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Abstract. In this paper, we investigate the deductive inference for the interiors
and exteriors of Horn knowledge bases, where the interiors and exteriors were
introduced by Makino and Ibaraki [11] to study stability properties of knowledge
bases. We present a linear time algorithm for the deduction for the interiors and
show that it is co-NP-complete for the deduction for the exteriors. Under model-
based representation, we show that the deduction problem for interiors is NP-
complete while the one for exteriors is co-NP-complete. As for Horn envelopes
of the exteriors, we show that it is linearly solvable under model-based represen-
tation, while it is co-NP-complete under formula-based representation. We also
discuss the polynomially solvable cases for all the intractable problems.

1 Introduction

Knowledge-based systems are commonly used to store the sentences as our
knowledge for the purpose of having automated reasoning such as deduction
for them (see e.g., [1]). Deductive inference is a fundamental mode of reason-
ing, and usually abstracted as follows: Given the knowledge baseKB, assumed
to capture our knowledge about the domain in question, and a queryχ that is
assumed to capture the situation at hand, decide whetherKB impliesχ, denoted
by KB |= χ, which can be understood as the question: “Isχ consistent with the
current state of knowledge ?”

In this paper, we consider the interiors and exteriors of knowledge base. For-
mally, for a given positive integerα, theα-interior of KB, denoted byσ−α(KB),
is a knowledge that consists of the models (or assignments)v satisfying that the
α-neighbors ofv are all models ofKB, and theα-exterior ofKB, denoted by
σα(KB), is a knowledge that consists of the modelsv satisfying that at least one
of theα-neighbors ofv is a model ofKB [11]. Intuitively, the interior consists of
the modelsv thatstronglysatisfyKB, since all neighbors ofv are models ofKB,
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while the exterior consists of the modelsv thatweaklysatisfyKB, since at least
one of theα-neighbors ofv is a model ofKB. Here we note thatv might not
satisfyKB, even if we say that it weakly satisfiesKB. As mentioned in [11], the
interiors and exteriors of knowledge base merit study in their own right, since
they shed light on the structure of knowledge base. Moreover, let us consider
the situation in which knowledge baseKB is not perfectin the sense that some
sentences inKB are wrong and/or some are missing inKB (see also [11]).

Suppose that we useKB as a knowledge base for automated reasoning, say,
duductive inferenceKB |= χ. SinceKB does not representreal knowledgeKB∗,
the reasoning result is no longer true. However, if we use the interiorσ−α(KB)
of KB as a knowledge base and haveσ−α(KB) 6|= χ, then we can expect that the
result is ture for real knowledgeKB∗, sinceσ−α(KB) consists of models which
strongly satisfyKB. On the other hand, if we use the exteriorσα(KB) of KB as
a knowledge base and haveσα(KB) |= χ, then we can expect that the result is
ture for real knowledgeKB∗, sinceσα(KB) consists of models which weakly
satisfyKB. In this sense, the interiors and exteriors help to havesafereasoning.

Main problems considered. In this paper, we study the deductive inference for
the interiors and exteriors of propositional Horn theories, where Horn theories
are ubiquitous in Computer Science, cf. [14], and are of particular relevance in
Artificial Intelligence and Databases. It is known that important reasoning prob-
lems like deductive inference and satisfiability checking, which are intractable
in general, are solvable in linear time for Horn theories (cf. [3]).

More precisely, we address the following problems:

• Given a Horn theoryΣ, a clausec, and an integerα > 0, we consider the
problems of deciding if deductive queries hold for theα-interior and exterior of
Σ, i.e.,σ−α(Σ) |= c andσα(Σ) |= c. It is well-known [3] that a deductive query
for a Horn theory can be answered in linear time. Note that it is intractable to
construct the interior and exterior for a Horn theory [11, 13], and hence a direct
method (i.e., first construct the interior (or exterior) and then check a deductive
query) is not possible efficiently.
• We contrast traditional formula-based (syntactic) with model-based (seman-
tic) representation of Horn theories. The latter form of representation has been
proposed as an alternative form of representing and accessing a logical knowl-
edge base, cf. [2, 4, 5, 7, 8, 6, 9, 10]. In model-based reasoning,Σ is represented
by a subset of its modelsM, which are commonly calledcharacteristic mod-
els. As shown in [7], the deductive inference can be solved in polynomial time,
given its characteristic models.
• Finally, we consider Horn approximations for the exteriors of Horn theories.
Note that the interiors of Horn theories are Horn, while the exteriors might not



be Horn. We deal with the least upper bounds, called theHorn envelopes[16],
for the exteriors of Horn theories.

