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1. INTRODUCTION

The goal of the Haskell committee was to design a standard lazy functional lan-
guage, applying existing, well-understood methods. To the committee’s surprise, it
emerged that there was no standard way to provide overloaded operations such as
equality (==), arithmetic (+), and conversion to a string (show).

Languages such as Miranda1 [Turner 1985] and Standard ML [Milner and Tofte
1991; Milner et al. 1990] offer differing solutions to these problems. The solutions
differ not only between languages but within a language. Miranda uses one tech-
nique for equality (it is defined on all types — including abstract types on which it
should be undefined!), another for arithmetic (there is only one numeric type), and
a third for string conversion. Standard ML uses the same technique for arithmetic
and string conversion (overloading must be resolved at the point of appearance),
but a different one for equality (type variables that range only over equality types).

The Haskell committee adopted a completely new technique, based on a proposal
by Wadler, which extends the familiar Hindley-Milner system [Milner 1978] with
type classes. Type classes provide a uniform solution to overloading, including
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providing operations for equality, arithmetic, and string conversion. They generalize
the idea of equality types from Standard ML and subsume the approach to string
conversion used in Miranda. This system was originally described by Wadler and
Blott [1989], and a similar proposal was made independently by Kaes [1988].

The type system of Haskell is certainly its most innovative feature and has pro-
voked much discussion. There has been closely related work by Rouaix [1990] and
Cormack and Wright [1990]; Nipkow and Snelting [1991] and Nipkow and Pre-
hofer [1993] also describe type inference algorithms for type classes based on sorts;
and work directly inspired by Haskell type classes includes the closely related Gofer
type system with its multiparameter classes [Jones 1992a; 1992b; 1994], an exten-
sion of ML with type classes [Volpano and Smith 1991], constructor classes [Jones
1995], first-class abstract data types [Läufer 1992; 1993; Läufer and Odersky 1994;
Odersky and Läufer 1991], and parametric type classes [Chen 1994; 1995; Chen et
al. 1992].

This article presents a source language (lambda calculus with implicit typing
and with overloading) and a target language (polymorphic lambda calculus with
explicit typing and without overloading). The semantics of the former is provided by
translation into the latter, which has a well-known semantics [Huet 1990]. Normally,
one expects a theorem stating that the translation is sound, in that the translation
preserves the meaning of programs. That is not possible here, as the translation
defines the meaning of programs. It is a shortcoming of the system presented here
in that there is no direct way of assigning meaning to a program, and it must
be done indirectly via translation; but there appears to be no alternative. (Note,
however, that Kaes [1988] does give a direct semantics for a slightly simpler form
of overloading.)

The original type inference rules given by Wadler and Blott [1989] were deliber-
ately rather sparse and were not intended to reflect the Haskell language precisely.
As a result, there has been some confusion as to precisely how type classes in Haskell
are defined.

1.1 Contributions of this Article

In comparison with previous work, this article makes several new contributions.

(1) With the few exceptions noted in Section 1.2, this article spells out the precise
definition of type classes in Haskell. These rules arose from a practical impetus:
our attempts to build a compiler for Haskell. The rules were written to provide
a precise specification of what type classes were, but we found that they also
provided a blueprint for how to implement them.

(2) This article presents a simplified subset of the rules we derived. The full static
semantics of Haskell [Peyton Jones and Wadler 1991] contains over 30 judgment
forms and over 100 rules. The reader will be pleased to know that this article
simplifies the rules considerably, while maintaining their essence in so far as type
classes are concerned. The full rules are more complex because they deal with
many additional syntactic features such as type declarations, pattern matching,
and list comprehensions.

(3) This article shows how the static analysis phase of our Haskell compiler was
derived by adopting directly the rules in the static semantics. This was gener-
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ally a very straightforward task. In our earlier prototype compiler, and in the
prototype compilers constructed at Yale and Chalmers, subtleties with types
caused major problems. Writing down the rules has enabled us to discover
bugs in the various prototypes and to ensure that similar errors cannot arise in
our new compiler. We have been inspired in our work by the formal semantics
of Standard ML prepared by Milner et al. [1990; 1991]. We have deliberately
adopted many of the same techniques they use for mastering complexity.

(4) This approach unites theory and practice. The industrial-grade rules given
here provide a useful complement to the more theoretical approaches of Wadler
and Blott [1989], Blott [1991], Nipkow and Snelting [1991], Nipkow and Pre-
hofer [1993], and Jones [1992a; 1992b; 1993]. A number of simplifying assump-
tions made in those papers are not made here. Unlike Wadler and Blott [1989],
it is not assumed that each class has exactly one operation. Unlike Nipkow and
Snelting [1991], it is not assumed that the intersection of every pair of classes
must be separately declared. Unlike Jones [1992a; 1992b], we deal directly with
instance and class declarations. Each of those papers emphasizes one aspect
or another of the theory, while this article stresses what we learned from prac-
tice. At the same time, these rules provide a clean, “high-level” specification
for the implementation of a typechecker, unlike more implementation-oriented
papers [Augustsson 1993; Hammond and Blott 1989].

A further contribution of this work is the use of explicit polymorphism in the
target language, as described in Sections 1.3 and 5.2.

1.2 Outstanding Issues

Since this article does not attempt to be a complete semantics for type classes in
Haskell, there are a number of issues which are not addressed here. These issues
are addressed by the full static semantics [Peyton Jones and Wadler 1991]. The
most important of these are:

(1) The rules do not allow polymorphic class methods: the only type variable
which can appear in the type of a method is the one constrained by the class
declaration. It would be straightforward to extend the rules to cover this case.

(2) There is no treatment of the Haskell monomorphism restriction, which was
introduced in Haskell 1.1 for efficiency reasons. Essentially, the restriction
limits the use of the GEN rule for value definitions with overloaded types, so
that overloaded type variables are generalized only for function definitions or if
an explicit type signature is provided. This improves sharing in the translation:
since an overloaded value could be used at multiple types it would normally
need to be recomputed once for each occurrence in the enclosing definition; the
monomorphism restriction ensures that (1) the value is used only at one type
and (2) that the result may therefore be reused. Papers by Hammond and
Blott [1991] and Augustsson [1993] consider this in more detail.

(3) This article does not consider the use of default types to resolve certain type
ambiguities. While the use of default types has been found to be invaluable in
practice, they can technically lead to an incoherent semantics, as demonstrated
by Blott [1991]. A good treatment of ambiguity in type classes can be found
in Nipkow and Prehofer [1993].
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1.3 A Target Language with Explicit Polymorphism

As in Wadler and Blott [1989], Nipkow and Snelting [1991], and Jones [1992a;
1992b], the rules given here specify a translation from a source language with type
classes to a target language without them. The translation implements type classes
by introducing extra parameters to overloaded functions, which are instantiated at
the calling point with dictionaries that define the overloaded operations.

The target language used here differs in that all polymorphism has been made
explicit. In Wadler and Blott [1989], Nipkow and Snelting [1991], and Jones [1992a;
1992b], the target language resembles the implicitly typed polymorphic lambda
calculus of Hindley [1969] and Milner [1978]. Here, the target language resembles
the explicitly typed second-order polymorphic lambda calculus of Girard [1972] and
Reynolds [1974]. It has constructs for type abstraction and application, and each
bound variable is labeled with its type.

