
ar
X

iv
:1

00
8.

50
93

v1
 [

qu
an

t-
ph

]
30

 A
ug

 2
01

0

Quantum Information and Computation, Vol. 0, No. 0 (2010) 000–000
c© Rinton Press

AN Θ(
√
n)-DEPTH QUANTUM ADDER ON

THE 2D NTC QUANTUM COMPUTER ARCHITECTURE a

BYUNG-SOO CHOIb

Center for Quantum Information Processing

Department of Electrical and Computer Engineering
University of Seoul

13 Siripdae-gil (90 jeonnong-dong), Dongdaemun-gu, Seoul, 130-743, Republic of Korea

RODNEY VAN METERc

Faculty of Environment and Information Studies
Keio University

5322 Endo, Fujisawa, Kanagawa, 252-8520, Japan

Received (May 28, 2018)
Revised (revised date)

In this work, we propose an adder for the 2D NTC architecture, designed to match the
architectural constraints of many quantum computing technologies. The chosen archi-
tecture allows the layout of logical qubits in two dimensions and the concurrent execution
of one- and two-qubit gates with nearest-neighbor interaction only. The proposed adder
works in three phases. In the first phase, the first column generates the summation
output and the other columns do the carry-lookahead operations. In the second phase,
these intermediate values are propagated from column to column, preparing for compu-
tation of the final carry for each register position. In the last phase, each column, except
the first one, generates the summation output using this column-level carry. The depth
and the number of qubits of the proposed adder are Θ(

√
n) and O(n), respectively. The

proposed adder executes faster than the adders designed for the 1D NTC architecture
when the length of the input registers n is larger than 58.

Keywords: quantum arithmetic algorithms, quantum circuit, depth lower bound, adder,
2D NTC quantum computer architecture

Communicated by : to be filled by the Editorial

1 Introduction

Quantum computers have been proposed to exploit the exotic properties of quantum mechan-

ics for information processing. Among many potential uses, two quantum algorithms have

received the bulk of the attention. One is Shor’s large number factoring algorithm [1], and

the other is Grover’s unstructured database search algorithm [2], though there has also been

much progress recently on other algorithms [3, 4, 5]. Quantum algorithms are often shown to

aA two-page short abstract was presented at AQIS 2010. This version includes all details of design and analysis
of the proposed adder.
bCorresponding Author, bschoi3@gmail.com
crdv@sfc.wide.ad.jp

1

http://arxiv.org/abs/1008.5093v1

2 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

be more efficient than classical ones by analyzing the number of queries to an oracle. How-

ever, for a more exact performance analysis, we need to analyze the quantum algorithms in

terms of the detailed quantum circuits necessary to implement them. Among many circuits,

as in classical computation, a core set of subroutines whose behavior will strongly impact the

performance of the overall algorithm is arithmetic, hence we focus on the adder in this work.

Numerous quantum addition circuits have been proposed using abstract models of the

computer itself. The basic elementary quantum arithmetic operations including addition

have been proposed by Vedral et al. [6] and Beckman et al. [7], following seminal work

on elementary reversible full- and half-adders by Fredkin and Toffoli [8], and Feynman [9].

Glassner proposed an one-qubit full adder [10]. Subsequently, Cheng and Tseng proposed an

n-qubit full adder and subtractor based on the work of Glassner [11]. Reducing the space

requirements for those earlier adders [6], Cuccaro et al. proposed a linear-depth ripple-carry

adder with only a single ancillary qubit [12]. Meanwhile Draper proposed a transform adder

based on the quantum Fourier transform [13]. Draper et al. proposed a fast quantum carry-

lookahead adder [14]. Takahashi and Kunihiro have shown that addition can actually be

performed with no ancillae, at the expense of a deeper circuit [15].

Incorporating the behavior of these circuits, we can estimate the overall quantum speedup

more accurately than simply addressing the issue at the query-level, and confirm again that

the quantum speedup is very high. However, it is not possible to determine the exact perfor-

mance gain unless the practical issues of architecture are considered; both the constant factors

and the leading order of both the computational complexity and minimum execution time (or

circuit depth) depend on the assumed underlying machine. Hence we have to consider many

issues such as error correction, communication, gate, and qubit technologies [16]. For exam-

ple, Maslov et. al [17] pointed out the importance of the problem of placing circuit variables

on the underlying qubit layout. Unfortunately, it is impossible to consider all practical issues

at the same time. To avoid this problem, we usually define a practical quantum computer

architecture incorporating as many practical constraints as possible. For many quantum com-

puter architectures, the 2D NTC architecture is a reasonable model capturing the key factors

that impact performance. NTC allows N earest-neighbor interactions, Two-qubit quantum

gates, and Concurrent executions of gates [18]. An example of a potentially scalable archi-

tecture with the nearest-neighbor constraint is that of Kielpinski et. al [19]. Barenco et al.

[20] showed one way to decompose a given quantum circuit into two-qubit gates. Steane [21]

investigated the necessity of concurrent execution for error correction and fault-tolerance;

concurrency is also required at the application level for high performance. The 2D allows a

single qubit to interact with four neighboring qubits. With more neighboring qubits than the

1D case, the 2D layout should show higher performance, thanks to reduced distance between

many pairs of qubits and the potential for more concurrent movement of qubits. Likewise,

a 3D layout should show higher performance than the 2D case, but the complexity of fabri-

cating and controlling qubits in three dimensions likely makes it impractical. Therefore, we

believe that the 2D layout is the most reasonable choice at the middle level of performance

and control overhead. Thus, it would be interesting to understand the quantum speedup in

this context.

