
Emacspeak -Direct Speech Access

T.V. Raman*
Adobe Systems

E-mail: (raman@adobe. com)
Voice-mail: 1 (415) 9 6 2- 3 9 4 5

Abstract

Emacspeak is a full-fledged speech output inter­
face to Emacs, and is being used to provide direct
speech access to a UNIX workstation. The kind
of speech access provided by Emacspeak is qual­
itatively different from what conventional screen­
readers provide -emacspeak makes applications
speak- as opposed to speaking the screen.

Emacspeak is the first full-fledged speech output
system that will allow someone who cannot see to
work directly on a UNIX system (Until now, the
only option available to visually impaired users has
been to use a talking PC as a terminal.) Emacspeak
is built on top of Emacs. Once Emacs is started, the
user gets complete spoken feedback.

I currently use Emacspeak at work on my SUN
SparcStation and have also used it on a DECAL­
FHA workstation under Digital UNIX while at Di­
gital's CRL1

. I also use Emacspeak as the only
speech output system on my laptop running Linux.

Emacspeak is available on the Internet:

FTP ftp://crl.dec.com/pub/digitallemacspeak/

WWW http://www.research.digital.com/CRL

The work described in this paper was performed at Di­
gital Equipment Corporation's Cambridge Research Lab.

1 Emacspeak was developed as a spare-time project while
I worked at Digital's Cambridge Research Lab (CRL).

;~~~:~~~~~~~i~::~!Ja::.i~i~o~: r:/;!~~~i~~~~~o~~s
ri,ght nthotice, the .title ~f the pubficati~~:~~lt~~~~a~;;;::~;~ ;:~. co~y-
gtven at ~opynght ts by permission of the ACM I T ' o tee ts
to re~u~lish, to post on servers or to redistribute ~~ Ii~~ o c~py othe~fiise,
penmsston and/or fee. • requtres spect tC

!'SSETS '96, Vancouver, British Columbia Canada
1996 ACM 0-89791-776-6/96/04 .. $3.50 '

32

Keywords

Direct Speech Access, Access to UNIX worksta­
tions.

1 Introduction

Emacspeak is an Emacs subsystem that allows
the user to get feedback using synthesized speech.
Traditionally, screen reading programs have al­
lowed a visually impaired user to get feedback
using synthesized speech. Such programs have
been commercially available for well over a dec­
ade. Most of them run on PC's under DOS, and
there are now a few screen-readers for the Win­
dows platform. Early screen-reading progran1s re­
lied on the character representation of the contents
of the screen to produce the spoken feedback. A
significant amount of research and development
has been carried out to provide access to Graph­
ical User Interfaces (GUI). These provide spoken
access by first constructing an off-screen model
(OSM) -a data structure that encapsulates the in­
formation displayed visually-and then using this
OSM to provide spoken feedback. The best and
perhaps the most complete speech access system
to the GUI is Screenreader/2 (ScreenReader For
OS/2) developed by Dr. Jim Thatcher at the IBM
Watson Research Center [Tha94]. This package
provides robust spoken access to applications un­
der the OS2 Presentation Manager and Windows
3 .1. Commercial packages for Microsoft Windows
3.1 provide varying levels of spoken access to
the GUI. The Mercator project [ME92, WKES94,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F228347.228354&domain=pdf&date_stamp=1996-04-15

MW94, Myn94] has focused on providing spoken
access to the X-Windows system.

As is clear from the above, screen-readers for the
UNIX environment have been conspicuous in their
absence2

•

Emacspeak is an emacs subsystem that provides
complete speech access under UNIX. Emacspeak
will always have the shortcoming that it will only
work under Emacs. This said, there is very little
that cannot be done inside Emacs, so it's not a real
shortcoming.

Emacspeak does have a significant advantage:
since it runs inside Emacs, a structure-sensitive,
fully customizable environment, Emacspeak of­
ten has more context-specific information about
what it is speaking than its commercial counter­
parts. In this sense, Emacspeak is not a "screen­
reader", it is a subsystem that produces speech out­
put. A traditional screen-reader speaks the con­
tent of the screen, leaving it to the user to inter­
pret the visually laid-out information. Emacspeak,
on the other hand, treats speech as a first-class out­
put modality; it speaks the information in a man­
ner that is easy to comprehend when listening. The
traditional screen-reading paradigm suffers from a
severe shortcoming -the user has to interpret the
semantics encapsulated in the visual layout in or­
der to arrive at the meaning of the information dis­
played by an application. In contrast, Emacspeak
-a direct speech access system- speech-enables
specific user applications to to speak the informa­
tion that is being conveyed to the user. By doing
this, Emacspeak has much more contextual know­
ledge about the information being spoken than
does a conventional screen-reading program.

