
Integrating an Object Server 
with Other Worlds 

ALAN PURDY and BRUCE SCHUCHARDT 
Servio Logic Development Corporation 
and 
DAVID MAIER 
Servio Logic Development Corporation and Oregon Graduate Center 

Object-oriented database servers are beginning to appear on the commercial market in response to a 
demand by application developers for increased modeling power in database systems. Before these 
new servers can enhance the productivity of application designers, systems designers must provide 
simple interfaces to them from both procedural and object-oriented languages. This paper first 
describes a successful interface between an object server and two procedural languages (C and Pascal). 
Because C and Pascal do not support the object-oriented paradigm application, designers using these 
languages must deal with database objects in less than natural ways. Fortunately, workstations 
supporting object-oriented languages have the potential for interacting with database objects in a 
much more integrated manner. To integrate these object-oriented workstations with an object server, 
we provide a design framework based on the notion of workstation agent objects representing prim?& 
objects in the database. We distinguish two types of agents: proxies, which forward most messages to 
the principal objects, and deputies, which can cache state for their principal and act with more 
autonomy. The interaction of cache, transaction, and message management strategies makes the 
implementation of deputies a nontrivial problem. The agent metaphor is being used currently to 
integrate an object server with a Smalltalk-8O’” workstation. 

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed 
Systems--distributed applications; D.3.3 [Programming Languages]: Language Constructs- 
abstract data types; H.2.0 [Database Management]: General; H.2.1 [Database Management]: 
Logical Design-data models; H.2.4 [Database Management]: Systems 

General Terms: Design, Languages 

Additional Key Words and Phrases: Gemstone, object-oriented environment, object server, 
Smalltalk- 

1. INTRODUCTION 

During the last three years a team at Servio designed and implemented an object- 
oriented database server (or object server) called Gemstone1 [7-91. Gemstone 
delivers to application developers a database subsystem with a Smalltalk-like 
object model instead of one of the more traditional record-oriented models (e.g., 

’ Gemstone is a registered trademark of Servio Logic Development Corporation. 

Authors’ addresses: A. Purdy, Xerox PARC/Northwest, 10220 S.W. Greenburg Rd., Portland, OR 
97223; D. Maier, Servio Logic Development Corp., 15025 SW. Koll Parkway, Beaverton, OR 97006; 
B. Schuchardt, Servio Logic Development Corp., 15025 S.W. Koll Parkway, Beaverton OR 97006. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1987 ACM 0734-2047/87/0100-0027 $00.75 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987, Pages 27-47. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22890.23000&domain=pdf&date_stamp=1987-01-01


28 l A. Purdy et al. 

relational, hierarchical). This object model allows applications to manage infor- 
mation (e.g., documents, pictures, sound) not easily handled by more traditional 
database systems. 

The Gemstone server provides neither graphics nor terminal handling support 
for building end-user interfaces to database applications. Instead of trying to 
support fast-response user I/O from a central machine, we assume that applica- 
tion development and application use is centered at a personal workstation such 
as an IBM-PC2 or a Smalltalk machine (Figure 1). The workstation, in turn, 
communicates with a Gemstone object server (and other servers) over a network. 
The workstation’s dedicated processing power provides the capabilities required 
for high-quality interfaces to application users (e.g., bit-map graphics, mouse, 
windows), while the object server provides modeling power and efficient shar- 
ing of persistent objects. The computing environments on these workstations 
represent the “other worlds” with which the Gemstone object server must be 
integrated. 

We begin this paper with a review of the Gemstone system, covering the 
motivation for Gemstone, the object model, the OPAL3 language, and Gem- 
Stone’s database features. We then describe an interface to Gemstone from the 
“procedural world” of a language such as C or Pascal. This interface supports 
both the application development tools delivered with Gemstone and application 
programs running on the workstation. 

The Gemstone system architects ultimately wish to provide a single “seamless” 
environment to application developers working in an “object-oriented world,” 
such as Smalltalk, and wishing to use Gemstone’s features. Although integrating 
Gemstone with another “object world” would seem easier than integrating it 
with a “procedural world,” this task is more complex than it first appears. We 
discuss the requirements for a seamless integration and then present a design 
framework based on passive and active “agents” [l, 151 for Gemstone objects. 
We conclude with a discussion of our progress toward the “seamless” goal, and 
the open research issues concerning a seamless integration. 

1 .l Motivation for Gemstone 

The limitations imposed by the record-oriented data model of most database 
systems severely restrict the kinds of information that can be easily managed by 
these systems. Gemstone was designed to greatly increase the data-modeling 
power of a database component with the hope of vastly reducing the development 
time of applications with complex information needs. Such applications include 
office information systems, computer-aided design, documentation of complex 
mechanical systems (automobiles, airframes), and artificial intelligence knowl- 
edge bases. Such a system’s data model should support the definition of new data 
types, rather than constrain designers to a fixed set of predefined types. Also, 
the bounds on the number and size of data objects should be determined only by 
the amount of secondary memory, not primary memory. Such a system should 
also provide shared access to persistent data in a multiuser environment 
with the usual database amenities such as concurrency control, recovery, 

2 IBM-PC is a registered trademark of IBM Corporation. 
3 OPAL is a registered trademark of Servio Logic Development Corporation. 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds l 29 

IBM-PC 

Workstation 

IBM-PC 

Wcfkstation 

Srdftalk - 80 

Wcfkstation 

Nehwork 

GemStone l----l Object Server 

Fig. 1. System topology. 

authorization, and system management functions. Finally, the system should 
have an interactive interface for defining new database objects, writing database 
routines, and executing ad hoc queries. 

By combining the capabilities of an object-oriented language with the storage 
management functions of a traditional data management system we assumed 
that we would meet these goals and provide an environment that would reduce 
application development effort and promote data sharing among applications. 