Surprisingly, as far as we know, there is no quantum addition circuit designed specifically

for the 2D NTC architecture. Hence we have to design a quantum addition circuit for the 2D

Byung-Soo Choi and Rodney Van Meter 3

NTC architecture and estimate the performance gain. Based on this, our contributions are

as follows.

• Propose a quantum adder on the 2D NTC architecture.

First, we lay out the qubits in a
√
n × √

n array where n is the input size, in qubits.

Based on this layout, we propose a three-phase quantum addition algorithm. In the

first phase, the first column does a ripple-carry addition and the other columns do

carry-lookahead operations. In the second phase, the column-level carry is propagated

in ripple fashion between the columns. In the last phase, each column transports its

column-level carry input into the cells to generate the final summation value.

• Analyze the proposed adder.

We decompose the necessary quantum circuit blocks using only one- and two-qubit

gates. Next, we add SWAP operations necessary to transport qubits in order to satisfy

the NTC constraint. We found that the depth of the proposed adder is 150
√
n − 90

in terms of one- and two-qubit gates. Asymptotically, the depth is Θ(
√
n) meeting the

depth lower bound we established in earlier work [22]. To execute many quantum gates

in parallel, the proposed adder utilizes many working qubits as 2n−√
n qubits.

Since the 2D NTC layout generalizes the 1D NTC architecture, the adders designed for

the 1D NTC architecture can also be implemented on the 2D NTC architecture without

modification. After reevaluating the depth of the adders for the 1D NTC architecture,

we find that our new 2D adder works faster when n ≥ 58.

This paper is organized as follows. We explain the addition algorithm, and qubit and

circuit layouts for the 2D NTC architecture in Section 2. The temporal and spatial resources

are analyzed in Section 3. Finally, we conclude this work and point out some problems in

Section 4.

2 Adder on the 2D NTC Structure

In this section, we first explain how the qubits are laid out on the 2D structure firstly. Second,

we explain an addition algorithm based on a slight modification of carry-lookahead addition.

Third, we discuss how the addition algorithm is mapped with the circuit blocks. Finally, we

show how the ancillae qubits can be initialized.

2.1 Qubit Layout

On the 2D NTC structure, we can lay out the qubits as shown in Figure 1. In the figure, the

two input registers are A = an ·2n−1+an−1 ·2n−2+ · · ·+a1 and B = bn ·2n−1+ bn−1 ·2n−2+

· · · + b1. As shown in the figure, the two inputs ai and bi are interleaved where 1 ≤ i ≤ n.

The number of rows and columns are 2
√
n and

√
n, respectively. Two inputs ai and bi are

located at a (k-th column, j-th row) cell where k = ⌈i/√n⌉ and j = i− (k−1)
√
n. The figure

shows only the input qubits for clarity. For simplicity, we assume without loss of generality

that
√
n is an integer.

2.2 Adapting Carry-Lookahead Addition to Limited Interaction Distance

To set the stage for the later arithmetic discussions, let us first explain the ripple for two n-

qubit input registers, a and b. Since the summation value for the i-th position si is generated

4 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

(1) 1n n
a − +

(1) 1n n
b − +

(1) 2n n
a − +

(1) 2n n
b − +

1n n
a

−

1n n
b

−

n n
a

n n
b

(2) 1n n
a − +

(2) 1n n
b − +

(2) 2n n
a − +

(2) 2n n
b − +

(1) 1n n
a − −

(1) 1n n
b

− −

(1)n n
a −

(1)n n
b

−

1n
a

+

1n
b

+

2n
a

+

2n
b

+

2 1n
a

−

2 1n
b

−

2 n
a

2 n
b

1a

1b

2a

2b

1n
a

−

1n
b

−

n
a

n
b

Lo
w

er
 o

rd
er

 q
ub

its

H
ig

he
r
or

de
r

qu
bi

ts

Fig. 1. Layout of Input Qubits for a 2D NTC adder.
Two inputs are A = an · 2n−1 + an−1 · 2n−2 + · · ·+ a1 and B = bn · 2n−1 + bn−1 · 2n−2 + · · ·+ b1.
i-th qubit is located at (k, j) position where k = ⌈i/√n⌉ and j = i − (k − 1)

√
n. Ancillae qubits

are not shown for simplicity.

by ai ⊕ bi ⊕ ci, where ai and bi are the i-th qubits in the input registers, and ci is the carry

input from the summation of the (i − 1)-th position, the time complexity of the addition

depends on how fast the carry information can be transported between the bit positions.

The simplest circuit is the ripple carry adder, which propagates the carry information

stepwise from position to position. The carry output for the (i + 1)-th position, ci+1, should

be one if a majority of the bits ai, bi, and ci are one, and zero otherwise; it is generated by

ai · bi⊕ ai · ci⊕ bi · ci. Therefore, the final summation value sn is generated only after n ripple

carry time steps.

To reduce this time, a carry-lookaheadmethod was devised. In this method, two additional

values are defined as follows:

gi = ai · bi. (1)

pi = ai ⊕ bi. (2)

Implicitly, gi and pi determine whether this bit position generates a carry out independent

of the carry in, or propagates its incoming carry to its output carry, respectively. Only one of

these may be true, though both may be false (called carry kill, though kill is not necessary in

the actual circuit). The carry output for (i+1)-th position is generated as ci = gi ⊕ pi · ci−1.