Main results. We investigate the problems mentioned above from an algorith-
mical viewpoint. For all the problems, we provide either polynomial time algo-
rithms or proofs of the intractability; thus, our work gives a complete picture of
the tractability/intractability frontier of deduction for interiors and exteriors of
Horn theories. Our main results can be summarized as follows (see Figure 1).

• We present a linear time algorithm for the deduction for the interiors of a
given Horn theory, and show that it is co-NP-complete for the deduction for
the exteriors. Thus, the positive result for ordinary deduction for Horn theories
extends to the interiors, but does not to the exteriors. We also show that the
deduction for the exteriors is possible in polynomial time, ifα is bounded by
a constant or if|N(c)| is bounded by a logarithm of the input size, whereN(c)
corresponds to the set of negative literals inc.
• Under model-based representation, we show that the consistency problem and
the deduction for the interiors of Horn theories are both co-NP-complete. As for
the exteriors, we show that the deduction is co-NP-complete. We also show that
the deduction for the interiors is possible in polynomial time ifα is bounded by
a constant, and so is for the exteriors, ifα or |P(c)| is bounded by a constant, or
if |N(c)| is bounded by a logarithm of the input size, whereP(c) corresponds to
the set of positive literals inc.
• As for Horn envelopes of the exteriors of Horn theories, we show that it is
linearly solvable under model-based representation, while it is co-NP-complete
under formula-based representation. The former contrasts to the negative result
for the exteriors. We also present a polynomial algorithm for formula-based rep-
resentation, ifα is bounded by a constant or if|N(c)| is bounded by a logarithm
of the input size.

Interiors Exteriors Envelopes of Exteriors

Formula-Based P co-NP-complete? co-NP-complete?

Model-Based NP-complete† co-NP-complete‡ P

?: It is polynomially solvable, ifα = O(1) or |N(c)| = O(log ‖Σ ‖).
†: It is polynomially solvable, ifα = O(1).
‡: It is polynomially solvable, ifα = O(1), |P(c)| = O(1), or |N(c)| = O(logn|chr(Σ)|).

Fig. 1. Complexity of the deduction for interiors and exteriors of Horn theories



The rest of the paper is organized as follows. In the next section, we review
the basic concepts and fix notations. Sections 3 and 4 investigate the deductive
inference for the interiors and exteriors of Horn theories. Section 5 considers
the deductive inference for the envelopes of the exteriors of Horn theories. Most
of the proofs are omitted due to space limitation. Interested readers can find the
omitted parts in [12], which is a technical report version of the paper.

2 Preliminaries

Horn Theories. We assume a standard propositional language with atomsAt =

{x1, x2, . . . , xn}, where eachxi takes either value 1 (true) or 0 (false). Aliteral
is either an atomxi or its negation, which we denote byxi . The opposite of a
literal ` is denoted bỳ , and the opposite of a set of literalsL by L = {` | ` ∈ L}.
Furthermore,Lit = At ∪ At denotes the set of all literals.

A clauseis a disjunctionc =
∨

i∈P(c) xi ∨ ∨
i∈N(c) xi of literals, whereP(c)

andN(c) are the sets of indices whose corresponding variables occur positively
and negatively inc and P(c) ∩ N(c) = ∅. Dually, a term is conjunctiont =∧

i∈P(t) xi ∧ ∧
i∈N(t) xi of literals, whereP(t) andN(t) are similarly defined. We

also view clauses and terms as sets of literals. Aconjunctive normal form(CNF)
is a conjunction of clauses. A clausec is Horn, if |P(c)| ≤ 1. A theoryΣ is any
set of formulas; it isHorn, if it is a set of Horn clauses. As usual, we identifyΣ
with ϕ =

