construct an

algebra of sets to show that the hidden functions in an equational specification

that is a complete term rewriting system can be essential for the construction

of normal forms (Theorem 6.2.1).

1196 J. A. BERGSTRA AND J. V. TUCKER

Finally, we consider semicomputable algebras and, in contrast to the theo-

rem for computable algebras, show the following characterization (Theorems

7.1.1, 7.1.2, and 7.2.1):

THEOREM 1.2. Let A be a finitely generated minimal Z algebra. Then, the

following are equivalent:

(1) A is semicomputable.

(2) There is an infinite recursively enumerable equational specification (Z, E) such
that

(i) (2, E) is a complete term rewriting system;
(ii) I(Z, E) ~ A.

However, the recursively enumerable complete term rewriting specification (2, E)

cannot be replaced by a recursiue complete term rewriting specification, nor can it

be replaced by a recursively enumerable orthogonal complete term rewriting specifi-

cation.

The basic concepts on equational specifications and term rewriting systems

are carefully defined in Section 3, and on computable and semicomputable

algebras in Section 4. In Sections 5–7, we prove the theorems: results about

computable algebras are in 5 and 6, and results about semicomputable algebras

are in Section 7. Section 2 explains briefly some theoretical issues concerning

data types which the theorems address.

This paper belongs to our series of studies on the adequacy and power of

algebraic specification methods for data types which we began in Bergstra and

Tucker [1979] (see also Bergstra and Tucker [1987]), which is summarised in

Section 2.

A single sorted form of Theorem 1.1 was first announced in Bergstra and

Tucker [1980b] and its proof outlined. Here, the theorem is reformulated using

current term rewriting theory and a full proof in the many sorted case is given.

The other theorems are new. For applications of the theorems, it is the many

sorted case that is important. We have found that it is not satisfacto~ to

transform the proof for single sorted algebras to a proof for many sorted

algebras, because an informal account of the extension is unable to get at

details we consider to be important.
As in our previous studies, we exploit proof methods based on recursion

schemes on the natural numbers. Algebraic aspects of the K-recursive func-

tions and the primitive recursive Kleene T-predicate are used to provide

arguments that are algebraically detailed and natural. Related to the proof of

Theorem 1.1 are methods for simulating the behavior of Turing machines using

rewrite systems (mentioned in, e.g., Dershowitz [1987]). In particular, Dauchet
[1989] indicates that a Turing machine computation can be encoded in a single

orthogonal rewrite rule that gives rise to a terminating TRS. These Turing

machine methods offer an approach different from the recursion scheme

methods we have used here and in the past. In either case, the main technical

problem in the paper is to obtain a specification of the target algebra without

the use of hidden sorts.

The reader is assumed well versed in initial algebra specification methods:

see Goguen et al. [1978], Ehrig and Mahr [1985], and Wirsing [1990]; knowl-

edge of our earlier work is desirable but not strictly necessary. Knowledge of

the theory of the recursive functions is necessary: see Cutland [1980], for

instance.

Equational Specifications 1197

Finally, we thank the referees for their many valuable comments that have

helped us improve the paper.

2. Initial Algebra Semantics and Data Types

We will summarize the context for the theorems in the theory of data types.

2.1. ALGEBRAIC SEMANTICS. A concrete implementation of a data type is

modelled by a many sorted algebra A finitely generated from initial values

al, ..., a. = A named in its finite signature ~, that is, A is a finitely generated

minimal algebra. A data type is modeled by some class K of minimal algebras

of common signature. Two concrete data types are equivalent if they are

isomorphic as algebras. An abstract data type can be modeled as a class ~ of

minimal algebras closed under isomorphism, that is, if A G K and B s A, then

B e K. Often, an abstract data type is modeled as an isomorphism type, that is,

a class closed under isomorphism in which all algebras are isomorphic. Further

semantic considerations involve the computability of the many sorted algebras

used: A may be a finite, computable, semicomputable or, perhaps, cosemicom-

putable algebra. These notions are based on theoretical ideas about the

implementation of algebras on computers and, to be semantic properties, they

must also be isomorphism invariants.

The semantics ~ which model a data type can be investigated using the

construction of an initial algebra l(~) for ~ with the result that every A = K

is uniquely definable, up to isomorphism, as a unique epimorphic image of

1(K) or, equivalently, as a factor algebra I(K)/ -~ for a unique congruence

-~ . If 1(K) = K, then this I(K) can be used as a canonical algebra modelling

the data type; if, in addition, the class K is an isomorphism type then I(K) “is”

the data type. The idea is that I(K) models the data type semantics in a way

that is independent of methods for its implementation or specification.

2.2. IMPLEMENTATION USING TERMS. The basic method for constructing

this initial algebra I(K), up to isomorphism, is as a factor algebra of the

syntactic algebra T(Z) of all closed terms over 2, because T(Z) is initial for

the class ALG(Z) of all 2 algebras. In fact, I(K) s T(Z)/ =~ , where ~~ is

a congruence for which t =K t’means that the terms t and t’are equivalent

syntactic expressions in all the algebras of K, that is, K R t = t’. The problem

of implementing and specifying the data type K via 1(K) can be investigated

through the corresponding problem of implementing or specifying the congru-

ence =K. A central technical idea is that of a transversal for the equivalence

relation -K, which is a set of terms containing one and only one term for each

equivalence class.

This algebra T(2)] -~ is of importance for implementing the data type,

using symbolic computation techniques for representing terms and algorithms

for term manipulation, especially algorithms for computing -K. In these

ch-cumstances, we may say that a data type K is computable, or semicom-

putable, when =~ is a decidable or semidecidable relation on T(Z).

2.3. ALGEBRAIC SPECIFICATIONS. To specify the data type, an axiomatic

theory (2, 11) is used so that K c ALG(Z, E). In particular, if E is a set of

equations or conditional equations and K = ALG(Z, E), then 1(K) = K, and

1198 J. A. BERGSTRA AND J. V. TUCISER

where the proof system is that for equational or conditional equational logic

applied to closed terms. Thus, for any recursively enumerable E we know that

=~ is recursively enumerable. However, the specification (Z, E) is desired to

be finite.

We know from Bergstra and Tucker [1987] that this finite equational or

conditional equational method will not define all computable (and hence all

semicomputable) data types, Enriching the method to allow the use of a finite

number of hidden sorts and fimctions does enable it to specify any semicom-

putable (and hence any computable) data type. The question addressed here is:

What finite algebraic specification methods exist that specie all and only the

computable data @pes?

As noted in the Introduction, one answer to this question in Bergstra and

Tucker [1983b] is that an algebra A is computable if, and only if, it can be

given an equational specification (2, E), using a small number of hidden

functions and equations, such that ~ is isomorphic with the initial and final

algebras of (X, E). In Bergstra and Tucker [1983a] the cosemicomputable

algebras where shown to be precisely the algebras defined by algebraic specifi-

cations under final algebra semantics; see also Bergstra and Tucker [1980] and

Meseguer et al. [1992].

Here the properties of the specification (X, E) that determine the decidabil-

ity of the congruences for initial algebras are analyzed. The equations E may

be interpreted as left-to-right rewrite rules for transforming terms of T(2).

Thus, (Z, E) serves both as an axiomatic specification for a variety of models,

and as a term rewriting system, intended to formalize a system of deductions,

governed by simple algebraic substitution rules, within which a deduction

t+t’ implies t -K t’

(but not conversely). The choice of (2, E) leads to a transversal or set Y of
normal forms for =~ : given t,t’G T(Z), to decide t =~ t’ one uses E to

calculate their prescribed “normal forms” n, n’ E Y and on completing the

deductions t +E n, t’+E n’ one checks n = n’.

The semantics of a type ~ is supposed to be uniquely determined up to

isomorphism with an initial algebra 1(~), and not by a particular syntactical

construction, however canonical an implementation. The decidability of -K

implies the computability of the algebra T(2)/ =~ under our definition and,

in particular, since the concept of a computable algebra is an isomorphism
invariant, we can remove all mention of syntax in the semantical concept of a

computable data type and identify these with the computable algebras.

So with regard to the content of Theorem 1.1, the ease with which statement

(2) implies (1) is proved is evidence for the usefulness of complete term
rewriting system specifications, whereas the implication that (1) implies (2) is

considered as the affirmative answer to the question about adequacy: Do these

finite complete term rewriting system equational specification methods define all the

data types one wants?

The examples and Theorem 1.2 differentiate the computable and semicom-

putable algebras using related properties of term rewriting systems.

Equational Specifications 1199

3. Reduction Systems, Term Rewriting, and Equational Specifications

We describe many sorted algebraic reduction systems that are meant to

abstract the essential structure of term rewriting systems. Then we describe the

concepts and notations concerning many sorted term rewriting systems and

algebraic specifications that we will need. Supporting references are: Meinke

and Tucker [1992] and Wechler [1992], for basic algebra; Ehrig and Mahr

[1985] and Wirsing [1990], for algebraic specifications; and Klop [1992], for

single sorted term rewriting.

3.1. SIGNATURES AND ALGEBRAS. The notations for signatures and algebras

are as follows:

3.1.1. Signatures. A signature X consists of a nonempty set S, whose ele-

ments are called sorts, and a family

(Zw,,:w=s”, s=s)

of sets, where the elements of 2A,, for A the empty string, are called constant

names or ~mbols of sort s; and the elements of 2W, ~ are called function names

or symbols of type w a s.

A signature 2 is finite if S is finite, each SW,~ is finite, and all but finitely

many 2W, ~ = 0. We assume all signatures are jirute.
Let ZI and 22 be signatures. Then 21 is a subsignature of 22 if S1 c S2 and

for each w = Sl* and-s G Sl

Xj,. Cx; ,.

We write X1 C Zz.

3.1.2. Algebras. Let S be a signature. A Z

(A$:se S)

of nonempty sets A,, called the carriers of

elements

2&=(cAGA,:c=

and families of functions

algebra A consists of a family

A, together with families of

~;,$ = (U~:AW(l) X ... XAW(~) -+ A,:u G 2W,,)

A Z algebra is minimal if it contains no proper subalgebras.

If A is Z algebra and SO c 2S, then Alz, is the algebra obtained from A by

deleting the constants and operations of A not named in 20 and (A) ~, is the

smallest XO algebra contained in A.

