
S O F T W A R E  E R R O R  A N A L Y S I S :  A R E A L  C A S E  S T U D Y  

I N V O L V I N G  R E A L  F A U L T S  A N D  M U T A T I O N S  

M u r i e l  D A R A N  P a s c a l e  T H I ~ V E N O D - F O S S E  

L I S -  T e c h n i c a t o m e  LAAS - CNRS 

7 Avenue du Colonel Roche 
31077 Toulouse Cedex - FRANCE 

mdaran @laas.fr, thevenod@laas.fr 

A B S T R A C T  

The paper reports on a first experimental comparison of 
software errors generated by real faults and by lst-order 
mutations. The experiments were conducted on a program 
developed by a student from the industrial specification of a 
critical software from the civil nuclear field. Emphasis was 
put on the analysis of errors produced upon activation of 12 
real faults by focusing on the mechanisms of error creation, 
masking, and propagation up to failure occurrence, and on 
the comparison of these errors with those created by 24 
mutations. The results involve a total of 3730 errors 
recorded from program execution traces: 1458 errors were 
produced by the real faults, and the 2272 others by the 
mutations. They are in favor of a suitable consistency 
between errors generated by mutations and by real faults: 
85% of the 2272 errors due to the mutations were also 
produced by the real faults. Moreover, it was observed that 
although the studied mutations were simple faults, they can 
create erroneous behaviors as complex as those identified for 
the real faults. This lends support to the representativeness 
of errors due to mutations. 

1 .  I N T R O D U C T I O N  

Faults can be created at any time in any phase of the 
software development (during the requirement definition, 
design phase, coding phase, etc.). They result in faults in 
the program source code such as faulty instruction(s) or 
data, missing or extra instruction(s), etc. During program 
execution, when the faulty instruction (or instruction 
sequence or data) is triggered by an appropriate input 
pattern, the fault becomes active and may produce one or 
several errors (incorrect internal states). An e r r o r  may 
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propagate by creating other new error(s); if and when the 
erroneous data affect the output result(s), i.e. the program 
supplies wrong output value(s), a f a i lu re  occurs, thus 
revealing the presence of the fault [Lap 92]. 

Originally defined by DeMillo [DeM 78], mutation faults 
have been largely used in previous work either to assess the 
adequacy of test cases, or to study how a fault creates an 
error upon activation and the ways this error transfers 
through execution to an eventual output result. In 
particular, these investigations have given rise to techniques 
such as PIE [Voa 92a] or to models such as the RELAY 
model [Ric 93] applied to evaluate the fault revealing power 
of test cases or to analyze the adequacy of test data selection 
criteria in revealing particular faults. Other empirical 
studies, focused on the effectiveness of mutation testing in 
detecting errors, have shown that test data generated to 
reveal simple faults (such as lst-order mutations) could 
reveal more complex mutations [Off 89] or even complex 
known programming faults [DeM 94]. But, none of these 
studies discussed the controversial  issue of the 
representativeness of mutations with respect to real faults. 

This paper is not intended to investigate whether or not 
mutations constitute a fault model representative of real 
faults. Indeed, the answer to this question is likely to be 
negative. But, does it mean that errors and failures produced 
by mutations are not similar to those related to real faults? 
This is the issue we address here. In [DeM 94], the authors 
noticed that mutations could cause important variations in 
the program internal state throughout all the executions 
carried out during testing. Another purpose of this paper is 
to explore the nature of these variations and compare them 
to those produced by known real faults. 

The experiments have been conducted on a critical program 
from the civil nuclear field previously involved in our work 
on software statistical testing [The 93]. The program under 
study is a version developed by a student from the industrial 
specification. The experiments involve 12 known real faults 
and 24 mutations. Thus, 36 faulty versions of the program 
- -  each version contains either one real fault or one 
mutation - -  were executed on at least one test sequence 
made up of several input patterns. A noticeable feature of 
this program is that it is a program with memory. As a 
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result, errors may propagate from one program execution to 
the following one(s). Errors generated during successive 
executions o f  a faulty program were identified by 
comparison of  its execution trace to the correct program 
execution trace. 

Two data bases - -  one related to the real faults and the other 
one to the mutations - -  were constituted in order to record 
the errors and gather information about their behaviors: how 
they were created, how the corresponding erroneous data 
were used in the successive executions. Analyses of  these 
data bases were conducted according to two main objectives: 
1) identify the fault behaviors and the error behaviors due to 
real faults on the one hand, and to mutations on the other 
hand; 2) identify similarities and discrepancies between 
errors produced by real faults and errors produced by 
mutations, and between their respective behaviors. The 
experimental results show that the errors generated upon 
activation of  the mutations and the behaviors they can 
exhibit are representative of  those observed with the real 
faults. To our knowledge, this study represents the first 
detailed comparative analysis between errors generated by 
real faults and errors generated by mutations on a target 
program. 

The paper is organized as follows. Definitions that support 
the analyses of  fault and error behaviors are given in 
Section 2. Section 3 describes our experimental framework. 
Section 4 reports on the analyses performed on the data 
bases. Main results are summarized in Section 5 where we 
conclude with research directions suggested by this work. 

2. B A C K G R O U N D  A N D  D E F I N I T I O N S  

The study of  the manifestation mechanisms of  faults, errors 
and failures involves three steps: 1) fault activation; 2) error 
propagation; 3) failure occurrence. The second step calls for 
internal behaviors of  the program during execution which 
can be quite complex: an error may disappear before being 
detected (i.e. before failure), several errors may compensate 
each other preventing further propagat ion,  etc. The 
definition of  the internal state of  a program given below 
will allow us to clarify the notion of  error as it will be used 
in the paper, in order  to facilitate the analysis o f  
propagation mechanisms. 

