
Fair Transition System Specification: An Integrated Approach

Guoping Jia and Guoliang Zheng

Department of Computer Science, Nanfing Universi~

Nanfing, .Iiang.~u, 210093, P.R. China

Teh +86-25-6637551 ext. 3671

Fax: +86-25-3300710

A b s t r a c t

In this paper, we discuss the two approaches to the type of formalism used to express specifications: logic-based

approach and model-based approach. Temporal logic and state machine, representatives of formalisms used in each

approach, are compared. As a result of this comparison, we know that although temporal logics have many

advantages, especially abstraction and flexibility of the specification process, they fail to directly characterize

situations easily modeled by model-based formalisms, such as "local" properties of execution sequences. To copy

with these drawbacks, we present a new kind of formalism: fair transition system specification (FTSS). This

approach combines the best features of temporal logic and state machine methods and it is easy to understand and

use. A nontrivial example is used to illustrate our approach and it shows that our FTSS approach is promising.

1. Introduction
There have been many approaches for specifying concurrent systems, such as temporal logic, CCS, state machine

and Statecharts etc.[lo, l:,7,31. According to the type of formalism used to express specifications, two main approaches

to this problem can be distinguished: one is logic-based method. This approach specifies a program by stating what

properties the program should have. In this case, the language of formulas F of some logic is used to specify the

behavior of a program and the language P is used for the description of programs. A relation sat, subset o f P × F, is

defined. An assertion p sat f means that the program p satisfies the property described by f . This approach

corresponds to the two-language framework in [14] and the axiomatic approach in [5]. The representative of logic-

based method is the temporal logic approach. An alternative approach is model-based method. This approach,

typically, provides an abstract model of the system, that can fidly tell how the system should behave. In this case,

specifications and program can be considered, at some abstraction., as transition systems. These transition systems

are defined from the operational semantics of the specification and programming languages and they provide a

common framework for their comparison with programs. A crucial point in the application of this approach is the

choice of the relation used to compare programs to specifications. This approach is quzlified as the single-language

framework in [14] and the constructive approach in [5]. The representative of model-based method is state machine.

In this paper, we discuss the two main approaches to the specification problem. Especially, temporal logic and

state machine, representatives of formalisms used in each approach, are compared. As a result of comparison, we

know that although temporal logics have many advantages, such as abstraction and flexibility of the specification

process, they fail to directly characterize situations easily modeled by model-based formalisms, such as "local"

properties of execution sequences. To copy with these drawbacks, we present a new kind of formalism: fair

transition system specification (FTSS). This approach combines the best features of temporal logic and state

machine methods and it is easy to understand and use. We fiarther discuss each component of FTSS and we get

conclusions that our approach is machine closed and our specification process is consistent and complete. An

example of a lossy-transmission protocol is used to illustrate our approach and it shows that our FTSS approach is

promising.

ACM SIGPLAN Notices, Volume 31, No. 3 M,'uch 1996

14

http://crossmark.crossref.org/dialog/?doi=10.1145%2F227717.227723&domain=pdf&date_stamp=1996-03-01

2. Log ic -based Spec i f ica t ions vs. M o d e l - b a s e d Specifications
In this section, we compare the two approaches, especially temporal logic and state machine methods. There are

many criteria by which specification styles can be evaluated and compared. Here, we discuss shortly only few of

them. The comparison is intended as a summary of the differences be~veen the two and as a basis for the following

further discussion of these differences.

• Incremental Modification

By incremental modification we mean how easy it is to change the specification, once we realize that one of the

requirements is missing or needs to be modified.

Since a logic-based approach is typicaUy to list a set of properties the system should satisfy, it is usually easy to

locate the relevant conjunct in the case that an existing requirement is to be modified or to add a new conjunct in

the case of a new requirement.

In comparison, such modification is often difficult in a model-based case which usually integrates all the

requirements into an abstract machine, and is stnactured according to processes or modules rather than according to

properties. Often, the required change can't be localized and permeates throughout the complete specificatiort

Consider a system specified by a state machine, for which a new additional requirement is identified. Most often

the whole specification has to be reconstructed, because of the interaction between the previous requirements and

the new one.

- Consistency

By consistency we mean that the specification defines a nonempty set of potential implementations, i.e., that

there exists at least one system that satisfies the specifications.

In the logic-based style, the danger of inconsistency is nontrivial, since requirements are formulated almost

independently of one another. It is easy to inadvertently include two requirements that contradict one another, or a

larger set of requirements that can't bejomtly satisfied.