3.2. REDUCTION SYSTEMS AND ALGEBRAIC REDUCTION SYSTEMS. We begin

with a sequence of basic definitions.

Let A = (As:s = S) be an S sorted family of nonempty sets, and = =

(=$:s = S) bean S sorted family of equivalence relations on A. A transver-

sal for = is a set .l = (l, : s c S) where for each s = S, 1. GAS and for each
a e A, there is one and only one t G J, such that t =, a.

Let A = (A, :s e S} be a S sorted family of nonempty sets. A reduction

system or a replacement system on the many sorted set A is an S sorted family

+R=(+R, :S=S)

1200 J. A. BERGSTRA AND J. V. TUCKER

of reflexive and transitive binary relations on ~. For a., b ~ ~,, if a ‘R. b we

say a reduces to b (under ‘R), or that b is a reduct of a (under ~~).

An element a c xl, is a normal form for -+R if there is no b = A, so that

a ‘R b; the set of all normai forms for -+R is denoted.

fvF(-+’R) = (NF,(+R):S f= s)!

The reduction system ‘R is conjluent or Church–Rosser if for each s ~ S

and for any a G A$ if there are bl, bz = As so that a ‘R. bl and a *R$ b2,

then there is c E A, so that bl +Ri c and bz ~R c.

The reduction system +R is weakly terminatin~ or weakly normalizing if, for

each s = S and for each a G A,, there is some normal form b = A, so that

a dR, b.

The reduction system +R is strongly terminating or strongly normalizing if,

for each s ● S, there does not exist an infinite chain

a~ *R,a~ ‘R, ““” ‘R,a. ‘Rr ““”

of reductions in A, wherein for i G N, ai # ai+ 1.

The reduction system -+R is complete if it is Church-Rosser and strongly

terminating.

A reduction system is Church-Rosser and weakly terminating if, and only if,

eue~ element reduces to a unique normal form. Clearly strong termination

entails weak termination.

Let =R denote the smallest equivalence relation on A containing ‘R . It

is an easy exercise to show that for each s = S and for a, a’ = A,:

a -R a’ = there is a sequence a = bl, ..., b~ = a’ such that for each pairs

bi, bi+ ~ GA, there exists a common reduct Ci ● A, for

I<i<k–1.

Using this characterization of =R, it is straightforward to prove this fact:

LEMMA 3.2.1. The reduction system ~R on A is Church–Rosser f, and on~

if, for eachs = S and for any a, a’ G A, if a ‘R, a’, then there is c ~ A, so that

U 4R C and a’ ‘R. c.$

LEMMA 3.2.2. Let -+R be a Church–Rosser weak~ terminating reduction

system on A. Then the set NF(‘R) of normal forms is a transversal fOr ‘R.

PROOF. Since every element a GA, reduces to some normal form n G

NF~(‘R), the set NF~(~~) contains representatives for each equivalence class
of =R . To check uniqueness, let n, m G NF,(‘R) and assume n ‘R$ m. By

Lemm~ 3.2.1, there is c GA, so that n ‘R$ c and m ~R, c, but Since n, rn are

normal forms n = c, m = c and so n = m. Q.E.D.

Definition 3.2.3, Suppose now that A is a many sorted algebra. Then by an

algebraic reduction system eR on the algebra A we mean a reduction system

aR on the family of carriers of A, which is closed under the operations of A

in the sense that for each operation

CT: AW(l) X . . . xAW(~) +A,

Equational Specifications 1201

of A, for all ai, bi =AW(i) and 1 <i <k,

LEMMA 3.2.4. If ~ R is an algebraic reduction system on an algebra A, then

~~ is a congruence on A.

We next explain how a reduction system is generated by a set of one-step

reductions and how these sets of one-step reductions can be determined from

quite arbitrary sets.

Let +~ be a reduction system on an S sorted set A = (A,: s = S). Let X

bean S sorted subset of A XA, that is, X = (X, :s = S) where X$ CA$ xA,.

Then X is said to generate *R as a set of one-step reductions if X is reflexive

and ~R is the smallest transitive set containing X, that is, the transitive

closure of X.
Let ~~ be an algebraic reduction system on an S sorted algebra A. Then

X L A X A is said to generate -+~ as a set of algebraic one-step reductions if X

is reflexive; X is closed under unit substitutions in the following sense: writing

(a, b) ~ -XW(i) as a AXw,i, b, for any operation

U: AW(l) x ‘-” XAW(k) ‘As

of A, for any 1 s i, j s k and j # i, aj = AW(j), and a -+Xn,cil b, itfollows that

m(al, ..., ai–l, a,ai+l, ..., ak) ~R, ~(al,ai_l. b,ai+ l,..., ak);

and -+~ is the transitive closure of X.

In the set-theoretic case any reflexive set determines a reduction system in

its transitive closure. In the algebraic case, any reflexive set, closed under unit

substitutions, can be shown to determine an algebraic reduction system in its

transitive closure. Thus, in either case, starting with an arbitra~ set D G A X A

one can construct a one-step reduction relation +~(1) containing it and hence

a set-theoretic or algebraic reduction system -+~.

3.3. TERM ALGEBRAS. We will apply these ideas to specify algebraic reduc-

tion systems on the term algebra T(2) and connect them with the initial

algebras of equational theories. First, we give definitions of the primary notions

of terms, equations, term evaluation etc.

3.3.1. Terms. Let X be a set of variable names. For s G S and x =X, we

call x’ an s sorted variable. Let X. be the set of all s sorted variables.

Let V = (~ : s ● S) where ~ c X.. We define the 2 term algebra T(X, V)

of terms over Z in variables of V as follows.

The family of carriers of T(S, V) is

where the T’(Z, V) are inductively defined simultaneously over S:

(i) for x’ e ~, x’ ~ ~(~, V);

(ii) for c G 2A,, c“ = T$2, V); and
(iii) for a = ~~,,, where w = w(l) “”” w(k), and ti ~ TW(i)(S, V);

CT%l,..., t,k)= ~,(~,~).

Notice that the type can be determined from each term.

1202 J. A. BERGSTRA AND J. V. TUCKER

The constants of T(X, V) are defined for c = 2*,,,

C1-(z,v) = c’

and the operations are defined for cr = 2W,,,

cTT[2,v)(t1, . . .,tk) = cr’(tl,..., tk)

for ti = TW(i)(Z, V).

This makes T(Z, V) a Z-algebra.

We write T(Z, X) for ~ = X,, s c S, the complete family of sorted variables

named by X. T(X, V) is a subalgebra of T(2, X). We write T(Z) when V. = Ql

s c S. The terms of 2“(Z) are called closed.

A signature Z is (fully) instantiated or nonvoid if for all s = S

Definition 3.3.1.1. A term rewriting system or TRS is any algebraic reduction

system on a term algebra.

3.3.2. Equations. Let X be a signature and X a set of variable names. An

equation of sort s e S is an expression e of the form

t(x) = t’(x),

where t(X), t’(X) e 7’,(Z, X). Let Eqn,(Z, X) be the set of such equations

and

Eqn(Z, X) = (Eqn~(2, X)ls c S).

Let E = (E,ls = S) be a set of equations with E, c Eqn,(Z, X). Then E is

finite if S is finite and E, is finite for each s = S.

Let e, e’ = T.(Z, X). We say e and e’ are a-equivalent if there is a permuta-

tion of the set X of variable names that transforms e to e’. We write e =. e’ if

e and e’ are equivalent.

Let [e]a = {e’ = Eqn$(X, X)le’ =. e}.

Let E = (E,ls ~ S) be a set of equations. Define the a-closure E of E to be

E= (EJS es),

where

E, = {e’ = Eqn,(Z, X)le’ +. e for some e ● E,} = u,e~$[e]a,

We say that E is a-closed if E = E.

3.3.3. Term Evaluation. We define the term evaluation Z homomorphism

val~: T(2) + A. The map val~ = (val~ :s = S) is defined by induction on
terms simultaneously over S.

For c G ZA,,,

ualj(cs) = cj.

For o E ZW,~,

valj(cr’(tl, ..., t~)) = m~S(ualW(l)(tl),..., ualW(~)(t~)).

Equational Specifications 1203

Then val~ is clearly a homomorphism (by definition of constants and opera-

tions on T(Z)). We often write ual for val~ when the A is understood.

LEMMA 3.3.3.1. The map val~: T(S) + A is Q 2 homomorphism and is

unique as such.

The congruence derived from ual~ we write

and =; on A, is defined by

t s; tt iff ualj(t) = valj(t’).

Thus, if val~ is an epimorphism,

Note A is Z minimal if val~ is a subjection.
Consider =~ on T(2).

A term transversal for A is a family T = (T; : s & S) such that for each

s e S, T; g T.(2) and for each a = As there is exactly one t G 7“ such that

val~(t) = a.

A canonical term trarzsuersal for A is a term transversal T such that

altl, ..., tk)E T; for each subterm tiG T~W(i).

A standard construction of a canonical term transversal T is to order T,(S)
lexically and for each a = A choose the first (and so shortest) t e T,(Z) such

that ualj(t) = a. To see this is canonical, note that if t = u ‘(tl,,..,tk)and ti

is not a shortest term for a = A ~(i) then we can replace tiwith a shorter term

that would contradict that t is in the transversal T.

3,4. TERM REWRITING SYSTEMS. Let T(2, X) be the algebra of terms over

X in variable names X. Let E c Eqn(Z, X) be a set of equations such that for

each t = t’e E the LHS t is not a variable and all the variables in the RHS t’

also appear in t.We can define a set D(E) c T(X) X T(2) by

D(E)’ = {(t(rl,.. .,r~), (rl,l,..., r~)) : t = t’ e E, and ri CET(~)w(i)}

and so obtain the smallest set ~~(1) of algebraic one-step reductions contain-

ing D(E), and the algebraic reduction relation ~~ it generates. This formal-

izes the use of equations in derivations of terms in T(Z) where the reduction

t +E t’ requires substitutions to be made in some equation e = E and the

LHS of e is replaced by the RHS of e in t to obtain t’.

Definition 3.4.1. We call the pair (Z, E) an equational term rewriting system

or equational TRS, for short.

The first set of properties of a term rewriting system (2, E) is now defined by

applying the properties of reduction systems to ~~; for example:

The term rewriting system (S, E) is complete if the reduction system -~ on

T(Z) is Church–Rosser and strongly terminating.
We denote by AT’(Z, E) the set of all normal forms of ~~ and by =~ the

congruence associated to -~.