2 . 1  Program internal  state 

The p r o g r a m  internal  s tate  at a point during execution 
is defined by the values of  all variables (global variables, 
internal variables and output variables) and the value of  the 
program counter which indicates the next instruction to be 
executed. The execution of  an instruction is considered here 
to be atomic, i.e. the program internal state can only be 
viewed before and after each instruction. For a program with 
n variables, the program internal state, denoted PS, is 
represented by a set of  n+l pairings: 

PS = {(varl, vail) . . . . .  (varn, vain), (PC, x)} 

where val i (i = 1 . . . . .  n) is the current value of  variable var i 
(including the "undefined" value) and x is the value of the 
program counter PC, i.e. the address of  the next instruction 
to be executed. At the start of  a sequence of  program 
executions on a set of  input patterns (t 1 . . . . .  tp), i.e. before 
the execution on tl, all variables are undefined; then, before 
the execution on a subsequent input tj (j > 1), PS keeps the 
value it reached after completion of  the execution on tj.l, 
that is, the program internal state is memorized between 
two consecutive program executions. 

This notion o f  program internal state differs from the 
program state used by Zeil [Zei 89] which does not include 
the PC value. It is similar to the program data state defined 
by Voas [Voa 92b], the difference lies in the fact that all 
variables of  the program data state have undefined values 
before a program execution on an input begins. Indeed, 
Voas's program data state would not allow us to analyze 
possible error propagation between successive program 
executions. 

2 . 2  Error, error trace, error f low 

In this paper, the term e r r o r  is used to denote one incorrect 
variable/value pairing (vari, vali) or (PC, x) of  the program 
internal state 1. Hence, an erroneous internal state may 
contain one or several errors, depending on the number of  
incorrect  pairings. An incorrect  (vari, val i) pairing 
corresponds to a data f l ow  error, and an incorrect (PC, x) 
pairing characterizes a control  f l o w  error. In order to 
distinguish between the fault activation step and the error 
propagation step, error(s) produced upon fault activation 
will be labelled as i m m e d i a t e  error(s ) .  

In the experiments we have conducted, each faulty program 
was executed on a sequence of  several input patterns 
(t 1 . . . . .  tp). The term test  case will be used to denote 
one input pattern ti and a sequence of  test cases (tl . . . . .  tp) 
will be called a test  sequence.  The program execution on 
one test case corresponds to one execution cycle. A program 
e x e c u t i o n  trace  is associated with the completion of  a 
test sequence, thus involving p execution cycles. Given a 
program and a test sequence, the successive internal states 
of  the program, and then the errors in cases of  faulty 
program, are identified from the analysis of  the execution 
traces 2. 

In order to identify and analyze the fault activation and error 
propagation mechanisms, we will focus on a subset of  each 
program execution trace, called e r r o r  trace  [Mur 94], 

In our experiments, the correctness is determined by 
referring to the internal state of the original program, that 
is the program without any seeded fault (see Section 3.1). 

The execution traces were obtained by the command ctrace 
(available on SunOS 4.1) that allows us to list the text of 
each executed instruction and the values of all referenced or 
modified variables. 
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which represents the sequence of  errors identified by 
comparison between the correct and the incorrect execution 
traces. An error trace can be quite complex since it may 
involve several fault activations occurring at different 
execution cycles, and thus several immediate errors which 
in turn may propagate. Then, to facilitate the comparison 
between error traces associated with different faulty 
programs, the behavior o f  a particular error (whether 
immediate or not) will be characterized by its e r r o r  flow 
which is a subset of  the error trace: starting with the target 
error, the error flow draws the errors created by the 
propagation o f  this error up to completion o f  the test 
sequence. An error flow which starts with an immediate 
error will be called an immediate error flow. 

2 . 3  P r o g r a m  b e h a v i o r s  

When focusing on a faulty program behavior within a 
single execution cycle - -  i.e. independently of  the preceding 
cycles and assuming (implicitly) that the internal state is 
correct before the execution begins - -  four issues are 
possible (see e.g. [Voa 92a]): 

1. The fault is not activated during the execution cycle; 
the program internal state remains correct (including 
the output results); 

2. The fault is activated at least once but no error is 
created; the program internal state remains correct 
(including the output results); 

3. The fault is activated, an immediate error (or more) is 
created but output results are correct; this is the 
problem of  coincidental correctness. At  the end of  the 
cycle, the program internal state is either correct if the 
errors produced during execution were all corrected 
before the end of  the execution cycle, or erroneous if 
the errors produced during execution were not used to 
assign an output variable, or were masked before or 
when affecting the outputs; 

4. The fault is activated, an immediate error (or more) is 
created and propagates to at least one output variable; 
the program internal state is erroneous and a failure 
occurs, thus revealing the presence of  the fault. 

These program behaviors represent only part o f  those 
observed during our experimentation. Indeed, intricate 
evolutions of  the internal state were identified by observing 
faulty program behaviors on sequences of  several execution 
cycles since, in that case, the internal state after each 
execution cycle depends on both the test case executed on 
and the internal state reached at the end of  the preceding 
execution cycle. 

Figure 1 shows the possible transitions between the 
following three states that characterize the program behavior 
at the execution cycle level: 

(i) Correct: the program internal state is correct (thus, 
including the output variables); 

(ii) Incorrect without failure: the program internal state is 
incorrect but the errors do not affect the output 
variables; 

(iii) Failure: the program internal state is incorrect and at 
least one error affects an output variable. 