The reason for using this as our target language is that it makes it easy to extract
a type from any subterm. This greatly eases later stages of compilation, where
certain optimizations depend on knowing a subterm’s type. An alternative might
be to annotate each subterm with its type, but our method has three advantages.

(1) It uses less space. Types are stored in type applications and with each bound
variable, rather than at every subterm.

(2) It eases subsequent transformation. A standard and productive technique for
compiling functional languages is to apply various transformations at interme-
diate phases [Peyton Jones 1987]. With annotations, each transformation must
carefully preserve annotations on all subterms and add new annotations where
required. With polymorphic lambda calculus, the usual transformation rules —
e.g., β-reduction for type abstractions — preserve type information in a simple
and efficient way.

(3) It provides greater generality. Our back end can deal not only with languages
based on Hindley-Milner types (such as Haskell) but also languages based on
the more general Girard-Reynolds types (such as Ponder).

The use of explicit polymorphism in our target language is one of the most innova-
tive aspects of this work. Further, this technique is completely independent of type
classes — it applies just as well to any language based on Hindley-Milner types.

1.4 Structure of the Article

This article does not assume prior knowledge of type classes. However, the intro-
duction given here is necessarily cursory; for further motivating examples, see the
original paper by Wadler and Blott [1989]. For a comparison of the Hindley-Milner
and Girard-Reynolds systems, see the excellent summary by Reynolds [1985]. For
a practicum on Hindley-Milner type inference, see the tutorial by Cardelli [1987].

The remainder of this article is organized as follows. Section 2 introduces type
classes and our translation method. Section 3 describes the various notations used
in presenting the inference rules. The syntax of types, the source language, and the
target language is given, and the various forms of environment used are discussed.
Section 4 presents the inference rules. Rules are given for types, expressions, dictio-
naries, class declarations, instance declarations, and programs. Finally, Section 6
describes how these rules can be used directly in a monad-based implementation.
ACM Transactions on Programming Languages, Vol. 18, No. 2, March 1996.



Type Classes in Haskell · 113

2. TYPE CLASSES

This section introduces type classes and defines the required terminology. Some
simple examples based on equality and comparison operations are introduced. Some
overloaded function definitions are given, and we show how they translate. The
examples used here will appear as running examples through the rest of the article.

2.1 Classes and Instances

A class declaration provides the names and type signatures of the class operations:

class Eq a where (==) :: a -> a -> Bool

This declares that type a belongs to the class Eq if there is an operation (==) of
type a -> a -> Bool. That is, a belongs to Eq if equality is defined for it.

An instance declaration provides a method that implements each class operation
at a given type:

instance Eq Int where (==) = primEqInt
instance Eq Char where (==) = primEqChar

This declares that type Int belongs to class Eq and that the implementation of
equality on integers is given by primEqInt, which must have type Int -> Int
-> Bool. The same is true for characters.

Under this system both 2+2 == 4 and ’a’ == ’b’ are well typed. As usual,
x == y abbreviates (==) x y. In our examples, we assume all numerals have type
Int.

Functions that use equality may themselves be overloaded:

member = \ x ys -> not (null ys) && (x == head ys || member x (tail ys))

This uses Haskell lambda expressions: \ x ys -> e stands for λx. λys. e. In prac-
tice we would use pattern matching rather than null, head, and tail, but here we
avoid pattern matching, since we give typing rules for expressions only. Extending
to pattern matching is easy, but adds unnecessary complication.

The type system infers the most general possible signature for member:

member :: (Eq a) => a -> [a] -> Bool

The phrase (Eq a) is called a context of the type — it limits the types that a can
range over to those belonging to class Eq. As usual, [a] denotes the type of lists
with elements of type a. The two expressions (member 1 [2,3]) or (member ’a’
[’c’,’a’,’t’]) are therefore well typed, but (member sin [cos,tan]) is not,
since there is no instance of equality over functions. A similar effect is achieved
in Standard ML by using equality type variables; type classes can be viewed as
generalizing this behavior.

Instance declarations may themselves contain overloaded operations, if they are
provided with a suitable context:

instance (Eq a) => Eq [a] where
(==) = \ xs ys -> (null xs && null ys) ||

(not (null xs) && not (null ys) &&
head xs == head ys && tail xs == tail ys)
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This declares that for every type a belonging to class Eq, the type [a] also belongs
to class Eq and vice versa, and gives an appropriate definition for equality over
lists. Note that head xs == head ys uses equality at type a, while tail xs ==
tail ys recursively uses equality at type [a]. The expression [’c’,’a’,’t’] ==
[’d’,’o’,’g’] is therefore well typed.

Every entry in a context pairs a class name with a type variable. Pairing a class
name with a more specific type is not allowed. For example, consider the definition:

palindrome xs = (xs == reverse xs)

The inferred signature is:

palindrome :: (Eq a) => [a] -> Bool

Note that the context is (Eq a), not (Eq [a]). The simpler context can be inferred
from the context for the instance declaration, since whenever the type [a] belongs
to class Eq, the type a must also belong to class Eq.

2.2 Superclasses

A class declaration may include a context that specifies one or more superclasses:

class (Eq a) => Ord a where
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool

This declares that type a belongs to the class Ord if there are operations (<) and
(<=) of the appropriate type and if a belongs to class Eq. Thus, if (<) is defined
on some type, then (==) must be defined on that type as well. We say that Eq is
a superclass of Ord.

The superclass hierarchy must form a directed acyclic graph. An instance dec-
laration is valid for a class only if there are also instance declarations for all its
superclasses. For example

instance Ord Int where
(<) = primLtInt
(<=) = primLeInt

is valid, since Eq Int is already a declared instance.
Superclasses allow simpler signatures to be inferred. Consider the following def-

inition, which uses both (==) and (<):

search = \ x ys -> not (null ys) && ( x == head ys ||

( x < head ys && search x (tail ys))

The inferred signature is:

search :: (Ord a) => a -> [a] -> Bool

Without superclasses, the context would have been (Eq a, Ord a).

2.3 Translation

The inference rules specify a translation of source programs into target programs
where the overloading is made explicit.

Each instance declaration generates an appropriate corresponding dictionary dec-
laration. The dictionary for a class contains dictionaries for all the superclasses and
ACM Transactions on Programming Languages, Vol. 18, No. 2, March 1996.
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methods for all the operators. Corresponding to the Eq Int and Ord Int instances,
we have the dictionaries:

dictEqInt = 〈 〈〉, primEqInt〉
dictOrdInt = 〈 〈dictEqInt〉, primLtInt, primLeInt〉

Here 〈e1, . . . , en〉 builds a dictionary. The dictionary for Ord contains a dictionary
for its superclass Eq and methods for (<) and (<=).

For each operation in a class, there is a selector to extract the appropriate method
from the corresponding dictionary. For each superclass, there is also a selector to
extract the superclass dictionary from the subclass dictionary. Corresponding to
the Eq and Ord classes, we have the selectors:

(==) = \ 〈 〈〉, == 〉 -> ==
getEqFromOrd = \ 〈 〈dictEq 〉, <, <= 〉 -> dictEq
(<) = \ 〈 〈 dictEq 〉, <, <= 〉 -> <

(<=) = \ 〈 〈 dictEq 〉, <, <= 〉 -> <=

Each overloaded function has extra parameters corresponding to the required
dictionaries. Here is the translation of search from Section 2.2:

search = \ dOrd x ys -> not (null ys) &&
( (==) (getEqFromOrd dOrd) x (head ys) ||

( (<) dOrd x (head ys) && search dOrd x (tail ys)))

Each call of an overloaded function supplies the appropriate parameters. Thus the
term (search 1 [2,3]) translates to (search dictOrdInt 1 [2,3]).