LEMMA 3.4.2. T(Z, E) = T(Z)/ GE is the initial algebra of ALG(2, E).

1204 J. A. BERGSTRA AND J. V. TUCKER

LEMMA 3.4.3. Let A be a minimal Z algebra. Let (Z, E) be a weakly

terminating TRS. If A k E and NF(2, E] is a transversal for ‘A , then

T(~, E) = T(2)/-~ =A.

PROOF. We shall show that for t,t’c T(Z),

t=fit’at=At’.

Case (i). Suppose t =E t’.Then, by Birkhoff’s Completeness Theorem,

E + t = t’ and since A ● ALG(Z, E) we have E R t = t’, by soundness. This

means that valA(t) = valA(t’) in A, that is, t -A t’.

Case (ii). Suppose t =A t’.Since the TRS (Z, E) is weakly terminating we

can calculate its normal forms for all terms using a function nf~. We know that

t =~ nf~(t) and t’ -~ nffi(t’). (*)

By the result of case (i), using A k E,

t -A rzfE(t) and t’ -A nfE(t’).

Since t =A t’,

nf~(t) =~ nf~(t’),

but since NF(2, E) is a transversal for ~~, this implies

nf~(t) = nf~(t’).

Thus,

nf~(t) -~ nf~(t’)

and by t)

t =E t’. Q.E.D.

Definition 3.4.4. The term rewriting system (2, E) is left linear if for all

t = t’G E, each variable that appears in t does so only once.

The term rewriting system (2S, E) is nonoverlapping if

(i) for any pair of different equations t = t’,r = r’ = E, the terms t and r do

not overlap in the following sense: there exist closed substitutions T, p of

t,r such that p(r) is a subterm of r(t)and the outermost function symbol

of p(r) occurs as a part of t.

(ii)for any rule t = t’ E E, t does not overlap with itself in the following sense:
there exist closed substitutions T, p of t such that ~(t) is a proper subterm

of p(t) and the outermost function symbol of t-(t)occurs as a part of t.

The term rewriting system (Z, E) is orthogonal if it is left linear and

nonoverlapping.

The following is a basic fact about orthogonality; for a proof, see Section 3 of

Klop [1992, Theorem 3.1.2].

LEMMA 3.4.5. If (2, E) is an orthogonal TRS, then it is Church–Rosser.

3.5. ALGEBRAIC SPECIFICATIONS. Let A be an algebra of signature ZA.

Then A is said to have a jinite equational specification (S, E) if Z = 2A and E

is a finite set of equations over T(X, X) such that T(2, E) ~ A.

Equational Specifications 1205

An algebra A of signature ZA is said to have a finite equational hidden

enn”chment specification (Z, E) if 2A G Z and E is a finite set of equations over

T(2, X) such that

The structural properties of a specification (X, E), such as the Church–Rosser

and normalization properties, are taken from those of its reduction relation

~~ . For example:

Definition 3.5.1. An algebra A of signature 2A is said to have a finite

equational complete TRS hidden enrichment specification (2, E) if ZA G Z and

E is a finite set of equations over T(2, X) such that ~~ is a complete TRS

and

T(Z, E)kA = (T(S, E))ZA =A.

4. Computable and Semicomputable Algebra

The definitions of a computable and semicomputable algebra have their origins

in Rabin [1960] and Mal’cev [1961/1971], independent papers devoted to

founding a general theory of computable algebraic systems and their com-

putable morphisms. We will mention only those ideas and facts that contribute

to the understanding or proofs of the theorems. In fact, the definitions and

associated basic results (e.g., about invariance and the word problem) that are

standard in computable algebra, and that we need here, can be found in

Mal’cev [1961/1971].

For further information about the theory from the point of view of logic see

the articles Mal’cev [1961/1971] and Ershov [1977]. For a view from computer

science, where the subject is treated in the many-sorted case, see Meseguer

and Goguen [1985] and Bergstra and Tucker [1987]. A survey of computable

algebra, which includes details of its historical development, is Stoltenberg-

Hansen and Tucker [1995].

4.1. ALGEBRAS AND NUMBERINGS. Let X be an S sorted signature. A many

sorted algebra A of signature Z is said to be efhectiue if for each s = S there

exists a recursive set Q, of natural numbers and a subjection a,: 0$ -+ A such

that for each operation symbol u = ZW,, for w = w(l)’. o w(k), and corre-

sponding operation o-- of A, there corresponds a recursive tracking jimction

=: Qw(l) x ““” x Qw(k)-+ Q, which commutes the following diagram,

WA
AW(]) X . . . X &(k) > A$

‘1
cc?’

‘r
a

K2w(l) x . . . X f2w(k) 5 > L?.

wherein aW(xl, ..., x~) = (aw(l)(xl), aw(~)(x~)).

1206 J. A. BERGSTRA AND J. V. TUC~R

We combine the sets into the S sorted family

Q=(fl,:s=s)

which, along with the tracking functions, constitutes a recursive 2 algebra R of

numbers. We combine the subjections into the S sorted map

which is a X epimorphism a: R A A. We refer to a as an ejjlectiue numbering

or coordinate system.

Consider the S sorted relation =. = (s., : s ~ S) on the number algebra
R, defined for x, y E Cl, by

~~
Y if, and only if, as(x) = as(y) in A.as

The relation is a Z congruence on R.

Definition 4.1.1. Suppose the relation -a is recursive, that is, for each

s E s, =a, is recursive on Cls. Then, we say A is computable under effective

numbering a.

Suppose the relation -a is recursively enumerable, that is, for each s = S,
~ ~, is recursively enumerable on $2,. Then, we say A is semicomputuble under

effective numbering a.

Both concepts are finiteness conditions, that is, isomorphism invariants pos-

sessed of all finite structures. Also noteworthy is this other invariance property

first observed in Mal’cev [1961/1971].

LEMMA 4.1,2. If A is a finitely generated algebra computable or semicom-

putable, under both a: fla -+ A and ~: flP 4A, then a and ~ are recursive~

equivalent in the sense that there exists recursive functions f, g which commute the

diagram:

A

/1

a P
f

& —+ f2p

Let A be computable under a. Using the recursiveness of =. and the

observation that a is an epimorphism from R to A, it is easy to prove this

useful fact (see Bergstra and Tucker [1987]):

LEMMA 4.1.3. Evey computable algebra A is isomo~hic to a recursive number
algebra R whose cam”er R ~ is the set N of natural numbers, if A ~ is infinite, and is

the set {0,,1, ..., m – 1} of the first m natural numbers, if A, is finite of cardinali~

m.

Obviously, no such isomorphic representation is possible for the semicom-

putable algebras for otherwise they would be computable.

If A is computable under a, then an S sorted set X g A“ is (a-)computable

or (ci-)semicomputable accordingly as

a-l(x) = {(xl,..., x~) =Q’’’:awxl>l,...,.xk) =x}

is recursive or recursively enumerable.

Equational Specifications 1207

LEMMA 4.1.4, Let A be a computable algebra and s a congruence on A. If

s is computable or semicomputable then the factor algebra A/E is computable

or semicomputable accordingly.

4.2, COMPUTABLE TERM ALGEBRAS. The algebras T(s) are computable

under any of their standard godel numberings. This was implicit in Section 1

where we spoke of a data type K being computable when its defining

congruence -~ is decidable on T(Z). By Lemma 4.1.4 and isomorphism

invariance, we can define equivalently a data type to be computable when its

initial algebra is computable.

We will describe the computability properties of term algebras that we will

need.

Definition 4.2.1. Let Z be an S sorted signature and X a countable set of

variable names used to make S sorted variables, Let T(S, X) be the 2 term

algebra over X. Then T’(2, X) is a computable algebra.

Let y be a computable numbering for T(2, X). Without loss of generality,

we assume that y has the following properties.

(i) Let G be a recursive S algebra of numbers with G, = N for all s G S, and
let

y: G+ T(X, X) and y-]: T(X, X) ~ G

be ~-isomorphisms.

(ii) Let y be standard in the sense of Mal’cev [1961/1971]; this means that we
can decide when a term is a variable, compute subterms of a term, etc.

(iii) Let y satisfy the following monotonic property: for each s = S, and
context t(x”) = T“(2, X) with single variable x“ of sort u, then for all

rl, r2 ~ T.(S, X),

YU-lG-l) < 7(-l(rJ implies 7u-l(t(rl)) < yU-l(t(rz))-

This means that the numbering induces an ordering on terms and that

substitution into terms is monotonic with respect to this ordering. In a

uniform way, for every minimal Z algebra, a transversal can be found by

taking the smallest terms in this ordering to represent the elements of A,

All standard numberings are recursively equivalent, by Lemma 4,1.2. Recall

that A z T(Z)/ -~ . The following result states the equivalence between the

classes of computable and semicomputable algebras and those of algebras with

decidable or semidecidable generalised word problems, respectively. A proof of

this can be found in Mal’cev [1961/1971].

THEOREM 4.2.2. Let A be a jinite& generated algebra. Then A is computable or

semicomputable if, and only if, =~ is computable or semicomputable on T(Z),

respectively.

From ~ we can computable number the set Eqn(Z, X) of equations in an

obvious way: y.: [GE ~ Eqn(2, X)] is obtained from y by pairing.
We may define E c Eqn(Yt, X) to be recursiue~ enumerable if y.- 1(E) is

recursively enumerable.

We note that if E is recursively enumerable then the closure E is recursively

enumerable.

1208 J. A. BERGSTRA AND J. V. TUCKER

However, ,we define E c Eqn(Z, X) to be recursive if y,- 1(E) is recursive
and if ye-l(E) is recursive.

A starting point for the investigation of effectivity are these facts:

LEMMA 4.2.3. Let (2, E) be a jinite equational term rewriting system specifica-

tion. Then

(i) the basis set DE and the one-step reduction relation j~(l) are computable;

(ii) the reduction system -~ and the congruence = , are semicomputable;

(iii) the set NF(Z, E) of normal forms is computable.

In particular, T(2, E) is a semicomputable algebra. If (~, E) is recursive or

recursively enumerable, then (i) and (ii) hold, but the set NF(2, E) is cosemicom-

putable.

