Computing the Discrete Fourier Transform on FPGA Based Systolic
Arrays

Chris Dick
School of Electronic Engineering
La Trobe University
Melbourne 3083, Australia

Abstract

Reconfigurable logic arrays allow for the creation
on the one physical hardware platform many differ-
ent virtual circuits. A configuration bit-stream loaded
into the logic array specifies the virtual circuit im-
plemented. This paper addresses the problem of im-
plementing FFTs using virtual computers based on
Xilinx FPGAs. A systolic array processor architec-
ture consisting of processing elements (PEs) employ-
ing CORDIC arithmetic is presented. The CORDIC
approach removes the requirement for area consum-
ing multipliers in the design. The method is suitable
for handling power-of-2 and non power-of-2 transform
lengths. The modular nature of the design provides
for a highly scalable architecture that provides the
system designer with a flexible mechanism for mak-
ing cost-performance tradeoffs. The array processor
and PE architecture are described. Based on simula-
tion results, FPGA device utilization and transform
execution time are calculated.

1 Introduction

Reconfigurable logic arrays allow for the creation
on the one physical hardware platform many differ-
ent virtual circuits. A configuration bit-stream loaded
into the logic array specifies the virtual circuit imple-
mented. Reconfigurable custom computing machines
(CCM) based on field programmable gate arrays (FP-
GAs), have been constructed that allow the implemen-
tation of demanding circuits that cannot be accommo-
dated in a single logic cell array (LCA).

One area in which CCMs have been applied is digi-
tal signal processing (DSP). Implementation of digital
filters has been discussed by Mintzer in [1] and Dick
and harris in [2].

A less explored topic in the DSP arena is the ap-
plicability of CCMs for computing discrete Fourier
transforms (DFTs). Shirazi et al in [3] describe the
implementation of the 2-D DFT on Splash 2. The
method uses standard row-column processing. First,
1-D transforms are performed on each row of data,
followed by transforms on each column of the row-
transformed data. The 1-D fast Fourier transform
(FFT) algorithm employed is the decimation-in-time
Cooley-Tukey radix-2 algorithm [4]. A custom 18-bit
floating point number format is used in the implemen-
tation. A single butterfly module and address genera-
tors occupy 13 Xilinx XC4010 FPGAs of Splash 2. A
1-D FFT is computed by time division multiplexing
the butterfly processor.

In this paper, an FPGA based systolic array proces-
sor architecture is described for computing 1-D DFTs.
To avoid the requirement for area consuming multipli-
ers, CORDIC (coordinate rotation digital computer)
arithmetic is used to implement the systolic array pro-
cessing elements. To the author’s knowledge, this ap-
proach to computing DFTs using FPGA custom com-
puting machines has not been reported in the open
literature.

The paper is organized as follows. First, the appli-
cation of CORDIC methods to computing the DFT
is described. An overview of the CORDIC computing
technique is then given. Next, the FF'T algorithm uti-
lized, and the systolic array processor architecture are
presented. The architecture and a detailed description
of the system PEs is then discussed. Finally, the per-
formance of the systolic array processor is presented.



2 CORDIC Arithmetic Based FFT
Processor

The DFT X(k), k=0,...,N —1 of an N point

vector of numbers z(n), n =0,...,N — 1 is defined
as
N—1
X(k) =) z(n)w" k=0,....,N—1 (1)
n=0

where w = e7727/N is the Nth complex root of unity.
In general, the input data set is complex valued. Con-
ventionally, the procedure for computing a single DFT
coeflicient is viewed as forming the sum of a sequence
of complex products. Usually the complex products
are computed using a multiplier and adder that op-
erate on real valued data. Another way of viewing
the problem is to consider the calculation of one out-
put value, as the vector sum of rotations of the in-
put complex tuples. The rotation angles being integer
multiples of the Nth root of unity. When the com-
putation is viewed from this perspective, a DFT algo-
rithm based on the CORDIC method first described
by Volder in [5] can be developed. This approach
avoids the requirement for a full multiplier. Multipli-
ers consume a large amount of FPGA logic resources,
and so the approach would seem advantageous for im-
plementation on FPGA based CCMs.

