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Abstract
Run-Time Recon�gured systems o�er additional

hardware resources to systems based on recon�gurable
FPGAs. These systems, however, are often di�cult
to build and must tolerate substantial recon�guration
times. A processor based architecture has been built
to simplify the development of these systems by pro-
viding programmable control of hardware sequencing
while retaining the performance of hardware. Con�gu-
ration overhead of this system is reduced by \caching"
hardware on the recon�gurable resource. An image
processing application was developed on this system
to demonstrate both the performance improvements
of custom hardware and the ease of software develop-
ment.

1 Introduction
The high bandwidth of data and computational

load of digital signal processing algorithms gener-
ally overwhelm even the highest performance general-
purpose processors. Achieving real-time execution
rates typically requires custom hardware. SRAM-
based Field-Programmable Gate Arrays (FPGAs) are
often used to implement this custom hardware because
they do not incur non-recurring engineering charges
(NREs), are widely available, and can be con�gured
(and recon�gured) to suit a wide range of applications
[1, 2].

One major bene�t of SRAM FPGAs that is not
often exploited is the ability to recon�gure the de-
vice during execution of the application. This tech-
nique, known as Run-Time Recon�guration (RTR), is
used to provide additional hardware resources for sys-
tems based on recon�gurable FPGAs[3]. Using RTR,
two neural network systems were developed to oper-
ate on far fewer FPGAs than their statically con�g-
ured counterparts[4, 5]. In addition, a wireless video
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coding system was constructed using fewer FPGA re-
sources by rapidly con�guring the FPGA between the
image coding stages[6].

Although RTR systems provide additional hard-
ware to FPGA based systems, they are not without
problems. Few tools support the steps needed to ad-
equately divide a design into equally sized temporal
partitions. Partitioning in time requires the additional
complexity of communicating between temporal parti-
tions. In addition, systems employing RTR must tol-
erate the high time penalty required for con�guration
at run-time.

The Dynamic Instruction Set Processor (DISC)[3]
is a run-time recon�gured processor designed with FP-
GAs to exploit the advantages of RTR while limit-
ing the disadvantages discussed above. DISC provides
a convenient method of sequencing application spe-
ci�c hardware. In addition, DISC allows the caching
of hardware modules to reduce the overhead of fre-
quently used modules. As demonstrated in the paper,
this system provides both the exibility and simplicity
of conventional software design and the performance
of application-speci�c hardware. A complex image-
processing application will demonstrate these advan-
tages.

2 DISC
DISC provides application-speci�c performance

to a simple processor by allowing user-de�ned
application-speci�c instructions to supplement a con-
ventional instruction set. These user-de�ned instruc-
tions are designed in hardware to exploit the low-
level parallelism, custom control, and specialized I/O
of custom hardware circuits. Designed such, a hard-
ware instruction module can execute an application-
speci�c function many times faster than a sequential
stream of general purpose instructions. Replacing a
long series of conventional instructions with an opti-
mized custom-hardware instruction module eliminates
the instruction fetch, decode, and other overhead as-
sociated with general purpose instructions.

By designing application-speci�c functions as in-
struction modules, hardware circuits operate under
software control. Controlling application-speci�c in-
structions in software allows DISC to retain the pro-
grammability of a conventional processor while pre-
serving the performance of custom hardware. Com-
plex sequences of custom instructions are easily de-
scribed and mixed with conventional general purpose
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instructions.
DISC removes the hardware limitations of the

FPGA by recon�guring hardware resources as de-
manded by run-time conditions. Implemented with
the partially recon�gurable CLAytm FPGA[7], DISC
instructions are paged in and out by partially recon-
�guring the FPGA as demanded by the executing
program. FPGA resources can be reused to imple-
ment an arbitrary number of performance-enhancing
application-speci�c instructions.

The DISC processor is divided into two distinct re-
gions: the processor core and the custom-instruction
space. The processor core handles all instruction se-
quencing and remains static on the hardware during
program execution. The custom instruction space is
reserved for hardware instruction modules and is con-
tinually con�gured as run-time execution dictates.