Notice that NF(Z, E) need not be a transversal for =~ . We may now

trivially prove the following:

LEMMA 4.2.4. Let (Z, E) be a fznite equational term rewriting system specifica-

tion which is Church –Rosser and weakly terminating. Then T(Z, E) is a com-

putable algebra.

PROOF. Given t G T(Z), we can interleave the algorithms enumerating

NF(Z, E) and -~ to seek the normal form of t which is guaranteed to exist

from the weak termination hypothesis. Given t,t’e T(S), to decide t -~ t’ we

calculate their normal forms n, n’ and, using the uniqueness property of

Church–Rosser systems, we have only to check whether or not n = n’. Q.E.D.

The argument of Lemma 4.2.4 is also that of this companion lemma to

Lemma 4.1.4.

LEMMA 4.2.5. Let A be a semicomputable algebra with semicomputable con-

gruence F . If there exists a semicomputable transversal for G , then the factor

algebra A/= is a computable algebra.

4.3. THEOREMS ON RECURSIVE SPECIFICATIONS. We will now prove some

first results about specifications of algebras without hidden functions.

THEOREM 4.3.1. Let A be a minimal X algebra. If A is computable, then A

possesses a possibly infinite recursive equational specification (Z, E) that is an

orthogonal complete term rewriting system.

PROOF. Now A a 7’(Z)\-~ and since A is computable we have that =~

is recursive in the numbering -y. Let nfY: T(2) ~ T(2) compute the smallest

normal forms for =A as determined by the enumeration y; it is defined by

nfY(t) = y((leasti)[t =~ -y(i)]).

Define

E~ = {t = nfy(t): t # nf,(t) and for each proper subterm r oft, nfy(r) - r}.

Let TY = irn(nfy), the image of nf~, be a transversal for =~ . We claim that TY

is the set of normal forms for the TRS (2, E~). First, note that the terms in ~’

do not reduce since neither they nor their subterms occur on a LHS. This 1s

because each subterm r has the property that r - nfy(r), for if not, then there

is a contradiction with the enumeration property (iii) of the computable

Equational Specifications 1209

numbering -y as formulated in 4.2.1 above. Next, note that the terms not in TY

can be reduced. To see this, let t @ Ty and let r be the smallest subterm of t

such that r @ Ty (perhaps r is t).Then r occurs on a LHS of an equation in

E~, and we may reduce t.

Thus, AT’(Z, E~) == Ty.

Next we show that (2, E~) is strongly terminating. Because the Godel

numbering y of T(Z) is monotonic, any reduction of t -+ t’entails y- l(t) >

y-1 (t’). Thus, an infinitely long reduction cannot occur because (N, <) is well
founded.

We show that (X, E~) is an orthogonal TRS. Clearly, since each rule has no

variables, there is no rule with duplicated variables on its LHS, that is, the TRS

is left-linear. If two rules overlap then, since the rules have closed terms on the

LHS, one of the LHS must be a subterm of the other. By inspection of Eti, we

see this is not the case. Thus, the TRS is nonoverlapping,

Thus, (Z, E~) is complete since it is strongly terminating and orthogonal.

Now, (2, E~) is recursive since E~ is recursive using the computability of

syntactic identity -, nfY and subterm decomposition, and E~ is trivially

closed under the renaming of its variables.

Finally, since AT’(Z, E~) = Ty is a transversal for -~ and trivially A =
AZg(2, E~), we deduce that

A = T(X, E~)

by Lemma 3.4.3, Q.E.D.

COROLLARY 4.3.2. Let A be a E minimal algebra. If A is finite, then A

possesses a finite orthogonal complete TRS specification (2, E).

PROOF. To see this note that inz(nfy) is finite, its cardinality is that of

A, and each LHS in E~ is of the form g(tl,..., t~) with g a function symbol

in Z and tie im(rzfY) for 1 s i s k. Since Z is finite, we know that E~ is

finite. Q.E.D.

Consider the size of (2, E) in the case of the corollary. Let

1 = max{lxl,l:s = S}

k = max{lwl: XW,, # 0}

m=lxl=lsl +lu{zw,, :wGs*, scs}l.

Then IEI < mlk.

5. Proof of Theorem 1.1

Let us restate the first theorem.

THEOREM 1.1. Let A be a jlnite(y generated minimal Z algebra. Then the

following are equivalent:

(1) A is computable.
(2) There is a finite equational specification (2., EO) such that

(i) Sort(s) = Sort(ZO) and X G 2S.;

(ii) (20, EO) is a complete term rewriting system;

(iii) 1(2., EO)IX = xl.

1210 J. A. BERGSTRA AND J. V. TUCKER

Furthermore, the (ZO, EO) maybe taken to be an orthogonal term rewriting system,

and the sizes IXOI and IEOI depend upon the algebra A.

The fact that statement (2) implies statement (1) was established in Lemma

4.2.4; we prove that (1) implies (2).

Let S={l,2,..., n} be a set of n sorts. Let Z be an S sorted signature with

p constants and q operations. Let A be any computable minimal 2 algebra.

If A is finite then there exists an appropriate finite equational specification

(~, E) for A by Corollary 4.3.2.
Here is the idea of the proof in the case that A is infinite.

Suppose A is infinite with 1 infinite carriers

A1,..., A1

and n – 1 finite carriers

We suppose that for i = 1 + 1,..., n

IA,] =b, + 1,

Of course, A need not have finite carriers and 1 = n,

Since A is computable, by Lemma 4.1.3, we can take A to be isomorphic to a

recursive algebra R of numbers and we can concentrate on building an

appropriate finite equational specification for R, which will also be a specifica-

tion for A.

First, we build an expansion RO of R by adding constants and functions such

that

ROI1=R,

The design of RO involves coding all the carriers into one of the infinite

carriers and simulating the algebraic operations using recursive functions and

the Kleene T-predicate.

Next, we build a finite equational specification (ZO, EO) for RO that we will

prove is a complete TRS. Here, we exploit algebraic aspects of the definition of

the recursive functions by recursion schemes. This equational specification of

RO does not involve hidden sorts or functions.

The specification (20, EO) serves as an appropriate specification for R that

does involve hidden functions.

5.1. CONSTRUCTION OF RO. Using Lemma 4.1.3, let R s&l and for i =

117...>

Ri=lY

andi=li-l,rz

Ri = {O, 1 ,..., bt}c N.

We assume that each of the p constants has the form

Equational Specifications 1211

for some s = S, and that each of the q operations are total recursive functions

on N having the form

f: ~w(l) x ““” xRW(~) *R,

for some w(1),..., w(k), s = S.

To make RO, we add to R the following constants and functions:

5.1.1. Counting. For i = 1,..., n we add the constant zero

‘O E Ri

and the successor function

‘SUCC: Ri ~ Ri

defined as follows: for infinite sorts i = 1,...,1

‘Succ(x) = .x + 1,

and for finite sorts i = 1 + 1, ..., n

‘ma(x) = x + 1 if x<bi

= bi if x = bi.

5,1.2, Coding. We add functions that code all the carriers into the first

infinite carrier RI, namely: for i = 1, ..., n

~old: Ri ~ RI

is defined by

‘fold(x) = x

for x = N. We add functions that decode from RI, namely:

‘unfold: RI ~ Ri

defined for i = 1,...,1 by

‘unfold(x) = x

forx=N, and fori=l+l,..,, nby

‘unfold(x) = rnin(x, bi).

for x E N.

5.1,3. Tracking Functions. For each operation f Rw(l) X o‘“ X Rw[kJ + R.

of R we add a recursive function f‘: RI X “”” X RI + RI that simulates f on

R1. This f’ is defined by

f’(x,, x~) =Sfold(f(”’(l)unfold(xl),..., ‘(~)unfo~d(xk))

forxl,.. ,,x~=Rl,

5.1,4. Enumeration Functions. We add new functions designed to compute
each tracking function f‘ on RI in a special way as follows: let c) : Nk + N be

any total recursive function. Then, by the Kleene Normal Form Theorem, this

may be written

+(x) = U(pz oTk(e, x, z)),

1212 J. A. BERGSTRA AND J. V. TUCKER

where U and T are the so called Kleene computation function and T predicate,

respectively, and e is some index for ~, x G Nk, and z = N. Since U and Tk

are primitive recursive so are the functions

h(z, x) = U(pz’ <2” [z’ =2 or T~(e, x,z’)1)

g(z,.x) = o if 3z’ s z. Tk(e, x, z’)

. 1 otherwise.

From these functions we can define a recursive function

t(z, x,o) = h(z, x)

t(z, x,y + 1) = t(z + l,x, g(z + 1,X))

to simulate the least number operator. Thus, @ is factorized into t,h, g in the

sense that

4(X) = t(o, x,l).

(The reader may care to consult Cutland [1980].)

We apply this method for @ to each tracking function ~’ on RI and add the

constructed functions h, g, and t.

5.1.5. Subfunctions. Finally, for each tracking map ~’, we add each primi-

tive recursive subfunction A of its primitive recursive enumeration functions

g, h. Let A be ~his list of all the subfunctions of the enumeration functions g

and h, Such a hst 1s added for each of the q tracking maps.

5,1.6. Size. Now RO is the many sorted algebra obtained by adding all the

above functions. Clearly,

R012 =R.

It is instructive to count these additions. Since 2 has p constants and q

functions, to make the signature XO, we must add the following:

n constants

n successors

n folds

n unfolds

q tracking functions

3q enumeration functions

rI subfunctions

where II = 111 + . . . + H? and ~i is the number of subfunctions in some

primitive recursive definitions of g and h associated with the ith tracking

operation ~’. Note that II is dependent on the algebra, whereas the other

numbers are independent of the algebra and dependent only on the number of

sorts, constants and functions in Z.

5.2. CONSTRUCTION OF (XO, J!30). We now define specification (ZO, EO) for

RO. Let 2 have the form

constants . . .
C:-+s
. . .

Equational Specifications

operations “.”
F:w(l) X ““” X w(k) +S
. . .

where there are p constants and q operations.

Then ZO has the form of Z with the following adjoined:

constants ~(i: -+ i I<i<n

operations ~SUCC: i -+ i l<i<n

~FOLD: i a 1 l<i<n

‘UNFOLD: 1 ~ i l<i<n
. . .

F’:1~-+.l

G:lxl~~l for each operation

H:lxlk+l

T:lxlkxl+l

~
. . .