In the model-based style, there is a nonproblem. By definition, every abstract model has at least one execution

and, therefore, a nonempty semantics. For example, every state machine has a meaning as a process. So, one need

never worry about consistency of specification in this style.

• Completeness

By completeness we mean the realization that all important properties of the systems have been specified and

none is missing. This is a notion that is difficult for the logic-based approach that progresses by adding

requirements one at a time and needs a good criterion of when to stop.

In comparison, completeness is rarely an issue in the model-based approach. Consider a state machine system,

the only type of incompleteness that can arise in this approach is that a complete state machine has been forgotten

or that some transitions have been omitted, while expanding the set of possible transitions from a given state.

• Validation

Validation is the process of ensuring that the specification is consistent with the designer's intentions. Since we

don't have a formal representation of the designer's innermost thoughts, validation can't be a formal process.

In the logic-based case, we often have some representation of the designer's intents through the informal

requirement document. We can perform the validation process in a modular fashion, comparing the formal

translation of each requirement to its original description. Even if we don't have a written requirement document,

we can validate each requirement separately, testing whether the designer or customer agrees the full meaning of

the formal requirement.

The situation is much more difficult in the case of model-based approach. We are faced with a relatively large

abstract model and have to determine whether all the possible behaviors it can generate are consistent with our

intuition of how the system should behave. In some sense, this task is very similar to the problem of program

verification.

From above comparison, we know that formulas in logic-based specifications represent classes of behaviors.

This type of formalism has a conjunctive character. As a consequence, logic-based specifications are easily

15

modified and the specification process is flexible. Another obvious advantage of this approach is abstractness, i.e.,

independence with respect to implementation choices. On the other hand, the model-based approach has some

features which make it very attractive. It uses ~vo very primitive concepts: the concepts of state and transition. Its

descriptions are concrete, easier to read and understand and it seems to be better adapted to the description of

"local" properties of execution sequences.

3 . F a i r T r a n s i t i o n S y s t e m S p e c i f i c a t i o n

Motivated by above observations, we present a new kind of formalism of specification: fair transition system

specification(FTSS). It combines the best features of temporal logic and state machine methods.

3.1 The U n d e r l y i n g M o d e l

As a computational model, we present the model of fair transition system(FTS). The presentation and discussion of

this model follows [101.

A fair transition system S is a six-tuple <//V. 27, (9 ,T, WF, SF>, where

" V={ul, 4, '" ,un}: A finite set of state variables.

• 27 : A set of states.

- (9 ' initial condition. A state s satisfying (9, i.e., s[=lg, is called an initial state.

• T: A finite set of transitions. Each transition xE Tis a fimcfion x: £ ~ 2s.

• WF~ T: A set of weakly fair transitions.

• SF~ T: A set of strongly fair transitions.

A transition z is enabledon s ifx(s) ~ , otherwise, • is disabledon s. We include in Ta transition r I, called

the idling transition. It is an identity transition, i.e., -r ~(s)={s} for every state s.

For each transition ~, we associate with an assertion ,o ~ V'). called the transition relation. It relates a state s

~Z to its r-successor s'~x(s) by referring to both primed and unprimed versions of the state variables. A primed

version of a state variable refer to its value in s', while an unpfimed version of the same variable refers to its value

ins.

Given an FTS S: <Y, 27 ,~ , T, WF, S F > , we define a computation o rS to be an infinite sequence of states

~r :so, s 1 , s2,.-, safisfficing the following requirements:

• Initiality: The first state s o is initial, i.e., s01=®.

• Consecution: For each state pair of consecutive states s i, si+l in or, s~l ~ ~(si) for some x ~ T.

• Weak fairness: For each x~ WF, it is not the case that x is continually enabled beyond some position in

but taken only finitely many times.

. Strongfairnesk: For each xcSF, it is not the case that x is enabled infinitely many times in cr but taken

only finitely many times.

We denote by Comp(S) the set of all computations of the FTS S.

3.2 Temporal Logic

As a specification language, we take temporal logic.

The temporal logic we use is syntactically and semantically similar to other linear time temporal logics[14,12],

containing the temporal operators O (next operator) and U (until operator) . We use the next operator in

~vo different ways: as a temporal operator applied to formulas and as a temporal operator applied to terms. In the

latter case, we denote Ot -= t ÷, called the next value of t. Additional temporal operators ean be introduced as

abbreviation~ e.g.,

O p for true Up, D p f o r ~ O ~ p , pWqfor DpV(pUq) and p ~ q f o r ISl(p-.-~q).