2 Motivation

Emacspeak was motivated by my desire to run
a multitasking OS on my laptop. Before Emac­
speak, the only way I could access a UNIX work­
station was via a PC emulating a talking terminal

2This means that most visually impaired computer users
face the additional handicap of being DOS-impaired- a far
more serious problem!

33

-a crufty if workable solution on the desktop.
However, this was clearly impractical in the mo­
bile environment -I would have had to carry two
laptops!

The available options at the time3 were:

• Run DOS on the laptop and be limited to a
highly restricted environment.

• Run Windows 3.1 on the laptop with a com­
mercial screen-access package for Windows
-most of which were still flaky to say the
least.

• Run Linux on the laptop and get the advant­
ages of a 32-bit OS with full multitasking cap­
abilities.

• Run OS2 with IBM ScreenReader.

At the time I approached the problem, Linux was
the most attractive solution -except that there was
no speech access system available for Linux (or
any other UNIX).

3 Development Of Emacspeak

Initially, I decided to write a speech-enabling ex­
tension to Emacs as opposed to writing a conven­
tional screen-reader at the TTY level in order to
get a working system in the most expedient man­
ner editting editing possible. The first working pro­
totype of Emacspeak took under a week to design
and implement. Once this prototype was working,
the advantages of the speech-enabling approach
outlined earlier became apparent. I then decided
to tum Emacspeak into more than a prototype -
Emacspeak turned into my full-time speech access
interface.

Using Emacs' power
and flexibility, it has proven straightforward to add
modules that customize how different applications
provide spoken feedback, e.g., depending on the
major/minor mode of a given buffer. Note that

30ctober 1994

the basic speech functionality provided by Emac­
speak is sufficient to use most Emacs packages ef­
fectively; adding package-specific customizations
makes the interaction much smoother. This is be­
cause package-specific extensions can take advant­
age of the application context to provide appropri­
ate feedback.

Emacs-19 's font -locking facilities are extended
to the speech output as well; for instance, a user
can customize the system to have different types
of text spoken using different kinds of voices
(speech fonts). Currently, this feature is used to
provide "voice locking" for many popular editing
modes like c-mode, tel-mode, peri-mode, emacs­
lisp-mode etc.

Emacspeak currently comes with speech exten­
sions for several popular Emacs subsystems and
editing modes. I would like to thank their respect­
ive authors for their wonderful work which makes
Emacs more than a text editor -Emacs is a fully
customizable user environment.

Here is a partial list of the various editing modes
and applications supported by Emacspeak:

W3 A powerful Emacs-based WWW browser.

HTML-HELPER Publishing on the WWW.

VM A mail reader.

GNUS A USENET news reader.

BBDB The Insidious Big Brother Data Base. This
is a powerful rolodex system that can be used
to maintain and automatically update a rolo­
dex.

CALENDAR A tool for maintaining appoint­
ments etc.

HYPERBOLE A powerful hypertext and hyper­
button system that allows the user to organize
and find information.

ROLO Yet another rolodex system that comes
with Hyperbole.

KOUTL An outlining editor for maintaining
structured documents.

34

AUCTEX Editing (Jb.)T_EX documents.

DIRED Emacs' file manager.

OOBR A powerful code viewer for browsing ob­
ject oriented code. The interface provided is
similar to the one provided in the Smal~ talk
world.

GDB A powerful interface for debugging C and
c++ code.

CC-Mode C and c++ editing extensions.

INFO Browsing online documentation.

MAN Browsing online UNIX MAN pages.

Folding Using Emacs as a structured folding ed­
itor.

TEMPO A package that allows for editing tem-
plates.

ISPELL A powerful interactive spell checker.

CALC A powerful symbolic algebra calculator.