The outcoming transitions of  state Correct - -  that is, trl, 
tr2 and tr 3 - -  correspond to the case where the internal state 
is correct at the start of  the execution cycle: the associated 
behaviors are those identified above, when focusing on a 
single cycle. The other transitions relate to execution cycles 
starting with an incorrect internal state, thus involving 
other types of behaviors, e.g.: 

• A failure may occur without fault activation during 
the current execution cycle (tr 6, tr9); 

• An error may propagate during successive cycles 
without being detected (trs) or before detection (tr6); 

An error may disappear before being detected (tr4); 

Successive failures may be observed (tr9); we may 
observe either the same failures during successive 
cycles due to the same errors present in the internal 
state, or other failures due to a new fault activation or 
to the propagation of  another error; 

The internal state may be totally (tr4, trT) or partially 
(e.g. trs) corrected, when the current execution cancels 
error(s) present when it begins; tr8 is a noticeable case 
of  partial correction which means that in spite of  the 
fact that the observable errors (those affecting the 
outputs) are cancelled, the internal state remains 
incorrect; 

A fault can be activated while the internal state is 
already incorrect, thus creating additional errors; the 
combination of  these errors with the previous ones 
may facilitate either further propagation (tr6, tr9) or 
error cancellation (tr4, tr7, tr8). 

tr I tr 2 tr 5 

tr 9 

Fig.l: State graph of program behavior 
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These observations contribute to explain some complex 
mechanisms of error propagation. To improve the 
understanding of these mechanisms, it is necessary to 
analyze internal states produced at different points in an 
execution cycle (i.e. after execution of each statement). This 
analysis has been performed in the series of experiments 
concerning the real faults; our observations will be 
presented in Section 4.2 and illustrated with examples 
provided by the case study. 

3 .  E X P E R I M E N T A L  F R A M E W O R K  

3.1 Original program 

The experiments have been conducted on a critical program 
from the civil nuclear field previously involved in our work 
on software statistical testing [The 93]. It belongs to the 
part of a nuclear reactor safety shutdown system that 
periodically scans the position of the reactor's control rods. 
At each operating cycle, 19 rod positions are processed in 
the following way: the information (rod positions in Gray 
code as well as monitoring data) is read through five 32-bit 
interface cards; then, these data are checked and filtered; after 
filtering, the measurements of the rod positions are 
converted into a number of mechanical steps. 

The program under study is a version developed by a student 
from the industrial specification. This version, called STU, 
is written in the C language and the size of its source code 
approximates one thousand lines without comments. The 
program consists of a collection of 15 functions. All the 
data processed by the program are integers, representing 
either Booleans or numbers. As the software is critical, the 
use of pointers was forbidden. Each execution cycle on an 
input pattern achieves the processing of 19 rod positions. 
During previous experiments [The 93], 12 residual faults 
were uncovered in the STU version, thus providing us with 
a sample of real faults (Section 3.2). In the experiments 
reported in this paper, the original program (assumed to 
be correct) corresponds to the new version of STU produced 
by fixing the 12 identified faults. 

A noticeable feature of  this program is that it is a 
program with memory ,  due to the check and filtering 
function: at each execution cycle, the checks performed on 
the rod positions acquired may depend on the outcome of 
the checks performed on the rod positions acquired and 
processed at the preceding execution; the corresponding 
information being stored into internal variables. As a result, 
errors infecting these internal variables may propagate from 
an execution to the following one, before occurrence of a 
first failure. 

3.2 Target faults 

The experiments were conducted on 36 faulty programs: 
each faulty program differs from the original program in 
containing either one of the 12 real faults or one mutation. 

The 12 real faults  (denoted A . . . . .  L) are of different 
types: faults A, G and J are coding faults; faults B to F and 
fault I result from the lack of understanding of the 
requirements by the student; faults H, K and L are 
initialization faults. They correspond to either faulty 
statements (A, D, I, K, L) or missing statements (B, C, E, 
H, J) or additional statements (F) or misplaced statements 
(G), in the corresponding faulty program. Table la  gives 
a brief description of these faults and the number of 
instructions involved in the "fix" of each of them. 

The 24 muta t ions  (denoted M1 . . . . .  M24) analyzed in 
this study were selected from a set of 2419 mutations 
involved in a mutation analysis previously conducted on 
our target program with the aim of assessing the efficiency 
of several statistical test sets [The 95]. These mutations are 
lst-order mutations, that is, single-point, syntactically 
correct changes introduced in the original program. They 
encompass three types of change: constant value alteration, 
symbol (i.e. identifier of a variable or array) replacement, 
and operator replacement by either an operator of the same 
type or of another type (e.g. an assignment operator can be 
replaced by a relational operator, or an arithmetic operator 
by a logical operator). 

As the error behaviors due to mutation activation were a 
priori unknown, we tried to choose a various, though 
small, sample of mutations. Yet, in order to make feasible 
the comparison of immediate error flows produced by 
mutations with those produced by real faults, some (but not 
all) mutations had to be performed on instructions involved 
in the "fix" of the real faults. Then, the general features of 
the 24 mutations finally selected are the following ones: 

• M1 . . . . .  M9 are constant value alterations; M10 . . . . .  
M13 are operator replacements; M14 . . . . .  M24 are 
symbol replacements; 

• 5 mutations (M4, MI3, M20, M21, M24) are located 
on 4 different conditional statements; the 19 others are 
located on 16 different assignments infecting directly 
14 different variables (variables in the left expression 
of the assignment); 

• 16 mutations are located on instructions involved in 
the "fix" of the real faults: they are listed in Table lb; 
the 8 others (M8, M9, M13, M20 . . . . .  M24) affect 
statements selected arbitrarily. 

Note that no mutation can affect the statements related to 
fault F since these statements must be deleted to remove F 
and the mutations are performed on the fixed program. 
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(a) Real faults (b) Mutat ions  

Description # statements Location with respect Type of  
in the fix to real fault change 

A Wrong operator in three assignments 3 1st statement --4 M10 O 
2ndstatement ---> M1 C 
3rd statement ----> M2 C 

B Two missing assignments 2 1st statement ---> M14 O 
2ndstatement ---> M3 C 

C Two missing assignments 2 1st statement ---> M15 S 

D Wrong operator in a conditional statement 1 M4 C 

E One missing assignment 1 M1 I, M I 6  O, S 

F Added conditional statement and assignment 3 

G Incorrect placement of  four statements 6 1st statement ~ M12 O 

H Missing initialization for four variables 4 Ist statement ---> M5 C 
1st statement --4 M17 S 