3.3 The Temporal Semantics of a Fair Transition System

In this section, we construct a temporal formula Sem(S), called the temporal semantics orS. It holds on a

model cr iff~r is a computation of S. This construction was firstly presented bv Pnueli in [13].

16

Given an FTS S: <V. S , @.T. WF. SF> . Firstly, we introduce several formulas that express different

properties of computations of S.

• En(O: (3V~) p [I~ V'). It expresses that transition x is enabled.

• taken(O: p r(~ V+). It means that transition x is taken.

• v~f(r): 0 [] En(r)--->D ~taken(O. This formula expresses weak fairness, i.e.. an3," sequence satisfying formula

wf(r) is weakly fair w.r.t. ~.

• .~(r). [] OEn(O--->[] ~taken(z?). This formula expresses strong fairness, i.e.. any model satisfying formula

.~f(r) is strongly fair w.r.t. ~.

For a given FTS S, we define the temporal semantics formula Sem(S) by:

Sem~7): 0 A [] v taken (r) A A w f (r) A A s f (r) (,) where
r c T " " r E ~ 4 t l g r ~ S . l ~ " :

" O ensures that the initial state satisfies the initial condition O-

• [] v taken (r)ensures that every step is taken by the application of some transition rE T.
r ~ T

A ~ f (r) ensures that the sequence satisfies all the weakly fairness requirements.
rClf, Tz

A s f (r) e n s u r e s that the sequence satisfies all the strongly fairness requirements.
r ~ F

The tbur clauses correspond to and ensure the tbur requirements a sequence has to satisfy in order to be a

computation of S. Consequently, we can get the fact that the formula Sem(S) precisely characterizes the

computation of S.

4.4 Fair Transition System Specification
In this section, we firstly give some definitions, then we give out our fair transition system specification(FTSS).

Definition 1: A transition module M is a system M:< V, U,.L O , T, WF. S F > , where S v: < V, L O, T, WF, SF > is a

fair transition system and U c V is a subset. We refer to S:, t as the body of M and to U the internal variables of

M . ~

Definition 2: A run of a transition module M with body S M and internal variables U is any U-variant o f a

computation of S~p i.e., any model that differs from a computation of S~ t by at most the interpretation of the

variables in U.

In the following, we propose our fair transition system specification style.

Definition 3: A temporal formula d~ is said to be in fair transition system specification style, if it has form d~ :

3U.Sem(S), where S is a fair transition system with state variables V, U is a subset of V, Sere(S) is the temporal

semantics of system S. ~]

Consequently, for a given transition module M with body S~t: <V. Z, (9, T. WESF > and internal variables U c

V, our FI'SS has form:

3 U. [~ A [] v taken (r) A ~vF w f (r) A ~ s f (r)] (, ,) , ,,,here
r ~ T

• O is an assertion specifying the initial values of variables.

. [] v taken (r) is next-state relation of the transition moduleM.
r,zT

A w f (r) and ~F s f (r) are conjunctions of formulas of the form wf(r) and s f (r). They
r,~WF r

respectively represent weak fairness assumption and strong fairness asstanption.

- U is the internal variables of M.

Let L = A w f (r) A , ~ .~)C(r). Our FTSS (**) has the follo,,4n~ interpretation:
rEi4.,/:~,

There is some way of choosing values for U such that (a) O is true in the initial state, (b) every step of M is

either taken (r) for some transition v E (T \ { r I })or taken(rI) for transition x I , which leaves all variables

unchanged, and (c) the entire behavior of M satisfies formula L , i.e., it satisfies all the weak fairness and strong

fairness assumptions.

Obviously, our FTSS (**) characterizes precisely the run of module M , i.e., a model cr satisfies (**) iff it is a

run o f M. It can be stated as following:

17

Proposit ion : A model ~7 satisfies FTSS (**) iff cf is a run of transition moduleM.]

In the following, we give some discussions about our FTSS.