∧
c∈Σ c, and writec ∈ ϕ etc. It is known [3] that the deductive query

for a Horn theory, i.e., deciding ifΣ |= c for a clausec is possible in linear time.
We recall that Horn theories have a well-known semantic characterization. A

modelis a vectorv∈{0,1}n, whosei-th component is denoted byvi . For a model
v, let ON(v) = {i | vi = 1} andOFF(v) = {i | vi = 0}. The value of a formula
ϕ on a modelv, denotedϕ(v), is inductively defined as usual; satisfaction ofϕ

in v, i.e.,ϕ(v) = 1, will be denoted byv |= ϕ. The set of models of a formulaϕ
(resp., theoryΣ), denoted bymod(ϕ) (resp.,mod(Σ)), and logical consequence
ϕ |= ψ (resp.,Σ |= ψ) are defined as usual. For two modelsv andw, we denote
by v ≤ w the usual componentwise ordering, i.e.,vi ≤ wi for all i = 1, 2, . . . ,n,
where 0≤ 1; v < w meansv , w andv ≤ w. Denote byv

∧
w componentwise

AND of modelsv,w ∈ {0, 1}n, and byCl∧(M) the closure ofM ⊆ {0,1}n under∧
. Then, a theoryΣ is Horn representable if and only ifmod(Σ) = Cl∧(mod(Σ))

(see [2, 9]) for proofs).

Example 1.ConsiderM1 = {(0101), (1001), (1000)} andM2 = {(0101), (1001),
(1000), (0001), (0000)}. Then, forv = (0101),w = (1000), we havew, v ∈ M1,
while v

∧
w = (0000) < M1; henceM1 is not the set of models of a Horn

theory. On the other hand,Cl∧(M2) = M2, thusM2 = mod(Σ) for some Horn
theoryΣ.



As discussed by Kautzet al.[7], a Horn theoryΣ is semantically represented
by its characteristic models, wherev ∈ mod(Σ) is calledcharacteristic(or ex-
treme[2]), if v < Cl∧(mod(Σ)\{v}). The set of all such models, thecharacteristic
set ofΣ, is denoted bychr(Σ). Note thatchr(Σ) is unique. E.g., (0101)∈ chr(Σ2),
while (0000)< chr(Σ2); we havechr(Σ2) =M1. It is known [7] that the deduc-
tive query for a Horn theoryΣ from the characteristic setchr(Σ) can be done in
linear time, i.e.,O(n|chr(Σ)|) time.

Interior and Exterior of Theories For a modelv ∈ {0,1}n and an integer
α > 0, itsα-neighborhoodis defined by

Nα(v) = {w ∈ {0,1}n |‖ w− v ‖≤ α},
where‖ v ‖ denotes

∑n
i=1 |vi |. For a theoryΣ and an integerα > 0, theα-interior

andα-exterior ofΣ, denoted byσ−α(Σ) andσα(Σ) respectively, are theories
defined by

mod(σ−α(Σ)) = {v ∈ {0,1}n | Nα(v) ⊆ mod(Σ)} (1)

mod(σα(Σ)) = {v ∈ {0,1}n | Nα(v) ∩mod(Σ) , ∅}. (2)

By definition,σ0(Σ) = σ, σα(Σ) |= σβ(Σ) for integersα andβ with α < β,
andσα(Σ1) |= σα(Σ2) holds for any integerα, if two theoriesΣ1 andΣ2 satisfy
Σ1 |= Σ2.

Example 2.Let us consider a Horn theoryΣ = {x1 ∨ x3, x2 ∨ x3, x2 ∨ x4} of 4
variables, wheremod(Σ) is given by

mod(Σ) = {(1111), (1011), (1010), (0111), (0011), (0010), (0001), (0000)}
(See Figure 2). Then we haveσα(Σ) = {∅} for α ≤ −2, {x1, x2, x3, x4} for α = −1,
Σ for α = 0, {x1 ∨ x2 ∨ x3 ∨ x4} for α = 1, and∅ for α ≥ 2. For example,
(0011) is the unique model ofmod(σ−1(Σ)), sinceN1(0011) ⊆ mod(Σ) and
N1(v) * mod(Σ) holds for all the other modelsv. For the 1-exterior, we can see
that all modelsv with (x1 ∨ x2 ∨ x3 ∨ x4)(v) = 1 satisfyN1(v) ∩ mod(Σ) , ∅,
and no other such model exists. For example, (0101) is a model ofσ1(Σ), since
(0111)∈ N1(0101)∩mod(Σ). On the other hand, (1100) is not a model ofσ1(Σ),
sinceN1(1100)∩mod(Σ) = ∅. Notice thatσ−1(Σ) is Horn, whileσ1(Σ) is not.