I Wrong expression in an assignment 1 M 18 S 

J Missing assignment 1 M19 S 

K Incorrect initial value of a variable 1 M6 C 

L Incorrect initial value of  a variable 1 M7 C 

Table 1: Characteristics of the 12 real faults and of 16 of the 24 mutations 
(C: constant value alteration; O: operator replacement; S: symbol replacement) 

3.3 Overview of the experiments 

In previous work on statistical testing [The 93], 16 sets of  
test patterns were defined and randomly generated according 
to different probability distributions over the program input 
domain. They encompass 4 types of  statistical test patterns: 

(i) One set of  5300 test patterns generated according to a 
uniform distribution over the input domain; 

(ii) Five sets of  500 test patterns generated according to a 
structural input distribution, i.e. a distribution derived 
from the structure of  the STU program in order to 
ensure a balanced coverage of  its control flow graph; 

(iii) Five sets o f  441 test patterns generated according to 
funct ional  input distr ibutions derived from a 
hierarchical specification of  the program functions 
based on finite state machines (FSMs) and decision 
tables (DTs); these distributions ensure a balanced 
coverage of  the FSMs states and DTs rules; 

(iv) Five sets of  441 test patterns generated according to 
functional input distributions derived from another 
hierarchical specification produced in the STATEMATE 
environment; these distributions ensure a balanced 
coverage of  the basic states of  the statecharts involved 
in the STATEMATE specification. 

Since it would not be feasible to analyze the execution 
traces associated with such large test sets, we have selected 
subsets of  them in the following way: 

1. First, the 16 complete test sets were supplied to each 
of  the 12 programs containing one real fault in order 
to identify the particular test cases that reveal these 
faults; 

2. Then, for each of  these 12 faulty programs, we have 
selected among the 10 sets of  functional test patterns, 
one test sequence such that: its first test case triggers a 
program reset, it contains between 2 and 10 test cases, 
and it reveals the corresponding fault at least once; 
these small test sequences are denoted TI  . . . . .  T12; 

3. The 12 test sequences Ti were supplied to each of  the 
24 programs containing one mutation, in order to 
check whether or not at least one of  them leads to 
failure(s); two mutations (namely, M9 and M23) were 
not revealed; 

4. Then, an additional sequence of  7 test cases has been 
selected which allows the observation of  failures due 
to M9 and of  failures due to M23; this test sequence is 
denoted T 13. 
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To analyze the errors created upon fault activations and their 
propagation mechanisms,  the experiments  were conducted 
on each of  the 36 faulty program as follows: 

(i) The faulty program and the original  program are 
executed on a test sequence Tj which reveals the fault; 

(ii) The differences between the execution traces of  the 
faulty program and the original program are identified; 

(iii) Each difference observed corresponds to an error and is 
recorded in a data base; the set of errors recorded during 
the execution of  Tj represents the error trace. 

Two data bases have thus been created: the "real fault data 
base" which contains the error traces related to the 12 real 
faults and the "mutation data base" which contains those 
related to the 24 mutations. They are described below. 

3 . 4  Collected Data  Bases 

The information collected in an error record contains:  

1. An error number; 

2. The error type: data flow error or control flow error; 

3. The error identification: incorrect variable or branch 
predicate; 

4. Both correct and incorrect values; 

5. The test sequence executed on: T1 . . . . .  or T13; 

6. The error location in the execution trace: line number 
in the source code, test case number and loop index if  
necessary; 

7. Its origin: fault or error(s) that created it; 

8. Its consequence: error(s) or failure(s) it creates. 

The two last information items, origin and consequence, are 
used to identify the error traces and the error flows. 

During the experiments,  we observed similar errors, that is 
errors with the same error type, identification, correct and 
incorrect values, and locat ion in the source code. These 
errors were recorded under the same number. This means 
that a same error number may appear  several t imes in an 
error trace, or in an error flow, or in different error traces. 
Two errors label led with different numbers are said to be 
d i s t i n c t  e r r o r s .  

The rea l  f au l t  data base contains 1458 error  records 
representing 255 distinct errors. A reduced real fault data 
base containing only the dis t inct  errors has then been 
generated. The mutation data base contains 2272 error 
records representing 349 distinct errors. A reduced mutation 
data base has also been generated (349 records). Detai led 
analyses of  the four data bases have been performed, whose 
main results are described in Section 4. 

4.  A N A L Y S E S  OF DATA B A S E S  

First ,  two types of  ana lyses  were pe r fo rmed  on the 
complete real fault data base in order to: 

1. Collect  information on real fault behaviors from the 
study of  the error traces: immediate errors created upon 
activation, number of  immediate error flows generated, 
total number of  errors produced (Section 4.1); 

2. Co l l ec t  i n fo rma t ion  about  e r ror  behav io r s  by 
examination of  the immediate error flows: propagation 
through execution cycles, interactions between errors, 
etc. (Section 4.2). 

Then, comparative analyses between the two complete data 
bases on the one hand, and the two reduced data bases on the 
other hand, were conducted in order to determine the number 
of  common errors (Section 4.3). F inal ly ,  the complete  
mutation data base was analyzed to study similarit ies and 
discrepancies  between mutation and real fault behaviors 
(Section 4.4). 

4 . 1  Real fault  behaviors  

The first twelve test sequences (T1 . . . . .  T12) were used 
during the experiments on the real faults. Tab le  2 gives an 
overview of  some results of  error trace analysis. For each 
real fault, it tabulates: 

• The test sequence(s) supplied to the faulty program; 

• The number of  immediate  errors created upon fault 
activation(s) during the successive execution cycles, 
together with the number of  immediate errors created 
per activation and their types (incorrect variable, or 
branch predicate denoted BP); 

• The number of  immediate error flows identified in the 
error trace; except for fault A for which the immediate 
errors affect directly output results, we dist inguish 
between immedia te  error  f lows leading to one or 
several failures (noted FF), and immediate error flows 
for which no failure is observed (noted FU) leaving 
the errors not detected after complet ion of  the test 
sequence; 

• The total number of  errors recorded in the error trace. 