If an instance declaration has a context, then its translation has parameters
corresponding to the required dictionaries. Here is the translation for the instance
(Eq a) => Eq [a] from Section 2.1:

dictEqList = \ dEq -> 〈\ xs ys ->

( null xs && null ys ) ||

( not (null xs) && not (null ys) &&
(==) dEq (head xs) (head ys) &&
(==) (dictEqList dEq) (tail xs) (tail ys))〉

When given a dictionary for Eq a this yields a dictionary for Eq [a]. To get a
dictionary for equality on list of integers, one writes dictEqList dictEqInt.

The actual target language used differs from the above in that it contains extra
constructs for explicit polymorphism. See Section 3.2 for examples.

3. NOTATION

This section introduces the syntax of types, the source language, the target lan-
guage, and the various environments that appear in the type inference rules.

3.1 Type Syntax

Figure 1 gives the syntax of types. Types come in three flavors: simple, overloaded,
and polymorphic. Recall from the previous section the type signature for search,
(Ord a) => a -> [a] -> Bool, which we now write in the form ∀α.〈Ord α〉 ⇒
α→ List α→ Bool. This is a polymorphic type of the form σ = ∀α. θ ⇒ τ built
from a context θ = 〈Ord α〉 and a simple type τ = α → List α → Bool. There
are also record types, γ, which map class operation names to their types. These
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Type variable α

Type contructor χ

Class name κ

Simple type τ → α
| χ τ1 . . . τn (n ≥ 0, n = arity(χ))
| τ ′ → τ

Overloaded type ρ → φ⇒ τ

Polymorphic type σ → ∀α1 . . . αn . θ ⇒ τ (n ≥ 0)

Context θ → 〈κ1 α1, . . . , κn αn〉 (n ≥ 0)

Saturated Context φ → 〈κ1 τ1, . . . , κn τn〉 (n ≥ 0)

Record Type γ → 〈v1 : τ1, . . . , vn : τn〉

Fig. 1. Syntax of types.

program → classdecls ; instdecls ; exp Programs

classdecls → classdecl1; . . . ; classdecln Class declaration (n ≥ 0)
instdecls → instdecl1; . . . ; instdecln Instance declaration (n ≥ 0)

classdecl → class θ ⇒ κ α Class declaration
where γ

instdecl → instance θ ⇒ κ (χ α1 . . . αk) Instance declaration (k ≥ 0)
where binds

binds → 〈var1 = exp1 , . . . , varn = expn〉 (n ≥ 0)

exp → var Variable
| λ var . exp Function abstraction
| exp exp′ Function application
| let var = exp′ in exp Local definition

Fig. 2. Syntax of source programs.

appear in the source syntax for classes. Here Ord is a class name; List is a type
constructor of arity 1; and Bool is a type constructor of arity 0.

There is one subtlety. In an overloaded type ρ or a saturated context φ, entries
may have the form κ τ , whereas in a polymorphic type σ or a context θ entries are
restricted to the form κ α (as with the palindrome example from Section 2.1. The
extra generality of overloaded types is required during the inference process.

3.2 Source and Target Syntax

Figure 2 gives the syntax of the source language. A program consists of a sequence of
class and instance declarations, followed by an expression. The Haskell language
also includes features such as type declarations and pattern matching, which have
ACM Transactions on Programming Languages, Vol. 18, No. 2, March 1996.
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program → letrec bindset in exp Program

bindset → var1 = exp1; . . . ; varn = expn Binding set (n ≥ 0)

exp → var Variable
| λ pat. exp Function abstraction
| exp exp′ Function application
| let var = exp′ in exp Local definition
| 〈exp1, . . . , expn〉 Dictionary formation (n ≥ 0)
| Λα1 . . . αn . exp Type abstraction (n ≥ 1)
| exp τ1 . . . τn Type application (n ≥ 1)

pat → var : τ
| (pat1, . . . ,patn) (n ≥ 0)

Fig. 3. Syntax of target programs.

Environment Notation Type

Type variable environment AE {α}
Type constructor environment TE {χ : k}
Type class environment CE {κ : class θ ⇒ κ α where γ}
Instance environment IE {dvar : ∀α1 . . . αn. θ⇒ κ τ}
Local instance environment LIE {dvar : κ τ}
Variable environment V E {var : σ}
Environment E (AE,TE,CE, IE,LIE, V E)
Top level environment PE ({}, TE,CE, IE, {}, V E)
Declaration environment DE (CE, IE, V E)

Fig. 4. Environments.

been omitted here for simplicity. The examples from the previous section fit the
source syntax precisely.

Figure 3 gives the syntax of the target language. We write the nonterminals of
translated programs in boldface: the translated form of var is var and of exp is
exp. To indicate that some target language variables and expressions represent
dictionaries, we also use dvar and dexp.

The target language uses explicit polymorphism. It gives the type of bound
variables in function abstractions, and it includes constructs to build and select
from dictionaries and to perform type abstraction and application. A program
consists of a set of bindings, which may be mutually recursive, followed by an
expression. Type inference rules for this language appear in Section 5.

Notice that no class types appear in the translation. Given an environment E as
defined below, a context θ or record type γ can be converted into a monotype by
tran E θ or tran E γ. The tran function is defined in Section 4.7.

3.3 Environments

The inference rules use a number of different environments, which are summarized
in Figure 4.
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TE0 =

{
Int : 0,

Bool : 0,
List : 1

}

CE0 =


Eq :

{
class Eq α where 〈(==):α→ α→ Bool〉

}
,

Ord :

{
class 〈Eq α〉 ⇒ Ord α where

〈 (<): α→ α→ Bool,
(<=): α→ α→ Bool〉

}


IE0 =


getEqFromOrd : ∀α. 〈Ord α〉 ⇒ Eq α,
dictEqInt : Eq Int,
dictEqList : ∀α. 〈Eq α〉 ⇒ Eq (List α),
dictOrdInt : Ord Int


V E0 =

{
(==) : ∀α. 〈Eq α〉 ⇒ α→ α→ Bool,
(<) : ∀α. 〈Ord α〉 ⇒ α→ α→ Bool,
(<=) : ∀α. 〈Ord α〉 ⇒ α→ α→ Bool

}
E0 = ({ }, TE0, CE0, IE0, { }, V E0)

Fig. 5. Initial environments.

The environment contains sufficient information to verify that all type variables,
type constructors, class names, and individual variables appearing in a type or
expression are valid. Environments come in two flavors: map environments and
compound environments.

A map environment associates names with information. We write ENV name =
info to indicate that environment ENV maps name name to information info. If
the information is not of interest, we just write ENV name to indicate that name is
in the domain of ENV. The type of a map environment is written in the symbolic
form {name : info}.

We have the following map environments.

—The type variable environment AE contains each type variable name α that may
appear in a valid type. This is the one example of a degenerate map, where there
is no information associated with a name. We write AE α to indicate that α is
in AE.

—The type constructor environment TE maps each type constructor χ to its arity
k.