The CORDIC based approach for computing the
DFT in the context of very-large-scale-integration
(VLSI) and wafer-scale-integration (WSI) technolo-
gies, has been considered by several authors including
Despain in [6] and [7] and Jones in [8] and [9)].

2.1 CORDIC Arithmetic

Computation of the DFT requires the rotation of
complex numbers through integer multiples of the Nth
root of unity. Consider the problem of rotating a com-
plex datum z + jy (j = v/—1) through an angle 6 to
produce a result q. The direct method of performing
the rotation is to compute

q=(z+jy) xe?? = xcos(d) — ysin(9)
+ Jj(ycos(f) + xsin(h)) (2)

using either 4 real multiplies and 2 real additions, or
3 real multiplies and 3 real additions. Full multipli-
ers are expensive functional units to implement using
FPGA technology. An alternative method that avoids
the requirement for a full multiplier for performing the
rotations is to use CORDIC arithmetic. Based on the
description by Despain in [6], the calculation of Eq. (2)

can be computed to an accuracy of 1 bit in L bits by
using the following iterative procedure. First perform
the initialization

i =0 (3)

Then, execute the following procedure L times

a; = sgn(z;) (5)
Tip1 = x4+ ay27" (6)
Yir1 = Yi— w2 (7)
Ziy1 = 2z —ajtan”! (2”) (8)

i = 1+1

where sgn(+) is the sign operator. The initial values of
x and y are the real and imaginary components of the
complex number that is to be rotated.

The method causes a magnification of the rotated
vector’s length by a factor K defined as

K= 1:[ V14272 (9)
=0

For L > 12, K is approximately 1.6. What this means
in the context of the DFT, is that the output spectrum
will be scaled by the constant factor K. In many situ-
ations the scaling introduced is not considered a prob-
lem. More complex CORDIC iterative procedures can
be employed that avoid the magnification, but the
resultant hardware is more costly than for the basic
uncompensated CORDIC procedure described above.
The uncompensated algorithm forms the basis of the
PEs in the array processor described in section 4 of
this paper.

3 Systolic Array FFT Processor

In this section an FPGA computing architecture
similar to the FFT array processor described by Jones
in [8] is presented.

The FFT algorithm employed is the Cooley-Tukey
algorithm [4]. The procedure is to map the 1-D in-
put data set into a 2-D array, and use a pseudo 2-D
transform to compute the 1-D DFT. Assume that the
transform length N is composite and can be expressed
as

N = N1 X Ng (10)

where N; and Ny are integers. Following the index
mappings in [4], an N point transform can be ex-



pressed as
Ni—1 Ny—1
klka Z Z nl;nQ wnN2k2wnN2klw71i/'11kl
ki =0,...,N; —1
k2 = O 2 —1 (11)

The procedure defined by Eq. (11) is to first perform
N length Ny DFTs. These DFTs are the transforms
of the rows of the re-ordered input data set and are
defined as

= ny=0,... Ny —1
_ nok 1 =Yy V1 —
F(ni, ko) = Zox(nl’nQ)wsz hy=0.... Ny—1
no =
(12)
Next, each element of the intermediate matrix

F(nl,kg)nlzo,...,Nl—l, k2—0 Ng—liS
adjusted by the complex factor w"2k1 the so-called
twiddle factors. Finally, a second set of DFTs is per-
formed on each column of the twiddle factor adjusted
matrix. The final 1-D result is obtained by unloading
the 2-D matrix X (ki, k2) using the appropriate index
mapping.

The required computation steps can be performed
by the systolic array architecture shown in Figure (1).