2.1 Processor Core
A simple processor core was designed within the

FPGA resources to sequence program instructions, in-
terface with external memory, synchronize instruction
swapping, and control inter-module communication.
The processor core used on DISC is based on a sim-
ple accumulator model. The global accumulator reg-
ister and several state signals are available to both the
processor core and all loaded instruction modules. In
addition, the processor core contains addressing con-
trol, basic sequencing capability, and dedicated I/O
interfacing logic. The static processor provides several
static instructions for simple sequencing and internal
control.

2.2 Custom Instruction Space
Most FPGA resources required for DISC are re-

served for the custom instruction space. Custom in-
structions are continually con�gured (and removed)
on this instruction space as demanded by the appli-
cation program. Frequently used custom instructions
are kept inside the custom instruction space to elimi-
nate the con�guration overhead when reused.

To simplify run-time placement and provide maxi-
mum exibility, DISC allows custom instruction mod-
ules to be placed anywhere within the FPGA. This
exible placement scheme allows the instruction mod-
ule's location to be determined at run-time and not
at design time. Hardware e�ciency is maximized by
allowing run-time conditions to dictate module place-
ment.

Instruction modules that operate correctly at any
location must be designed within a well-de�ned global
context. The interface between the global circuit and
the instruction module must appear the same at every
location. DISC solves this problem by constructing
a simple, but regular, global context throughout the
FPGA. The global context for DISC is constructed
by running global processor signals vertically on the
FPGA and spreading these signals along the width of
the FPGA as seen in Figure 1.

Instruction modules on DISC are designed under
the strict constraints of this global context. As seen
in Figure 2, instruction modules are designed horizon-
tally, across the width of the FPGA. The modules lie
perpendicular to the communication signals to gain

Processor Core

Global Signals

Figure 1: DISC Global Context.
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Figure 2: DISC Instruction Module.

access to each processor signal regardless of their ver-
tical placement. Although each instruction module
must span the entire width of the FPGA, each mod-
ule may consume an arbitrary amount of hardware by
varying its height.

3 DISC-II
DISC was constructed and tested on a simple wire-

wrapped prototype board. A number of signi�cant
design problems made it di�cult to use and limited its
performance. By constraining the entire design to a
single FPGA, few resources were available for both an
adequate processor core and unallocated instruction
hardware space. The 8-bit processor core provided few
built-in instructions and had limited addressing range.
In addition, the system board proved unreliable.

A second version of DISC has been built to address
many of the problems of the initial \proof-of-concept"
system discussed above. The system was developed
on a stable FPGA-based board provided by National
Semiconductor[8]. The new board o�ered several ad-
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Figure 3: DISC-II System Partitioning.

vantages over the system board used earlier. It pro-
vides a dedicated host interface, additional memory,
and three partially con�gurable FPGAs.

The additional FPGAs allowed a more natural par-
titioning of system functions. Most static resources
were moved away from the custom instruction space
to maximize dynamic hardware. The FPGAs were
partitioned into the three systems as seen in Figure 3.

The Bus Interface, which remains static through-
out its operation, actively monitors the processor state
and con�gures modules on the custom instruction
space as provided by the host. The Processor Core,
which has been separated from the instruction space,
sequences the instruction modules as dictated by the
attached program memory. With additional FPGA
resources, the processor core was improved to take ad-
vantage of the 16-bit bus widths found on the board.
In addition, extra registers were added to provide more
support for function calls, recursion, and high-level
language addressing.

4 DISC Design Environment
Designing a DISC application requires both hard-

ware and software development. Application-speci�c
instruction modules are designed in hardware and the
instruction modules are sequenced by a program writ-
ten in software. Those operations of an application
that can exploit circuit-level parallelism, custom I/O
interfaces, or hardwired control are implemented as
custom hardware. Global control, complex control se-
quences, and complex data structures are usually im-
plemented in software.

4.1 Hardware Design
Application-speci�c instruction modules are de-

signed under the constraints imposed by the global
context. Structural models of the DISC system are
available to ensure that user-de�ned modules conform
to global context protocols. Once designed and veri-
�ed, the instruction is physically mapped to DISC us-
ing the device speci�c mapping tools. Several custom

post-processing utilities are used to insure the custom
module adheres to global context constraints. Once
a custom instruction module has been designed and
mapped to the DISC context, it is available to any
application program.