These results call for some general comments.  First, due to 
the presence of  loops, a fault may be activated several times 
during one execution cycle; this explains the fact that the 
number of  immediate errors may be higher than the number 
of  execution cycles  (see e.g., faults D and E). Second,  
immediate errors do not always propagate,  either because 
the incorrect variables are no more used up to completion of 
the test sequence, or because they have been corrected before 
being used: hence, the number of  immediate error flows 
may be lower than the number of  immediate errors (this is 
especially true for faults J, K and L which are commented 
upon below). A total of  88 immedia te  error flows were 
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# i m m e d i a t e  errors  --, 
F a u l t  Test  s e q u e n c e  i m m e d i a t e  errors  per # i m m e d i a t e  error  # errors  

(#test cases) f a u l t  a c t i v a t i o n  f l ows  (FF or FU) 

A T1 (6) 3 --* 3 incorrect var. 3 failures 3 
T2 (9) 23 ~ 3 incorrect var. 23 failures 23 

B T1 (6) 16 ~ 2 incorrect var. 2 FF & 1 FU 77 

C T3 (6) 4 --* 2 incorrect var. 1 FF & 3 FU 107 

D T3 (4) 10 --* 1 incorrect BP 4 FF & 6 FU 244 

E T4 (6) 8 ~ 1 incorrect var. I FF & 7 FU 63 
T5 (7) 10 "-~ 1 incorrect var. 1 FF & 9 FU 87 

F T6 (3) 14 ~ 1 incorrect var. 1 FF & 12 FU 93 

G T7 (4) 16 ~ 4 incorrect var. 3 FF & 1 FU 97 

H T7 (4) 4 --* 4 incorrect var. 1 FF 91 

! T8 (5) 6 --* 1 incorrect var. 1 FF & 5 FU 127 

J T9 (4) 72 ~ 1 incorrect var. 1 FF & 1 FU 78 

K T10 (5) 18 --* 1 incorrect var. 1 FF & 9 FU 83 
T l l  (5) 18 ~ 1 incorrect var. 1 FF & 4 FU 67 

L T12 (10) 18 --* 1 incorrect var. I FF & 11 FU 218 

Table 2: Analysis of the error traces due to real faults 
(BP: branch predicate; FF: flow leading to failure(s); FU: flow without failure) 

identified in the complete real fault data base, from which 
only 19 lead to failure occurrence(s) while the 69 others do 
not (due to error masking or cancellation). As a result, the 
percentage of  errors detected in comparison with the total 
amount of  errors generated is rather weak. 

Fault F is the only fault resulting in additional statements 
and it may be interesting to have a closer look at its 
behavior. Fault F is activated 14 times by the test sequence 
T6, affecting each time the same variable. Thirteen of  the 
immediate errors propagate and only one error flow affects 
output results. This error flow leads to failure because the 
corresponding errors can propagate during two successive 
execution cycles without being cancelled before affecting 
the output variables. Most of  the immediate error flows (9 
FU) concern only one execution cycle and contain less than 
four errors each; they lead to errors that are not used during 
the subsequent execution cycles. The three remaining FU 
propagate during two execution cycles and contain between 
10 and 25 errors each; but all of  them lead to either 
cancelled errors or masked errors (e.g. incorrect variables 
that have the same effect on the output results as the correct 
ones). 

Faults G and  H were experimented on the same test 
sequence with the objective of  comparing their error traces. 
Indeed, in previous experiments [The 93], both faults 
exhibited the same external behavior: they were revealed by 

the same test cases and they produced the same failures. G 
and H are not of  the same type (see Table la) and are not 
located in the same part of  the code; but they affect the 
same four variables. The comparison of  the execution traces 
shows that: 

1. From the four variables infected upon fault activation, 
only one is concerned by the propagation;  thus 
generat ing a single immedia te  error f low per 
activation; 

2. Fault activation modes are different: H is activated 
once at the first execution cycle, while G is activated 
at each of  the four execution cycles; hence, after 
completion of  the test sequence T7, one immediate 
error flow (FF) is observed for H, and four immediate 
error flows (3 FF & 1 FU) for G; 

3. The immediate error flow generated by H corresponds 
to the concatenation of  the four immediate error flows 
generated by G: the corresponding immediate error 
created by H is equivalent to the one created by G; it 
is created by H at the first execution cycle and it 
propagates during the three successive cycles (no. 2, 
3, 4), while the corresponding immediate error created 
by G is generated at each cycle (after each fault 
activation). 

As a result, both faulty programs fail on the same test cases 
and supplied identical incorrect results. 
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As regards faults J, K and L, a detailed analysis of the 
error traces and error flows provides us with information to 
understand why they were seldom revealed. Fault J generates 
many immediate errors (72 during three successive 
execution cycles): only two of them propagate, each one 
creating three errors from which only one leads to failure. K 
and L create many immediate errors which propagate during 
five execution cycles before being detected; such long error 
flows facilitate the occurrence of masking or cancellation 
mechanisms (this case will be illustrated on Figure 2, in 
the next section). 

4 . 2  Error behaviors 

Investigations on error flows focus on how an error may 
propagate through executions creating other errors, but also 
on how an error is masked or cancelled and thus, is not 
detected. A graphical representation of an error flow is given 
in Figure 2: it represents one of the immediate error flows 
due to fault K. Each node is associated with an error. For 
each error, the incorrect variable/value pairing and the 
number of the execution cycle during which the error was 
created are indicated. For clarity, this graph is simplified, 
the location of each error being not mentioned. For 
example, the notation (CO_AQU_DIF = 0/1)1 means that 
the variable CO_AQU_DIF was assigned the incorrect value 
'0' versus the correct value '1' during the first execution 
cycle. The graph edges denote the cause/effect chain between 
errors: the error at the arrow's tail is used to create, cancel or 
mask the error at the arrow's head. Errors in bold represent 
wrong output results (failure occurrence). Errors in italic 
affect output variables but are masked or cancelled before 
the end of the execution cycle (no failure occurrence). 
Framed errors are those remaining in the program internal 
state after completion of the test sequence: they could 
further propagate if an additional test case were executed 
(without initialization). The other errors (normal style) are 
cancelled before completion of the test sequence, the 
incorrect variables being overwritten. 