Therefore, if gi is one, ci has no dependence on ci−1, and hence disconnects the carry chain.

However, if gi is zero, ci is dependent on ci−1. In the worst case, the longest chain is from c1
to cn. To decompose this long chain into sub-units, two variables G[i, j] and P [i, j] are also

defined as follows.

G[i, j] = gj ⊕ pj ·G[i, j − 1]. (3)

P [i, j] = pj · P [i, j − 1]. (4)

Byung-Soo Choi and Rodney Van Meter 5

G[i, j] indicates whether an entire span of the addition, from qubit i to qubit j, generates a

carry. Similarly, P [i, j] indicates whether the [i, j] span propagates the carry from position i

all the way to position j. By calculating these values concurrently and progressively increasing

the span of G and P , the total time to create complete carry information for the entire register

can be reduced to O(log n), provided that communication within the system is adequately

fast.

Unfortunately, this carry-lookahead addition algorithm is defined assuming no limitation

of interaction distance, and hence cannot be applied for the 2D NTC architecture without

modification. In this work, we slightly modify the carry-lookahead, which consists of three

phases as follows.

2.2.1 Phase 1: Ripple Carry Addition on the First Column, and Carry-Lookahead on the

Other Columns

As shown in Figure 2, the first column does the typical ripple carry addition. From the first

position to the last position, each position generates a summation value and a carry output

as follows.

si = ai ⊕ bi ⊕ ci, (5)

ci+1 = ai · bi ⊕ ai · ci ⊕ bi · ci, (6)

where c1 = 0. Since the carry output of the i-th position must be used as input for the next

(i + 1)-th position, there is an information dependency, hence this step takes about O(
√
n)

time.

During this time, the other columns concurrently generate other necessary information for

carry-lookahead operations. For example, the k-th column works as follows. First, each (k, j)

cell generates g(k−1)
√

n+j and p(k−1)
√

n+j concurrently,

g(k−1)
√

n+j = a(k−1)
√

n+j · b(k−1)
√

n+j , (7)

p(k−1)
√

n+j = a(k−1)
√

n+j ⊕ b(k−1)
√

n+j , (8)

where 1 ≤ j ≤ √
n. After that, each (k, j) cell generates G[(k − 1)

√
n+ 1, (k − 1)

√
n+ j] and

P [(k − 1)
√
n+ 1, (k − 1)

√
n+ j] sequentially,

G[(k − 1)
√
n+ 1, (k − 1)

√
n+ j] = g(k−1)

√

n+j ⊕ (9)

p(k−1)
√

n+j ·G[(k − 1)
√
n+ 1, (k − 1)

√
n+ j − 1],

P [(k − 1)
√
n+ 1, (k − 1)

√
n+ j] = p(k−1)

√

n+j · P [(k − 1)
√
n+ 1, (k − 1)

√
n+ j − 1],(10)

where G[(k − 1)
√
n+ 1, (k − 1)

√
n+ 1] = g(k−1)

√

n+1 and P [(k − 1)
√
n+ 1, (k − 1)

√
n+ 1] =

p(k−1)
√

n+1. The same process is applied for the other columns.

After this phase, the first column generates its final summation output and also the carry

output c√n+1. The other columns generate the column-level carry-lookahead information

G[(k − 1)
√
n+ 1, k

√
n] and P [(k − 1)

√
n+ 1, k

√
n].

2.2.2 Phase 2: Inter-Column Carry Propagation

The final carry output of the first column, c√n+1, is given as an initial input value for the

column-level carry generation logic as shown in Figure 3. Each column, except the first,

6 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

12 +− nn
a

12 +− nn
b

22 +− nn
a

22 +− nn
b

1
a

1
b

2
a

2
b

1−n
a

1−n
b

n
a

n
b

1+n
a

12 −n
a

12 −n
b

n
a
2

n
b
2

1+n
b

2+n
a

2+n
b

11 −− nn
a

11 −− nn
b

nn
a

1−

nn
b

1−

11 +− nn
a

11 +− nn
b

21 +− nn
a

21 +− nn
b

1−nn
a

1−nn
b

nn
a

nn
b

Ripple

Carry

Addition

First, generate gi and pi at the same time

Second, generate Gi and Pi sequentially

Fig. 2. First phase.
During this phase, the first column executes a ripple-carry adder. The other k-th column generates
g(k−1)

√

n+j and p(k−1)
√

n+j concurrently, and then G[(k − 1)
√
n+ 1, (k − 1)

√
n+ j] and P [(k −

1)
√
n+ 1, (k − 1)

√
n+ j] sequentially.

generates its column-level carry output as follows.

Column carryk = ck
√

n+1 = G[(k−1)
√
n+1, k

√
n]⊕c(k−1)

√

n+1 ·P [(k−1)
√
n+1, k

√
n]. (11)

2.2.3 Phase 3: Carry Generation and Summation

After the first phase, each (k, j) cell has the carry-lookahead information G[(k−1)
√
n+1, (k−

1)
√
n + j] and P [(k − 1)

√
n + 1, (k − 1)

√
n + j]. After the second phase, each column has

the incoming column-level carry c(k−1)
√

n+1. By propagating incoming column-level carry as

shown in Figure 4, each (k, j) cell can calculate its final carry input as

ci = c(k−1)
√

n+j = G[(k − 1)
√
n+ 1, (k − 1)

√
n+ j] (12)

⊕c(k−1)
√

n+1 · P [(k − 1)
√
n+ 1, (k − 1)

√
n+ j].