1.2 Gemstone Object Model 

Gemstone’s object model is identical to that of Smalltalk-804 [3]. The three 
principal concepts of the Gemstone object model are object, message, and class. 
These correspond roughly to record, procedure call, and record type in conven- 
tional systems. An object is a private memory with a public interface. The private 
memory of (most) objects is structured as a list of instance uariabks containing 
their values. Instance variables are like field names in a record or indices in an 
array; their values are references to other objects. Objects communicate with 
other objects only by passing messages among themselves. These messages are 
requests for an object to change its state, to return a value (i.e., another object), 
or to perform some sequence of actions. The set of messages to which an object 
responds (the public interface) is called its protocol. An object may only inspect 
or change another object by sending a message to it. Each object responds to a 
received message by executing a method written in the OPAL language. Objects 
sharing the same format and methods are grouped into a class and called instances 
of the class. The methods and format of a class’s instances are factored and 
stored once in a single object describing the class, the class-defining object. Each 
instance of a given class contains a reference to its class definition. The classes 
in Gemstone are arranged in a class hierarchy, with each subclass inheriting 
behavior and structure from its superclasses. When a message is received by an 
object, the object consults with its class (and potentially its superclasses) to 
locate the proper method for execution. 

’ Smalltalk- is a registered trademark of Xerox Corporation. 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



30 - A. Purdy et al. 

1.3 OPAL Language 

The OPAL language syntax and semantics are nearly identical to the Smalltalk 
language presented by Goldberg and Robson [3]. OPAL and Smalltalk share two 
major language constructs: message expressions and method definitions. Each is 
discussed below. 

1.3.1 Message Expressions. All message expressions look like (receiver) (mes- 
sage). Each receiver is either a variable identifier, a literal, or another expression 
denoting an object that receives and interprets the message. Each message 
contains a selector (a procedure name) and possibly message arguments. When a 
message expression is executed, another object is returned as the value of the 
message expression. Thus a message receiver may be an expression that, when 
evaluated, returns an object that is then sent another message. 

OPAL supports three kinds of messages: unary, binary, and keyword. Unary 
messages have no arguments and have a single identifier as a selector, for example, 

5 negated 

This expression sends the unary message composed of the unary selector 
negated to the object 5 and returns the object whose value is -5. Binary 
message expressions have a receiver, one argument, and a message selector that 
comprises one or two nonalphanumeric characters. For example, to multiply 
8 by 3, we send the message “* 3” or “multiply by 3” to the receiver %“: 

8*3 

This binary expression returns the object 24. In this example, the binary 
selector * is used for multiplication. Comparisons are binary messages too: 

empl salary<=emp2 salary 

This binary expression demonstrates precedence. The two unary messages with 
the selector salary have precedence over the binary message whose selector is 
< =. Thus, the salaries of emp 1 and emp2 are compared with the binary message. 
Keyword messages have one or more arguments and multipart selectors composed 
of alphanumeric characters and colons. For example, to set the third component 
of an array held in anArray to the string ‘Ross’, we use 

anArray at 3 put: 'ROSS' 

In this example, the selector is read as “at : put : ” with the two arguments of 
3 and ‘Ross’. 

1.3.2 Methods. Methods define all execution in Gemstone. Each method cor- 
responds to one message selector and is defined within the scope of the class 
instance that is the receiver of the message. Thus, a method can directly access 
the named instance variables of the receiving object. A method (like a Pascal 
function) has a formal declaration, an optional declaration of temporary variables, 
and a body composed of a sequence of OPAL message expressions. The method 
body always returns a value to the sender of the original message. The following 
example defines a method whose unary selector is wholeName. This method 
first defines a temporary variable named temp. The method body assigns an 
instance variable named first to the temporary, then concatenates the 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 31 

temporary, a blank, and the value of the instance variable last. Finally, it 
returns the result of that concatenation to the sender of the message. 

wholeName 
I t-w I 
temp := first. 
T temp + I ’ + last 

1.4 Gemstone Database Features 

Gemstone combines the database management features common to most com- 
mercial database systems (e.g., Ingres [13], IMS [5]) with the object-oriented 
data model provided by the Smalltalk- system. Gemstone’s main features are 

Sharing of Objects. Gemstone provides each user with a distinct list of dic- 
tionaries called a symbollist. Although this list is private to each user, the 
dictionaries it contains can be shared. Thus a dictionary shared by two users 
allows the sharing of the objects contained in that dictionary. A dictionary is a 
collection of key-value pairs and supports the naming of objects. In this context 
a dictionary acts much like a file directory. 

Resilience to Common Failure Modes. The data in a database often represent 
a significant capital expense. Most database users, including users of Gemstone, 
expect their databases to survive all power failures that do not permanently 
damage the secondary storage media. In addition, if the reliability of the disk 
drives is insufficient, users can selectively replicate the stored objects on line, 
ensuring that the database survives single-point disk failures. 

Multiple Concurrent Users. The standard mechanism for sharing a database 
requires the concept of a transaction. Intended changes to a database become 
visible to others only when a user successfully commits changes. Gemstone uses 
an optimistic concurrency control policy [6]. 

Security. Database systems must secure information from unauthorized 
change or access. Gemstone secures the object database by first authenticating 
each user through a user name and password. Along with user authentication, 
groups of objects may be explicitly marked as either read only, read/write, or no 
privileges for selected users. 

Centralized Sewer. Gemstone is a centralized server for a database of objects. 
It currently does not allow a database to be distributed among several Gemstone 
servers. 

Primary and Secondary Storage Management. Gemstone hides from applica- 
tion designers the paging of objects between secondary and primary memory, and 
supports objects larger than what can fit in the server’s primary memory. 

Method Execution. Gemstone supports a Smalltalk-like execution model on 
the server. This capability gives the application designer using Gemstone a 
choice: Copy an object’s state to the workstation for manipulation or execute 
messages remotely on the Gemstone server. 

Uniform Language. Gemstone presents one language, OPAL [7, 81, to its 
users. Through OPAL the user manipulates the information in the database 
(Data Management Language), defines new classes (Data Definition Language), 
writes portions of application programs (General Computation Language), and 
controls the Gemstone server (System Command Language). 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



32 - A. Purdy et al. 

* 

‘Chapter 2.’ 

‘The sun crept up 
over the snowy 
peaks, ahlnlng 
brtlllantly on the 
elk In the valley 
below.’ 

‘Chapter 1.’ header 

stormy nlght, the 
wlnd was howling 
through the broken bW 
wlndow. Would 
I make It to dawn? 

Fig. 2. Structured documents example. 

wwanty dlsclalmer 
and a copyright 
notice.’ 