—The type class environment CE maps a class name κ to a class declaration, which
contains all of the required type information.

—The instance environment IE maps a dictionary variable dvar to its correspond-
ing type. The type indicates that dvar is a polymorphic function that expects
one dictionary for each entry in θ and returns a dictionary for κ τ . This en-
vironment is used to record information about globally visible dictionaries and
dictionary selectors.
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—The local instance environment LIE is similar, except that the associated type
is monomorphic. Here the type indicates that dvar is a dictionary for κ τ . This
environment is used to record information about specific dictionaries.

—The variable environment V E maps a variable var to its associated polymorphic
type σ.

Environments corresponding to the examples in Section 2 are shown in Figure 5.
A compound environment consists of a tuple of other environments. We have the

following compound environments.

—Most judgments use an environment E consisting of a type variable, a type con-
structor, a type class, an instance, a local instance, and a variable environment.

—Top-level rules such as those for class and instance declarations use an initial
version PE of the environment E. This contains an empty AE and LIE.

—The judgments for class declarations produce a declaration environment DE
consisting of a type class, an instance, and a variable environment.

Again, these are summarized in Figure 4. We write V E of E to extract the
type environment V E from the compound environment E, and similarly for other
components of compound environments.

The operations ⊕ and
→
⊕ combine environments. The former checks that the

domains of its arguments are distinct, while the latter “shadows” its left argument
with its right:

(ENV1 ⊕ ENV2) var ={
ENV1 var if var ∈ dom(ENV1) and var 6∈ dom(ENV2)
ENV2 var if var ∈ dom(ENV2) and var 6∈ dom(ENV1),

(ENV1

→
⊕ ENV2) var ={

ENV1 var if var ∈ dom(ENV1) and var 6∈ dom(ENV2)
ENV2 var if var ∈ dom(ENV2).

For brevity, we write E1 ⊕ E2 instead of a tuple of the sums of the components of
E1 and E2; and we write E ⊕ V E to combine V E into the appropriate component
of E, and similarly for other environments. Sometimes we specify the components
of an environment explicitly and write ⊕ENV.

There are three implicit side conditions associated with environments:

(1) Variables may not be declared twice in the same scope. If E1 ⊕ E2 appears in
a rule, then the side condition dom(E1) ∩ dom(E2) = ∅ is implied.

(2) Every variable must appear in the environment. If E var appears in a rule,
then the side condition var ∈ dom(E) is implied.

(3) At most one instance can be declared for a given class and given type construc-
tor. If IE1 ⊕ IE2 appears in a rule, then the side condition

∀ κ1 (χ1 α1 . . . αm) ∈ IE1. ∀ κ2 (χ2 β1 . . . βn) ∈ IE2. κ1 6= κ2 ∨ χ1 6= χ2

is implied.
ACM Transactions on Programming Languages, Vol. 18, No. 2, March 1996.
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E
type

` τ

E
over-type

` θ⇒ τ

E
poly-type

` ∀α1, . . . , αn. θ ⇒ τ

(AE of E) α
TYPE-VAR

E
type
` α

(TE of E) χ = k

E
type
` τi (1 ≤ i ≤ k)

TYPE-CON

E
type
` χ τ1 . . . τk

(CE of E) κi (1 ≤ i ≤ m)
(AE of E) αi (1 ≤ i ≤ m)

E
type
` τ

TYPE-PRED

E
over-type
` 〈κ1 α1, . . . , κm αm〉 ⇒ τ

E ⊕AE {α1, . . . , αk}
over-type
` θ⇒ τ

TYPE-GEN

E
poly-type
` ∀α1 . . . αk. θ⇒ τ

Fig. 6. Type formation rules.

In some rules, types in the source syntax constrain the environments generated
from them. This is stated explicitly by the determines relation, defined as:

τ determines AE ⇐⇒ ftv(τ) = AE
θ determines LIE ⇐⇒ θ = ran(LIE).

4. RULES

This section gives the inference rules for the various constructs in the source lan-
guage. We consider in turn types, expressions, dictionaries, class declarations,
instance declarations, and full programs.
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4.1 Types

The rules for types are shown in Figure 6. The three judgment forms defined are
summarized in the upper left corner. A judgment of the form

E
type

` τ

holds if in environment E the simple type τ is valid. In particular, all type variables
in τ must appear in AE of E (as checked by rule TYPE-VAR), and all type
constructors in τ must appear in TE of E with the appropriate arity (as checked
by rule TYPE-CON). The other judgments act similarly for overloaded types and
polymorphic types.

Here are some steps involved in validating the type ∀α. 〈Ord α〉 ⇒ α → α →
Bool. Let AE = {α}, and let E0 be as in Figure 5. Then the following are valid
judgments:

(1) E0 ⊕AE
type

` α→ α→ Bool,

(2) E0 ⊕AE
over-type

` 〈Ord α〉 ⇒ α→ α→ Bool,

(3) E0

poly-type

` ∀α. 〈Ord α〉 ⇒ α→ α→ Bool.

Judgment (1) yields (2) via TYPE-PRED, and judgment (2) yields (3) via TYPE-
GEN.

The type inference rules are designed to ensure that all types that arise are valid,
given that all types in the initial environment are valid. In particular, if all types
appearing in the CE, IE, LIE, and V E components of E are valid with respect
to E, this property will be preserved throughout the application of the rules.

4.2 Expressions

The rules for expressions are shown in Figures 7–8. A judgment of the form

E
exp

` exp : τ ; exp

holds if in environment E the expression exp has simple type τ and yields the trans-
lation exp. The other two judgments act similarly for overloaded and polymorphic
types.

The rules are very similar to those for the Hindley-Milner system. The rule TAUT
handles variables; the rule LET handles let bindings; the rules ABS and COMB
introduce and eliminate function types; and the rules GEN and SPEC introduce and
eliminate type quantifiers. The new rules PRED and REL introduce and eliminate
contexts. Just as the rule GEN shrinks the type variable environment AE, the rule
PRED shrinks the local instance environment LIE. Unlike the original Hindley-
Milner system and most of its derivatives, we have chosen to restrict type variable
generalization and specialization: our rules do not allow spurious type variables
to be introduced by GEN to be removed by SPEC. This is partly a matter of
taste, in that it more closely reflects the type algorithm, but it also reduces the
size of the translation and eliminates the possibility that alternative but equivalent
translations could be produced by these rules.

Here are some steps involved in typing the phrase \ x y -> x < y. Let E0 be as
in Figure 5, and let AE = {α}, LIE = {dOrd : Ord α}, and V E = {x : α, y : α}.
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E
exp
` exp : τ ; exp

E
over-exp

` exp : ρ ; exp

E
poly-exp

` exp : σ ; exp

(V E of E) var = σ
TAUT

E
poly-exp
` var : σ ; var

E
poly-exp
` var : ∀α1 . . . αk.θ ⇒ τ ; var

E
type

` τi (1 ≤ i ≤ k)
SPEC

E
over-exp
` var : (θ ⇒ τ)[τ1/α1, . . . , τk/αk] ; var τ1 . . . τk

E
over-exp
` var : φ⇒ τ ; exp

E
dicts
` φ ; dexps

REL

E
exp

` var : τ ; exp dexps

E
→
⊕V E {var : τ ′}

exp

` exp : τ ; exp
ABS

E
exp
` λvar. exp : τ ′ → τ ; λvar: τ ′. exp

E
exp
` exp : τ ′ → τ ; exp

E
exp

` exp′ : τ ′ ; exp′
COMB

E
exp
` (exp exp′) : τ ; (exp exp′)

Fig. 7. Rules for expressions, part 1.