After that, each cell can generate the final summation value as

si = s(k−1)
√

n+j = a(k−1)
√

n+j ⊕ b(k−1)
√

n+j ⊕ c(k−1)
√

n+j . (13)

2.3 Circuit Layout

In the first phase, the first column and the other columns use different circuit blocks. The

circuit blocks for the first column are shown in Figure 5(a). To do the ripple carry addition,

a half-adder (HA) for the first position and
√
n-1 full-adders (FA) are used. The circuit

blocks for the other columns are shown in Figure 5(b). As explained in the previous part, it

generates first g(k−1)
√

n+j and p(k−1)
√

n+j concurrently by using the g, p circuit blocks and

Byung-Soo Choi and Rodney Van Meter 7

col-carry col-carry

Column-level carry propagation

1a

1b

2a

2b

1−n
a

1−n
b

n
a

n
b

1+n
a

12 −n
a

12 −n
b

n
a

2

n
b

2

1+n
b

2+n
a

2+n
b

1)2(+− nn
a

1)2(+− nn
b

2)2(+− nn
a

2)2(+− nn
b

1)1(−− nn
a

1)1(−− nn
b

nn
a

)1(−

nn
b

)1(−

1)1(+− nn
a

1)1(+− nn
b

2)1(+− nn
a

2)1(+− nn
b

1−nn
a

1−nn
b

nn
a

nn
b

Fig. 3. Second phase.
The purpose of this phase is to generate column-level carry output for each column sequentially.

then G[(k − 1)
√
n + 1, (k − 1)

√
n + j] and P [(k − 1)

√
n + 1, (k − 1)

√
n + j] sequentially by

using the G,P circuit blocks.

The block-level circuit for the second phase is shown in Figure 6. The circuit block Col-

carry has three inputs: G and P from the corresponding column and Column carry from

the lower column.

Figure 7 shows the circuit blocks for the third phase. In the figure, c and c1 represent

the blocks for generating carry output for i-th position. Note for the first row, p and g are

the same as P and G, and hence the circuit block is slightly different. SUM, SUM1, and

SUM2 are for generating the final summation value for j-th position.

2.4 Clearing Ancillae Qubits

As shown in Table 2, three types of ancillae qubits are used, ci, P [i, j], and Column carryk.

To clean these ancillae, we have used the strategy proposed in Reference [14]. The key idea

of this approach is based on the observation that in two’s complement arithmetic

− x ≡ x̄+ 1 (mod 2n), (14)

x̄+ x ≡ −1 (mod 2n), (15)

−x− 1 ≡ x̄ (mod 2n), (16)

where x̄ is the bit-wise inversion of x. Let us consider an addition of A and B, ADD(A,B, 0) =

(A,S,C), where S and C are the bitwise sum and carry vectors, respectively. Let us consider

another addition of A and S̄, ADD(A, S̄, 0) = (A, B̄,D), where B̄ and D are sum and carry

8 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

 First, transport Column_carry

Second, generate ci for each position

Third, generate s
i
for each position

1a

1b

2a

2b

1−n
a

1−n
b

n
a

n
b

1+n
a

12 −n
a

12 −n
b

n
a

2

n
b

2

1+n
b

2+n
a

2+n
b

1)2(+− nn
a

1)2(+− nn
b

2)2(+− nn
a

2)2(+− nn
b

1)1(−− nn
a

1)1(−− nn
b

nn
a

)1(−

nn
b

)1(−

1)1(+− nn
a

1)1(+− nn
b

2)1(+− nn
a

2)1(+− nn
b

1−nn
a

1−nn
b

nn
a

nn
b

Fig. 4. Third phase.
Using the incoming carry for each column, all carry and sum are generated sequentially.

vectors, respectively. Note the bitwise sum is B̄ because

A+ S̄ = A− (A+B + 1) = −B − 1 = B̄. (17)

It is worth noting that C must be equal to D because of

A⊕ S̄ ⊕D = B̄, (18)

A⊕A⊕B ⊕ C ⊕ 1⊕D = B̄, (19)

B ⊕ C ⊕ 1⊕D = B̄, (20)

B̄ ⊕ C ⊕D = B̄, (21)

C ⊕D = 0, (22)

C = D. (23)

Now we follow the circuit as shown in Figure 8. Conceptually any addition circuit can be

divided into two parts, CARRY generation (Ci)and SUM generation (Si). As shown in the

figure, we apply CARRY as follows.

CARRY (A,B, 0) =⇒ (A,A⊕B,C). (24)

As the second step, we apply SUM as follows.