Implled. Material 
subject to change. 
Copyrlght 1988.’ 

Fast Associative Access. Database systems are traditionally efficient at finding 
all members of a set meeting a selection criteria. Gemstone allows users to 
dynamically add (or remove) associative access structures to accelerate such 
membership tests [9]. 

1.5 An Example Application 

To illuminate the ideas in this paper, we present a simple document archiving 
system. For this example a set of documents is stored on Gemstone in a user- 
specific dictionary. The application accesses this set to find a given document, 
update a document, and add a new document. A document set is hierarchical: It 
can contain both documents and other sets of documents. A user can move 
documents between sets and can have the same document appear in multiple 
sets. The main classes in this example are Dictionary, SetOfEntries, 
and Document. A Dictionary is a subclass of Set and stores an unor- 
dered collection of Associations between a name and any arbitrary object. 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 33 

SetOfEntries is a subclass of Array that stores a list of Associations. 
Set 0 f Ent r i es differs from D i c t i ona r y in that it maintains a user-specified 
order on its entries. Each entry in a Set 0 f Ent r i e s associates the name of an 
entry with the value of an entry. In our example, the value will be either an 
instance of Document or another instance of SetOf Entries. A document has 
two instance variables, header and body; both are instances of String. A 
more complete system would impose further structure, such as headings, sections, 
and paragraphs, on the body of a document. Figure 2 illustrates a database 
containing pieces of manuals. Note that one of the documents is shared by two 
entries in Manuals. 

2. INTEGRATING GEMSTONE WITH A PROCEDURAL ENVIRONMENT 

To support applications in the “procedural world,” Gemstone provides a C and 
Pascal callable object module (Figure 3), which the designer links with applica- 
tions running on an IBM-PC. This Procedural Interface Module (PIM) imple- 
ments remote procedure calls [ 141 to functions supplied by the Gemstone object 
server. The PIM hides the network communications protocols and provides calls 
to Gemstone for controlling sessions, transporting object states between the two 
environments, and sending messages to objects residing on Gemstone. The calls 
in each category are described in Tables I-III. Although these descriptions 
somewhat simplify the actual PIM functions supplied by Gemstone, the essen- 
tials are preserved. 

The session-controlling functions establish a connection between a workstation 
program and Gemstone, control Gemstone sessions, and control Gemstone 
transactions. The other categories of functions allow workstation procedures to 
reference Gemstone objects by unique identifiers that are represented in C or 
Pascal by variables of type Oop (for Object-Oriented Pointer). Before sending a 
message to a Gemstone object, the workstation must first obtain the identifiers 
of the receiving object, the desired message selector (which will be an instance of 
the class Symbol), and the message’s arguments. To use the object transporting 
functions to access information stored on Gemstone, a C or Pascal application 
designer must know how to interpret Gemstone’s objects when their state is 
“fetched” into the application process on the PC. Knowledge of the following 
object formats is sufficient for building applications: Number, Character, Bool- 
ean, UndefinedObject, byte objects, pointer objects, and class-defining objects. 
All the functions take a session identifier as an argument, which we have omitted 
for simplicity. 

For the primitive Gemstone classes of SmallInteger, Character, Boolean, and 
UndefinedObject, the state (or value) of an instance is directly encoded in its 
Oop. The PIM includes utility functions to convert between C or Pascal values 
and their equivalents for instances of these classes. The PIM also includes 
functions to convert between Gemstone floating-point and large integer values 
and their Pascal or C equivalents. Applications access information about other 
Gemstone objects by sending messages to objects (for execution on Gemstone) 
or by fetching object states from the object server into the Pascal or C address 
space. An object’s state will be formatted either as an array of bytes (e.g., 
instances of St r i ng or S ymbo 1) or as an array of Oops, each of which identifies 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



34 l A. Purdy et al. 

Fig. 3. Workstation details showing 
PIM. 

IBM - PC Workstation 

MSDOS with Micro&t Windows 

-I 

- Disk 
Application specific 

I-flOdUleS - Screen 

PIM implementing Remote - Keyboard 
Procedure Calls. 

Network specific driver 
- Mouse 

Table I. Session Controlling Functions 

Logon(UserId, Password) Create a virtual circuit to the object server, and authenticate the 
user. The PIM hides from the application the details of the 
actual communications protocol 

Logoff Abort the current transaction, log the user off the server, and 
disconnect the session’s virtual circuit 

AttemptCommit Attempt to commit the changes since this user’s last transaction. 
If the transaction succeeds, true is returned; otherwise, false 
is returned 

Abort 

SignalInterrupt 

Tell Gemstone to discard all the intended changes to the data- 
base since this transaction began. Begin a new transaction 

This function is an asynchronous action that signals the server 
to stop whatever it is doing for this user and await further 
instructions 

Resume Tells the suspended Gemstone session to continue from where 
it was suspended 

another Gemstone object. Although giving an application direct access to the 
internal state of a Gemstone object violates the integrity of an object, such access 
is necessary for efficient copying of objects between Gemstone and the worksta- 
tion. For example, without these transporting functions, access to each character 
in a s t r i ng instance would require a separate PIM call. Because class definitions 
and methods are themselves objects and respond to the same functions as other 
objects, the PIM supports class and method definition. In practice, a designer 
rarely defines these directly through the PIM. Classes and methods are more 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 

Table II. Remote Message Sending Functions 

l 35 

SendHessage(ResultId, ReceiverId, MessageId) 
Send the given message to the indicated receiver object. The server executes the indicated method 
and returns the result. Each argument to SendMessage is in the form of a Gemstone object 
identifier. Internal to the IBM-PC, these are represented as 32-bit values 

ExecuteStatements(ResultId, StatementsId) 
Send a sequence of OPAL statements in text form to the object server, which compiles it, 
executes it, and returns the result 

Table III. Object Transporting Functions 

Fetch(ObjectId, From, To, Buffer) 
Copy the given object’s state from the server to the application process buffer. The caller may 
selectively move a fragment of the object 

FetchInfo(ObjectId, Size, ClassId, Form) 
Return an object’s metainformation to the application process, including its size in bytes or 
pointers, its class, and its format (bytes, pointers, atoms) 

Store(ObjectId, From, To, Buffer) 
Copy the given object’s state from the application process’ buffer to the server. The caller may 
selectively move a fragment of the object 

Instantiate(ClassId, NewObjectId) 
Create a new object of a given class and return its object identifier to the application 

often defined through the browser in the OPAL Programming Environment or 
through some other application written on top of the PIM. 