Makino and Ibaraki [11] introduced the interiors and exteriors to analyze
stability of Boolean functions, and studied their basic properties and complexity
issues on them (see also [13]). For example, it is known [11] that, for a theory
Σ and nonnegative integersα andβ, σ−α(σ−β(Σ)) = σ−α−β(Σ), σα(σβ(Σ)) =

σα+β(Σ), and

σα(σ−β(Σ)) |= σα−β(Σ) |= σ−β(σα(Σ)). (3)



σ0(Σ)=Σ

σ−1(Σ)

σ1(Σ)

1111

1110 1101 1011 0111

0000

1000 0100 0010 0001

1100 1010 0101 001110010110

Fig. 2. A Horn theory and its interiors and exteriors

For an integerα > 0 and two theoriesΣ1 andΣ2, we have

σ−α(Σ1 ∪ Σ2) = σ−α(Σ1) ∪ σ−α(Σ2) (4)

σα(Σ1 ∪ Σ2) |= σα(Σ1) ∪ σα(Σ2), (5)

whereσα(Σ1 ∪ Σ2) , σα(Σ1) ∪ σα(Σ2) holds in general.
As demonstrated in Example 2, it is not difficult to see that the interiors of

any Horn theory are Horn, which is, for example, proved by (4) and Lemma 1,
while the exteriors might be not Horn.

3 Deductive Inference from Horn Theories

In this section, we investigate the deductive inference for the interiors and exte-
riors of a given Horn theory.

3.1 Interiors

Let us first consider the deduction for theα-interiors of a Horn theory: Given a
Horn theoryΣ, a clausec, and a positive integerα, decide ifσ−α(Σ) |= c holds.
We show that the problem is solvable in linear time after showing a series of
lemmas.

The following lemma is a basic property of the interiors.

Lemma 1. Let c be a clause. Then for an integerα > 0, we haveσ−α(c) =∨
S⊆c:
|S|=α+1

(∧
`∈S `

)
=

∧
S⊆c:
|S|=|c|−α

(∨
`∈S `

)
.



This, together with (4), implies that for a CNFϕ and an integerα > 0, we have

σ−α(ϕ) =
∧

c∈ϕ

( ∨
S⊆c:
|S|=α+1

(∧

`∈S
`
))

=
∧

c∈ϕ

( ∧
S⊆c:
|S|=|c|−α

(∨

`∈S
`
))
,

where we regardc as a set of literals.

Lemma 2. LetΣ be a Horn theory, and letc be a clause. For an integerα > 0,
if there exists a claused ∈ Σ such that|N(d)\N(c)| ≤ α−1 or (|N(d)\N(c)| = α

andP(d) ⊆ P(c)), then we haveσ−α(Σ) |= c.

Lemma 3. LetΣ be a Horn theory, and letc be a clause. For an integerα > 0,
if (i) |N(d) \ N(c)| ≥ α holds for alld ∈ Σ and(ii) ∅ , P(d) ⊆ N(c) holds for all
d ∈ Σ with |N(d) \ N(c)| = α, then we haveσ−α(Σ) 6|= c. ut

By Lemmas 2 and 3, we can easily answer the deductive queries, ifΣ sat-
isfies certain conditions mentioned in them. In the remaining case, we have the
following lemma.

Lemma 4. For a Horn theoryΣ that satisfies none of the conditions in Lemmas
2 and3, let d be a clause inΣ such that|N(d) \ N(c)| = α, andP(d) = P(d) \
(P(c) ∪ N(c)) = { j}. Thenσ−α(Σ) |= c∨ x j holds.