SUM(A,A⊕B,C) =⇒ (A,A⊕B ⊕ C,C) = (A,S,C). (25)

Apply two operations

NOT2(A,S,C) =⇒ (A, S̄, C). (26)

Byung-Soo Choi and Rodney Van Meter 9

1a

1b
0

2a
2b

n
a

n
b

HA

FA

2c
1s

3c
2s

FA

11
_

n
c C ol carry+ →

n
s

()1n FA− ×

0

0

H A

(a) First Column

1k n
a

+

1k n
b

+ g,p

()1 ,n G P− ×

0

2k n
a

+

2k n
b

+ g,p
G,P

2k n
g

+

1 , 2 2 1 , 1k n k n k n k n k n
P p P

+ + + + +
= i

1 , 2 2 2 1 , 1k n k n k n k n k n k n
G g p G

+ + + + + +
= ⊕ i

(1)k n
a

+

(1)k n
b

+ g,p
G,P

(1)k n
p

+

(1)k n
g +

, (1)k n k n
P

+

, (1)k n k n
G

+

1k n
g

+

1k n
p

+ 1 , 1k n k n
P

+ +

1 , 1k n k n
G

+ +

0

0

2k n
p

+

0

0

,g p

(b) Other Columns

Fig. 5. Circuit flow for the first phase.
Note FA and HA are the full adder and the half adder, respectively. s and c are initially |0〉, and
si and ci are summation and carry for each position, respectively.

CNOT1,2(A, S̄, C) =⇒ (A,A⊕ S̄, C). (27)

Meanwhile,

CARRY (A, S̄, 0) =⇒ (A,A ⊕ S̄, D). (28)

Since the two carry vectors C and D for A+B and A+ S̄ are the same, the above line changes

to

CARRY (A, S̄, 0) =⇒ (A,A⊕ S̄, C). (29)

Therefore, running the inverse operation,

CARRY −1(A,A⊕ S̄, C) =⇒ (A, S̄, 0). (30)

Finally, apply NOT2 as follows.

NOT2(A, S̄, C) =⇒ (A,S, 0), (31)

to generate the final sum and clean ancillae.

3 Analysis

3.1 Depth Analysis

To analyze the depth of the proposed adder, we have to decompose the circuit blocks into

elementary gates, which can be decomposed into unit delay gates. In this work, we assume

one-qubit, CNOT, and Control-
√
NOT gates have unit delay. The elementary gates we

have chosen for constructing our circuits are SWAP, CCNOT, CNOT, Control-
√
NOT ,

and one-qubit gates. In this paper, we use the three-CNOT construction for SWAP gate.

Figure 9 shows the conventional form of CCNOT (left) and its decomposition into one-qubit

and two-qubit gates (right).

3.1.1 Circuit Decomposition with NTC Constraints

Now we decompose the circuit blocks for three phases with the chosen elementary gates and

necessary SWAP operations to satisfy the NTC constraints. The blocks are shown in Figures

10 to 14. The circuit of HALF ADDER is shown in Figure 10(a). Figure 10(b) [11] shows a

10 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

()1 _n Col carry− ×

2 n
a

2 n
b g,p 2 n

p

2 n
g

G,P

1,2n n
P

+

1,2n n
G +

1_Column carry

Col_carry

1
_

n
Column carry Final Carry

+
→_

n
Column carry

Col_carry
1 ,n n n n

P −

1 ,n n n n
G −

Bottom
Row of
Second
Column

Inter-Column
Carry Chain

0

0

0

0

2_Column carry

1_Column carry

_
n

Column carry

Fig. 6. Circuit flow for the second phase.
Col-carry block generates a column-level carry output, which is used for the actual incoming
carry value for the next (right) column.

decomposition of FULL ADDER into elementary gates. In this figure, there is no limitation

on the distance between operands for a gate. To satisfy the NTC constraint, we redesign it

as shown in Figure 10(c) by adding several SWAP gates to move the qubits to neighboring

positions. This approach is also applied for the following circuit blocks. The circuits for g and

p, and the generalized G and P are shown in Figure 11. The circuit of Column carry is

shown in Figure 12. For generating |Col Carryk+1〉, a single CCNOT is enough. However,

to propagate it to the next column and to propagate |Col Carryk〉 to the rows, a SWAP

is necessary. For implementing the last SWAP gate in the neighbor interaction only case,

several SWAPs are necessary as shown in Figure 12(b). The initial circuit forCarry is shown

in Figure 13(a). Since the Col carry has to be moved to the upper row, several SWAPs are

necessary as shown in Figure 13(b). After this circuit, the Col carry is transported to the

top position, and the others are to the lower row. Since the carry for the first row is different

from other rows, Figures 13(c) and 13(d) show its circuits. The circuits for SUM are shown

in Figures 14(a) and 14(b). For the second and the first row, we have to use slightly different

circuits as shown in Figures 14(c) and 14(d), and Figure 14(e), respectively.

3.1.2 Total Depth

Based on the revised circuits with satisfying the NTC constraint, we can summarize the depth

of each elementary gate and circuit block as shown in Table 1.

The proposed adder works in three sequential phases, and hence the overall depth is the

sum of the depths for each phase. The depth for each phase is the “long pole”, or the longest

delay among the parallel execution paths. In the first column, one HA and (
√
n − 1) FA

operations are executed sequentially. Since HA needs 10 unit-gate steps and FA needs 26

unit-gate steps, 26
√
n− 16 unit-gate steps are needed. On the other hand, the other columns

Byung-Soo Choi and Rodney Van Meter 11

() 11n c c− × +

(1) 2k n
a − +

(1) 2k n
p

− +

k n
a

k n
p

(1) 1k n
a − +

(1) 2k n
c − +(1) 1k n

g
− +

(1) 1k n
p − +

SUM

k n
s

(1) 3k n
s

− +

c

k n
c

c

(1) 3k n
c

− +
,(1) 1 (1) 2k n k n

G − + − +

(1) 1 , (1) 2k n k n
P − + − +

Col-carry
1_ kC o l u m n c a r r y +_ kC o l u m n c a r r y

_ kC o l u m n c a r r y

,(1) 1 1k n k n
G

− + −

,(1) 1 1k n k n
P

− + −

SUM

(1) 1k n
s

− +
SUM2

(1) 3k n
a

− +

(1) 3k n
p

− +

SUM1

(1) 2k n
s

− +

c1

SU M

,(1) 1k n k n
G

− +

,(1) 1k n k n
P

− +

Fig. 7. Circuit flow for the third phase.
c represents the block for generating carry output for i-th position. SUM is for generating the
final summation value for i-th position.