Then the following are valid judgments:

(1) E0 ⊕AE ⊕ LIE ⊕ V E
exp

` x < y : Bool ; (<) α dOrd x y

(2) E0 ⊕AE ⊕ LIE
exp

` \ x y -> x < y : α→ α→ Bool
;

λx : α. λy : α. (<) α dOrd x y

(3) E0 ⊕AE
over-exp

` \ x y -> x < y : 〈Ord α〉 ⇒ α→ α→ Bool
;

λ dOrd : (tran E0 (Ord α)) .
λ x : α . λy : α . (<) α dOrd x y
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E ⊕ LIE
dicts
` θ ; dpat θ determines LIE

E ⊕ LIE
exp
` exp : τ ; exp

PRED

E
over-exp
` exp : θ⇒ τ ; λ dpat : tran E (θ) . exp

E ⊕AE {α1, . . . , αk}
over-exp
` exp : θ⇒ τ ; exp

GEN

E
poly-exp

` exp : ∀α1 . . . αk . θ⇒ τ ; Λα1 . . . αk . exp

E
poly-exp

` exp′ : σ ; exp′

E
→
⊕V E {var : σ}

exp
` exp : τ ; exp

LET

E
exp

` let var = exp′ in exp : τ ; let var = exp′ in exp

Fig. 8. Rules for expressions, part 2.

(4) E0

poly-exp

` \ x y -> x < y : ∀α. 〈Ord α〉 ⇒ α→ α→ Bool
;

Λ α . λ dOrd : (tran E0 (Ord α)) .
λ x : α . λy : α . (<) α dOrd x y

Judgment (1) yields (2) via ABS; judgment (2) yields (3) via PRED; and judgment
(3) yields (4) via GEN. The tran function is defined in Section 4.7.

As is usual with such rules, one is required to use prescience to guess the right
initial environments. For the SPEC and GEN rules, the method of transforming
prescience into an algorithm is well known: one generates equations relating types
during the inference process and then solves these equations via unification. For
the PRED and REL rules, a similar method of generating equations can be derived.

4.3 Dictionaries

The inference rules for dictionaries are shown in Figure 9. A judgment of the form

E
dict

` κ τ ; dexp

holds if in environmentE there is an instance of class κ at type τ given by the dictio-
nary dexp. The other two judgments act similarly for overloaded and polymorphic
instances.

The two DICT-TAUT rules find instances in the IE and LIE component of
the environment. The DICT-SPEC rule instantiates a polymorphic dictionary, by
applying it to a type. Similarly, the DICT-REL rule instantiates an overloaded
dictionary, by applying it to other dictionaries, themselves derived by recursive
application of the dictionary judgment.

The rule that translates an entire context into a tuple of the corresponding dic-
tionaries has the judgment form
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E
dict
` κ τ ; dexp

E
over-dict
` φ⇒ κ τ ; dexp

E
poly-dict

` ∀α1 . . . αn. θ⇒ κ τ ; dexp

E
dicts
` φ ; dexps

(LIE of E) dvar = κ α
DICT-TAUT-LIE

E
dict
` κ α ; dvar

(IE of E) dvar = ∀α1 . . . αn. θ ⇒ κ (χ α1 . . . αn)
DICT-TAUT-IE

E
poly-dict
` ∀α1 . . . αn. θ⇒ κ (χ α1 . . . αn) ; dvar

E
poly-dict

` ∀α1 . . . αn.θ⇒ κ τ ; dexpDICT-SPEC

E
over-dict
` (θ ⇒ κ τ)[τ1/α1, . . . , τn/αn] ; dexp τ1 . . . τn

E
over-dict
` φ⇒ κ τ ; dexp

E
dicts
` φ ; dexps

DICT-REL

E
dict
` κ τ ; dexp dexps

E
dict
` κi τi ; dexpi (1 ≤ i ≤ n)

DICTS

E
dicts
` 〈κ1 τ1, . . . , κn τn〉 ; 〈dexp1, . . . ,dexpn〉

Fig. 9. Rules for dictionaries.

E
dicts

` φ ; dexps

Here is how to derive a dictionary for the instance of class Eq at type Int. Let
E0 be as in Figure 5. Then the following judgments hold:

(1) E0

poly-dict

` ∀α. 〈Eq α〉 ⇒ Eq (List α) ; dictEqList

(2) E0

over-dict

` 〈Eq Int〉 ⇒ Eq (List Int) ; dictEqList Int

(3) E0

dict

` Eq Int ; dictEqInt

(4) E0

dict

` Eq (List Int) ; dictEqList Int dictEqInt
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E
sigs

` sigs ; sigs

E
type
` τi (1 ≤ i ≤ m)

SIGS

E
sigs
` 〈var1 : τ1, . . . , varm : τm〉 ; 〈var1, . . . , varm〉

Fig. 10. Rule for class signatures.

E
classdecl
` classdecl : DE ; bindset

PE ⊕ AE
type
` α α determines AE

PE ⊕ AE ⊕ LIE
dicts
` θ ; dpat θ determines LIE

PE ⊕ AE
sigs

` γ ; mpat
pat = (dpat,mpat) : (PE (θ), PE (γ))

CLASS

PE
classdecl
` class θ ⇒ κ α where γ

:
({κ : class θ ⇒ κ α where γ},
{dvar : Λ α. 〈κ α〉 ⇒ κ′ τ ′ | dvar : κ′ τ ′ ∈ LIE},
{var : Λ α. 〈κ α〉 ⇒ τ | var : τ ∈ γ})
;

{dvar = ∀ α. λ pat . dvar | dvar ∈ dom(LIE)} ∪
{var = ∀ α. λpat . var | var ∈ dom(γ)}

Fig. 11. Rule for class declarations.

Judgment (1) holds via DICT-TAUT-IE; judgment (2) follows from (1) via DICT-
SPEC; judgment (3) holds via DICT-TAUT-IE; and judgment (4) follows from (2)
and (3) via DICT-REL.

Note that the dictionary rules correspond closely to the TAUT, SPEC, and REL
rules for expressions.

4.4 Class Declarations

The rule for class declarations is given in Figure 11. Although the rule looks
formidable, its workings are straightforward.

A judgment of the form

PE
classdecl

` classdecl : DE ; bindset

holds if in environment PE the class declaration classdecl is valid, generating new
environment DE and yielding translation bindset. In the compound environment
DE = (CE, IE, V E), the class environment CE has one entry that describes the
class itself; the instance environment IE has one entry for each superclass of the
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E
instdecl
` instdecl : IE ; bindset

(CE of PE) κ = class θ′ ⇒ κ α where γ′

PE ⊕AE
type
` τ τ determines AE

PE ⊕AE ⊕ LIE
dicts
` θ ; dpat θ determines LIE

PE ⊕AE ⊕ LIE
dicts
` θ′[τ/α] ; dexp

PE ⊕AE ⊕ LIE
binds
` binds : γ′[τ/α] ; exp

INST

PE
instdecl
` instance θ ⇒ κ τ where binds : {dvar = ∀ dom(AE). θ⇒ κ τ}

;

dvar = Λ dom(AE) . λ dpat : tran PE (θ) . 〈dexp, exp〉

Fig. 12. Rule for instance declarations.