When a variable is not referenced at a given point in either 
the incorrect execution trace or the correct one, its value is 
not observed. This case, denoted U (for Unobserved) in 
Figure 2, occurs when the execution of the original 
program and the execution of the faulty program follow 
distinct paths, thus affecting different variables. This 
notation allows us to identify in the error flow the errors 
due to the incorrect execution of a branch statement 
(consequences of a control flow error). 

At a given point of the execution, the use of an incorrect 
variable or incorrect branch predicate may result in the 
creation of new error(s) or/and the masking or/and the 
cancellation of other errors. These mechanisms can 
affect: 1) the same variable, 2) another variable or 
conditional predicate, 3) several variables (resulting in a 
division of the error flow in subsequent sub-flows). In the 
same way, the combined use of several errors (incorrect 
variables and incorrect branch predicate) may result in the 

creation, masking or cancellation of errors. The complexity 
of such behaviors and interactions is increased by the fact 
that the program internal state and the original (correct) 
internal state are modified concurrently and a modification 
in the original internal state may result in the cancellation 
or the masking of an error in the incorrect internal state. 

Error creation and propagation have been investigated 
in other studies [Ric 88, Voa 92a, Voa 92b, Gor 93, Tho 
93]. The RELAY model [Ric 88, Tho 93] provides detailed 
descriptions of propagation mechanisms (computational 
transfer and information flow transfer) from the creation of 
immediate errors until the occurrence of a failure, and the 
authors explored information flow transfer on simple 
modules. During our experimental study, we observed the 
same types of transfer, amplified by: 1) the size of the 
software program, 2) the error ability to propagate between 
successive execution cycles, 3) the use of AND operators, 
4) the parameter passing by value in C. 

We have also explored the mask ing  and cancellation 
mechanisms. They are often associated in other studies 
[Voa 92b, Gor 93] but, here, we differentiate between them 
since they do not have the same effect on the error graph 
and on the program internal state. Cancellation just stops 
the extension of an error flow and the cancelled error is 
either deleted or replaced by a new error in the internal state, 
whereas masking may stop temporarily the extension of an 
error flow but the error remains in the internal state and can 
propagate further. 

Cancellation occurs when: 

• An incorrect variable is overwritten in the faulty 
program; either the new value is correct (the error is 
deleted from the internal state), or it is still incorrect 
and a new error is created; 

• The correct value is modified in the original program 
and the new value becomes equal to the previously 
incorrect one; 

• In cases of control flow error, when the execution of a 
branch incorrectly selected is completed, the PC value 
turns into the correct one; 

• etc. 

Masking occurs when: 

• An incorrect variable is not used in current 
computations, stopping temporarily the extension of 
the error flow; this error may be manifested later; 

• An incorrect variable (or more) is used in a 
computation to affect another variable and the 
resulting value is equal in both programs; this 
phenomenon, called "blindness" by Zeil [Zei 89] was 
also observed and explained by Bishop [Bis 89]; it is 
amplified in our study by the use of OR operators and 
shift operators in many computations; 

• etc. 
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- j  (POS_VGRAPPE=109/U)5 

Fig. 2: E x a m p l e  o f  an error  f low graph  due  to faul t  K 

Some illustrations of the error propagation, masking and 
cancellation mechanisms are indicated on Figure 2, where 
different types of interactions and impacts on the error flow 
graph are observed: 

[1] Propagation on the same variable resulting in the 
simple extension of the error flow; this error evolves 
through 4 successive execution cycles, both programs 
following the same path during the first 3 cycles; 

[2] Propagation affecting two variables resulting in the 
division of the error flow into subsequent error flows; 
the error created on the variable VALID_DER VAL is 
masked during the rest of the 4th execution cycle, and 
then used in the 5th cycle enabling error propagation 
to an output result (failure occurrence); 

[3] Propagation by parameter passing which results in a 
simple extension of the error flow; 
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[4 ]  C o m b i n e d  use o f  two errors  resu l t ing  in the 
convergence  o f  the co r respond ing  sub-f lows;  an 
incorrect variable is used in an incorrectly selected 
branch creating a new incorrect variable; 

[5 ]  C o m b i n e d  use o f  two errors  resu l t ing  in the 
convergence  o f  the cor respond ing  sub-f lows;  an 
incorrect variable is overwritten in the faulty program, 
by execution of  a branch incorrectly selected; then the 
new value becomes correct, thus cancelling one of  the 
previous error. 

4 .3  Comparison of errors 

The compar ison  between the comple te  real fault  and 
mutation data bases shows that: 

(i) 1930 errors recorded in the mutation data base are 
present in the real fault data base (i.e. 85%); 

(ii) Among  the 342 other records represent ing "new" 
errors in the mutation data base, 158 are immediate  
errors (i.e. 7%) and 184 are propagated errors (8%). 

Figure 3 illustrates the result of  the comparison between 
the reduced real fault and mutation data bases, showing the 
amount of  dist inct  errors shared by the two data bases. 
These raw results are in favor of  a good representativeness 
of  the e r rors  g e n e r a t e d  by muta t ions .  The  30% 
miscel laneous dist inct  errors in the mutat ion data base 
represent new errors due to erroneous computations leading 
to many incorrect values on the same integer variables: a 
majority of  these errors occurred only once and are due to 
mutations whose behaviors are described in Section 4.4.2. 
Most of  the 13% miscel laneous distinct errors in the real 
fault data base are either created upon activations of  fault K 
under the test sequence T10, or errors due to fault D. Indeed, 
the behaviors of  these two faults are those which were least 
reproduced by the selected mutations as explained in the 
next section. 