A property is a set of behaviors. A finite behavior is a finite sequence of states. We say a finite behavior

satisfies a property F iff it can be continued to an infinite behavior m F . Our FTSS specifies two basic types of

properties of system: safetv properties and liveness properties. A property S is a safety property iff the following

condition holds: Fcontains a behavior iff it is satisfied by every finite prefix of the behaviort21. A property L is a

liveness property iff any finite behavior can be extended to a behavior in L tz So in our FTSS, O A []

v taken (r) is a safetv property, wf (r) and s f (T) are liveness properties. As indicated in [2], safety
roT

properties are closed set in a topology on the set of all behaviors and liveness properties are dense sets. In a

topological space, every set can be written as the intersection of a closed set and a dense set. So any property P

can be written as S A L, where S is a safety property and L is a liveness property. Our FTSS approach adopts the

sq/bty-liveness partition paradigm, its mare purpose is to help in achieving completeness. We can always

checklist whether we have specified some requirements in each part. However, using arbitrary liveness properties

to specifying liveness part is dangerous because it can add unexpected safety properties. It is a common source of

errors in temporal logic specifications and a source of ihcompleteness for proof methodst~.61. In our FTSS, we

avoid such errors by expressing liveness in terms of fairness.

Definition 4: I f F i s a safety property and L an arbitrary property, then the pair (F, L) is machine closed iff every

finite behavior safisf~ving F can be extended to an infinite behavior in F A L . The conjunction F A L is called

machine closed specification.

Intuitively, the pair (F. L) is machine closed iff conjoining F to L introduces no additional safety properties.

So we can avoid accidentally adding safety properties by writing machine closed specification.

Theorem 1: l f F is a safety property and L is the conjunction of a finite or coantably infinite number of formulas

of the form wf (T) and/or s f (T) such that each taken(T) implies F, i.e., taken(~) - F , then (F , L) is

machine closed.

Proof: It is a special case of Proposition 4 o f [l] , omitted.]

Theorem 2: If (F, L) is machine closed, U is a set of variables that do not occur free in L and (3U.F) is a

safety property, then ((3 U . F) , L) is machine closed.

Proof: It is similar to Proposition 2 o f [I] , omitted. 1

In our FTSS (**) , the pair ([O A [] v taken (r)] , L) is machine closed (by theorem 1), where L
r E T

= A w f (r) A m sf(rr) . Since the variables in U do not occur free in L so (**) can be rewritten as (3U.
rc'l~l"/~ r C S F

[0 A [] v taken (r)]) A L . By above definition~ 3U. [O A [] v taken (r)] is a safety property, so
r~T t~T

(**) is machine closed (by thcorcm 2). Our FTSS can not introduce additional safcty property and our

specification process is consistent and complete.

Comparing the temporal semantics formula (*) with our FTSS ('~*) , we know that the main distinction

between them relies upon the existential quantification over internal variables. It is an effective mechanism to

increase the expressive power of the temporal logic and decrease the complexity of the specifications. Having the

existential quantification over internal variables guarantees complete freedom of any implementation bias. It is the

same as hiding in programming languages. The precise meaning of existential quantification over internal

variables is the essential of understanding our FTSS.

4. A s s e s s m e n t

Comparing with other specification nmthods, our presented approach has the following features:

• Simplicity of the specification

18

A formal specification is meant to be read by human beings, so it is natural to require it is easy for them to read

and understand the specification. Temporal logic specifications are hard to understand. Our approach describes a

method for writing formal specifications, it combines the best features of temporal logic and state machine

methods, so it is simple and easy to understand.

• Simplicity of the semantics

Simplicity of the specification formalism can be deceiving. True simplicity of a formal specification requires

that the formal semantics of the specification language be simple. The real complexity of a specification must take

into account the difficulty in understanding its formal meaning. Our approach bases on the temporal logic

framework of Manna-Pnueli, its temporal semantics is less complicated.

• Completeness of the proof method

Completeness of a formal system means that every semantically valid assertion is provable. As mentioned

above, our approach bases on the framework of Marma-Pnueli, this temporal logic theory has been widely and

thoroughly investigated. Many, existing complete temporal proof systems can be reused in our method. Our proof

method is complete.

• Practicality

While temporal logic specifcafions are less likely to overspecify the system, the3" are much more likely to

underspecify it by omitting important constraints. In practice, temporal logic methods are hard to use because they

don't tell one where to start or when to stop. In contrast, our FTSS method provides a well structured approach to

writing specifications, it uses ~vo very primitive concepts, i.e., state and transition. Its descriptions are concrete

and the generated specifications are abstract program.c. It is easier to read and understand by people not familiar

with logics and more likely" to be accepted by them.