Fof Z

We will often use ~ for a notation naming a function A in RO.
The equations of EO are constructed as follows:

5.2.1. Counting. For finite sorts i = 1 + 1,..., n

‘Succ(isuccb’(io)) =isuccb’(io).

5.2.2. Coding. For infinite sorts i = 1,...,1

‘FOLD(iO) =10

‘FOLD(’SUCC(’X)) = ‘SUCC(iFOLD(iX)).

For finite sorts i = 1 + 1,..., n

‘FOLD(’0) =10

‘FOLD~SUCC~cO)) = lSUCC~(lO)

and fork =1, ... ,bi.

For all sorts, i = 1,..., n

‘UNFOLD(’0) =’0

‘UNFOLD(’SUCC(’X)) =’SUCC(lUNFOLD(lX)).

5.2.3, Tracking. For each constant g of sort s naming c = R,,

g =Ssucccco).

For each operation symbol F = SW,,,

F(w(l)Xl, ‘(~)X~)

=SUNFOLD(F’(W(l)FOLD(W(l)XI), ‘(~)FOLD(W(k)X~))

1213

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

1214 J. A. BERGSTRA AND J. V. llJCKER

5.2.4. Enumeration and Subfunctions. For each tracking function ~’ for

each function ~ we add equations for the g, h, and t, and primitive subfunc-

tions A of g and h, as follows:

For t we add

T(Z, X,lO) = H(z, x) (lo)

T(z, X, ‘SUCC(Y)) = T(’SUCC(Z), X, G(lSUCC(Z), X)) (11)

and

F(x) = T(lO, x, ‘SUCC(lO)) (12)

For each primitive recursive function A c A u {g, k}, we add equations for

its name ~, using a case distinction on the defining equations for A:

If A(xl,. ... x~) =xi, then add ~(Xl,X~) =Xi (13i)

If A(y) = y + 1, then add A(Y) =~SUCC(Y) (13ii)

If ~(x) = P(Pl(X),..., p.(x)), then add A(X) = ~(~l(X),... ,~.(X))

(13iii)

where x = (xl, ..., x~) and X = (Xl, ..., X~).

If A(O, x) = Wl(x) and A(y + 1,X) = ~2(y, x, A(y, x))

then add

~(g, x) = pl(x]—

~(isucc(Y), x) = /.L2(Y,x, ~(Y, x))—

(13iv)

(13V)

where, again, x and X are possibly vectors,

Let us count the equations:

n–1 counting
21 + 2(bl+l + ..” +b.) + 2n coding

P tracking constants

q tracking operations

3q t and tracking functions

He g,h, and A

The method for primitive recursive functions adds at most two equations per

function; in previous notation, we note

rI, < 2.2q -t- 2.rI = 2(2q + I-f).

Thus, the number of equations depends on the size of the finite carriers and

the structure of (the enumeration of) the operations.

LEMMA 5.2,4.1. The jinite equational specification (20, EO) is an initial algebra

specification of R ~, that is,

RO = T(ZO, EO).

Equational Specifications

As a TRS, (2., EO) has the following propetiies:

1215

(i) it is orthogonal

(ii) it is strongly terminating;

(iii) the sets of normal forms are, for injinite sorts i = 1,...,1,

N~(ZO, EO) = {iSUCC~(tO): k = 0,1,... }

and for finite sorts i = 1 + 1,. ... n

N~.(20, EO) = ((SUCC~(iO): k = 0,1,,,,, bi),

From (i) and (ii), it follows that (2., EO) is a complete TRS.

PROOF. Clearly, RO satisfies EO by construction. We will prove these

statements in the order (i) followed by (iii). Then we will assume (ii) and

deduce that RO G T(ZO, EO). Finally, we prove (ii) in the next subsection 5,3.

(i) The TRS (2., EO) is left linear and nonoverlapping by inspection.

(iii) For i = 1,...,1define

~ = {~SUCC~(iO): k = 0,1,.,, }

and fori=l+ l,. ... ndefine

~ = @JCC~CO):k= O,l,..., bi).

Clearly, for each i = 1,..., n,

~ c IV~(Zo, EO)

because no equation of EO has a LHS that matches with the numerals of ~.

Next we consider the converse inclusion, Let t @ ~ we show that t reduces

and so is not a normal form.

Let r be the smallest subterm of t such that r @ ~. There are three cases:

(a) If i is a finite sort and r =’SUCC~cO) for k > bi. Then there is a reduction

of r by means of eq. (1) for counting in 4.2.1, and so t is not a normal form.

(b) If r =i~, then there is a reduction by eq. (8) for constants in 5.2.3.

(c) If r = A(t ~,. ... t~) for ~ any function symbol, then tl,....tk must be

numerais by the minimahty of r. For each choice of ~, there is a reduction

of r by means of an equation of EO and so t is not a normal form.

We prove isomorphism using 5.2.4 .l(ii); we define a map ~: RO - T(20, EO)
which is a family of maps

@i:Ri -+ ~(ZO,EO)

fori=l,..., n,where

o,(x) = [’such’]

for all x c Ri. Since the numerals are normal forms 5.2.4 .l(iii); the map is

injective. If the strong termination property 5.2.4. l(ii) holds then every term

has a normal form that is a numeral and so the map is subjective.

We show @ is a homomorphism.

1216 J. A. BERGSTRA AND J. V. TUCI03R

Let ~ be any operation symbol in SO of type u(l) X 00. X u(k) ~ v naming

the operation ~ in T(lO, EO) and the operation A in RO; we show that

@v(A(x~,..!, ‘k)) = ~(hi(l)bl),..v 4u(k)w)-
The LHS is

[“~uccbl. ,Ik)(vo)],

The RHS is

A([’(WCC” (“(1)0)] ,..., [Uwlccwk)o)])

= [*(u(l)succxl(u(l)o],...,u(~)suck(u(k)o))],],—

by definition of ~ in T(20, EO).

To show that these terms are equivalent in EO we reason as follows: Note

that since RO is an algebra of numbers,

R. 1= ‘succ’(’l’~)(vo) = J(U(l)SUCC’’(U(l)O), ‘(kk?lccx’(u(k)o)) !

If the strong termination property 5.2.5(ii) holds, since the numerals are the

normal forms, we have

EO t- ~(u(%UCCXl(u(l)O), ‘%’ucc’k(”(k)o)) = ‘Succ’(”o)

for some y e N. Thus, because RO satisfies EO,

RO 1=‘SUCC’(U()) = ‘SUCCA(’~,,’~)(uO)

and, by uniqueness, y = A(xl, ..., x~). Therefore,

EO + ~(u(%UCCX’(u(l)O) ,..,, ‘(~) ~ucc%(’(~)())) = “~ucc~(’lj.,~k)(”o),

and the equivalence classes are identified, and ~ is a homomorphism. Q.E.D.

5.3. PROOF OF STRONG TERMINATION. We prove (ii) of Lemma 5.2.4.1, that

each t c T(20) is strongly terminating, by induction ,on the complexity of t.

As basis, we consider all constant symbols. If t =‘ O, then we know that no

reduction is possible from EO because it is a normal form.

If t - g of sort s names the constant c e Ri, then, by inspection of EO, there

is at most one reduction possible, by means of eq. 8, and this leads to a normal

form ‘SUCCcfO).

We formulate the induction step as follows:

LEMMA 5.3.1. Let Sl,..., Sk G T(ZO) be strongly terminating and let ~ be a

k-ary function symbol of ZO. Then ~(sl,..., Sk) is strongly terminating.

PROOF. We prove this by induction on an ordering of the function symbols.

First, we order the signature ZO by ordering the operations of RO. For each

operation ~i of R let hi, gi, ti be the functions factoring ~~ and let A ~ be the
list of primitive recursive functions used in the definitions of the hi and gi,

those of hi preceding those of gi and each of these two lists ordered by the

complexity of the primitive recursive definitions of the hi and gi, respectively.

Thus, we order the constants and operations of RO into the list

1
Succ, ‘SUCC, lfold, ..., ‘fold, 1unfold, ..., ‘unfold,

Al,.. ., A~, hi,..., h~, gl,..., g~, tl,..., t~>f; ,..., f~, fl,..., f~

Equational Specifications 1217

and let the signature 20 of RO be ordered in this way. We shall now prove the

lemma by induction on the position of ~ in this ordering of ZO.

The proof divides into a basis case, and an induction step involving nine

cases, many of which split into subcases. In every case, we argue by contradic-

tion. We assume that an infinite reduction

t+tl-+t2+ . ..-+ lN+tN+1 4 . . .

exists for t = &l,.. ., Sk) and Sl, ..., Sk strongly terminating. We assume that

t~ -+ t~+ ~ ?S the first reduction where a rule is used that involves the outer-

most function symbol & Such an N must exist for otherwise the infinite

reduction would contradict the assumption that the S1, ..., s~ are strongly

terminating. Thus, tl,...,tN have the forms

ti = ~(l’il,rik)

fori= l,..., N, and for some 1 s a(i) s k

Note that tN = ~(rN,,....rNk)and that the subterms ~~1,..., r~, are strongly
terminating because the SI, ..., Sk are.

We will consider such reduction sequences for every type of operator ~ in

the ordered list. For convenience, we would like to assume that N = 1 and that

the first reduction involves ~; this is possible:

LEMMA 5.3.2. The following are equivalent:

(a) For d strondy terminating terns rl,..., ‘k? each reduction sequence of
~(rl,..., r~) is finite and a(rl, ..., rk) is strongly te~inating.

(b) For all strong~ terminating terms rl,..., r~ each reduction sequence of

~(rl,..., kr) that begins with a reduction involuing ~ is finite.

PROOF. That (a) implies (b) is immediate. Consider the converse. Consider

the arbitra~ infinite reduction sequence

t+t1+t2+ ““”‘t~+tN+l + ““”-

If this is infinite, then the reduction sequence

tN+tN+~ + ““”

is infinite and involves ~ at the first step. By (b), we deduce that this is

impossible. Hence, t is strongly terminating. Q.E.D.

Thus, in each argument, we will examine the reduction

t-?tl

and show that tl is strongly terminating (often it cannot be further reduced).

We now begin the proof by induction on the position of ~ in the list.

Basis 5.3.3. & is ~SUCC and t = lSUCC(S).

There is no equation in EO that allows us to rewrite lSUCC, so an infinite

reduction sequence from t starting with such a rewrite is impossible.