4.2 Software Development
The software program of a DISC application must

organize the application instructions into a speci�c
control sequence. These sequences may range in com-
plexity from a simple assembly program to a com-
plex C program making frequent references to custom
instruction modules. Because the instruction set of
DISC is never static, an assembler must allow users to
continually de�ne and use new instructions in applica-
tion programs. A retargetable assembler is available
for DISC that allows users to add and use new in-
structions as they are developed[9]. New instructions
are de�ned by specifying the instruction mnemonic,
instruction type, opcode, and any necessary control
parameters.

The LCC retargetable 'C' compiler was targeted
to the standard DISC instruction set[10]. Additional
syntax was added to the compiler to support custom
instruction calls from within the C language. The
compiler allows users to mix high-performance cus-
tom instructions with familiar 'C' control sequences.
Custom instruction modules are referenced in C by a
function call with a native pre�x as follows:

native_lowpass(a);

After compilation, a post-processing step substi-
tutes all native function calls with their correspond-
ing instruction name.

5 Object Thinning on DISC
An image processing instruction library was cre-

ated for DISC to demonstrate both the performance
improvements of custom hardware and the ability
to easily sequence DISC custom instructions. Most
of these operations obtain signi�cant speed improve-
ments through parallel computation, custom memory
addressing, and pipelined arithmetic. Each instruc-
tion operates at the DISC execution speed of 8 Mhz.
Table 1 lists the available image processing instruc-
tions and their associated size (in DISC rows).

With the custom image processing instruction li-
brary and high-level language support, an object thin-
ning algorithm was implemented on DISC. This algo-
rithm is divided into the following three operations:
pre-�ltering, thresholding, and region thinning. The
image of Figure 4 was used as the original test image
and the software code for the algorithm is as follows:

main(){

image *image1, *image2;

histogram *hist;

int thresh;

int skel;

image2 = native_lowpass(image1);

image1 = native_clear(image2);



Module Rows

Image inversion 4
Image move(copy) 4
Image clear 5
Image threshold 7
Histogram generation 8
Dilate and Erode 7
Image di�erence 7
Median pixel 9
Skeletonization 25
Low-pass �lter 28
Edge detection �lter 30
High-pass �lter 42

Table 1: DISC Image Processing Instruction Library.

Figure 4: Original Test Image.

hist = native_histogram(image2);

thresh = peakthresh(hist);

image1 = native_threshold(thresh,image2);

for (skel = 0; skel != 0;) {

skel = native_skeleton1(image1,image2);

skel += native_skeleton2(image2,image1);

}

}

5.1 Pre-�ltering
The DISC object thinning algorithm is intended

to operate on high-contrast gray-scale images such as
news print, handwriting, and lettering. The original
image is �ltered through a simple low-pass �lter to
remove high-frequency noise that may introduce un-
wanted regions.

The LOWPASS instruction from the image process-
ing library performs a suitable low-pass �lter. Figure
5 displays the result of an image �ltered through the

Figure 5: Low-pass Pre-�ltering.

LOWPASS instruction. C code to execute the �lter ap-
pears as follows:

.

image2 = native_lowpass(image1);

.

5.2 Thresholding
Once the high-frequency noise of the image has

been removed, it is ready for the next operation:
thresholding. Thresholding algorithms reduce image
information by converting a gray-scale image into a
simple binary image. With good thresholding algo-
rithms, objects of interest are placed in the foreground
while all other image information is placed in the back-
ground. The most straight-forward method of thresh-
olding an image compares each pixel value in the im-
age with a predetermined threshold value. Pixels with
intensity greater than the threshold value are placed
in the foreground, while those less than the threshold
are placed in the background.

Although this process of thresholding is relatively
simple, obtaining a good threshold value can be trou-
blesome. The process of choosing a threshold value
begins by obtaining a histogram of the input image.
In some cases, �nding the mean or median pixel of
the histogram is su�cient. These simple approaches,
however, are inadequate for high contrast images with
a dominant foreground or background. A more ef-
fective technique for these types of images involves
detecting the peaks of the histogram. A surprisingly
good threshold value can be obtained by calculating
the midpoint between the foreground peak and the
background peak.