Proof. By Lemma 1, we haveσ−α(d) |= ∨
i∈N(c)∩N(d) xi ∨ x j |= c ∨ x j . This

impliesσ−α(Σ) |= c∨ x j by (4). ut
From this lemma, we have only to checkσ−α(Σ) |= c ∨ x j , instead of

σ−α(Σ) |= c. Since|c| < |c∨ x j | ≤ n, we can answer the deduction by checking
the conditions in Lemmas 2 and 3 at mostn times.

We can see that a straightforward implementation of the algorithm requires
O(n(‖Σ ‖ +|c|)) time, where‖Σ ‖ denotes the length ofΣ, i.e., ‖Σ ‖= ∑

d∈Σ |d|,
though we can implement a linear time algorithm by adopting a proper data
structure.

Theorem 1. Given a Horn theoryΣ, a clausec and an integerα > 0, a deduc-
tive queryσ−α(Σ) |= c can be answered in linear time, i.e.,O(‖Σ‖ +|c|) time. ut

3.2 Exteriors

Let us next consider the deduction for theα-exteriors of a Horn theory. In con-
trast to the interior case, we have the following negative result.

Theorem 2. Given a Horn theoryΣ, a clausec and a positive integerα, it is
co-NP-complete to decide whether a deductive queryσα(Σ) |= c holds, even if
P(c) = ∅. ut



Algorithm 1 Deduction-Interior-from-Horn-Theory
Input: A Horn theoryΣ, a clausec and an integerα > 0.

Output: Yes, ifσ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c) andP := P(c).

Step 1. /* Check the condition in Lemma 2. */

If there exists a claused ∈ Σ such that|N(d) \ N| ≤ α − 1 or (|N(d) \ N| = α andP(d) ⊆ P),
then output Yes and halt.

Step 2. /* Check the condition in Lemma 3. */

If P(d) ⊆ N holds for alld ∈ Σ with |N(d) \ N| = α, then output No and halt.

Step 3. /* UpdateN by Lemma 4. */
For a claused in Σ such that|N(d) \ N| = α and P(d) = P(d) \ (P ∪ N) = { j}, update
N := N ∪ { j} and return to Step 1. ut

We remark that this result can also be derived from the ones in [11].
However, by using the next lemma, a deductive query can be answered in

polynomial time, ifα or N(c) is small.

Lemma 5. LetΣ1 andΣ2 be theories. For an integerα > 0, Thenσα(Σ1) |= Σ2

if and only ifΣ1 |= σ−α(Σ2). ut

From Lemma 5, the deductive query for theα-interior of a theoryΣ, i.e.,
σα(Σ) |= c for a given clausec is equivalent to the condition thatΣ |= σ−α(c).
Since we haveσ−α(c) =

∧
S⊆c:
|S|=|c|−α

(∨
`∈S `

)
by Lemma 1, the deductive query for

theα-interior can be done by checking
(|c|
α

)
deductions forΣ. More precisely, we

have the following lemma.

Lemma 6. LetΣ be a Horn theory, letc be a clause, andα > 0 be an integer.
Thenσα(Σ) |= c holds if and only if, for each subsetS of N(c) such that|S| ≥
|N(c)| − α, at least(α − |N(c)| + |S| + 1) j’s in P(c) satisfyΣ |= ∨

i∈S xi ∨ x j . ut

This lemma implies that the deductive query can be answered by checking
the number ofj’s in P(c) that satisfyΣ |= ∨

i∈S xi ∨ x j for eachS. Since we
can check this condition in linear time and there are

∑α
p=0

(|N(c)|
p

)
suchS’s, we

have the following result, which complements Theorem 2 that the problem is
intractable, even ifP(c) = ∅.

Theorem 3. Let Σ be a Horn theory, letc be a clause, and letα > 0 be an
integer. Then a deductive queryσα(Σ) |= c can be answered inO

(∑α
p=0

(|N(c)|
p

)
‖

Σ ‖ +|P(c)|
)

time. In particular, it is polynomially solvable, ifα = O(1) or
|N(c)| = O(log ‖Σ ‖).