1218 J. A. BERGSTRA AND J. V. TUCKER

Induction Steps 5.3.4. We assume the Lemma 5.3.1 is true for all function

symbols preceding ~ in the list. There are nine cases and several subcases.

Case 1. ~ is ‘SUCC for 1 < i S n.

Subcase la. The sort i = 2,..., 1 is infinite. Then, the argument is exactly

the same as in the basis case above,

Subca,se lb. The sort i = 1 + 1,..., n is finite. Consider a ~ first step

reduction sequence

t+t1+t2 -+....

Only eq. (1) allows j to be reduced and this leads to a normal form that cannot

be reduced further. Thus, no infinite reduction sequence exists.

Case 2. & is ‘FOLD for 1< i s n and t = ‘FOLD(s).

Subcase 2a. The sort i = 1,...,1 is infinite.

Only rules (2) and (3) can be applied to the reduction t -+ tl in a A first step

reduction sequence. We show that t is strongly terminating by induc~on on the

value ual(s) of s in Z?O.

If ual(~) = O, then eq. (3) cannot be applied because otherwise ,s must have

the form ‘SUCC(z), for some z, which contradicts that zxd(s) = O, by definition

of ual. So eq. (2) is applied which entails s =‘ O and hence tl = ‘O and a normal

form. Hence, the sequence terminates.

For the induction step, suppose that for all strongly terminating s such that

ual(s) = d, the term t = ‘FOLD(,s) is strongly terminating.

Consider some s that is strongly terminating and ual(s) = d + 1. In the

reduction t + t~ eq. (2) cannot be applied ,because val(s) # O and so s is not

‘O. Thus, eq. (3) is applied whence s = ‘SUCC(Z), for some z, and tl=

lSUCCcFOLD(z)). Now ual(z) = d so by the induction hypothesis on d we

know that ‘FOLD(Z) is strongly terminating. By the basis case of induction on

the list, we know t~ is strongly terminating.

Subcase 2b. The sort i = 1 + 1,..., n is finite.

Only rules (4) and (5) can be applied to the reduction t -+ tl and in both

cases tl must be a normal form.

Case 3. ~ is ‘UNFOLD for 1 s i s n and t =iUNFOLD(s).

In the reduction t -+ tl only eq. (6) and (7) can be applied. The argument

that t is strongly normalizing follows that of subcase 2a and uses induction on

ual(s) in RO.

Case 4. ~ names a primitive recursive function on RI from

Al, A~. hi,.. .,h~,gl,...,g~

Note that ~ is constructed from functions earlier in the list. There are five

subcases corresponding with the five parts of the definition of primitive
recursion. We will classify these cases using the function named by &

Subcase 4a. Constant fimction. ~ names A(xl,. . . . Xk) = 10.

Ift-~(sl,..., Sk), then the only equation that applies is (13i) and so tl =10

and is a normal form. The sequence halts and t is strongly terminating.

Equational Specifications 1219

Subcase 4b. Projection. J names A(xl,..., Xk) = Xj.

If t= &l,..., Sk), then the only equation that applied is (13ii). Hence,

tl - Sj, which is strongly terminating by hypothesis.

Subcase 4c. Successor. ~ names A(x) = ‘SUCC(X).

If t = ~(s), then the only equation that applied is (13iii). Hence, tl =

lSUCC(s), which is strongly terminating by the earlier basis case of this lemma.

Hence, t is strongly terminating.

Subcase 4d. Composition & names

A(x) = K(~l(x), Kn(x))

where x = (xl, ..., x~).

If t = ~(s), where s = (sI,..., Sk), then the only equation that applies is

(13iv). Then

tl = P(J@)>—. . . . >&n(s)),

where p, PI, . . . 7_Pfi name the subfunctions of A. Since the I-L, PI, ..., __~——
preceed ~ in the list, by the main induction hypothesis w: ~now that

&l(s), P.(s) are strongly terminating and, further, that tl is strongly termi-
nating, heiice so is t.

Subcase 4e. Primitive recursion. ~ names the function

A(O, x) = VI(X)

A(y + 1,x) = Pz(y, x, A(Y, x))

where x = (xl, ..., x~).

Let t = ~(r, s) where s is (sl,..., Sk). The only equations that apply are (13v)

and (13vi), We show that t is strongly terminating by induction on the value

ual(r) in RO.

If Dal(r) = O then the only equation that applies is (13v) and tl s I..Ll(S).

Since PI occurs before ~ we know that Wl(s) is strongly terminating a~d so

is t. –
.

If ual(r) >0, then we take as induction hypothesis the following: for all

strongly terminating r,s such that .val(r) = d the term ~(r, s) is strongly

terminating.

Let t = A(r, s) for Dal(r) = d + 1. The only equation that applies is (13vi).

Thus, r = %UCC(Z) for some z and

tl = #2(z, s,~(z, s)).—

By the induction hypothesis on ual(r), we know that A(z, s) is strongly

terminating, because val(z) = d, Therefore, by the main induction hypothesis

of 5.3, since Pz preceeds ~ in the list, and z,s, $ z,s) are strongly terminating,

we know thaT tland hence t are strongly termmating.

Case 5. A is ~. and t = ~(r, s, u) where s is (sl, . . . ,s~).

The only equations that can be applied to the first reduction are (10) and
(11). Define

X(r, s) = (pz)[gj(z, ual(s)) = O] – ual(r).

We argue using induction on X(r, s).

1220 J. A. BERGSTRA AND J. V. TLJCKER

Basis. X(r, s) = o.

Subcase a. zxd(u) = O. Then u -10 and the equation used is (10), and

tl = Hj(r, s). Since Hj preceeds ~ in the list, by induction, since r and s are

strongly terminating so tl and (hence) t are strongly terminating.

Subcase b. ual(u) # 0, Then the equation used is (11) and

tl = ~(lSUCC(r), s, Gj(lSUCC(r), s)).

First, note that

lSUCC(r), s and Gj(lS17CC(r), s)

are strongly normalizing by hypothesis and/or by induction on the list. It

follows that an infinite reduction of tl must involve a further application of

eqs. (10) and (11). For this to happen Gj(lSUCC(r), s) must reduce to either 10

or to lSUCC(z) for some .2,

CLAIM. ~al(Gj(lSUCC(~), s)) = O.

PROOF OF CLAIM. Let .zO= (pz)[gj(z, ual(.s)) = O]. Since X(r, s) = O, we

have

20< ud(r) < ual(lSUCC(r)).

Now, if ZO < z and gj(zO, x) = O, then gj(z, x) = O. Thusj gj(’SUCC(r), s) = O

and the claim follows.

By the claim, the subterm of t, reduces to 10, and tl reduces by (10) to

Hj(SUCC(r), s),

which is strongly terminating by induction on the list.

Induction step. We suppose as induction hypothesis that for any r, s, and u

that are strongly terminating and X(r, s) = d, t = T.(r,s, u) is strongly termi-

nating.

Suppose x(r, s) = d + 1,

Case a. ml(u) = O. Then the argument is as for case (a) of the basis of this

case 5.

Case b. ual(u) # O. Then the equation used is (11) and

tl G ~(lSUCC(r), S, Gj(lSUCC(r), s)).

All subterms are strongly terminating and we note that

X(lSUCC(r), s) = d

by definition of X. Thus, by the induction hypothesis on X(r, s) we have that tl

and (hence) t are strongly terminating.
This concludes the case 5.

Equational Specifications

Case 6. A is ~! and t = ~(sl,... ,s~)

The only equation that applies is (12) which means that

1221

tl= Tj(lo, sl, ..,, s~, lSUCC(lO)),

which is strongly terminating by case 5.

Case 7, Ais Fandt=F(sl,..., s~)

The only equation that applies is (9) which means that

tl =SUNFOLD(F’(W(l)FOLD(sl), ‘(~)F~LD(s~)) .

By the previous cases 1, 2, and 6, we deduce that tl and (hence) t are strongly

terminating. Q.E.D.

Up to case 5, where ~ appears, our proof could be replaced by a shorter but

more advanced argument based on the recursive path ordering.

6. Examples of Term Rewriting Specifications

Theorem 1.1 shows that any computable algebra has a finite equational

complete TRS specification, but that the number of equations in it may be

large (in relation to earlier results) and involves hidden functions. We will show

that these features are necessary,

6,1. AN EXAMPLE OF A FAMILY OF FINITE ALGEBRAS SUCH THAT ALL COM-

PLETE TRS EQUATIONAL SPECIFICATIONS ARE DEPENDENT ON THE SIZE OF THE

ALGEBRAS. Let n >1 and Zfl be the signature

sort s

constants Cl,cn. s

and consider the Z. algebra

zl~=({a}:a,...,a)

wherein the n constants of Z. are identified.

THEOREM 6.1,1. Let (2, E) be a finite equational TRS such that Z. G

Z, (2, E) is complete and

1(2, E)lzn -A..

Then IEl > n – 1,

PROOF. Let t G T(2) be the normal form of cl. Then, for 1 s j s n, t is
the normal form of Cj. To see this note that

and, because Am is specified by (2, E),

Et-cl=cj

so c1 and cj have a common reduct because (X, E) is confluent. Thus, we

deduce that at most one of cl,..., c. could be the normal form t.

1222 J. A. BERGSTRA AND J. V. TUCKER

Suppose that Cj is not the normal form t. Then, there must be a rule

ej = 1(X) = r(X)

that applies to Cj for X = Xl,..., Xl. Thus, 1(X) = Xi or 1(X) E cj.

If 1(X) = Xl, then the TRS (2, E) cannot be terminating and indeed

according to the definitions (Z, E) does not qualify as a TRS, so we exclude

this case and assume that 1(X) = Cj.

Now for the n – 1 cases, where Cj is not a normal form, we obtain n – 1

equations ej with LHS Cj. Thus, IEl > n – 1. Q.E.D.

6.2. AN EXAMPLE OF AN ALGEBRA SUCH THAT FOR ALL FINITE COMPLETE

TRS EQUATIONAL SPECIFICATIONS WITH HIDDEN FUNCTIONS THE NORMAL

FORMS MUST INVOLVE THOSE HIDDEN FUNCTIONS. Let & be the signature

sorts nat

set

constants O: nat

0: set
operations S: nat ~ nat

INS: nat x set d set

and let EO be the set of equations

INS(X, INS(Y, Z)) = INS(Y, INS(X, Z))

INS(X, INS(X, Z)) = INS(X, Z).