2.1 Example of PIM’s Use 

This section provides Pascal code fragments for the application described above 
in Section 1.5. This application accepts from the user a path to a document 
such as US er/Pa r t 1, copies the given document’s body to a local file called 
MyManualBody for editing, then moves the edited string back to Gemstone as 
the document’s new body before committing the transaction. The OPAL compiler 
accesses a user’s s ymbolLi st (see Section 2.4) when compiling OPAL source 
code submitted by the user. We assume that all users of this application have an 
object named Manuals in one of their symbolLi st dictionaries. Thus any 
OPAL code sent to ExecuteStatements that mentions Manuals will obtain 
an object corresponding to that name. 

(Include the PIM external declarations) 
PROCEDURE TransferString(AnOop: OOP; Size: INTEGER; FileName: 
STRING) ; 

{Move a string from a Gemstone database to a local file) 

CONST MaxChunk = 512; 
TYPE 

ChunkRange = 1 . . MaxChunk; 
Chunks = ARRAY[ChunkRange] OF BYTE; 

VAR 
Next: INTEGER; Chunk: Chunks; 
ChunkSize: ChunkRange; OutFile: FILE OF Chunks; 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



36 l A. Purdy et al. 

BEGIN 
Next := 1; 
ChunkSize := MaxChunk; 
OPEN(OutFile, FileName); 
WHILE Next <= Size DO BEGIN 

IF(Size-Next + 1) < MaxChunk THEN 
ChunkSize := Size-Next + 1; 

Fetch(AnOop, Next, Next + ChunkSize - 1, Chunk); 
Write(OutFile, Chunk: ChunkSize); 
Next := Next + ChunkSize; 
END; 

CLOSE(OutFile); 
END; 

PROCEDURE ExampleProgram; 

VAR Body, Class: OOP; Size, Form: INTEGER; Path: STRING; 
Success: BOOLEAN; 

BEGIN 
IF Logon('Alan', 'SwordFish' ) THEN BEGIN (Logonwith Id,Password) 
ReadLn(Path); 
ExecuteStatements(Body, '(Manuals find. I' I +Path+ 'I ' ) body'); 

{The preceding assumes the existence on Gemstone of a method named find: for a 
Setof Entr ies that takes a path argument (such as ‘User/Partl’) and returns the 
appropriate object. It also assumes that a Document responds to body by returning 
the body’s string.) 

FetchInfo(Body, Size, Class, Form); 
IF Class = StringClassOop THEN BEGIN 

TransferString(Body, Size, 'MyManualBody'); 
(. . . Edit the Body] 
(. . _ Transfer it back to Gemstone] 
END; 
Success := AttemptCommit; (Try to commit the changes) 

Logoff; 
END 

END; 

2.2 A Critique of the PIM in Practice 

Servio found the Procedural Interface Module adequate for building the appli- 
cations that constitute the OPAL Programming Environment (OPE) that runs 
on the IBM-PC under Microsoft Windows.5 The OPE includes 

--class browser, which allows a user to examine, add, and modify Gemstone class 
and method definitions (this browser is similar to the class browser in the 
Smalltalk- programming environment [4]); 

-bulk loader/dumper, which allows a user to transfer formatted data with fixed 
record types between PC-based files and Gemstone; 

-workspace editor, which allows a user to enter, edit, and execute OPAL 
expressions. 

5 Windows is a registered trademark of Microsoft Corporation. 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 37 

Each of these OPE applications accesses information stored on the Gemstone 
object server. In each case the designer wrote the user interface code for the 
application in Microsoft C, accessed Gemstone through the PIM, and accessed 
the user through Microsoft Windows. Once our designers became familiar with 
these tools, the delivery of a new application often became primarily an exercise 
in specification. For example, a document archive application similar to the 
preceding example took one developer three days to design, code, and test. 

This ease of development is not without a high training and education cost. 
The Gemstone object server requires the application designer to be familiar 
with Gemstone’s PIM, its OPAL language, transactions, and other concepts 
of database management. Although Microsoft Windows vastly improves the 
quality of an application’s human interface, windows imposes its own long 
learning curve. 

The option of two execution environments (PC or Gemstone) complicates the 
application design process: The designer must decide whether to copy an object 
to the PC for processing or to forward messages for execution on the server. This 
decision is rarely simple. It often requires an intimate understanding of the 
relative speed of the two execution environments, the bandwidth connecting the 
two machines, and the degree of competition for that bandwidth. Gemstone 
offers relatively fast access to the structure of objects, but it is slower than most 
implementations of Smalltalk for general computation. Thus, extensive arith- 
metic and string operations are best performed on the PC. The path parsing code 
we referenced above ( f i nd : ) would probably execute more quickly on the PC if 
we ignored the time required to transfer instances of Set Of Ent r i e s. Because 
of this transfer time, however, the find: function would probably take less 
clock time if it executed on Gemstone. Also, when an object’s state is copied to 
the PC, the application designer must ensure that any changes to that copy are 
transferred to Gemstone at the appropriate point (e.g., prior to committing a 
transaction). 

The PIM does not provide certain functions needed by most applications. For 
example, the PIM lacks the following: 

Control of Cached Gemstone Objects. If the object states cached in the PC were 
managed directly by the PIM, then two modules of an application accessing the 
same object would access the same state. As the PIM currently stands, if two 
modules each cache object states, the designer must guard against the same 
object being cached twice. This is especially important if both modules are 
modifying objects in their cache. 

Functions to Transfer Large Objects. Applications often move large objects 
between local files on the workstation and the Gemstone object server. The 
example above demonstrates the kind of function needed. 

Transitive Transfers. Because a Gemstone object can be composed of refer- 
ences to other Gemstone objects, we also need standard procedures for trans- 
porting all the objects transitively reachable from a given object. 

Before we provide these functions in the “procedural world,” we first wanted 
to prototype them in a Smalltalk- integration with Gemstone. Smalltalk’s 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



38 l A. Purdy et al. 