Assume that the transform length can be expressed
as an even power of 2 so that Ny = Ny = n. The 1-
D input sequence is first mapped into a 2-D array of
dimension n X n and placed in the input buffer mem-
ory. The systolic array architecture consists of two
n-by-n arrays of processing elements. The first n-by-
n processor array is referred to as the Row-Processor
(RP). The second PE array is the Column-Processor
(CP). Each row in the input data buffer is directed
into the corresponding row of PEs in the RP by a 2
wire complex serial bus. Each PE in the RP com-
putes a single DFT coefficient of the row transforms
defined by Eq. (12). The row busses in Figure (1)
broadcast the same data to all PEs in the same row.
Each PE is a bit-serial processor, so each bus con-
necting all PEs in the same row carries a serial bit
stream of complex data samples. Each PE, in paral-
lel with all other PEs in the RP, computes one DFT
value of the row transforms. The next step is to ap-
ply the twiddle factors to the partial transform result.
Rather than explicitly performing this operation, the
rotations performed by the twiddle factors are com-
bined with the column transforms that are computed
by the CP array. Thus, no separate hardware resource
or time is required to perform the adjustment by the
twiddle factors. The Column-Processor array does not
perform a direct DFT on the complex data entering

each column of processors in the CP, but instead com-
putes a modified transform that is the result of com-
bining the adjustment by the twiddle-factors, and the
column transforms into a single operation. The CP
array operates on the matrix F'(-) to produce the final
output result according to

Ni—1 . ("714#2)
X(kl,kg): Z F(nl,kl)e J N TWN

7L1:0

n1=0,...,N1—1

ky=0,... Ny—1 (13)

A pipelined complex serial bus interconnects each
column of PEs in the RP array. The pipe stages are
implemented using configurable logic block (CLB) [10]
memory. T'wo CLBs are required for each stage of the
pipeline. The output of each column of PEs in the row-
processor broadcasts data to a column of PEs in the
CP array. Each column-aligned linear array of PEs in
the Column-Processor computes one of the modified
transforms defined in Eq. (13). Each PE computes
a single value of Eq. (13). A horizontal pipelined se-
rial bus connects each row of processors in the CP ar-
ray. This bus passes the DFT coefficients from a PE,
through other PEs in the row, and finally through to
the output buffer memory.

The systolic architecture described allows for full
overlap of the row transforms with the column trans-
forms. The time complexity of the algorithm is n time-
steps, where a time-step is the amount of time required
to compute a CORDIC rotation.

4 Processing Element Architecture

The architecture of the systolic array PE is shown
in Figure (2).

The major functional unit of a PE is the CORDIC
vector rotation unit. To minimize the hardware re-
quirements, the CORDIC method selected for this
work was the conventional uncompensated CORDIC
algorithm defined above. The range of convergence for
this algorithm is —1.7433 to 1.7433 radians [8]. The
DFT requires rotations of the input data through an-
gles in the range —m to +m. The algorithm can be
modified to extend the range of convergence of the
basic method to the range of angles required in the
DFT calculation, however, an extra 2 iterations of the
CORDIC algorithm are required [8]. With these addi-
tional iterations the magnification factor increases to
a value of approximately 3.2 per rotation [8]. This in-
crease in magnification factor could potentially result
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Figure 1: Systolic array architecture for computing the DFT. The external CORDIC rotator control memory is
not shown in this figure.
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in more stringent scaling strategies being necessary for
a fixed-point implementation than would be required
by the uncompensated CORDIC algorithm.

To achieve the rotations through the set of angles
required by the DF'T, a two stage rotation process con-
sisting of a large angle rotator followed by a CORDIC
based small angle rotator was adopted. The large an-
gle rotator handles rotations through angles in the set
© = {0,%,—m, =5 }. Whilst the small angle rotator
implements rotations through angles in the range =~

s

to 5. A rotation through an angle 6 is achieved by

expressing 0 as the sum of a large angle ® and a small
angle ¢
=0+ ¢ (14)

where ® € © and 5 < ¢ < 5. The large angle rota-
tion is easily achieved by the appropriate combination
of negation and transposing of the input data. Re-
ferring to Figure (2), the large angle rotator consists
of the two processing units labeled C'0 and C'1, which
either pass the input data, or the two’s complement
of the input data to their outputs. The data router R
passes its input data, or the exchange of the data to
its outputs. Each two’s complementer is implemented
in 1 CLB. The data router is also implemented in 1
CLB. Three control signals are required to configure
the large angle rotator. Each control signal is gener-
ated by a ROM control store implemented by config-
uring a CLB as memory. The total CLB count for the
large angle rotator is 6.