By using instructions from the image processing li-
brary, most of the thresholding process can be com-
pleted with high-speed custom hardware. To build
a histogram table from the input image, the CLEAR

and HISTOGRAM instructions are used. The CLEAR in-
struction initializes the histogram memory and the
HISTOGRAM instruction e�ciently builds the image his-
togram. There is no custom instruction to deter-
mine histogram peaks or �nd the mid-peak threshold



Figure 6: Threshold Image.

value. To compute the threshold value using the peak
method will require conventional software code writ-
ten as a subroutine in 'C' or assembly. The THRESHOLD
instruction is also available to convert the source im-
age into the binary image using the threshold value
determined in the software subroutine. The 'C' source
code to complete thresholding of the input image is as
follows:

.

image2 = native_lowpass(image1);

image1 = native_clear(image2);

hist = native_histogram(image2);

thresh = peakthresh(hist);

image1 = native_threshold(thresh,image2);

.

Figure 6 displays the resulting thresholded image.

5.3 Object Thinning
Object thinning algorithms reduce the redundant

shape information from an image to simplify the pro-
cesses of object recognition. The simpli�ed images
obtained from the algorithms represent the shape of
the original objects with single-pixel lines. The single-
pixel lines representing object shapes are often called
the \skeleton".

Object thinning algorithms usually involve succes-
sive removal of the outer edges of an object until only
the skeleton of the object remains. This thinning pro-
cesses is similar to the erosion operation that uni-
formly erodes the outer edges of image objects. Un-
like erosion, however, object thinning must never com-
pletely destroy an object or disconnect object regions.
The algorithm will selectively remove outer edges of
objects with the following constraints[11]:

� connected object regions must thin to connected
line structures,

� approximate end-line locations should be main-
tained,

Figure 7: Image Skeleton.

� the skeleton should be one pixel wide,
� the skeleton should lie at the center of the object
cross section,

� the skeleton must contain the same number of
connected regions as the original image.

There are many algorithms available for object
thinning that trade skeleton quality for algorithm
speed. The Zhang-Suen thinning algorithm[12] was
chosen because of its acceptable results and its suit-
ability for hardware. This algorithm determines
whether a foreground pixel can removed by evaluating
its neighborhood.

To skeletonize the binary image using the Zhang-
Suen algorithm, a custom instruction module,
skeletonize (25 rows in DISC), was designed. Each
execution of the instruction module completes one
pass of the thinning algorithm and indicates whether
the operation is complete. To e�ectively complete the
thinning algorithm, the instruction module must ex-
ecute until it no longer modi�es the image. The re-
sulting thinned image is seen in Figure 7. The code
used to completely skeletonize an image on DISC is as
follows:

for (skel = 0; skel != 0;) {

skel = native_skeleton1(image1,image2);

skel += native_skeleton2(image2,image1);

}

5.4 Run-Time Execution
Executing all steps of the object thinning requires

�ve custom image processing instructions (LOWPASS,
CLEAR, HISTOGRAM, THRESHOLD, and SKELETON) and
the three instructions necessary to support C con-
structs (SHIFT, COMPARE, and ADD). These instructions
consume 83 rows of custom logic, or almost two times
the available static hardware for custom instructions.
Since all instructions can not �t on the processor at
the same time, instructions must be swapped to make
room as the algorithm proceeds.
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Beginning with a clean instruction space, the
custom instruction modules LOWPASS, CLEAR and
HISTOGRAM are con�gured and executed on DISC. Af-
ter executing these steps, the custom instruction space
appears as seen in Figure 8.

Once the histogram is complete, the software sub-
routine to compute the threshold value is executed.
The C code uses several custom instructions not built
into the global controller. Three of these instructions
are needed for the sub-routine: ADD, COMPARE, and,
SHIFT. Since there is not enough room on the FPGA
for all three modules, DISC must make room by re-
moving older modules. At this stage, the LOWPASS

module is the least recently used module and is re-
moved. Figure 9 displays this transition.

With the computed threshold value, the image is
converted into a binary image with the THRESHOLD

custom instruction. With ample space in hardware
to place the instruction, no modules are removed.
After thresholding the image, the image is thinned
with the skeletonization instruction. At this stage,
the SKELETON module will not �t within the avail-

Shift
Compare

Add/Subtract

Threshold

Control

Skeletonization

Control

Figure 10: DISC Executing the SKELETONIZATION In-
struction.

able hardware and the two oldest modules CLEAR and
HISTOGRAM are removed to make room. With the
SKELETON module in place, it is executed iteratively
until object thinning is complete. Figure 10 displays
this last transition.