4 Deductive Inference from Characteristic Sets

In this section, we consider the case when Horn knowledge bases are repre-
sented by characteristic sets. Different from formula-based representation, the
deductions for interiors and exteriors are both intractable, unless P=NP.

4.1 Interiors

We first present an algorithm to solve the deduction problem for the interiors
of Horn theories. The algorithm requires exponential time in general, but it is
polynomial whenα is small.

Let Σ be a Horn theory given by its characteristic setchr(Σ), and letc be a
clause. Then for a nonnegative integerα, we have

σ−α(Σ) |= c if and only ifσ−α(Σ) ∧ c ≡ 0. (6)

Let v∗ be a unique minimal model such thatc(v∗) = 0 (i.e.,c(v∗) = 1). By the
definition of interiors,v∗ is a model ofσ−α(Σ) if and only if all v’s inNα(v∗) are
models ofΣ. Therefore, for each modelv in Nα(v∗), we check ifv ∈ mod(Σ),
which is equivalent to ∧

w∈chr(Σ)
w≥v

w = v. (7)

If (7) holds for all modelsv in Nα(v∗), then we can immediately conclude by
(6) thatσ−α(Σ) 6|= c. On the other hand, if there exists a modelv in Nα(v∗) such
that (7) does not hold, letJ = ON(

∧
w∈chr(Σ)

w≥v
w) \ ON(v). By definition, we have

J , ∅, and we can see that

σ−α(Σ) |=
∨

i∈ON(v)

xi ∨ x j for all j ∈ J. (8)

If J ∩ N(c) , ∅, by Lemma 1 and (8), we haveσ−α(Σ) |= ∨
i∈ON(v)∩N(c) xi ,

since|ON(v) \ N(c)| ≤ α − 1. This impliesσ−α(Σ) |= c. On ther other hand, if
J ∩ N(c) = ∅, then by Lemma 1 and (8), we haveσ−α(Σ) |= ∨

i∈N(c) xi ∨ x j for
all j ∈ J. Thus, ifJ contains an index inP(c), we can conclude thatσ−α(Σ) |= c;
Otherwise, we check the conditionσ−α(Σ) |= c∨∨ j∈J x j , instead ofσ−α(Σ) |= c.
Since a new claused = c ∨∨

j∈J x j is longer thanc, after at mostn iterations,
we can answer the deductive query. Formally, our algorithm can be described as
Algorithm 2.

Theorem 4. Given the characteristic model chr(Σ) of a Horn theoryΣ, a clause
c and a nonnegative integerα, a deductive queryσ−α(Σ) |= c can be answered
in O(nα+2|chr(Σ)|) time. In particular, it is polynomially solvable, ifα = O(1).

ut



Algorithm 2 Deduction-Interior-from-Charset
Input: The characteristic setchr(Σ) of a Horn theoryΣ, a clausec and a nonnegative integerα.

Output: Yes, ifσ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c), d := c andq := 1.

Step 1. Let v∗ be the unique minimal model such thatd(v∗) = 0.

Step 2. Foreachv in Nα(v∗) do

If (7) does not hold,

then let v(q) := v, J := ON(
∧

w∈chr(Σ)
w≥v

w) \ON(v) and
q := q + 1

If J ∩ (N ∪ P(c)) , ∅, then output yes and halt.

Let N := N ∪ J andd :=
∨

i∈N xi ∨∨
i∈P(c) xi .

Go to Step 1.

end{for}
Step 3. Output No and halt. ut

However, in general, the problem is intractable, which contrasts to the formula-
model representation.

Theorem 5. Given the characteristic set chr(Σ) of a Horn theoryΣ and a posi-
tive integerα, it is co-NP-complete to decide whetherσ−α(Σ) is consistent, i.e.,
mod(σ−α(Σ)) , ∅. ut

This result immediately implies the following corollary.

Corollary 1. Given the characteristic set chr(Σ) of a Horn theoryΣ, a clausec
and a positive integerα, it is NP-complete to decide whether a deductive query
σ−α(Σ) |= c holds, even ifc = ∅. ut

Note that, different from the other hardness results, the hardness is not sensitive
to the size ofc.