“object world” is more supportive of such experimentation. In the next section 
we discuss the design and prototype implementation of this integration. 

3. INTEGRATING THE GEMSTONE AND SMALLTALK- ENVIRONMENTS 

The task of integrating Gemstone with the Smalltalk- environment appears 
easy because both share similar data models and similar languages. However, 
this task offers several difficult challenges. In this section of the paper we first 
define the goals of such an integration, then describe a design framework based 
on agents, which are Smalltalk representatives of Gemstone objects. These agents 
are of two kinds: proxies, which are little more than a transparent packaging of 
the PIM remote message sending functions for the Smalltalk environment, and 
deputies, which take a more active role in implementing various policies for 
caching the state of Gemstone objects in Smalltalk’s object memory. Pasco’s 
encapsulators [lo] have characteristics similar to this agent model. 

3.1 Integration Goals 

We want to provide developers with the illusion of one uniform application 
development environment quite unlike what the PIM provides to Pascal and C 
developers. Such a “seamless” integration would combine Smalltalk’s develop- 
ment environment with Gemstone’s ability to easily access and modify persistent, 
shared, and secure objects. This integration has the following specific goals: 

Object Transparency. Object transparency allows developers to design and 
implement applications without caring where an object is located or where a 
method is executed. Object transparency frees most developers from dealing with 
difficult caching and communication issues that arise when transporting objects 
or messages between Smalltalk’s object, memory and Gemstone’s stable storage. 
For example, the method that adds a new entry to a SetOfEntries in the 
document archive example should not need to test whether the SetOf Entr ies 
is cached in the Smalltalk workstation. 

Automatic Database Object Creation. Objects created in the Smalltalk envir- 
onment should continue as Smalltalk objects until they are referenced by a 
Gemstone object. All Smalltalk objects referenced by a Gemstone object should 
be converted automatically to Gemstone database objects. In our example appli- 
cation a seamless system should automatically convert a new Smalltalk document 
to a Gemstone document when it is added to a Gemstone SetOf Entries. 

Tuning Options. Sophisticated designers should be given techniques for in- 
creasing the performance of working applications. For tuning reasons a designer 
may wish to change the policies for caching the states of selected Gemstone 
objects in Smalltalk’s object memory. Also, because Gemstone and Smalltalk- 
both provide an environment for method execution, a designer should be given 
control of where a method is executed. However, designers need reasonable 
defaults for such choices to allow them to ignore these concerns in the initial 
implementation stages. Note that this tuning goal conflicts with the object 
transparency goal. 

Transparent Garbage Collection. The Smalltalk- environment frees applica- 
tion developers from explicitly deallocating the space occupied by unreferenced 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 39 

objects. An integrated system should continue to perform this function in an 
invisible fashion. 

Session and Transaction Control. Gemstone is a transaction-based database 
system. Thus developers need control of transactions (atomic actions) and control 
over the Gemstone session from within the Smalltalk- environment. In addi- 
tion, the integrated system should automatically synchronize Gem&one object 
states cached in the Smalltalk- object memory with their states within 
Gemstone when a transaction commits or aborts. 

Transparent Exception Handling. The Smalltalk- environment provides sev- 
eral ways of handling exceptional conditions. The application developer should 
see a uniform exception handling mechanism independent of the machine where 
the exception occurs. 

Uniform Name Binding. The Smalltalk- system binds names to Smalltalk 
objects at several distinct times: during compilation, during method initiation, 
and during method execution. Persistent Gemstone objects should also partici- 
pate in each of these binding times. For instance, we noted before that Gemstone 
maintains a s ymbo 1 L i s t of symbolic names on behalf of each Gemstone user. 
Those names should be available whenever name binding occurs in the Smalltalk- 
80 environment. 

3.2 A Design Overview 

Our design for integrating the Smalltalk- environment with a Gemstone object 
server is based on a new Smalltalk class called Agent. An agent is often defined 
as someone authorized to act in another’s interest. The other party is sometimes 
called the principal. In our design, instances of Agent (always Smalltalk objects) 
act in the interest of principals, which are Gemstone objects. An agent knows 
the Gemstone Oop of the principal it represents. Messages sent to a Gemstone 
object from within the Smalltalk environment are directed through the object’s 
Smalltalk agent. Agent is an abstract class (only its subclasses have instances) 
having the subclasses Proxy and Deputy (Figure 4). Although both proxy and 
deputy seem to be synonyms for agent, their connotations differ. Proxies usually 
act on behalf of their principal in a very constrained and limited capacity, such 
as voting shares of stock or standing in for a bride or groom at a marriage 
ceremony where the principal cannot be present. In contrast, deputies often have 
much more authority to make decisions on behalf of their principal. For example, 
a deputy foreign minister may be authorized to negotiate a trade agreement with 
perhaps only the final terms subject to ratification by the principal. 

Instances of our Proxy class act only as forwarding agents, keeping no local 
information about their principal, other than its Gemstone Oops and Gemstone 
class. Each Proxy instance forwards messages that it receives to its principal 
for execution on Gemstone and routes the result back to the sender of the 
Smalltalk message. These proxies offer Smalltalk programmers a substantial 
improvement over the PIM style of interface because they package messages and 
arguments in proper form for network communication, unpackage the results, 
and perform simple translations between Smalltalk and Gemstone messages. 
Such a generic proxy performs correctly with a principal of any Gemstone class. 
Using a minor variant of the proxy scheme, Servio has reimplemented many of 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



40 - A. Purdy et al. 

------•* 

Subclass of 

Fig. 4. Relationship among kinds of agent classes. 

the OPE tools for the Smalltalk environment, but with much less programming 
than the original effort, which used C, Windows, and the PIM. 

Deputies implement more sophisticated policies for message handling. Deputies 
may cache all or part of their principal’s state in the Smalltalk object memory. 
Thus different subclasses of Deputy can implement distinct policies for message 
processing and cache management. Some may decide always to cache a Gemstone 
object’s state in Smalltalk’s object memory and execute messages locally in the 
Smalltalk environment. Others may selectively execute some messages in 
the Smalltalk environment and forward others for execution on Gemstone. 
We consider the implementation options for Deputy subclasses in more detail 
later in this paper. 