There are two small angle rotators, one for com-
puting each of the iterations defined by Eq. (6) and
Eq. (7). These units are labeled small-rot(z) and
small-rot(y) in Figure (2). Consider performing the
iteration Eq. (6). The register x, implemented with
CLB RAM, currently holds the value z;. The update
of x is performed in a bit-serial fashion. The regis-
ter pair y_buf0 and y_bufl form a ping-pong buffer.
One of the registers in the ping-pong buffer is used
for the update of x, whilst the second register is si-
multaneously being updated with the new value of y
being computed by the functional unit small-rot(y).
The bit-shifting operation required in the update pro-
cedure is implemented by appropriate addressing of
the ping-pong buffer register. For example, to gener-
ate the value 2 %y; used in the ith CORDIC iteration,
the ping-pong buffer address sequencer starts its ac-
cess at bit address 4 of the ping-pong buffer register.
The value 27 %y; is sign-extended to the correct word
length by continuously addressing the most significant
bit of y; for the appropriate number of cycles.

In each iteration of the algorithm 27%y; is either
added to, or subtracted from z; to form z;y;. This

process is controlled by Eq. (8). There is no need
for the on-line calculation of the term tan=!(27%) in
Eq. (8). The z — values are computed off-line and
stored in system RAM. Each PE computes one DFT
coefficient. In computing one coefficient of a N = 2P
transform, where p is even, VN angles are used by
each PE. Each CORDIC rotation is performed in L
cycles. Therefore, VN x L bits of information are
required to control the small-angle rotators. For a
value of N = 1024 and L = 16, this would mean
32 x 16 = 512 bits of control information for the small
angle rotators of each PE. Whilst this control informa-
tion could be stored internal to the LCA using CLBs
configured as memory, the number of CLBs required
is considered to be too large. For the example just
cited, 16 CLBs would be required to store the 512 bits
of small-angle rotator control information. The solu-
tion is to store this information in memory external
to the LCA. This does not present a problem in terms
of external memory bandwidth. Using current FPGA
technology like the Xilinx XC4010PG191-4, 10 PEs
can be supported by the one device. Therefore only
a 512 x 8 = 4096 bit memory is required to store all
the control information for all of the PEs implemented
in the one LCA. In addition, only a single connection
from memory need go to each PE, so any potential
LCA routing problems are avoided.

Address generation for the external control store is
performed by a 9 bit counter resident in the same LCA
as the PEs. The address generator occupies 5 CLBs.

The hardware for the update of the imaginary com-
ponent, y, of the PE input data is essentially a dupli-
cate of that used for updating the real component of
the input data. However, only one large angle rotator
and one external control store is required by each PE.

The CLB count for all of the components in the
CORDIC rotator is shown in Table (1).

In addition to the CORDIC rotation unit, a com-
plex accumulator is required to form the sum of the
rotated input data, so forming the result for one DFT
coeflicient. The real and imaginary parts of the accu-
mulator are each kept to a precision of 32 bits. The
accumulator update is performed using two bit-serial
full adders (FAs) labeled FA_R and FA T in Figure (2).
FA R updates the real part of the running sum, whilst
FA_I updates the imaginary part of the DFT value.
Each FA is implemented in 1 CLB. The complex ac-
cumulator occupies 4 CLBs.

The total CLB count for one PE is given by sum-
ming the number of CLBs required for the CORDIC
unit, which is 38, to the 4 CLBs required for the com-
plex accumulator, plus an additional 2 CLBs for the



Component CLB Count
large angle rotator 6
T register 1
y-bufl 1
y-bufl 1
mux._x 2
mux_a 2.5
mux_b 2.5
full adder x 1
y register 1
x_buf0 1
x_bufl 1
mux_y 2
full adder y 1
Control/Address Generators 15
Total: 38

Table 1: CLB breakdown for each hardware compo-
nent of the CORDIC rotator.

pipelined serial bus in each RP and CP. This gives a
total of 44 CLBs. The control/address generators for
each PE can be shared. If this is done, then each PE
can be implemented in 29 Xilinx 4000 series CLBs.