6 Results
For purposes of comparison, two versions of the

object-thinning algorithm were implemented: one on
DISC and the other on a 66 Mhz 486 PC. In all cases,
DISC outperformed the PC by a signi�cant margin as
shown in the Table 2.

IMAGE 486 DISC Speedup

Silk screen 2.17s .29s 6.5
Block letter 3.90s .53s 6.4
News print 9.90s .89s 10.1

Table 2: DISC and PC Execution Results.

Even though DISC provided performance improve-
ments over the host machine, much of the execution
time is spent con�guring and moving the custom in-
structions. With the silk screen image, over 25% of
execution time is spent con�guring DISC and han-
dling instruction moving. Note that DISC is running
at a clock rate approximately 1/8 (8 Mhz) that of the
microprocessor.

7 Conclusion
This paper demonstrated several advantages of pro-

viding software sequencing support for run-time recon-
�gured hardware. First, RTR applications are imple-
mented as a mix of software ('C') and hardware (cus-
tom instruction modules). This adds a great deal of
exibility to the development process. Designers can
implement customized hardware modules where nec-
essary to achieve high performance and then use soft-
ware, with its faster design cycle, to implement com-



plex control and functions that are not performance
sensitive. Second, hardware modules are reusable.
Because all hardware modules are organized around
the same global context, they can easily be reused
across any number of di�erent applications without
the need for place and route. Large libraries of custom
instructions can easily be created and these are imme-
diately available simply by referencing them by name
in a 'C' program. The global context and run-time
environment of DISC automatically take care of all
other concerns. Finally, the development of RTR ap-
plications is simpli�ed. FPGA hardware resources are
easily reused - any unused DISC resources are auto-
matically reclaimed as necessary through the demand-
driven module replacement process. In addition, the
extensibility of DISC allows the object thinning appli-
cation to be combined with more complex image pro-
cessing algorithms. With little more than additional
high-level programming, the object thinning applica-
tion can be extended to a complete object recognition
system.

References
[1] S. Trimberger. A reprogrammable gate array

and applications. Proceedings of the IEEE, pages
1030{1041, July 1993.

[2] P. Bertin, D. Roncin, and J. Vuillemin. Pro-
grammable active memories: a performance as-
sessment. In G. Borriello and C. Ebeling, editors,
Research on Integrated Systems: Proceedings of
the 1993 Symposium, pages 88{102, 1993.

[3] B. L. Hutchings and M. J. Wirthlin. Implemen-
tation approaches for recon�gurable logic appli-
cations. In W. Moore and W. Luk, editors, Field-
Programmable Logic and Applications, pages 419{
428, Oxford, England, August 1995. Springer.

[4] J. G. Eldredge and B. L. Hutchings. Density en-
hancement of a neural network using FPGAs and
run-time recon�guration. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages
180{188, Napa, CA, April 1994.

[5] J. D. Hadley and B. L. Hutchings. Design
methodologies for partially recon�gured systems.
In P. Athanas and K. L. Pocek, editors, Proceed-
ings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 78{84, Napa, CA,
April 1995.

[6] B. Schoner, C. Jones, and J. Villasenor. Issues
in wireless coding using run-time-recon�gurable
FPGAs. In P. Athanas and K. L. Pocek, edi-
tors, Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pages 85{89,
Napa, CA, April 1995.

[7] National Semiconductor. Con�gurable Logic Ar-
ray (CLAy) Data Sheet, December 1993.

[8] C. R. Rupp. CLAyFUNtm Reference Manual. Na-
tional Semiconductor, September 1994. Version
2.00.

[9] D. A. Clark. DASM Reference Manual. Brigham
Young University, Provo, Utah, 1995.

[10] C. Fraser and D. Hanson. A Retargetable C
Compiler: Design and Implementation. Ben-
jamin/Cummings Publishing, 1995.

[11] J. R. Parker. Practical Computer Vision Using
C. John Wiley & Sons, Inc., 1994.

[12] T. Y. Zhang and C. Y. Suen. A fast parallel al-
gorithm for thinning digital patterns. Communi-
cations of the ACM, 27(3):236{239, 1984.


	CD-ROM Home Page
	FPGA Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