The initial algebra of (XO, EO) is isomorphic with

F = (N, P~i~(N); 0,0, n + 1, ins)

where Pfifi(N) is the set of finite subsets of N and

ins: N X I’~i~(N) ~ P~i~(N)

ins(n, xl) = {n} UA.

This example is taken from Bergstra et al. [1989].

THEOREM 6.2.1. Let (Z, E) be a finite equational complete TRS specification

for the 20 algebra F, so that

Then there is a t e T(20) whose normal form t, = T(2) with respect to (X, E)
does not lie in T(2iO).

PROOF. First consider the terms of T(ZO). Any t e Tna,(20)has the form

S1(0). Any t G T, C,(20) has the following form:

t = INS(S1(l)(0), INS(S1(2)(0), INS(S1(d)(0), 0) ““’);

we abbreviate t by

lNS(l(l), l(d), O),

or by INS(1, 0) for 1 = (1(1),. . . . l(d)), when convenient.

Equational Specifications 1223

Now let (X, E) be a complete TRS specification for the algebra F. Notice

that E cannot contain any rule 1(X) = r(X) where 1(X) and r(X) are terms

of sort nat. This is because 7“~z(z, 1?) is the free term algebra on O and S, and

any rule that is an equation valid in F would be a syntactic identity that leads

to nonterminating derivations using (Z, E),

We define a term t c T’,,(20) that will satisfy the conclusion of the. theorem.

Let k = nm.x{llhs(e)l: e = E} + 1.Define

t = m(s~(o), mS(s2~(o),0)).

Let il G T(X) be the normal form of t.

Suppose for a contradiction tl e T(2iO). Let

t~ = INs(l(l),...,l(d),0).

Notice that for i = 1,...,d

l(i) = k or l(i) = 2k.

We now take t2= T(20) to be tl with S~(0) and S2~(0)

changed, that is,

tz =INS(3k – 1(1),...,3k – Z(d),@).

We know that

Fbtl=tz

and so

EI-tl=tz

everywhere inter-

but t2 is not a normal form of (Z, E) because tl is, and (Z,E) is complete.

Hence, there must be a rule that reduces t2.Let this rule be

/(xl,..., Xp, z) --u(xl,..., xp, z)

where Xl, XP are variables of sort nat and Z is a variable of sort set. The

term /(Xl,..., XP, Z) matches with t2 to make the reduction.

CLAIM 6.2.2. 1(X, Z) = 1(X,, .,., XP, Z) matches tl and hence tl is not a

normal form.

PROOF. We claim that the term l(X1,, ,., XP, Z) must have the form

Iivs(wfqxm(l)), s~@)(xT(q)), z),

where there are q locations where INS is applied and

7r:[l, q] + [I, p]

defines which variable Xm(i) occurs at location i.

To see this structure, note that the alternative is that some S“(iJ(0) occurs at
location i. If this occurs in l(XI,..., XP, Z), then it also occurs in t2,because

of the matching. Now M(i) < k since k bounds the left hand sides of the rules

in E. But every subterm of t2of type nat is either S~(0) or S 2~(0), which is a

contradiction.

1224 J. A. BERGSTRA AND J. V. TUCN3R

Now suppose that o is a substitution such that u (1(X, Z)) is a subterm of

t2.Let

cr(xi) = Sin(i)(o)

CT(Z) = mm(w)(o),..., we)(o), 0)

fori= l,..., p. Note that since u(Z) is a subterm of tz

r(i) = k or r(i) = 2k

fori= l,..., e, by the construction of tz from t~.

We will construct a substitution a’ such that m’(l(X, Z)) is a subterm of tl.

Define A: [1, p] + N by

~(i) = m(i) – k if k < m(i) s 2k

= m(i) + k otherwise

and set

U’(xi) = S*(i)(o)

~’(,z) = ~~~(~s~–’(l)(()), ~s~-’(’)(()),a),

Thus, in the case of o’(Z), the S~(0) and S2~(0) in CT(Z) are interchanged.

We know that m (1(X, Z)) is a subterm of t2.Then we can compare these

terms starting from the innermost subterm Z. This leads to the following

identities between the powers of the numerals: first by matching the subterm

a(z),

r(e) = 3k – l(d)

(Al)

r(l) =3k–l(d–e+l)

and next by matching the remainder of m (1(X, Z)),

M(q) + tn(m(q)) = 3k – l(d – e)

(Bl)

M(l) + rn(m-(1)) = 3k – l(d – e – q + 1).

To prove the claim, we must prove that m’(l(X, Z)) matches tl. This occurs if,

and only if, the following identities hold

and

3k – r(e) = l(d)

(A,)

3k–r(l)=l(d–e+l)

M(q) + A(m(~(q))) = l(d – e)

(B,)

M(q) + A(m(T(l))) = l(d – e – q + 1).

The set of identities A ~ are immediately derivable from A ~. Consider the first

identity of B2. We will show it is derivable from the first identity of BI, which

is

M(q) + m(m(q)) = 3k – l(d – e).

Equational Specifications 1225

There are two cases:

l(d–e)=k or l(d – e) = 2k

(i) /(d – e) = k. Now M(q) + rn(~(q)) = 2k. Since M(q) < k (k bound

LHS of equations) we know 2k z m(n(q)) > k. Thus, by definition of AI

~(rn(m(q))) = nz(~(q)) – k.

So substituting,

M(q) + A(nz(n(q))) = M(q) + m(m(q)) – k

=2k–k

=k

=l(d– e).

(ii) /(d – e) = 2k. Now M(q) + nz(~(q)) = k. Again M(q) < k implies

rn(m(q)) < k. SO

A(nz(m(q))) = nz(m(q)) + k,

Substituting

M(q) + A(rn(m(q))) = M(q) + rn(m(q)) + k

=k+k

= 2k

=I(d– e).

The other identities of Bz follow similarly from corresponding identities

of l?,. Q.E.D.

7. Results on Semicomputable Algebras

We now consider the situation for semicomputable algebras,

7.1. RECURSIVE AND RE SPECIFICATIONS OF SEMICOMPUTABLE ALGEBRAS

THEOREM 7.1.1. Let A be a minimal 2 algebra, Then A is semicomputable $,

and only if, A possesses a recursively enumerable complete TRS specification

(2, E).

PROOF. If A has a recursively enumerable equational specification, then it

is semicomputable (Lemma 4.2.3). The argument for the converse follows that

of Theorem 4.3.1. Using similar notation, define

EA = {tl = t2[y-l(tl) > y-1(t2)and tl =,4 tz}.

Clearly, EA is recursively enumerable since A is semicomp.utable.

Let TY = im(nfY) be a transversal for ‘~ . we claim TY 1s the set ‘f ‘OTmal

forms for the TRS (Z, E~). First, the terms in TY do not reduce, since neither

they nor their subterms occur on the LHS since they are minimal in size (with
respect to y). #my term t @ TY can be reduced since f = nfy(t) ~ EA.

Thus, NF(Z, E~) = T7.
The TRS (2, EA) is strongly terminating because the monotonic property of

y implies that any reduction t + t’entails y-l(t) > Y-l (t’).

1226 J. A. BERGSTRA AND J. V. TUCKER

Ground confluence follows immediately from the fact that every closed term

t can reduce in one step to its normal form n~Y(t). In order to prove confluence

one may use the critical pairs theorem of Knuth and Bendix. Indeed all critical

pairs of (Z, E~) are convergent and (2, E~) is terminating, because all reduc-

tions lead to shorter terms. See the survey [Klop 1992, 2.4.141.

Since (Z, E~) is strongly terminating and confluent, it is complete.

Finally, since NF(Z, E~) = T, is a transversal for =~ and trivially A ~

ALG(2, EA) we deduce that

by Lemma 3.4.3. Q.E.D.

THEOREM 7.1.2. There is a semicomputable single sorted 2 algebra A that does

not possess a recursive complete TRS specification.

PROOF. By Theorem 6.5 in Bergstra and Tucker [1987], there is a semicom-

putable algebra A that does not possess a recursive equational specification

under initial algebra semantics; this A does not possess a recursive equational

complete TRS specification (Lemma 4.2.3). Q.E.D.

7.2. ORTHOGONAL SPECIFICATIONS

THEOREM 7.2.1. There is a semicomputable single sorted Z algebra A that does

not possess a recursively enumerable, complete, orthogonal TRS specification

(2, E).

PROOF. Let {O, 1}* be the set of finite sequences over {O, 1} and e G {O, 1}*

be the empty sequence. Let 1 be a new symbol.

Consider the algebra

A=({O,l}* u{l}, ~,1, f,g)

whose unary operations are defined by

f(l)=L

f(x) =x. o if x+1

and

g(l)=l

g(.x)=.x”l if x#l.

Let Z c {O, 1}* and assume that

(i) Z is suffix-closed, that is, for any x, y = {O, 1}*

xCZ implies x-y =2;

(ii) Z’ = {O, 1}* – Z is infinite.

Note that from (i) and (ii) it follows that e @ Z. If Z is nonempty, then Z is

infinite.

We define a congruence == on A by

X=zy if, and only if, x,y CZU{J-}orx=y.

Equational Specifications 1227

Let Az = A\ -= .

LEMMA 7,2,2. Z is recursively enumerable ~, and only if Az is semicom-

putable.

PROOF. Immediate. Q.E.D.

We want to choose Z satisfying (i) and (ii) such that

(iii) Z is recursively enumerable

(iv) If V c {O, 1}* is infinite and recursively enumerable, then V n Z # 0.

LEMMA 7.2,3. A Z satisjjing (i)–(iu) exists.

PROOF, Let y: N ~ {O, 1}* be a bijective enumeration of finite strings, Let

(WC, e G N) be an enumeration of the recursively enumerable subsets of N

and take Y(W,), e c N to be an enumeration of the recursively enumerable

subsets of {O, 1}*. Let

z= Unzn,

where Z. is defined uniformly in n to be a semicomputable set such that

Y(W.) infinite implies -y(W.) n Z, # 0.

The algorithm for Z. is defined as follows: let

c(n) = (least k)[k ● W. and Ily(k)ll > 2n + 11

and set

x G Z. - x extends the string y (c(n))

for x G {O, l}*.