E
binds
` binds : γ ; exp

E
exp
` expi : expi ; τi (1 ≤ i ≤ m)

BINDS

E
binds
` 〈var1 = exp1, . . . , varm = expm〉 : 〈var1 : τ1, . . . , varm : τm〉

;

〈exp1, . . . , expm〉

Fig. 13. Rule for instance bindings.

class (given the class dictionary, it selects the appropriate superclass dictionary);
and the value environment V E has one entry for each operator of the class (given
the class dictionary, it selects the appropriate method).

For example, the class declaration for Ord given in Section 2.2 yields the Ord
component of CE0, the getEqFromOrd component of IE0, and the (<) and (<=)
components of V E0, as found in Figure 5. The binding set generated by the rule
is as shown in Section 2.3.

4.5 Instance Declarations

The rule for instance declarations is given in Figure 12. Again the rule looks
formidable, and again its workings are straightforward.

A judgment of the form

PE
instdecl

` instdecl : IE ; bindset

holds if in environment PE the instance declaration instdecl is valid, generating new
environment IE and yielding translation bindset. The instance environment IE
contains a single entry corresponding to the instance declaration, and the bindset
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PE
classdecls
` classdecls : DE ; bindset

PE ⊕DE1 ⊕ . . .⊕DEi−1

classdecl
` classdecli : DEi

;

bindseti (1 ≤ i ≤ n)
CDECLS

PE
classdecls
` classdecl1 ; . . . ; classdecln : DE1 ⊕ . . .⊕DEn

;

bindset1; . . . ; bindsetn

PE
instdecls
` instdecls : IE ; bindset

PE
instdecl
` instdecli : IEi ; bindseti (1 ≤ i ≤ n)

IDECLS

PE
instdecls
` instdecl1 ; . . . ; instdecln : (IE of PE)⊕ IE1 ⊕ . . .⊕ IEn

;

bindset1; . . . ; bindsetn

PE
program
` program : τ ; exp

(1) PE
classdecls
` classdecls : DE ; bindsetC

(2) PE ⊕DE ⊕ IE
instdecls
` instdecls : IE ; bindsetI

(3) PE ⊕DE ⊕ IE
exp

` exp : τ ; exp
PROG

PE
program
` classdecls ; instdecls ; exp : τ

;

letrec bindsetC ; bindsetI in exp

Fig. 14. Rules for declaration sequences and programs.

contains a single binding. If the header of the instance declaration is θ ⇒ κ τ , then
the corresponding instance is a function that expects one dictionary for each entry
in θ, and returns a dictionary for the instance.

The first line looks up the superclasses and record type of the instance class.
Line (2) sets AE to contain the type variables in τ . Line (3) sets LIE to contain
the types in θ, the instance context, and builds the pattern for the dictionary
parameters. Line (4) checks that the superclasses are satisfied by the LIE and
builds the dictionaries for those superclasses. Finally, line (5) checks that the
method definitions have precisely the types of the class operations instantiated by
the instance type, and builds the method translations.

For example, the instance declarations for Eq Int, (Eq a) => Eq [a], and Ord
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Int yield the dictEqInt, dictEqList, and dictOrdInt components of IE0 as found
in Figure 5, and the bindings generated by the rule are as shown in Section 2.3.

4.6 Programs

Figure 14 gives the rules for declaration sequences and programs.
The order of the class declarations is significant, because at the point of a class

declaration all its superclasses must already be declared. (This guarantees that the
superclass hierarchy forms a directed acyclic graph.) Further, all class declarations
must come before all instance declarations.

The order of the instance declarations is, however, irrelevant, because all instance
declarations may be mutually recursive. Mutual recursion of polymorphic functions
does not cause the problems you might expect, because the instance declaration
explicitly provides the needed type information.

These differences are reflected in the different forms of the CDECLS and IDECLS
rules. That instance declarations are mutually recursive is indicated by line (2) of
the PROG rule, where the same environment IE appears on the left and right of
the instdecls rule.

In Haskell the source text need not be so ordered. A preprocessing phase performs
a dependency analysis and places the declarations in a suitable order.

4.7 Converting Contexts/Records to Monotypes

Given an environment E, context and record types can be converted into monotypes
using the function tran, defined below.

tran E (φ) = 〈tran E (κ1 τ1), . . . , tran E (κn τn)〉
where φ = 〈κ1 τ1, . . . , κn τn〉

tran E (κ τ) = 〈tran E (θ [τ/α]), tran E (γ [τ/α])〉
where (CE of E) κ = (class θ ⇒ κ α where γ)

tran E (γ) = 〈τ1, . . . , τn〉 where γ = 〈v1 : τ1, . . . , vn : τn〉
This allows us to remove class types from the translation entirely. As an example,
here is the translation of search from Section 2.3, amended to make all polymor-
phism explicit:

search = Λα. λ dOrd : (tran E0 〈Ord α〉) . λx :α. λys : [α].
not (null α ys) && ( (==) α (getOrdFromEq α dOrd) x (head α ys) ||

( (<) α dOrd x (head α ys) && search α dOrd x (tail α ys)))

The translation of the dictionary, tran E0 〈Ord α〉 is:

tran E0 〈Ord α〉 =
〈 ( 〈 ( 〈〉, 〈α→ α→ Bool〉 ), 〈α→ α→ Bool, α→ α→ Bool〉 ) 〉

5. SOUNDNESS, COMPLETENESS, AND PRINCIPAL TYPING RESULTS

We do not attempt to prove soundness and completeness results here, but it is a
useful exercise to state the form of these results and to sketch their proofs. Equiva-
lent results have been proved by Blott [1991] and Jones [1992b] for their respective
type systems, which are broadly similar to that presented here. It is thus expected
that their proofs will carry over in large part to this system.
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5.1 The Type System

Some results can be obtained directly from the type system. The most important
of these is that the type system has principal types. This relies on definitions of
generality for polymorphic types and on the notion of a canonical form for contexts.

5.1.1 Canonical Contexts. There is a canonical form for contexts and saturated
contexts, which is unique up to the ordering of κ τ pairs.

Definition 1. A canonical context, 〈κ1 τ1, . . . , κn τn〉 is one where

(1) all κ τ pairs have the form κ α;
(2) no class κ appearing in a κ α constraint is a superclass of a class κ′ appearing

in another constraint κ′ α on the same type variable α; and
(3) there are no duplicate κ α pairs.

Definition 2. A superclass of some class κ is

(1) any class appearing in the context of the class definition for κ; or
(2) a superclass of any such class.

The canonical form of a context is produced by the canon function. This trans-
forms a saturated context φ into a minimal context θ by:

—generating the transitive closure of κ τ pairs under the defined instance hierarchy;
—removing all trivially satisified constraints κ τ where τ is not a type variable;
—removing all superclasses for each κ α pair; and
—finally eliminating all remaining duplicate constraints.