ETERM Launching a terminal inside
Emacs. This extension enables you to login
to another system and get spoken feedback,
as well as running programs that can only be
run from the shell. With this extension, Emac­
speak can do everything that a screen-reader
written at the TTY level would achieve. For
instance, you can run a VI4 inside the temrinal
emulator and get complete spoken feedback
from Emacspeak.

BUFFER-MENU Navigating through the list of
currently open buffers.

Comint Interacting with command interpreters
running in an inferior process. This allows the
user to run inferior UNIX shells, Lisp or TCL
processes etc.

EDIFF A powerful interface that allows the user
to compare files, apply patches etc.

4VI is the default editor on most UNIX systems

TCL Supports editing and interactive debugging
of TCL scripts.

PERL Supports editing of PERL scripts.

4 Advantages

Emacspeak is a speech output system, and as such
describing the output from Emacspeak in print is
clearly impossible. Suffice it to say that the spoken
feedback provided by Emacspeak is qualitatively
superior to that of the traditional screen-reading
approach5 • In this section, we point out some of the
features of the spoken feedback provided by Emac­
speak.

The Main Differentiator

The primary difference between Emacspeak and
conventional screen-readers can be summarized by
saying that Emacspeak extends individual applica­
tions to speak as opposed to speaking the final dis­
play produced by individual applications. On the
surface, the approach of extending each individual
application to speak might seem intractable. On
closer examination however, it becomes obvious
that speech-enabling applications is in fact the only
way to provide appropriate spoken feedback to the
user. Further, the implementation strategy used,
providing appropriate hooks to key functions in an
application, is a powerful technique for speech­
enabling applications. We justify this assertion in
the following paragraphs.

Every computing application can be viewed as
having three distinct components:

• Obtain user input -get the data.

• Perform the computation.

• Display the result -generate output.

Conventional software assumes that the only
mode of providing output is via a visual display.
The screen-reading approach retrofits spoken out­
put to this design in order to provide access to

51 have used screen-readers for the last 5 years.

35

these applications. Clearly, the screen-reading ap­
proach has the advantage that providing spoken ac­
cess does not require direct cooperation from the
underlying application -but this is also its primary
shortcoming.

The speech-enabling approach forces specific
applications to treat speech as a first -class 1/0 me­
dium. This means that the speech output modules
do not have to wait until the information is finally
displayed to the screen before speaking it -the
speech module can access the application context
and generate the spoken output using all the in­
formation that was available to the visual output
routines.

The design used in Emacspeak can also be de­
scribed as follows. Dr. Jim Thatcher describes
his IBM ScreenReader as an interpreter that ex­
ecutes specific scripts to provide application spe­
cific feedback. This makes IBM ScreenReader6

one of the most powerful screen access systems.
In the case of IBM ScreenReader, the application
specific scripts (ScreenReader Profiles) as well as
the ScreenReader interpreter that runs these scripts
both run at global scope (top-level). Emacspeak
goes one step further -the application specific
scripts as well as the core speech output routines
all run within the application context.

References

[ME92] Elizabeth D. Mynatt and W. Keith Ed­
wards. Mapping GUis to auditory in­
terfaces. Proceedings ACM UIST92,
pages 61-70, 1992.

[MW94] E.D. Mynatt and G. Weber. Nonvisual
presentation of graphical user inter­
faces: Contrasting two approaches.
Proceedings of the 1994 ACM Confer­
ence on Human Factors in Computing
Systems (CH/'94), April1994.

[Myn94] E.D. Mynatt. Auditory Presentation
of Graphical User Inteifaces. Santa

61 used this screenreader exclusively for 5 years until I
wrote Emacspeak.

Fe. Addison-Wesley: Reading MA..,
1994.

[Tha94] James Thatcher. Screen reader/2: Ac­
cess to os/2 and the graphical user in­
terface. Proc. of The First Annual
ACM Conference on Assistive Tech­
nologies (ASSETS '94), pages 39-47,
Nov 1994.

[WKES94] E. D. Mynatt W. K. Edwards and
K. Stockton. Providing access to
graphical user interfaces - not graph­
ical screens. Proc. Of The First
Annual ACM Conference on Assist­
ive Technologies (ASSETS '94), pages
47-54, Nov 1994.

36