The last new Smalltalk class in our design is GemSes s ion (Figure 5), whose 
instances represent active database sessions with Gemstone. An instance of 
GemSess i on provides all the functions of the PIM. However, only proxies and 
deputies will use those functions listed in Tables II and III. Most applications 
will send messages directly to a GemSession only for session and transaction 
control (i.e., PIM functions in Table I) and for error control. An application may 
register an error block with a GemSess ion to be executed in the Smalltalk 
environment with the appropriate error code whenever Gemstone raises an 
exception. A GemSess ion ensures that each Gemstone principal represented 
by a Smalltalk object has at most one agent, via a list called registered- 
Agents that associates each Smalltalk agent with its principal. Before a new 
agent is created for a Gemstone object, GemSes s ion consults registered- 
Agents to see whether an agent for that object already exists. This list also 
supports cache consistency for deputies. When a Gems e s s i on receives a commit 
message, it notifies all deputies of its intent to commit. Each deputy then flushes 
any modified cached state to Gemstone. A GemSes s ion also notifies deputies 
whenever a transaction aborts, telling each deputy to invalidate its cached 
Gemstone object state. 

Two new Smalltalk objects complete this design. The first is called the 
importEquivalents. This set maps Gemstone classes to their equivalents in 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 41 

SmalltalkVirtual Image 

Smalltalk Application 

abxt 

I 

Explicit Messages to 

attemptCommit a GemSession from 

/ 
an application 

} .r’. 
4 &emSession 

Gemld Agent 

register&Agents 

errorBlock 

gztELzuit to 

I 

Fig. 5. A GemSession object details. 

the Smalltalk environment, typically a deputy or proxy class. GemSession uses 
import Equ i v a 1 ent s to decide what kind of a Smalltalk object to create when 
a Gemstone object is first referenced from the Smalltalk environment. For 
immutable Gemstone objects that have well-known behavior, the equivalent 
import class need not be a subclass of Agent. For example, in the cases 
of numbers and characters, GemSession returns a reference to an equivalent 
Smalltalk object. 

The second new Smalltalk object is called exportEquivalent s. This set 
maps Smalltalk classes to their equivalents in the Gemstone environment. 
GemSession uses this set to decide what kind of Gemstone object to create 
when a new Smalltalk object is first exported to Gemstone. Ideally, if a 
Smalltalk object does not already have an equivalent Gemstone class in the 
exportEquivalents set, GemSession will create a new Gemstone class of 
the same name, recompile its methods in the Gemstone environment, update 
exportEquivalents, and add a proxy class for the new Gemstone class to 
importEquivalents. This new proxy class simply forwards all messages. 
Most Smalltalk methods require only slight syntactic modification before recom- 
pilation in the Gemstone environment. 

The preceding design meets the goals of object transparency, automatic data- 
base object creation, tuning options, and session and transaction control. Existing 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



42 - A. Purdy et al. 

Smalltalk applications can use agents without noticing that they are such; agents 
present a protocol much as any other Smalltalk object, yet, they are actually 
manipulating persistent, shared Gemstone objects. Designers can experiment 
with new caching policies without modifying the application by creating new 
deputies and modifying importEquivalents. 

3.3 Implementation of Agents 

In an agent’s masquerade, it forwards to its principal on Gemstone most of the 
messages that it receives. For efficiency reasons, however, agents (and especially 
deputies) execute some messages in the Smalltalk environment, particularly 
those that depend on the principal’s identity or class. Selectors like = = (test of 
identity) and i sN i 1 (test for nil) are among the many that all agents can process 
locally. 

An Agent must first examine a message intended for its principal before 
deciding whether to invoke a local Smalltalk method or forward the message for 
execution on Gemstone. Because a class usually inherits messages from all its 
superclasses (in the agent’s case, Object), this examination is not always easy. 
Methods inherited from Object do not provide an opportunity for the agent 
object to decide where work is to be performed. Unfortunately, all sorts of 
behavior is implemented in Object that, in the proxy’s case, should be forwarded 
to Gemstone. To handle these inherited messages properly, agents could reim- 
plement all messages inherited from Ob jet t and forward selected messages on 
to Gemstone. 

The scheme above will not work for a generic proxy that forwards any arbitrary 
message to its principal. This case can be managed if we alter the standard 
message lookup behavior by putting ni 1 in the agent’s superclass vari- 
able and rewrite the instance method doesNotUnderstand:. Thus, when a 
message is sent to an agent, no instance method corresponding to the message 
is found. Smalltalk in this case sends the doesNotUnders t and: message to 
the original receiver and passes the original message as its argument. The new 
doesNotUnderstand: can establish a default behavior for all messages an 
agent receives (e.g., always forwarded in the case of a proxy). This same technique 
can be used to forward messages not reimplemented for each deputy. 

Whenever Gemstone returns one of its object’s Oops to the Smalltalk environ- 
ment, GemSession ensures that an agent exists for that object by performing the 
following steps: 

(1) See whether this Gemstone principal already has an agent by looking in 
registeredAgents. If so, return that agent. Some immutable objects such 
as Number and Character instances do not need agents. For such in- 
stances, return their Smalltalk equivalents. 

(2) Otherwise, create a new agent for the Gemstone object. Look in the 
importEquivalents to find which kind of agent to create. If no agent 
equivalent is found, use a generic proxy that forwards all messages for 
execution in the Gemstone environment. 

(3) Add the new agent to the registeredAgents list. 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds 43 

Each new subclass of Agent must respond to the class message import: 
aGemOop, which should create and initialize a new agent instance for the 
principal with the given Oop. 

3.4 Deputy Implementation Criteria 

Designers tuning an application by creating deputies with custom behavior for 
selected class instances should first examine how those database objects are being 
used in the application. Designers should consider the following aspects of object 
usage: 

Object Size. Smalltalk does not do well with big objects. Thus, creating a 
deputy that completely caches a big object’s state in the Smalltalk object memory 
may not make sense. Deputies for such cases may cache fragments of the 
principal. However, this fragmentation increases the complexity of local methods. 