5. An Example: A Lossy-Transmission Protocol
In this section, we present an example of a lossy-transmission protocol to illustrate our approach. The

protocol communicates with its environment via two pairs of "wires", each pair consisting of a val wire that

holds a messages and a Boolean-valued bit wire. A message m is sent over a pair of wires by setting the val wire

to rn and complementing the bit wire. The receiver detects the presence of a new message by observing that the

bit wire has changed value. Input to the transmission arrives on the wire pair (ival. ibiO, and output is sent on the

wire pair (oval, obit). (Shown in Figure 1.)

ival ~.~

ibit

q: I] I I I

last : i__j

oval

obit

Figure 1, A Lossy - t rasmiss ion P ro toco l

There is no acknowledgment protocol, so inputs are lost if they arrive faster than the transmission processes

them. The property guaranteed by this lossy transmission protocol is that the sequence of output messages is a

subsequence of the sequence of input messages.

This protocol has been described in [4] by transition-axiom method and in [1] by TLA-based approach

respectively. Taken it as illustration and comparison., we give its FTSS formalism.

The FTSS of the lossy-transmission protocol is a temporal formula, which mentions the four variables ibit,

obit, ival and oval, as well as two internal variables: q, which equals the sequence of messages received but not

yet output, and last, which equals the value ofibit for the last received message. The variable last is just used to

prevent the same message from being received twice. These six variables are flexible variables, their values can

19

change during a behavior. For specification purpose, we also can introduce a rigid ve~fiable M e s denoting the set

of possible messages. It has the same value throughout a behavior.

We firstly introduce the following notations. () denotes the emp.ty sequence; (m) denotes the singleton

sequence having m as its one element; • denotes concatenation: Head(~) denotes the first element of the

sequence cr and Tail(c~) denotes the sequence obtained by removing the first element of c~.

We define a transition module 3lprss..<I~, U, S , O , T, WF,~T>. where

V : { ival, ibit, oval, obit, q, last }, U : { q, last }, O " q=() A (ival, oval ~ Mes),

T { ~ , ~1 • ~2 ' ~3 }" whose transition relations are given by

P r r : (ival', ibit', oval', obit', q', last')=(ival, ibit, oval, obit, q, last), i.e.. -c I is identity transition.

P r: " (ibi t '= ~ i b i t) A (i v a l ' ~ [e s) A (o b i t ' , oval', q', last ')=(obit , oval, q, last).

P r: : (l a s t ~ i b i t) A q ' = q • (i v a l) A l a s t ' = i b i t A (i b i t ' , obit', ival', oval')---(ibit, obit, ival, oval) .

P rz : q ~ () A o v a l ' = H e a d (q) A q ' = T a i l (q) A o b i t '= - o b i t A (i b i t ' , ival" last ')=(ibit , ival, last) .

W F " { % } , SF ' { ~2 }

The FTSS of the lossy-transmission protocol is given as following:

3 q , last: [OA13V~rtaken (r) A A . w f (r) A ~ y S . f (r)] (*)

= A w f (r) A A s f (r) , s o (,) e q u a l s t o S A L,where Let S = 3 q, last: [O A [] v taken (r)], L r~v~" r~sF
r e T

S is the safety part and L is the ihirness part. We will discuss in the tbllowing that L is also the liveness part.

Formula [O A I3 v taken (r)] is the internal specification of the safe~ part S. It specifies all sequences of
T ~ T "

values that may be assumed by the protocors six variables, hlcluding the internal variables q and last. Its first

conjunct asserts that O is true in the initial state. Its second conjunct [] v taken (r) asserts that every step is
r ~ T "

either a transition r C (T \ { ~})or else a transition x I ,which leaves all six variables unchanged.

Formula S is the actual safety part of our FTSS, in which the internal variables q and last have been hidden.

A behavior satisfies S iff there is some way to assign sequences of values to q and last such that formula [O A

[] v taken (r)] is satisfied. The free variables of S are ibit, obit, ival and oval, so S specifies what sequences
r ~ _ T " " "

of values these four variables can assume.

Formulas w f (-c 3) and s f (z 2) are fairness properties. Property w f (x 2) asserts that if transition ~3 is enabled

forever, then infinitely many taken (x 3) steps must occur. This property implies that every message reaching the

q is eventually output. Property s f (~ 2) asserts that if transition z2 is enabled inf~tely often, then infinitely many

taken (~2) steps must occur. It implies that if infinitely many inputs are sent, then the q must receive infinitely

many of them. So formula L = A w f (r) A ~ y S)C(r) implies the liveness property that an infinite number of
r E t 4 r F

inputs produce an infinite number of outputs. It ensures the protocol satisfies the property that the sequence of

output messages is subsequence of the sequence of input messages.