4.2 Exteriors

Let us consider the exteriors. Similarly to the formula-based representation, we
have the following negative result.

Theorem 6. Given the characteristic set chr(Σ) of a Horn theoryΣ, a clause
c and a positive integerα, it is co-NP-complete to decide if a deductive query
σα(Σ) |= c holds. ut



By using Lemma 6, we can see that the problem can be solved in polynomial
time, if α or |N(c)| is small. Namely, for each subsetS of N(c) such that|S| ≥
|N(c)|−α, letvS denotes the model such thatON(vS) = S. ThenwS =

∧
w∈chr(Σ):

w≥vS
w

is the unique minimal model ofΣ such thatON(wS) ⊇ S, and hence it follows
from Lemma 6 that it is enough to check if|ON(ws)∩P(c)| ≥ α−|N(c)|+ |S|+1.
Clearly, this can be done in inO

(∑α
p=0

(|N(c)|
p

)
n|chr(Σ)|

)
time.

Moreover, if|P(c)| is small, then the problem also becomes tractable, which
contrasts with Theorem 2.

Lemma 7. Let Σ be a Horn theory, letc be a clause, andα be a nonnegative
integer. Thenσα(Σ) |= c holds if and only if eachS ⊆ P(c) such that|S| ≥
|P(c)| − α satisfies

|OFF(w) ∩ N(c)| ≥ α − |P(c)| + |S| + 1 (9)

for all modelsw of Σ such that OFF(w) ∩ P(c) = S.

Note that (9) is monotone in the sense that, if a modelw satisfies (9), then all
modelsv with v < w also satisfy it. Thus it is sufficient to check if (9) holds for
all maximalmodelsw of Σ such thatOFF(w) ∩ P(c) = S. Since such maximal
modelsw can be obtained fromw(i) (i ∈ S) with i ∈ OFF(w(i)) ∩ P(c) ⊆ S
by their intersectionw =

∧
i∈S w(i), we can answer the deduction problem in

O
(
n
∑|P(c)|

p=|P(c)|−α
(|P(c)|

p

)
|chr(Σ)|p

)
time.

Theorem 7. Given the characteristic set chr(Σ) of a Horn theory, a clause
c, and an integerα ≥ 0, a deductive queryσα(Σ) |= c can be answered in
O
(
nmin{∑α

p=0

(|N(c)|
p

)
|chr(Σ)|,∑|P(c)|

p=|P(c)|−α
(|P(c)|

p

)
|chr(Σ)|p}

)
time. In particular, it

is polynomially solvable, ifα = O(1), |P(c)| = O(1), or |N(c)| = O(logn ·
|chr(Σ)|).

5 Deductive Inference for Envelopes of the Exteriors of Horn
Theories

We have considered the deduction for the interiors and exteriors of Horn theo-
ries. As mentioned before, the interiors of Horn theories are also Horn, while
this does not hold for the exteriors. This means that the exteriors of Horn theo-
ries might lose beneficial properties of Horn theories. One of the ways to over-
come such a hurdle isHorn Approximation, that is, approximating a theory by a
Horn theory [16]. There are several methods for approximation, but one of the
most natural ones is to approximate a theory by itsHorn envelope. For a theory
Σ, its Horn envelopeis the Horn theoryΣe such thatmod(Σe) = Cl∧(mod(Σ)).



Since Horn theories are closed under intersection, Horn envelope is the least
Horn upper bound forΣ, i.e., chr(Σe) ⊇ chr(Σ) and there exists no Horn the-
ory Σ∗ such thatchr(Σe) ) chr(Σ∗) ⊇ chr(Σ). In this section, we consider the
deduction for Horn envelopes of interiors of Horn theories;σα(Σ)e |= c.

5.1 Model-Based Representations

Let us first consider the case in which knowledge bases are represented by char-
acteristic sets.