Relative Immutability. Rarely modified objects are easier to manage than 
volatile ones. In order to manage caches properly, all deputy methods executed 
locally must mark the cached object appropriately if they modify the cache. This 
marking can be computationally expensive. Objects known to be immutable can 
be managed in special ways. For example, S ymbo 1 s in Gemstone can be imported 
directly as Symbols in Smalltalk without the need for an agent because they 
are never changed, their behavior is constant across environments. 

Complexity of Behavior. Simple objects with complex methods (e.g., strings) 
are often worth caching because of the faster execution of methods in the 
Smalltalk environment. 

Interobject Connectivity. Sets of objects that are highly connected may be 
inefficient to cache in the Smalltalk environment because of the time required 
to create a proxy or deputy for each member of the set. 

Desired Transaction Rate. One difficulty of having many objects with state 
cached in Smalltalk is that all the dirty ones must be flushed prior to committing 
a transaction. 

Mixing Forwarding with Local Execution. Applications must do so carefully. If 
a deputy decides to forward a message to Gemstone, it cannot know whether the 
Gemstone method depends on another Gemstone object that might also have a 
Smalltalk deputy with a dirty cache. Also, when a forwarded message returns 
from executing on Gemstone, the deputy has no way of determining whether 
any Gemstone objects have been modified as a side effect. One of these modified 
Gemstone objects might have a deputy with an outdated cache. 

Bandwidth between Machines. If the channel connecting Gemstone with 
Smalltalk has low bandwidth, then it may be practical to transfer only a few 
objects between the two environments. 

3.5 Deputy Strategies 

When designers create new deputy classes, they need to be aware of the inter- 
dependence of cache management, transaction management, and message man- 
agement. This section discusses the options available for each of these, and how 
the various options interact. 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



44 l A. Purdy et al. 

Cache Management. Each deputy has the option of caching a Gemstone 
object’s state in the Smalltalk object memory. The designer has several choices 
on how to manage these caches: 

Transitive agent creation. When a deputy caches the state of a Gemstone 
pointer object, it can also create an agent for each object transitively referenced 
by the cached state. In our example application, when a document deputy is 
created, both the header and the body can also be converted to deputies, each 
with its own cached state. 

Leaves. A large object-oriented memory (LOOM) leaf [12] can be seen as a 
generic agent that knows nothing about its principal other than its identifier. 
Such an agent can delay creating the correct agent until it intercepts its first 
message meant for its principal. In our example application each entry in a 
Set 0 f Ent r i e s could be treated this way. 

Partially cached state. For large objects, a deputy can cache a fragment of 
the Gemstone object. In the example application a document body could be 
cached in relatively small fragments. 

Delayed agent creation. A deputy can always delay creating an agent for part 
of its internal state if a method that modifies the receiver is not forwarded and 
operates on the cache. Thus a cache of a Gemstone object will reference a 
Smalltalk object. These references must be changed to agent references, and the 
referenced objects must be converted to Gemstone objects when the cache is 
flushed to Gemstone. 

Transaction Management. Deputy caches must be synchronized with their 
principal’s state prior to committing a transaction. This implies that each 
Smalltalk object referenced from a deputy cache must be exported to Gemstone 
before a commit begins. In our archive example, the application creates 
a Smalltalk document with a body and header and then adds that document 
to a setOf Entr i e s. The document, its body, and its header must all be con- 
verted to Gemstone objects because they are transitively reachable from the 
SetOf Entries. 

When an application attempts to commit a transaction, GemSession transi- 
tively traverses the deputy’s cached state, converting all referenced objects to 
Gemstone objects. Then, GemSession flushes dirty deputy caches to Gemstone. 

Message Management. A proxy that always forwards messages to Gemstone 
never has a problem with cache management. A deputy that caches its principal’s 
Gemstone state in the Smalltalk object memory has several options with regard 
to how it handles messages. For messages it chooses to support with local 
methods, we see these basic strategies: 

Write-through. Perform the method in Smalltalk on the cache, then trans- 
mit any changes in the cache to Gemstone prior to returing to the sender. 
Alternatively, the deputy could delay the write-through until just prior to a 
commit. 

Read-back. For all methods that change a cache, a deputy could perform the 
work on Gemstone, then refresh the cached state after the forwarded message 
returns to the deputy. Thus all reading messages operating in Smalltalk would 
see the correct state of the cache. 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds l 45 

Send-through. Perform the work in both places; that is, both forward the 
message for execution on Gem&one and perform an equivalent method locally. 
Send-through is an attractive alternative when a single message can cause large 
changes in a single object’s state, such as a global replacement of a substring in 
a string. 

4. CONCLUSION 

In this section we evaluate the success of the agent framework, discuss some 
open research issues with respect to the presented design, and briefly discuss the 
status of the integration project. 

4.1 Summary 

The design presented in this paper succeeds at meeting many of the goals for a 
seamless integration of Gemstone with Smalltalk, especially if an application 
can live with the default behavior of proxies. For those designers not content 
with the efficiency of the resulting application, this design provides a reasonable 
factoring to allow incremental tuning by creation of custom deputies. The deputy 
model allows easy experimentation of alternative cache management strategies. 
We suspect that once the major classes supplied with Gemstone have pretuned 
Smalltalk deputies, this custom tuning process should not be a difficult chore. 

4.2 Open Research Issues 

We see the following areas in need of further research before the Smalltalk and 
Gemstone environments behave well as one seamless system: 

Unification of Object Models. The Smalltalk and Gemstone data models differ 
in three significant areas: object formats, method execution environments, and 
language features. Gemstone supports objects significantly larger than what most 
Smalltalk implementations can accommodate and stores large unordered collec- 
tions (such as Set and Bag) in a format quite different from Smalltalk. Unlike 
Smalltalk, Gemstone users can declare the type of instance variables in a class 
definition and declare the type of a collection’s elements. Classes provided in the 
Smalltalk virtual image and in the Gemstone “initial” database that share the 
same name do not necessarily share the same behavior or format. For example, 
although both environments have an Array class, Gemstone arrays grow dy- 
namically, whereas Smalltalk arrays grow by using become : . Also, Gemstone 
does not implement the become : message but does allow an instance to change 
its class. Further, each system supplies classes not supplied by the other. The 
process of automatically converting a Smalltalk class to its equivalent Gemstone 
class is complex because of these differences. 