It is most important to realize that, although our FTSS uses a list-valued variable q to express the desired

property, this carries no implication that a similar structure must be present in the implementation. This is just a

device for a simpler presentation of the specification. The device makes our FTSS easy to understand. What

makes our FTSS abstract and Dee of any implementation bias is the fact that the variables q and last are

quantified over, which is equivalent to hiding in programming languages.

6. Concluding Remarks
In this paper, we present a new kind of formalism of specification: fair transition system specification(FTSS).

Our work mainly bases on the works in [13,14,15,4,6]. In [13], Pnueli firstly gave a temporal semantics of a

concurrent programs, which is a temporal formula and precisely characterizes the computations of a concurrent

programs. In consideration of the actual implementation., Pnueli indicated in [15] the temporal run semantics of a

concurrent programs, i.e., the temporal semantics with some hidden variables. It provides a base for further

applications of temporal logic. Based on these works and works in [4.6], we present complete temporal run

20

semantics formula as our actual specification formalism. We fitrther discuss each component of our specification

formalism and arrive the conclusions that our specification formalism is machine-closed, and our specification

process is consistent and complete.

In [4], Lamport presented a transition-axiom method, which also integrated temporal logic method with state

machine method. However, the semantics of its allowed changes-operator introduced in his method appears to

be rather complicated. Recently, Lamport presented a temporal logic of actions (TLA), which combines a logic

of actions with a standard temporal logic{61. Based on the transition-axiom method, he gave out his TL4

specification style. It is simple and easy to understand.

Our FTSS bases on the temporal logic framework of Manna-PnueliI~o~. Its temporal semantics is less

complicated, it doesn't deal with state variables explicitly, and therefore, is more convenient to work with. Note

that the semantics of next operator in our fi'amework is much simpler than that of actions in TLA, because an

action is similar to a non-deterministic program in dynamic logic which represents sets of pairs of states.

Another important advantage of our ffi'amework is that temporal logic theory has been very widely and

thoroughly investigated. There have been marly comprehensive proof systems developed for proving temporal

properties of concurrent systems, such as [8,9,10,1 1]. Our FTSS allows us to make full use of these proof

systems. These features show that our FTSS is very promising.

References
• [I] M.Abadi and L.Lamport, An Old-Fashioned Recipe for Real Time. ACM Trans. on Prog. Lang. andSys.,

16(5): 1543-1572, 1994.

[2] B.Alpern and F.B.Schneider, Defining Liveness, Inf Process. Lett., 21(4): 181-185, 1985.

[3] D.Harel, Statecharts: A Visual Formalism for Complex System, Sci. Comp. Prog., 8: 231-274, 1987.

[4] L.Lamport, Specifying Concurrent Program Modules, ACM Trans. on Prog. Lang. andSys.. 5: 190-222,

1983.

[5] L.Lamport, What Good is Temporal Logic ?, Information Processing 83, R.E.A.Mason (eds.), North-

Holland, 1983: 657-68.

[6] L.Lamport, The Temporal Logic of Actions, ACM Trans. on Prog. Lang. andSys., 16(3):872-923, 1994.

[7] N.Lynch and M.Tuttle, An Introduction to Input/Output Automata, CW1-Quarterly, 2(3): 219-246, 1989.

[8] Z.Manna and A.Pnueli, Verification of Concurrent Programs: a Temporal Proof Systems, Foundations of
Computer Science 1V, Distributed System: Part 2, 163-255, 1983.

[9] Z.Marma and A.Pnueli, Adequate Proof Principles for lnvariance and Liveness Properties of Concurrent

Systems, Sci. Comput. Prog., 32: 257-289, 1984.

[10] Z.Manna and A.Pnueli, The Temporal Logic of Reactive and Concurrent System: Specification, Springer-

Verlag, New York, 1991.

[11] Z.Manna and A.Pnueli, Completing the Temporal Picture, Theor. Comp. Sci., 83(1): 97-130, 1991.

[12] R.Milner, A Calculus of Communicating System, Lec. Notes in Comp. 5~i. 94, Spfinger-Verlag, 1980.

[13] A.Pnueli, The Temporal Semantics of Concurrent Programs, Theor. Comp. Sci., 13: 1-20, 1981.

[14] A.Pnueli, Specification and Development of Reactive Systems, In: Information Processing 86, IFIP,

North-Holland, 1986: 845-858.

[15] A.Pnueli, System Specification and Refinement in Temporal Logic, In: R.Shyamasundar (ed.), Soft. Tech.

and Theor. Comp. Sci., Lect. Note. in Comp. Sci. Vol.652, Springer-Verlag, 1992.

21