Note that the type rules (DICT-TAUT-IE in conjunction with REL and SPEC)
ensure that for all κ τ constraints, τ is an instance of κ, so there is no possibility
of failure here.

canon E φ = mincontext E φ′ where (dpat, φ′) = dictssimpl E {} φ

The canon function requires two subsidiary functions: dictssimpl andmincontext.
The dictssimpl function is used to generate the transitive closure of φ. Only the
global instance environment component of E is actually used.

dictssimpl E LIE 〈κ1 τ1, . . . , κn τn〉 =
let (dpat1, 〈κ11 τ11, . . . , κ1j τ1j〉) = dictcxt E LIE κ1 τ1 in
. . .
let (dpatn, 〈κn1 τn1, . . . , κnk τnk〉) = dictcxt E LIE κn τn in
( [[ (dpat1, . . . ,dpatn) ]], 〈κ11 τ11, . . . , κ1j τ1j , . . . , κn1 τn1, . . . , κnk τnk〉)

dictcxt E LIE κ α =
let dvar = lookupLIE κ α in
( [[ dvar ]], 〈κ α〉)
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dictcxt E LIE κ (χ τ1 . . . τn) =
let (dvar, ∀ α1 . . . αn . θ ⇒ τ) = lookupIE (IE of E) κ χ in
let (dpats, φ) = dictssimpl E (θ[τ1/α1, . . . , τn/αn]) in
( [[ ( dvar dpats ) ]], φ)

The mincontext function “minimizes” a saturated context by eliminating dupli-
cate κ α pairs and all κ τ pairs.

mincontext E φ = 〈κ1 α1, . . . , κn αn〉 such that κi αi ∈ φ and
subclasses E κi ∩ φ = ∅ for all i with 1 ≤ i ≤ n and

κi αi 6= κj αj for all i, j with 1 ≤ i ≤ j ≤ n, i 6= j

subclasses E κ =
{ κ′ such that (κ′ : 〈. . . , κ α, . . .〉 ⇒ κ′ α where γ) ∈ (CE of E) }

5.1.2 Generality of Types. In order to present the principal type result, it is
necessary to introduce an ordering relation on types, ≥, such that σ ≥ σ′ means σ
is no less general than σ′.

We first introduce substitutions, idempotent environments mapping type vari-
ables to types, with the usual conventions. Thus if S is { α : τ }, then, for
example:

S (χ α Int α) = χ τ Int τ
and S (S α) = S α = τ

A saturated context φ is at least as general as another saturated context φ′ if it is
entirely contained within the canonical form of that context. We use the notation
φ ⊆ φ′ to mean that φ contains no duplicate entries, and every entry in φ also
appears in φ′. Thus, a smaller context is more general than a larger one, and the
empty context is most general of all.

φ ≥ φ′ if φ ⊆ canon E (φ′)

(Note that generality for saturated contexts depends on the prevailing instance
environment, IE.)

Now it is possible to define a generality relation ≥ over polymorphic types,

∀ α1 . . . αn . φ ⇒ τ ≥ ∀ β1 . . . βn . φ
′ ⇒ τ ′

if there exists a substitution S such that S τ = τ ′ and (S φ) ≥ φ′.

5.1.3 Principal Types. A type τ is the principal type of p under PE if, and only
if,

(1) PE
program

` p : τ ; exp; and

(2) if, for some τ ′, PE
program

` p : τ ′ ; exp, then τ ≥ τ ′.

Definition 3. A typing PE
program

` p : τ ; exp is a principal typing for
program p if whenever PE

program

` p : τ ′ ; exp, we have τ ≥ τ ′.

Definition 4. A typing E
poly-exp

` exp : σ ; exp is a principal typing for

expression exp if whenever E
poly-exp

` exp : σ′ ; exp, we have σ ≥ σ′.
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E
Λ
` exp : δ

E
Λ-bind
` exp : V E

E ⊕ V E
Λ-bind
` bindset : V E

E ⊕ V E
Λ
` exp : τ

Λ-PROG

E
Λ
` letrec bindset in exp : τ

E
Λ
` expi : τi (1 ≤ i ≤ n)

Λ-BINDS

E
Λ-bind
` var1 = exp1; . . . ; varn = expn : {var1 : τ1, . . . ,varn : τn}

Fig. 15. Rules for type calculus Λ: Programs and bindings.

Statement (Principal Types). If there exists a typing for program p, PE
program

`
p : τ ; exp then there exists a principal typing for program p, PE

program

` p :
τ ′ ; exp.

Lemma (Principal Types for Expressions). If there exists a typing for ex-

pression exp, E
poly-exp

` exp : σ ; exp then there exists a principal typing for

expression exp, E
poly-exp

` exp : σ′ ; exp.

Proof Sketch. The lemma can be proved by structural induction on programs
and expressions. 2

5.2 The Translation

As noted above, since the translation defines the semantics of the type system a
simple soundness result is not meaningful. It is, however, possible to prove the
soundness of the translation with respect to the types derived by the type system.

To prove these results, we need to refer to the type calculus for the second-order
polymorphic lambda calculus, Λ, on the target language defined in Figure 3. A
judgment of the form

PE
Λ

` exp : δ

holds if in environment PE the type δ is valid. Note that, unlike Reynolds’ second-
order polymorphic lambda calculus, but in common with the Hindley-Milner type
system, type system Λ only permits type variables to be quantified at the outer-
most level of a type. The type structure for second-order types differs from that
used for first-order polymorphic types in that:

(1) there are no overloaded second-order types;
(2) simple types include record types, which describe the types of dictionaries.

The new syntax for second-order types is shown in Figure 18.
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E
Λ
` exp : δ

(V E of E) var = δ
Λ-TAUT

E
Λ
` var : δ

E
Λ-pat
` pat : V E

E ⊕V E V E
Λ
` exp : τ

Λ-ABS

E
Λ
` λ pat . exp : τ

E
Λ
` exp : τ ′ → τ

E
Λ
` exp′ : τ ′

Λ-COMB

E
Λ
` (exp exp′) : τ

E
Λ
` exp′ : δ

E
→
⊕ {var : δ}

Λ
` exp : τ

Λ-LET

E
Λ
` let var = exp′ in exp : τ

E
Λ
` expi : τi (1 ≤ i ≤ n)

Λ-RECORD

E
Λ
` 〈exp1, . . . , expn〉 : 〈τ1, . . . , τn〉

E ⊕AE {α1, . . . , αn}
Λ
` exp : τ

Λ-TYPE-ABS

E
Λ
` Λ α1 . . . αn . exp : ∀ α1 . . . αn . τ

E
Λ
` exp : ∀ α1 . . . αn . τΛ-TYPE-COMB

E
Λ
` exp τ1 . . . τn : τ [τ1/α1, . . . , τn/αn]

Fig. 16. Rules for type calculus Λ: Expressions.

Typing rules for expressions in our target language are given in Figures 15–17.
Note that there are no equivalents to SPEC or GEN, which in our previous rules spe-
cialized universally quantified types or introduced new type variables. Instead, all
type variables are explicitly quantified by expressions of the form Λ α1 . . . αn . exp
and substituted by expressions of the form exp τ1 . . . τn. Since the second-order
types cannot be overloaded, there are also no equivalents to REL or PRED.
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E
Λ-pat

` pat : V E

Λ-PAT-VAR

E
Λ-pat

` (var : τ) : {var : τ}

E
Λ-pat
` pati : V Ei (1 ≤ i ≤ n)

Λ-PAT-REC

E
Λ-pat
` (pat1, . . . ,patn) : V E1 ⊕ . . .⊕ V En

Fig. 17. Rules for type calculus Λ: Patterns.