need one g, p + (
√
n-1)G,P, which is 36

√
n − 26. The overall depth for the first phase is

the longer of the two column types, hence 36
√
n− 26. The second phase consists of (

√
n− 1)

Column carry operations, requiring a total of 18
√
n−18 time steps. The third phase consists

of (
√
n− 1) Carry + Carry1 and SUM1 operations for the longest path. Hence, the depth

is 21
√
n+1 unit-gate steps. By summing depths of each phase, the total depth is 75

√
n− 43.

The above depth is only for generating the summation output without clearing the ancillae.

For clearing ancillae, we apply more circuits as shown in Figure 8. Based on this figure, we

can decompose the above three phases into the carry generation flow and the sum generation

flow. The first and the second phases are for the carry generation flow. The third phase has

to be divided into the carry generation flow and the sum generation flow. The above depth

is apportioned as 75
√
n − 50 for carry generation flow and 7 for sum generation flow. As

shown in Figure 8 we need to apply NOT and CNOT gates and then inverse of the carry

generation flow again with the final NOT gate. Hence, the overall depth is 75
√
n− 50 + 7+

1 + 1 + 75
√
n− 50 + 1 = 150

√
n− 90.

3.2 Required Space

The number of qubits for the adder is shown in Table 2. As shown in the first column, some

qubits work for multiple purposes. Note the additional number of qubits is 2n− √
n, which

is less than twice the minimum 2n qubits [12, 15].

12 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

ia

C�ib

0

ia

is

ic

'
i ia s⊕

ia

'
is

0

S�

C�
��

ia

is

0

i ia b⊕

�� ��	
� ��������� ���� ���� �� !"#$ %& '()*+ ,-./012345 6789

Fig. 8. Clearing Ancillae Qubits.
By applying the inverse of the carry generation flow, the ancillae qubits can be cleaned.

square root

of X

adjoint of

square root

of X

b

0

a

=

Fig. 9. Circuit for CCNOT

3.3 Comparison to Other Adders

When only interactions between neighboring qubits are allowed, the depth of arithmetic cir-

cuits increases. For the 2D case, the depth lower bound was proven to be Ω(
√
n) [22]. There-

fore, the depth of the proposed adder is asymptotically optimal.

Beyond the asymptotic behavior, it seems more interesting and important to compare with

other adders in the practical cases. Specifically, it is necessary to compare adders designed

for the 1D NTC architecture since they can be implemented on the 2D NTC architecture

without modification, using a simple serpentine qubit layout. The overall analysis and the

comparison between the adders are shown in Table 3. The first column distinguishes the

architecture and the second column lists the adder type. For the 1D NTC architecture, we

choose three typical adders. Vedral et al. proposed a plain ripple-carry adder [6], named VBE

in the table. VBE-Improved is the Van Meter and Itoh update to this adder [18]. Cuccaro et

al. proposed a ripple carry adder with only one ancillae qubit [12], named CDKM. For the 2D

NTC architecture, the present adder is shown. For the architecture with arbitrary distance

interaction, several adders are evaluated. Draper proposed a quantum Fourier transform adder

[13], named QFT-based. By exploiting the classical fast addition algorithm, Draper et al. also

proposed a carry-lookahead adder [14], named CLA-based. Kawata et al. also proposed an

adder based on the combination of ripple carry adder and carry-lookahead adder [24], named

RCA+CLA-based. For comparison, the depth and the size of each adder is shown in the third

column. In this work, the depth is measured by in units of one- and two-qubit gates for

the 1D and 2D NTC architectures. On the other hand, the depth for the AC architecture

is based on one-, two-, and CCNOT gates. The size is for the number of qubits for input,

output, and ancillae. In the fourth column, the input size is shown when the selected adder

works faster than the present adder. In the fifth column, we calculate KQ, the product of

qubits and depth where K and Q are the numbers of logical qubits and computational steps,

respectively [23]. KQ is used to estimate the strength of error correction required.

From this table we can point out three key results. First, when the size of input is larger

than 58, the present adder works faster than 1D NTC adders. Second, the present adder

Byung-Soo Choi and Rodney Van Meter 13

ia

ib

0
i i ia b c=i

i i ia b s⊕ =

(a)

ic

ia

ib

0
i ia bi 1()i i i i i i i i i i i ia b a b c a b a c b c c +⊕ ⊕ = ⊕ ⊕ =i i i i i

i ia b⊕ i i i ia b c s⊕ ⊕ =

(b)

ic

ia

ib

0

(c)

Fig. 10. Circuit for HALF ADDER (a); Circuits for FULL ADDER with arbitrary interaction
(b) and with only nearest-neighbor interaction (c)

ia

ib

0 ,i i i i ia b g G= =i

,i i i i ia b p P⊕ = =

(a)

/ ,i n n i
P

ia

ip

ig

0

/ , / , 1i i i n n i i n n i
g p G G

 +
⊕ =i

/ , / , 1i i n n i i n n i
p P P

 +
=i

/ ,i n n i
G

(b)

/ ,i n n i
P

ia

ip

ig

0

/ ,i n n i
G

(c)

Fig. 11. Circuits for g,p (a); Circuits for G and P with arbitrary interaction (b) and with only
nearest-neighbor interaction (c)

needs about two times number of qubits than 1D NTC adders. Lastly, the present adder has

a smaller KQ factor when the input size is larger than 278.