First note that Z is infinite and recursively enumerable. Next note, by

definition of when c(n) is defined, Z n y(W~) # @ for all n such that W. is

infinite.

Finally, we show that Z’ is infinite. Recall the measure p on subsets of

{O, 1}* defined from

1
ld~x) = fi>

where BX = {y ● {O, 1}* Iy extends x}.

Then

~(z’) = 1 – ~ p(zn)
~=o

cc 1
.

1 – E 22.+1
~=(1

>0.

Thus, Zc is infinite. Q.E.D.

Let 2 be the signature of A:

sort s
constants E,l :s
operations F:s-+s

G:s+s

1228 J. A. BERGSTRA AND J. V. TUCRER

LEMMA 7.2.4. The algebra Az does not possess a recursively enumerable

orthogonal TRS equational specification which is strongly terminating for ground

terms.

PROOF. Suppose for a contradiction that such a specification (S, E) exists.

First note that E is infinite for if E is finite then (~, E) is a finite complete

TRS specification of Az and this implies Az is computable, which contradicts

the choice of Z,

Now let t~ be a normal form for J_.

We divide the equations into two sets El and Ez: let E = El u E2 where

the equations of Ez are precisely those of E whose LHS have the following

forms:

Notice that IEz I s 3 because E is orthogonal and its equations may not

overlap.

Hence, we know that El is infinite. We will construct from El an infinite

recursively enumerable subset X of 2’. This will contradict clause (iv) in the

definition of Z.

We define for s = {O, 1}* a term 7,(X) = T(Z, X) in the single variable X as

follows:

T.(x) = x

Tr.o(x) = F(7r(x)) if s=r. O

Tr.l(X) = G(Tr(X)) if s=r.1

Now each equation e = El has a LHS of one of the following forms

(0 F(T,(X)) (3) F(7’$(E)) (5) F(T,(L))

(’2) G(T,(X)) (4) G(T,(E)) (6) G(T.(L))

for some s. In the case of closed terms (3)–(6) we note that 7,(E) and ~~(.L) are

not syntactically identical to L . To see this notice that 7,(e) or ~,(-L) can only

be syntactically identical to L if s = e; so let us assume this. There are two

cases.

(i) Ifl=tl, then an equation e with LHS F(7,(L)) or G(~$(1)) is in E2
and hence not in El.

(ii) If -L is not t~ , then suppose that ~c(L) = 1 . Now let equation e have
F(7C(L)) = I’(1) as a LHS. Then equation e shows an overlap with a rule

that allows 1 to reduce which must exist since -L is not syntactically

equal to its normal form t ~ . This contradicts the orthogonality of E.

Further, we note that ~ cannot be a LHS of e e El, since it is a normal

form; this follows from the fact that no other term has value [e] GA/ -z .
Q,E.D.

CLAIM 7.2.5. If e G El has a form (l)–(6) with indexs ● {O, 1}*, then s ~ Z.

Assuming this claim, we can complete the argument of Lemma 7.2.4 as

follows: Let

X = {s c {O, 1}*: s is an indexforan equation e e El ofform (l)-(6)}.

Equational Specifications 1229

Since El is infinite and recursively enumerable, we have that X is infinite and

recursively enumerable. By claim, X c 2’. This is the desired contradiction of

clause (iv).

PROOF OF CLAIM 7.2.5. We argue by contradiction: Suppose e c El, There

are six cases, depending on the form of e = El.

First, we show that forms (5) and (6) cannot arise with index s in Z; we

consider case (5) only, as (6) is similar. Observe that

Hence, ~~(L) and t. have a common reduct t~ ; a rewriting is necessary
because 7,(1-) is not J_ . The equation that performs this rewrite must overlap

with the equation e of type (5). Thus, e does not exist.

Now, we show that the forms (3) and (4) cannot arise with index s in Z; we

consider case (3) only, as (4) is similar. Since s e Z

Az 1= T,(E) =1 and Azi=l=tl.

Hence, 7,(~) and t~ have a common reduct. Again the existence of a rewrite

implies that an equation overlaps e and contradicts orthogonality. So e with

index s 6 Z does not exist.

Finally, we consider forms (1) and (2); (2) is similar to (l). If s c Z, then on

substituting e in ~$(X) we obtain

Thus there is a reduction of ~~(~) to t~ and, since e is a normal form, this

rewrite involves function symbols in 7,(X). It follows that the first reduction of

~$ c) is performed by an equation that overlaps with e, which is the desired

contradiction. (2.E.D.

8. Concluding Remarks

We conclude that complete term rewriting systems are adequate for the

equational specification of computable data types. Hidden functions will often

be needed and the use of hidden functions in normal forms cannot, in general,

be avoided. An open question is this: Under what conditions can a computable

data type be specified using a complete equational term rewriting system

involving hidden functions and whose normal forms do not use the hidden

functions?

We think that the development of many sorted term rewriting is an interest-

ing and useful project, Arising in our work is the topic of the relationship

between term rewriting systems over many sorted signatures with common

subsignatures, Perhaps, new many sorted modularity results for term rewriting

systems could lead to an easy and satisfying proof of many sorted case of

Theorem 1.1 from a proof of the single sorted case.

REFERENCES

BERGSTRA,J. A., KLOP, J. W., AND MIDDELDORP, A. 1989. Termherschrijf~stemen (in Dutch).
IUuwer, Amsterdam, The Netherlands.

BERGSTRA,J. A., ANDTUCRER,J. V. 1979. Algebraic specifications of computable and semicom-
putable data structures. Department of Computer Science Research Report IW 115/79.
Mathematical Centre, Amsterdam, The Netherlands.

1230 J, A. BERGSTRA AND J. V, TUCKER

BERGSTRA,J. A., AND TUCKER,J. V. 1980a. A natural data type with a finite equational final
semantics specification, but no effective equational initial specification, Bull. EA TCS 11, 23–33.

BERGSTRA, J. A., AND TUCKER, J. V. 1980b. A characterisation of computable data types by
means of a finite equational specification method, in Automata, languages and programming

(ICALP), 7th Colloquium, Noordwijkerhout, J. W. de Bakker and J. van Leeuwen, eds. Lecture
Notes in Computer Science, vol. 81. Springer-Verlag, Berlin, pp. 76-90.

BERGSTW, J, A., AND TUCKER, J. V. 1983a. Initial and final algebra semantics for data type
specifications: Two characterisation theorems, NAM J. Comput. 12, 366–387.

BERGSTRA, J. A., AND TUCKER, J. V. 1983b. The completeness of the algebraic specification
methods for computable data types. Zn~. Cont. 54, 186-200.

BERGSTRA, J. A,, AND TUCRER, J. V, 1987. Afgebraic specifications of computable and semicom-
putable data types. Theoret. Cornput. Sci. 50, 137-181.

CUTLAND, N. 1980. Computability. Cambridge University Press, Cambridge, England.

DAUCHET, M. 1989. Simulation of Turing machines by a left linear rewrite rule. In N. Der-
showitz, Ed., RTA 89. Lecture Notes in Computer Science, vol. 355. Springer-Verlag, Berlin,
Germany, pp. 109-120.

DERSHOWITZ, N. 1987. Termination of rewriting. J. ,Symb. Corrrput. 3, 69–1 16.

EHRIG, H., AND MAHR, B. 1985. Fundamentals of algebraic specifications 1 (EATCS Mono-
graphs). In Theor-et. Comput. Sci. 6. Springer-Verlag, Berlin.

ERSHOV, Y. 1977. Theorie der Numerierungen III. Z. Math Logic 23, 289-371.
GOGUEN, J. A., THATCHER, J. W., AND WAGNER, E. G. 1978. An initial algebra approach to the

specification, correctness and implementation of abstract data types. In Current Trends in
Programming Methodology. IV. Data Structuring. R. T. Yeh, ed. Prentice-Hall, Engelwood Cliffs,
New Jersey, pp. 80–149.

KAMIN, S. 1979. Some definitions for algebraic data type specifications, ACM SIGPLAN Notices
14, 3, 28-37,

IQoP, J. W. 1992. Term rewriting systems. In Handbook of Logic in Computer Science. Vol. 2. S.
Abramsky, D. Gabbay, and T. S. E. Maibaum, eds. Oxford University Press, Oxford, England,
pp. 1-116.

MAL’CEV, A. I. 1961/1971. Constructive algebras, I., Russian Mathematical Surueys, 16 (1961)
77-129. Afso in: The Metamathematics of Algebraic Systems. Collected Papers 1936-1967, B. F.
Wells, III, cd., North Holland, Amsterdam, The Netherlands, pp. 148-212.

MEINKE, K., AND TUCKER, J. V. 1992. Universal algebra. In Handbook of Logic in Computer
Science. Vol. 1. S. Abramsky, D. Gabbay and T. S. E. Maibaum, Eds., Oxford University Press,
Oxtord, England, pp. 189-411.

MESEGUER,J., AND GOGUEN, J. A. 1985. Initiality, induction and computability, In Algebraic
Methods in Semantics. M, Nivat and J. Reynolds, eds. Cambridge University Press, Cambridge,
England, pp. 459-541.

MESEGUER,J., Moss, L., AND GOGUEN, J. A. 1992. Final algebras, cosemicomputable algebras,
and degrees of unsolvability. Theoret. Comput, Sci. 100, 267–302.

RABIN, M. O. 1960. Computable algebra, general theory and the theory of computable fields.
Trans. Amer. Math. Sot. 95, 341-360.

STOLTENBERG-HANSEN, V., AND TUCKER, J. V. 1995, Effective algebra. In Handbook of Lofl”c in
Computer Science, Vol. 4. S. Abrams@, D. Gabbay, and T. S. E. Maibaum, eds. Oxford
University Press, Oxford, England.

WECHLER,W., 1992. Universal algebra for Computer Scientists. Springer-Verlag, Berlin, Germany.
WIRSING,M. 1990. Afgebraic specifications. In Handbook of Theoretical Computer Science. Vol.

B: Formal models and semantics. J. van Leeuwen, Ed. North-Holland, Amsterdam, The Nether-
lands, pp. 675-788.

RECEIVEDAUGUST1992 REVISEDNOVEMBER1994; ACCEPTEDJUNE1995

Journalof the Associationfor ComputingMachinery,Vol. 42, No. 6, November 1995.