Second-Order Polymorphic Type δ → ∀α1 . . . αn . τ (n ≥ 0)

Simple type τ → α
| χ τ1 . . . τn (n ≥ 0, n = arity(χ))
| τ ′ → τ
| 〈τ1, . . . , τn〉 (n ≥ 0)

Fig. 18. Syntax of second-order types.

5.2.1 Type Soundness. Given a typing in our type calculus, then the type of
the translation can be directly related to the type given by that typing. To state
this formally, we first need to introduce a property relating first-order polymorphic
types to second-order types.

Definition 5. A polymorphic type σ has the second-order translation δ, written
σ∗ = δ, as follows:

( ∀α1 . . . αn . ρ )∗ = ∀α1 . . . αn . τ
′, if ρ∗ = τ ′

( 〈〉 ⇒ τ )∗ = τ
( 〈κ1 τ1, . . . , κn τn〉 ⇒ τ )∗ = 〈dicttype κ1 τ1, . . . , dicttype κn τn〉 → τ

This uses a function to convert class names into dictionary types, dicttype.

dicttype κ τ = 〈τ1, . . . , τn〉 [τ/α]
where [[ class θ ⇒ κ α where 〈v1 : τ1, . . . , vn : τn〉 ]] = CE κ

Statement (Type Soundness for Programs). Given a typing

PE
program

` program : τ ; exp,

then there exists a typing PE
Λ

` exp : τ ′. Furthermore τ = τ ′.

This result relies on the following lemma for expressions and similar lemmas for
declaration bindings.
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Lemma (Type Soundness for Expressions). Given a typing E
over-exp

` exp :

σ ; exp then there exists a typing E
Λ

` exp : δ. Furthermore σ∗ = δ.

Proof Sketch. The lemma can be proved by structural induction on the rules
for programs and expressions and by reference to the typings for the translated
terms. 2

6. IMPLEMENTING A TYPE INFERENCE ALGORITHM

This section sketches the implementation of a type inference algorithm based on the
rules above. For simplicity, we will follow the conventional practice of defining an
explicit substitution-based algorithm (as described by Cardelli [1987], for example),
though we note that, in practice, graph-based algorithms are often more efficient.
Hammond [1991] describes a graph-based algorithm using monads [Wadler 1992]
that is similar to the one we use in the Glasgow Haskell compiler.

When deriving an inference algorithm from type rules such as these, it is common
practice to define a set of functions that each implement a single rule or related
set of rules. The arguments to the function are those items that appear to the
left of the turnstile in the rule, while the results of the function are those items
that appear to the right of the turnstile. So, given a rule which gives the types of
expressions that yield polymorphic types (of type σ), whose form is

E
poly-exp

` exp : σ ; exp

then the arguments to the inference function are a type environment E and an
expression exp, and the outputs of the function are a polytype σ and a translated
expression exp.

Since our rules have been defined relationally, however, there are some places
where this simple scheme is insufficient. We will now consider each of these cases
below.

The first issue that must be addressed is how to resolve the circularity in the
rules for instance declarations and programs.

(1) . . .

(2) PE ⊕DE ⊕ IE
instdecls

` instdecls : IE ; bindsetI
(3) . . .

PROG
PE

program

` . . .

Here the same instance environment, IE, that is returned from the instdecls rule
is also injected into the environment that is passed to it as an argument. The
solution we adopt is to simply use a fixpoint in the function that implements the
PROGRAM rule. This uses laziness in an essential way.

Second, we need to decide how to relate dictionaries to types in the PRED rule.

E ⊕ LIE
dicts

` θ ; dpat θ determines LIE

E ⊕ LIE
exp

` exp : τ ; exp
PRED

E
over-exp

` exp : θ ⇒ τ ; λ dpat : tran E (θ) . exp
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The translated dictionary pattern, dpat, depends on the local instance environment
LIE that is an input to the dicts rule. This therefore needs to be generated as a
result of function that implements the exp rule.

The final issue is how to implement the inference rules for dictionaries, dicts:

E
dicts

` φ ; dexps

These are somewhat problematic because they are used in three distinct ways
throughout the rules. We therefore need to provide three different functions that
each implement one of these three uses.

The rules are used to produce

(1) a dictionary pattern and a local instance environment from an environment
and a context in INST and CLASS

(INST) E ⊕ LIE
dicts

` θ ; dpat θ determines LIE

(CLASS) PE ⊕AE ⊕ LIE
dicts

` θ ; dpat θ determines LIE

in which case, the dicts function takes an environment E and a context θ as
its arguments and produces a translated dictionary pattern dpat and a local
instance environment LIE as its results;

(2) the corresponding dictionary expression from the augmented environment and
a context in INST and REL

(INST) PE ⊕AE ⊕ LIE
dicts

` θ′[τ/α] ; dexp

(REL) E
dicts

` φ ; dexps

in which case, the dicts function takes an environment E and a saturated
context φ as its arguments and produces a translated dictionary expression
dexp as its result;

(3) or a context and the corresponding dictionary pattern in PRED

(PRED) E ⊕ LIE
dicts

` θ ; dpat θ determines LIE

in which case the dicts function takes an environment E and a local instance
environment LIE as its arguments and produces a translated dictionary pattern
dpat and a context θ as its results.

Notice in the third case, that despite the ordering in the determines relation, LIE
is an argument to dictscxt, and θ is a result.

Only the instance environment components (both global and local) of the en-
vironment are used in each case. These rules use the global and local instance
environments in the opposite way from their normal use as environments: matches
are made on the co-domain of the environment rather than its domain.

6.1 Optimizations

There are several optimizations that can be applied to improve the translation
described above [Augustsson 1993; Hammond and Blott 1989; Jones 1992c]. For
example,
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—Specialized versions could be produced for each overloaded function, so that each
use of that function can be compiled without introducing dictionaries.

—Methods could be “inlined.”
—Dictionaries could be partially applied in order to reduce the number of times

that dictionary functions are applied at run-time.
—Parameterized dictionaries can be lifted from recursive overloaded definitions, so

avoiding reconstructing them in each recursive call.
—The well-known common sub-expression elimination optimisation, which involves

replacing two or more identical sub-expressions in an expression by a single shared
sub-expression, can be used to avoid constructing identical dictionaries several
times.

These optimizations have already been at least partially adopted by several of
the more optimizing Haskell compilers, and there is evidence that significant per-
formance improvements can result [Augustsson 1993].

7. CONCLUSIONS

The main contribution of this article is that it presents a minimal, readable set
of inference rules to handle type classes in Haskell, derived from the full static
semantics of Haskell [Peyton Jones and Wadler 1991]. We have treated most of
the essential characteristics of Haskell, including a direct treatment of the type
class hierarchy (this is a minor theoretical point, but it is a practical advantage to
be able to express errors in terms of the classes the programmer has used). We
have also briefly described how the type rules can be implemented. For simplicity,
we have omitted discussions of the monomorphism restriction, ambiguity (default
resolution), and default methods. These are dealt with at length in the full static
semantics and elsewhere, e.g., Blott [1991] and Nipkow and Prehofer [1993].

An important feature of this style of presentation is that it scales up well to
a description of the entire Haskell language, as we have found in practice. It is
also straightforward to extend the rules to more esoteric cases, such as classes
constraining more than one overloaded type [Hammond 1993].
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