4 Conclusion and Open Problems

In this work, we proposed a quantum adder for the 2D NTC architecture for the first time.

Van Meter and Oskin indicated that an adder would be in O(
√
n) time complexity on a

2D architecture, but no circuit has been provided [25]. The proposed adder has the depth

complexity Θ(
√
n) with O(n) qubits. We found that the proposed adder works faster than a

1D ripple-carry adder when the length of the input registers is larger than 58, and requires

about two times the number of additional qubits.

Although this adder is, to the best of our knowledge, the first one specifically designed for a

2D architecture, we suspect it will not be the last; we anticipate that several improvements are

possible. First, the number of additional gates is very large. Most of the gates for the proposed

adder are used for transporting qubits to neighboring positions so that gates can be executed.

By arranging qubits in a better way, we may be able to reduce the necessary propagattion

14 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

_ kCol carry

,(1)k n k n
G +

,(1)k n k n
P

+

1,(1) ,(1)
_ _k kk n k n k n k n

G P Col carry Col carry ++ +
⊕ =i

1_ kCol carry +

_ kCol carry

(a)

_ kCol carry

,(1)k n k n
G

+

,(1)k n k n
P

+

(b)

Fig. 12. Circuits for Column carry with arbitrary interaction (a) and with only nearest-neighbor
interaction (b)

/

_
i n

Col carry

/ ,i n n i
G

ia

ip

/ , / , /
_ ii n n i i n n i i n

G P Col carry c

+ =

/ ,i n n i
P

(a)

/

_
i n

Col carry

/ ,i n n i
G

ia

ip

/ ,i n n i
P

ip

ia

/ ,i n n i
P

ic

/
_

i n
Col carry

ic generation _C ol carry transporta tion

(b)

/

_
i n

Col carry

ip

/
_i i ii n

g p Col carry c

⊕ =iig

(c)

/

_
i n

Col carry

ip

ig

ic generation _C ol carry transportation

ic

ip

/
_

i n
Col carry

(d)

Fig. 13. Circuits for Carry with arbitrary interaction (a) and with only nearest-neighbor in-
teraction (b); Circuits for Carry1 with arbitrary interaction (c) and with only nearest-neighbor
interaction (d)

operations. Second, the phase for cleaning the ancillae qubits roughly doubles the total

number of quantum operations. In the present adder, the ancillae qubits are reinitialized by

applying the inverse circuit, doubling the overall depth. Perhaps there is some way to reduce

this drawback by exploiting some overlap of the clearing phase with the computation phase.

Third, the number of ancillae is also very large. The proposed design attempts to achieve

the highest parallel execution at the expense of requiring more ancillae, but this tradeoff

may prove to be less than optimal for two reasons. First, qubits themselves are expensive

resources, and in many applications could be allocated to other work if not used directly in

the adder; second, inserting the ancillae into our layout increases the distance between qubits,

forcing the addition of more SWAPs and slowing down the circuit.

Acknowledgements

This research is supported in part by the Japan Society for the Promotion of Science (JSPS)

through its Funding Program for World-Leading Innovative R&D on Science and Technology

(FIRST Program), and in part by the National Research Foundation of Korea Grant funded

by the Korean Government(Ministry of Education, Science and Technology).[NRF-2010-359-

D00012]

References

1. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a

Byung-Soo Choi and Rodney Van Meter 15

ic

ia

ip i i ic p s⊕ =

/ ,i n n i
P

(a)

ic

ia

ip

/ ,i n n i
P

(b)

ic

ip i i ic p s⊕ =

ia

(c)

ic

ip

ia

(d)

ip i i ic p s⊕ =

/
_ ii n

Col carry c

=

(e)

Fig. 14. Circuits for SUM with arbitrary interaction (a) and with only nearest-neighbor interaction
(b); Circuits for SUM1 with arbitrary interaction (c) and with only nearest-neighbor interaction
(d); Circuit for SUM2 (e)

Table 1. Depth analysis of each gate and circuit

Name Composition of the longest path # of unit-gate steps

SWAP 3 CNOTs 3
CCNOT 1 SWAP + 6 unit gates 9
HALF ADDER 1 CCNOT + 1 CNOT 10
FULL ADDER 2 CCNOTs + 2 CNOTs + 2 SWAPs 26
g and p 1 CCNOT + 1 CNOT 10
G and P 2 CCNOTs + 6 SWAPs 36
Column carry 1 CCNOT + 3 SWAPs 18
Carry 1 CCNOT + 4 SWAPs 21
Carry1 1 CCNOT + 2 SWAPs 15
SUM 1 CNOT + 4 SWAPs 13
SUM1 1 CNOT + 2 SWAPs 7
SUM2 1 CNOT 1

quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.
2. Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96: Proceed-

ings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, New
York, NY, USA, 1996. ACM.