5 Performance

The DFT method outlined above describes a gen-
eral technique for computing transforms. The Cooley-
Tukey decomposition strategy can be applied itera-
tively to the row and column processor arrays. In ad-
dition, not all of the PEs in Figure (1) need be physical
processors. At the expense of execution time, physical
PEs can be time-division-multiplexed to compute the
required transforms. Consider the problem of comput-
ing a 1000 point transform. First factorize the trans-
form length as 1000 = 10 x 100. With this factoriza-
tion a 1000 point transform can be computed by per-
forming 10 100-point DFTs followed by 100 10-point
DFTs. The phase-factor adjustment that is applied
between the row and column transforms is not explic-
itly mentioned in this discussion because it is incorpo-
rated as part of the column processing procedure. The
100 point transforms are done as 20 10-point DFTs.
Each 10 point DFT is computed as 5 2-point trans-
forms followed by 2 5-point DFTs. A 2 x 5 PE array
can be implemented in one 4010 device as shown in
Figure (3). The 10-point transforms are implemented
by first computing 5 2-point transforms on the PE ar-

PE CORDIC
Rotator Scratch-Pad
Control RAM
Memory
Column Bu i 1

Row Bus [*

Input Data
Buffer

ik
b

XC4010
. = PE D: CLB RAM [>= Tri-state Buffer

Figure 3: System architecture for computing large
transforms using a 2 x 5 PE array implemented in
one XC4010 device.

ray in Figure (3). Five serial streams of data are read
from the input buffer into the 5 row buses of the PE
array. These transforms are computed in parallel. The
results from this calculation are stored in CLB RAM.
Next, 2 5-point transforms are computed on the results
from the just completed 2-point transforms. Data is
input to the PEs by sequentially enabling the tri-state
buffers connected to the Column Buses in the process-
ing array of Figure (3). The 2 5-point transforms are
computed in parallel, and the results written to the
memory labeled “Scratch-Pad RAM”. The one 2 x 5
PE array is effectively being time-division-multiplexed
between the RP and CP shown in Figure (1). The
Scratch-Pad RAM is used for temporary storage of
intermediate results in the calculation.

Let Ty be the execution time for an N-point DFT.
The execution time T7¢ for a 10-point transform is

Tl() = TQ + 5tr (].5)

where tr is the time required to perform a CORDIC
rotation. For a 100-point transform

T100 = 20779 (16)
The total time to compute a 1000-point transform is

107100 + 100770
300710
300(T, + 5tr) (17)

Tio00 =



The time to compute a CORDIC rotation is ty =
BL/f where B is the number of bits of precision used
in the CORDIC rotator, L is the number of itera-
tions used for each CORDIC rotation, and f is the
system clock frequency. The 2-point transforms are
trivial, and computed without the application of the
CORDIC rotator. The execution time for the 2-point
transforms is To = 2B/ f, which is simply the time to
perform a bit-serial addition of 2 B-bit numbers.

Using the Xilinx FPGA timing analyzer xdelay, the
system clock rate using an XC4010PG191-4 FPGA
was determined to be 15.3 MHz. Values of B = 32,
and L = 16 were used in the design. The transform
execution time for NV = 1000 as a function of number
of LCAs is presented in Table (2).

Execution Number of
Time (ms) XC4010 LCAs
51.45 1
25.73 2
10.29 5
5.15 10

Table 2: Execution time for a 1000-point transform as
a function of the number of LCAs.

6 Conclusion

Systolic array architectures have the critical advan-
tages of modularity, regularity, local interconnection,
and highly pipelined multiprocessing. These proper-
ties give rise to highly scalable architectures. DFT
processors using a either a small number or large
number of FPGAs can be constructed using a sys-
tolic approach. This gives the system architect an
easy method for selecting an operating-point in cost-
performance space. In addition, the approach easily
lends itself to the implementation of power-of-2 or non
power-of-2 DFTs. The implementation of a 1000-point
DFT was described in the paper. On one Xilinx 4010
FPGA this transform is executed in 51.45 ms. On a 10
FPGA system the execution time reduces to 5.15 ms.
The DFT example in the paper is for a non power-of-2
transform length. Following a similar factoring strat-
egy as was used for the 1000-point transform, power-
of-2 transforms can be computed. Implementing the
PEs using CORDIC arithmetic removed the require-
ments for area consuming multipliers in the design.
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