Proposition 1. LetΣ be a Horn theory, and letα be a nonnegative integer. Then
we have

mod(σα(Σ)e) = Cl∧(
⋃

v∈chr(Σ)

Nα(v)). (10)

ut
For a clausec, let v∗ be the unique minimal model such thatc(v∗) = 0. We

recall that, for a Horn theoryΦ,

Φ |= c if and only if c(
∧

v∈chr(Φ)
v≥v∗

v) = 1. (11)

Therefore, Proposition 1 immediately implies an algorithm for the deduction
for σα(Σ)e from chr(Σ), since we havechr(σα(Σ)e) ⊆ ⋃

v∈chr(Σ)Nα(v). How-
ever, for a generalα,

⋃
v∈chr(Σ)Nα(v) is exponentially larger thanchr(Σ), and

hence this direct method is not efficient. The following lemma helps developing
a polynomial time algorithm.

Lemma 8. LetΣ be a Horn theory, letc be a clause, and letα be a nonnegative
integer. Thenσα(Σ)e |= c holds if and only if the following two conditions are
satisfied.

(i) |OFF(v) ∩ N(c)| ≥ α holds for allv ∈ chr(Σ).
(ii) If S = {v ∈ chr(Σ) | |OFF(v) ∩ N(c)| = α} , ∅, P(c) is not covered with

OFF(v) for modelsv in S, i.e.,P(c) *
⋃

v∈chr(Σ)
|OFF(v)∩N(c)|=α

OFF(v).
ut

The lemma immediately implies the following theorem.

Theorem 8. Given the characteristic set chr(Σ) of a Horn theoryΣ, a clausec,
and an integerα ≥ 0, a deductive queryσα(Σ)e |= c can be answered in linear
time.

We remark that this contrasts with Corollary 1. Namely, if we are given
the characteristic setchr(Σ) of a Horn theoryΣ, σα(Σ)e |= c is polynomially
solvable, while it is co-NP-complete to decide ifσα(Σ) |= c.



5.2 Formula-Based Representation

Recall that anegativetheory (i.e., a theory consisting of clauses with no posi-
tive literal) is Horn and the exteriors of negative theory are also negative, and
hence Horn. This means that, for a negative theoryΣ, we haveσα(Σ)e = σα(Σ).
Therefore, we can again make use of the reduction in the proof of Theorem 2,
since the reduction uses negative theories.

Theorem 9. Given a Horn theoryΣ, a clausec, and an integerα ≥ 0, it is
co-NP-complete to decide whetherσα(Σ)e |= c holds, even ifP(c) = ∅. ut

However, ifα or N(c) is small, the problem becomes tractable by Algorithm
3.

Algorithm 3 Deduction-Envelope-Exterior-from-Horn-Theory
Input: A Horn theoryΣ, a clausec and an integerα ≥ 0.

Output: Yes, ifσα(Σ)e |= c; Otherwise, No.

Step 1. /* Check if there exists a modelv of Σ such that|OFF(v) ∩ N(c)| < α. * /

For eachN ⊆ N(c) with |N| = |N(c)| − α + 1 do

Check if the theory obtained fromΣ by assigningxi = 1 for i ∈ N is satisfiable.

If so,then output No and halt.

end{for}
Step 2. /* Check if there exists a setS = {v ∈ mod(Σ) | |OFF(v) ∩ N(c)| = α} such that⋃

v∈S OFF(v) ⊇ P(c). * /

Let J := ∅.
For eachN ⊆ N(c) with |N| = |N(c)| − α do

Compute a unique minimal satisfiable modelv for the theory obtained fromΣ by
assigningxi = 1 for i ∈ N is satisfiable.

UpdateJ := J ∪ { j ∈ P(c) | v j = 0}.
end{for}
If J = P(c), then output NO and halt.

Step 3. Output Yes and halt. ut

The algorithm is based on a necessary and sufficient condition forσα(Σ)e |=
c, which is obtained from Lemma 8 by replacing allchr(Σ)’s with mod(Σ)’s. It
is not difficult to see that such a condition holds from the proof of Lemma 8.

Theorem 10. Given a Horn theoryΣ, a clausec, and an integerα ≥ 0, a
deductive queryσα(Σ)e |= c can be answered inO

(((|N(c)|
α−1

)
+
(|N(c)|

α

)) ‖Σ ‖ +|P(c)|
)



time. In particular, it is polynomially solvable, ifα = O(1) or |N(c)| = O(log ‖
Σ ‖). ut
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