3. Michele Mosca. Quantum algorithms. http://arxiv.org/abs/0808.0369, 2008.
4. Dave Bacon and Wim van Dam. Recent progress in quantum algorithms. Communications of the

ACM, 53(2):84–93, 2010.
5. Katherine L. Brown, William J. Munro, and Vivien M. Kendon. Using quantum computers for

quantum simulation. http://arxiv.org/abs/1004.5528, 2010.
6. Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary arithmetic

operations. Phys. Rev. A, 54(1):147–153, Jul 1996.
7. David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill. Efficient

networks for quantum factoring. Phys. Rev. A, 54(2):1034–1063, Aug 1996.
8. Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal of Theoretical

Physics, 21:219–253, 1982.
9. Richard P. Feynman. Feynman Lectures on Computation. Addison Wesley, 1996.

10. Andrew S. Glassner. Quantum computing, part 2. IEEE Computer Graphics and Applications,
21(5):86–95, 2001.

11. Kai-Wen Cheng and Chien-Cheng Tseng. Quantum full adder and subtractor. Electronics Letters,
38(22):1343–1344, Oct 2002.

12. Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. A new
quantum ripple-carry addition circuit. http://arxiv.org/abs/quant-ph/0410184, 2004.

13. Thomas G. Draper. Addition on a quantum computer.
http://arxiv.org/abs/quant-ph/0008033, 2000.

http://arxiv.org/abs/0808.0369
http://arxiv.org/abs/1004.5528
http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0008033

16 An Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture

Table 2. Number of Qubits

Name Number of qubits Explanation

ai n Input A
bi → pi → si n Input B, Carry propagate for i-th position, and Summation S
|0〉 → gi → G[i, j] → ci n Carry generation for i-th position, Carry generation between i and j, and

carry for i-th position
|0〉 → P [i, j] n− 2

√
n+ 1 Carry propagation between i and j

Column carryk
√
n Inter column carry. The last Column carry is for the final carry output.

Total (2n + 1)+(2n −√
n) Mandatory + Additional

Table 3. Comparison with Other Designs

Architecture Name of Adder (Depth, Number of Qubits) When is the present
adder faster than the
corresponding adder?

KQ[23]

1D NTC

VBE[6] (76n− 30, 3n+ 1) n ≥ 4 228n2 − O(n)
VBE-Improved[18] (20n− 15, 3n+ 1) n ≥ 49 60n2 − O(n)
CDKM[12] (18n+ 14, 2n+ 2) n ≥ 58 36n2 + O(n)

2D NTC Present Adder (150
√
n− 90, 4n−√

n+ 1) 600n
√
n− O(n)

AC

QFT-based[13] (3 logn, 2n+ 1) N/A 6n logn+O(logn)
CLA-based[14] (2 logn+ 2, 4n− logn) N/A 8n logn+O(n)
RCA+CLA-based[24] (10 logn+ 6n/logn, n+ 4n/log n) N/A 10n logn+ O(n2/ logn)

14. Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-depth
quantum carry-lookahead adder. http://arxiv.org/abs/quant-ph/0406142 , 2004.

15. Yasuhiro Takahashi and Noboru Kunihiro. A linear-size quantum circuit for addition with no
ancillary qubits. Quantum Information and Computation, 5(6):440–448, 2005.

16. Tzvetan S. Metodi and Frederic T. Chong. Quantum Computing for Computer Architects. Syn-
thesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2006.

17. Dmitri Maslov, Sean M. Falconer, and Michele Mosca. Quantum circuit placement. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 27(4):752–763, April 2008.
18. Rodney Van Meter and Kohei M. Itoh. Fast quantum modular exponentiation. Phys. Rev. A,

71(5):052320, May 2005.
19. D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-trap quantum

computer. Nature, 417(6890):709–711, June 2002.
20. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus,

Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum
computation. Phys. Rev. A, 52(5):3457–3467, Nov 1995.

21. Andrew M. Steane. Space, time, parallelism and noise requirements for reliable quantum comput-
ing. Fortschritte der Physik, 46(4-5):443–457, 1998.

22. Byung-Soo Choi and Rodney Van Meter. Effects of interaction distance on quantum addition
circuits. http://arxiv.org/abs/0809.4317, 2008.

23. Andrew M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction.
Phys. Rev. A, 68(4):042322, Oct 2003.

24. Yoshinori Kawata, Satoshi Yayu, and Shuichi Ueno. An efficient quantum addition circuit :
Extended abstract. IEICE Technical Report. Circuits and systems, 107(527):95–96, March 2008.

25. Rodney Van Meter and Mark Oskin. Architectural implications of quantum computing technolo-
gies. ACM Journal on Emerging Technologies in Computing Systems, 2(1):31–63, 2006.

http://arxiv.org/abs/quant-ph/0406142
http://arxiv.org/abs/0809.4317

	1 Introduction
	2 Adder on the 2D NTC Structure
	2.1 Qubit Layout
	2.2 Adapting Carry-Lookahead Addition to Limited Interaction Distance
	2.2.1 Phase 1: Ripple Carry Addition on the First Column, and Carry-Lookahead on the Other Columns
	2.2.2 Phase 2: Inter-Column Carry Propagation
	2.2.3 Phase 3: Carry Generation and Summation

	2.3 Circuit Layout
	2.4 Clearing Ancillae Qubits

	3 Analysis
	3.1 Depth Analysis
	3.1.1 Circuit Decomposition with NTC Constraints
	3.1.2 Total Depth

	3.2 Required Space
	3.3 Comparison to Other Adders

	4 Conclusion and Open Problems