Smalltalk Snapshots. The Smalltalk snapshot mechanism is at odds with 
Gemstone’s session and transaction control. If a user creates a snapshot of a 
Smalltalk virtual image while a Gemstone session is active or while a transaction 
remains uncommitted, that snapshot can be inconsistent with the state of the 
Gemstone database when the snapshot restarts. An integrated system should 
discard the snapshot notion entirely and replace it by a stable object in Gemstone 
that describes the state of the workstation environment. This state information 
can then be read when the Smalltalk workstation loads the virtual machine. If 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



46 l A. Purdy et al. 

this state is stored centrally, then the user can resume work previously suspended 
on a different workstation. 

Transaction Transparency. If one transaction strategy has been shared by a 
group of applications, then certain deputies or groups of deputies can implement 
transaction control directly, removing some burden from the application designer. 

Symmetric Interface. The interface between the Gemstone and Smalltalk 
environments is asymmetric. Requests for activity always arise from outside the 
Gemstone environment. The two execution environments are in a master-slave 
relationship, with Gemstone being the slave. Gemstone objects do not “know” 
about external environments, nor can they initiate communication with external 
objects. This asymmetry limits the strategies available for synchronizing state 
between Smalltalk and Gemstone objects, particularly after a message is for- 
warded to Gemstone. 

Dirty Cache identification. Unlike most primary memory subsystems, the 
Smalltalk- object memory does not provide a “changed bit” for identifying 
modified memory segments. Management of modified caches is very inefficient 
without such an indicator. 

Better Cache Management Policies. If one can modify the Smalltalk- virtual 
machine, more intelligent cache management strategies might be attempted. For 
example, some multilevel memory schemes (e.g., virtual memory caches [2]) keep 
the lower layers updated by “writing through” the faster higher layers. These 
“write through” operations can be asynchronous with the main line process. If 
we apply this technique to the situation at hand, we reduce the time taken to 
flush dirty proxies prior to forwarding messages for Gemstone execution, by 
exploiting the workstation’s unused CPU cycles during the transacton. 

Better Exception Handling. The existing Gemstone does not support processes 
and semaphores in the general manner of Smalltalk. Thus the metaphors for 
exception handling in the Smalltalk- virtual image cannot be used on the 
Gemstone side of an integrated system. 

Integrated Development Environment. In order to create a seamless develop- 
ment environment, all the development tools provided in the standard Smalltalk- 
80 environment must be modified. These tools must be changed because none of 
them currently has the appropriate menus for handling transaction committing 
and aborting. Also, each of these tools (browser, inspector, debugger, and work- 
space) is written to take advantage of only one name dictionary-Smalltalk. 

Integrated Name Binding. The opportunities for name binding are different 
between the Gemstone and Smalltalk- environments. Most. applications will 
want to present the richer Gemstone naming environment to their users. To 
implement this change, the Smalltalk- compiler and the mechanism for cre- 
ating and resuming snapshots must be modified. Also, the objects named in the 
Smalltalk virtual image must be merged with the objects named in Gemstone. 

4.3 Project Status 
Servio currently has a working version of the Smalltalk-Gemstone integration. 
The current version reflects the design as presented in [ll]. Another implemen- 
tation along the lines suggested by this paper is in progress. 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 



Integrating an Object Server with Other Worlds l 47 

ACKNOWLEDGMENTS 

The authors wish to thank Paul McCullough, Allen Otis, Mun Tuck Yap, Tom 
Ryan of Hewlett-Packard Laboratories, and the reviewers for helping improve 
the style and presentation of this paper. 

REFERENCES 

1. DECOUCHANT, D. Design of a distributed object manager for the smalltalk- system. ACM 
SIGHAN Not. 21, 11 (Nov. 1986), 444-450. 

2. DENNING, P. J. Virtual memory. ACM Comput. Suru. 2,3 (September 1970), 153-189. 
3. GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implementation. Addison- 

Wesley, Reading, Mass., 1983. 
4. GOLDBERG, A. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley, 

Reading, Mass., 1984. 
5. IBM CORPORATION. IMS-VS general information manual. GH20-1260, IBM Corp., White 

Plains, N.Y., Apr. 1974. 
6. KUNG, H. T., AND ROBINSON, J. On optimistic methods for concurrency control. ACM Trans. 

Database Syst. 6, 2 (June 1981), 213-226. 
7. MAIER, D., OTIS, A., AND PURDY, A. Object-oriented database development at Servio Logic. 

Database Eng. 8,4 (Dec. 1985), 58-65. 
8. MAIER, D., STEIN, J., OTIS, A., AND PURDY, A. Development of an object-oriented DBMS. 

ACM SZGPLAN Not. 21,11 (Nov. 1986), 472-482. 
9. MAIER, D., AND STEIN, J. Indexing in an object-oriented DBMS. In Proceedings of the 1986 

International Workshop on Object-Oriented Database Management Systems (Asilomar, Calif., 
Sept.) IEEE Computer Society Press, Washington, D.C., 1986, pp. 171-182. 

10. PASCO, G. A. Encapsulators: A new software paradigm in Smalltalk-80. ACM SZGPZAN Not. 
21,ll (Nov. 1986), 341-346. 

11. SCHUCHARDT, B. Gemstone to Smalltalk interface. From Poster Session of ACM OOPSLA-86 
Conference. 

12. STAMOS, J. W. A large object-oriented virtual memory: Grouping strategies, measurements, and 
performance. Res. Rep. SCG-82-2, Xerox Palo Alto Research Center, Palo Alto, Calif., May 1982. 

13. STONEBRAKER, M., Ed. The Zngres Papers: Anatomy of a Relational Database System. Addison- 
Wesley, Reading, Mass., 1986. 

14. WHITE, J. E. A high-level framework for network-based resource sharing. In Proceedings of 
the National Computer Conference (New York, N.Y., June). AFIPS Press, Reston, Va., 1986, 
pp. 561-570. 

15. Woo, C. C., AND LOCHOVSKY, F. H. An object-based approach to modeling office work. Database 
Eng. 8,4 (Dec. 1985), 14-22. 

Received July 1986; revised November 1986; accepted December 1986 

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January, 1987. 