60% 

10% 5% 

a) Mutation DB b) Real fault DB 

I I Distinct errors present in both data bases 
Immediate errors (specific to the fault) 
Miscellaneous propagated errors 

Fig. 3: Analysis of the distinct error sets: 
a) in the mutation data base (349 distinct errors) 
b) in the real fault data base (255 distinct errors) 

4 . 4  Error flow comparison 

For complexity reason and due to the large amount of  errors 
produced,  the compara t ive  analysis  of  error flows was 
focused on immediate error flows. In this section, the errors 
in the real fault data base are called actual error (for short) 
and actual errorflows denote the associated flows. 

A total of  41 immediate error flows leading to at least one 
failure (FF) and 128 immedia te  error flows resulting in 
masked or cancelled errors (FU) have been identified in the 
complete  mutation data base. It is worth noting that this 
proportion of FF and FU obtained from the 24 mutations is 
similar to the one obtained from the 12 real faults (19 FF 
and 69 FU, see Section 4.1). This lends support  to the 
assumption that mutations can exhibit  error behaviors as 
complex as those produced by real faults. 

A mutation is said to totally model a real fault when it 
generates the same immediate error flows than the real fault, 
except for the immediate error(s) directly related to the fault 
syntax and semantic. A mutation partially models a real 
fault when they produce common error flows that result in 
the same failures or in the same masked or cancelled errors 
affecting output variables.  The compar ison  of  the error 
flows shows that: 

• All  the real faults are totally or partially modelled by 
mutations; 

• Only 4 mutat ions  (M4, M9, M23, M24) do not 
generate any immediate error flow similar to an actual 
error flow. 

These two general results are commented upon in Sections 
4.4.1 and 4.4.2, respectively. 

4 . 4 . 1  Real fault behavior modell ing 

For purposes of  comparison, we consider that an error flow 
due to a mutation totally reproduces an actual error flow 
when either the two flows are identical  (except  for the 
immediate  error), or the mutation error flow contains the 
actual error flow. It partially reproduces an actual error flow 
when it constitutes or contains a sub-f low of  the actual 
error flow; in that case the common sub-flows have to 
result, after complet ion of  the test sequence, in the same 
errors affecting the output variables (same failures in case of  
a FF, and same cancelled or masked errors in case of  a FU). 

A total of  16 from the 19 actual immediate  error flows 
leading to failure (FF) and 49 from the 69 actual immediate 
error flows leading to masking (FU) are reproduced - -  either 
to ta l ly  or pa r t i a l ly  - -  in the muta t ion  da ta  base.  
Surprisingly, the 3 actual FF that have not been reproduced 
upon mutation activation are related to faults D and K that 
correspond each to a single faulty statement in the source 
code  and thus are s imi lar  to muta t ions  of  "opera tor  
replacement" and "symbol replacement" type, respectively. 
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Faul t  

A 

B 

C 

D 

E 

F 

G 

H 

M u t a t i o n  
Tes t  

sequence  
(# test cases) 

Actual immediate error 
flows (FF or FU) 

reproduced 

M10 T2 (8) same failures 

M1 T5 (7) same failures 

M2 same failures 

M14 

M3 

M15 

M20* 

M4 

M20* 

M l l  

M16 

M21* 

T1 (6) 

T1 (6) 

T1 (6) 

T3 (9) 

T3 (4) 

T3 (2) 

T3 

T4 

T5 

T6 

T6 M22" 

M5 T7 

M12 T6 

M13* T7 

M17 T7 

M5 T7 

M12 T6 

M13* T7 

M17 T7 

Actual  immediate  
error flows 

not reproduced 

2 FF totally 

1 FF partially 

1 FF and 1 FU totally 

1 FU partially 

no similarity 

(4) 2 FF and 1 FU partially 

(6) 1 FF and 7 FU totally 

(8) 1 FF and 9 FU totally 

(2) 1 FF and 1 FU partially 

(2) 1 FF and 1 FU partially 

(4) 1 FF partially 

(2) 1 FF totally 

(3) 2 FF partially 

(4) 3 FF and 1 FU partially 

(4) 1 FF partially 

(2) 1 FF partially 

(3) 1 FF partially 

(4) 1 FF partially 

(4) 

(4) 1 FF and I FU totally 

3 from 6 distinct 

failures 

1 F U  

2 F U  

2 FF and 5 FU 

none 

11 FU 

none 

none 

I M18 T8 1 FF totally and 5 FU partially none 

J M 19 T9 none 

K M6 T11 (5) 1 FF and 4 FU totally 

M8* T3 (8) 3 FU totally 

L M7 T12 (7) 1 FF and 1 FU totally none 

1 FF and 1 FU 

due to T10 

Table 3: Similarities between real fault and mutation behaviors 
(* mutations selected arbitrarily) 
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Table 3 summarizes the similarities observed between the 
mutation behaviors and the real fault behaviors identified in 
Table 2. It tabulates: 

• For each real fault, the mutations that totally or 
partially model it; 

• For each mutation, the test sequence executed on and 
the number of  actual immediate error flows it 
reproduces partially or totally; mutations marked with 
an * are those chosen arbitrarily (not listed in 
Table lb), and thus, not located on the instructions 
involved in the "fix" of the real faults; 

• For each fault, the number of immediate error flows 
not reproduced by the studied mutations. 

This table shows that several real faults were totally 
modelled by mutations under the same test sequence (e.g. 
faults E, J, K, L). If  we have a closer look at the real faults 
that are located on a single statement, they correspond either 
to missing statements (faults E and J), or to faulty 
statements (faults D, I, K and L). For the later type of 
faults, it is worth noting that the mutations studied don't 
reproduce totally the same behaviors (e.g. faults D and I), 
though it would have been possible to select mutations 
among the 2419 mutations available that generate the same 
error flows. I f  we examine how the behaviors generated by 
real faults that affect several statements (faults B, C, F, G, 
H) are reproduced by the selected mutations, we can notice 
that all the actual error flows leading to failures were 
partially or totally reproduced. 

In Section 4.1, it was noticed that faul ts  G and H 
exhibit similar behaviors: this explains that the same four 
mutations (M5, M12, M13, M17) modelled both faults G 
and H. 

Similarities between faul t  K and mutation M8 are 
noticeable: in spite of the fact that M8 and K are not located 
on the same instruction and that the faulty programs were 
not executed on the same test sequence, M8 reproduced 3 
FU related to fault K. 

Fault D was incompletely modelled. In particular, there 
was no similarity with mutation M4 located on the same 
instruction. The reason is that the activation of D may only 
produce an incorrect branch predicate whose value is "false" 
(versus "true" in the original program). M4 affects the same 
branch predicate, but its activation may only produce the 
incorrect value "true" (versus "false" in the original 
program). Hence, D and M4 affect the same location in the 
code but they always create distinct error flows (no common 
errors). We will return to the behavior of  M4 in the next 
section. 

Fault F corresponds to additional statements in the source 
code; it was therefore impossible to select a mutation that 
affects the same location. However, mutations M21 and 
M22 partially model F. M21 creates an immediate error that 
is an actual error produced by F; thus one FF generated by 
M21 corresponds to a sub-flow extracted from the actual 
FF. M22 creates new immediate errors but it reproduces the 
same FF as M21 (the corresponding FF are identical from 
the second error present in the immediate error flows). The 
actual FU partially reproduced by M21 and M22 are one of 
the longest described in Section 4.1. Moreover, although 
fault F behaviors are the least modelled by mutations, all 
the actual errors generated by F are present in the mutation 
data base. 

To conclude this comparative analysis, it is worth noting 
that the studied mutations have easily reproduced: 1) the 
same subtle behaviors as those observed for faults J, K and 
L; 2) the same behaviors as those identified for omission 
faults (missing statements). 

4 . 4 . 2  Mutations M4, M9, M23 and M24 

Mutations M9, M23, M24 were selected arbitrarily among 
the 2419 mutations available. Mutation M4 affects the 
same location as fault D but it does not produce immediate 
errors upon the same fault activations. For these four 
mutations, all the immediate error flows were different 
from the actual ones. Thus, we only analyzed the 
representativeness of the errors they produced, independently 
of the error flows they belong to. 

Test sequence # immediate  
M u t a t i o n  (# test cases) error flows # errors created # new errors 

M 4  T3 (2) 14 FF & 14 FU 300 98 (56 distinct) 

M 9 TI3  (7) 1 FF 23 13 (8 distinct) 

M 2 3  T13 (7) 1 FF 29 11 (6 distinct) 

M 2 4  T9 (4) 2 FF & 27 FU 147 32 (17 distinct) 

Total = 499 Total -- 154 

Table 4: Analysis of M4, M9, M23 and M24 

169 



The results are summarized in Table  4 which gives, for 
each mutation: 

• The test sequence executed; 

• The number of immediate error flows; 

• The total amount of  the errors present in the error 
lrac~; 

• The number of "new" errors (i.e. not recorded in the 
real fault data base) with the number of distinct errors 
they represent in the reduced mutation data base. 

These mutations produced 154 from the 342 new errors 
contained in the complete mutation data base (see Section 
4.3), that is to say 45%. Even if they do not model any real 
fault, 69% of the errors produced are actual errors: this 
result is encouraging with respect to the representativeness 
of the errors produced by mutations. 

5 .  S U M M A R Y  A N D  C O N C L U S I O N S  

This paper reports on a real case study involving real faults 
and mutations. The experiments related here were conducted 
on a student version of a critical program from the civil 
nuclear field. They focus on the analyses of the errors 
produced by 12 real faults on the one hand and by 24 
mutations on the other hand. The results are in favor of a 
good representativeness of  the errors generated by 
mutations: 85% of the errors produced by the mutations 
were also generated by the real faults. This positive 
outcome is confirmed by the qualitative analysis on error 
behaviors. It demonstrates how mutations can produce, 
upon activation, error behaviors as complex as the real 
faults did. We expect these results to be relevant as the 
studied mutations were not purposely selected to exhibit the 
same error behaviors as those identified for real faults. 
Indeed, we did not know a priori if any similarity could be 
observed. 

One may consider that the faulty programs corresponding to 
the 12 real faults are syntactically close to the correct 
program, in spite of the fact that the types of the studied 
faults are diverse: they are either coding faults, or 
initialization faults, or the results of a misunderstanding of 
the requirements by the programmer.  Unfortunately, 
identification of  errors by comparison between the 
execution trace of a faulty program and the execution trace 
of the correct program would not have been possible if both 
programs were too syntactically different. 

The exploration of error behaviors on a complex program is 
tedious and may not generally be conceivable: this explains 
the relative small number  of  mutat ions studied. 
Nevertheless, this exploration is necessary to understand the 
complex mechanisms of error propagation, error masking 
and error cancellation through successive execution cycles. 
Such experiments are currently being conducted on another 

real case study to see whether or not the results are 
confirmed. 

We also intend to conduct similar experiments on faulty 
programs containing two or more faults. However, we 
suspect that the fault and error behaviors that will be 
observed could be equivalent to those related to the 
interactions between immediate error flows in our study. 
That is to say, interactions between faults could be 
essentially due to the interactions between the immediate 
error flows they may create. Indeed, we have noticed that a 
single fault may create several immediate errors and that 
this fault could be activated several times in a single 
execution cycle or during successive execution cycles; 
interactions between immediate error flows have thus been 
observed. Similar interactions should be identified between 
error flows produced when several faults infect a program. 

Finally, the large data bases of error records now available 
provide us with valuable information to identify and model 
fault and error behaviors. We noticed, in our study, that the 
complexity of an error behavior is not related to the type of 
fault but rather to the interactions of the errors with the 
program dependencies [Pod 90]. Further theoretical 
investigation will concern the use of program dependencies 
to explain and model error behaviors. 
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