
S O F T W A R E E R R O R A N A L Y S I S : A R E A L C A S E S T U D Y

I N V O L V I N G R E A L F A U L T S A N D M U T A T I O N S

M u r i e l D A R A N P a s c a l e T H I ~ V E N O D - F O S S E

L I S - T e c h n i c a t o m e LAAS - CNRS

7 Avenue du Colonel Roche
31077 Toulouse Cedex - FRANCE

mdaran @laas.fr, thevenod@laas.fr

A B S T R A C T

The paper reports on a first experimental comparison of
software errors generated by real faults and by lst-order
mutations. The experiments were conducted on a program
developed by a student from the industrial specification of a
critical software from the civil nuclear field. Emphasis was
put on the analysis of errors produced upon activation of 12
real faults by focusing on the mechanisms of error creation,
masking, and propagation up to failure occurrence, and on
the comparison of these errors with those created by 24
mutations. The results involve a total of 3730 errors
recorded from program execution traces: 1458 errors were
produced by the real faults, and the 2272 others by the
mutations. They are in favor of a suitable consistency
between errors generated by mutations and by real faults:
85% of the 2272 errors due to the mutations were also
produced by the real faults. Moreover, it was observed that
although the studied mutations were simple faults, they can
create erroneous behaviors as complex as those identified for
the real faults. This lends support to the representativeness
of errors due to mutations.

1 . I N T R O D U C T I O N

Faults can be created at any time in any phase of the
software development (during the requirement definition,
design phase, coding phase, etc.). They result in faults in
the program source code such as faulty instruction(s) or
data, missing or extra instruction(s), etc. During program
execution, when the faulty instruction (or instruction
sequence or data) is triggered by an appropriate input
pattern, the fault becomes active and may produce one or
several errors (incorrect internal states). An e r r o r may

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on serven or to redistribute to lists, requires specific
permission and/or fee.
I S S T A '96, San Diego C A U S A
c 1996 A C M 0-89791-78-7-1 /95 /01 . .$3 .50

propagate by creating other new error(s); if and when the
erroneous data affect the output result(s), i.e. the program
supplies wrong output value(s), a f a i lu re occurs, thus
revealing the presence of the fault [Lap 92].

Originally defined by DeMillo [DeM 78], mutation faults
have been largely used in previous work either to assess the
adequacy of test cases, or to study how a fault creates an
error upon activation and the ways this error transfers
through execution to an eventual output result. In
particular, these investigations have given rise to techniques
such as PIE [Voa 92a] or to models such as the RELAY
model [Ric 93] applied to evaluate the fault revealing power
of test cases or to analyze the adequacy of test data selection
criteria in revealing particular faults. Other empirical
studies, focused on the effectiveness of mutation testing in
detecting errors, have shown that test data generated to
reveal simple faults (such as lst-order mutations) could
reveal more complex mutations [Off 89] or even complex
known programming faults [DeM 94]. But, none of these
studies discussed the controversial issue of the
representativeness of mutations with respect to real faults.

This paper is not intended to investigate whether or not
mutations constitute a fault model representative of real
faults. Indeed, the answer to this question is likely to be
negative. But, does it mean that errors and failures produced
by mutations are not similar to those related to real faults?
This is the issue we address here. In [DeM 94], the authors
noticed that mutations could cause important variations in
the program internal state throughout all the executions
carried out during testing. Another purpose of this paper is
to explore the nature of these variations and compare them
to those produced by known real faults.

The experiments have been conducted on a critical program
from the civil nuclear field previously involved in our work
on software statistical testing [The 93]. The program under
study is a version developed by a student from the industrial
specification. The experiments involve 12 known real faults
and 24 mutations. Thus, 36 faulty versions of the program
- - each version contains either one real fault or one
mutation - - were executed on at least one test sequence
made up of several input patterns. A noticeable feature of
this program is that it is a program with memory. As a

158

http://crossmark.crossref.org/dialog/?doi=10.1145%2F226295.226313&domain=pdf&date_stamp=1996-05-01

result, errors may propagate from one program execution to
the following one(s). Errors generated during successive
executions o f a faulty program were identified by
comparison of its execution trace to the correct program
execution trace.

Two data bases - - one related to the real faults and the other
one to the mutations - - were constituted in order to record
the errors and gather information about their behaviors: how
they were created, how the corresponding erroneous data
were used in the successive executions. Analyses of these
data bases were conducted according to two main objectives:
1) identify the fault behaviors and the error behaviors due to
real faults on the one hand, and to mutations on the other
hand; 2) identify similarities and discrepancies between
errors produced by real faults and errors produced by
mutations, and between their respective behaviors. The
experimental results show that the errors generated upon
activation of the mutations and the behaviors they can
exhibit are representative of those observed with the real
faults. To our knowledge, this study represents the first
detailed comparative analysis between errors generated by
real faults and errors generated by mutations on a target
program.

The paper is organized as follows. Definitions that support
the analyses of fault and error behaviors are given in
Section 2. Section 3 describes our experimental framework.
Section 4 reports on the analyses performed on the data
bases. Main results are summarized in Section 5 where we
conclude with research directions suggested by this work.

2. B A C K G R O U N D A N D D E F I N I T I O N S

The study of the manifestation mechanisms of faults, errors
and failures involves three steps: 1) fault activation; 2) error
propagation; 3) failure occurrence. The second step calls for
internal behaviors of the program during execution which
can be quite complex: an error may disappear before being
detected (i.e. before failure), several errors may compensate
each other preventing further propagat ion, etc. The
definition of the internal state of a program given below
will allow us to clarify the notion of error as it will be used
in the paper, in order to facilitate the analysis o f
propagation mechanisms.

2 . 1 Program internal state

The p r o g r a m internal s tate at a point during execution
is defined by the values of all variables (global variables,
internal variables and output variables) and the value of the
program counter which indicates the next instruction to be
executed. The execution of an instruction is considered here
to be atomic, i.e. the program internal state can only be
viewed before and after each instruction. For a program with
n variables, the program internal state, denoted PS, is
represented by a set of n+l pairings:

PS = {(varl, vail) (varn, vain), (PC, x)}

where val i (i = 1 n) is the current value of variable var i
(including the "undefined" value) and x is the value of the
program counter PC, i.e. the address of the next instruction
to be executed. At the start of a sequence of program
executions on a set of input patterns (t 1 tp), i.e. before
the execution on tl, all variables are undefined; then, before
the execution on a subsequent input tj (j > 1), PS keeps the
value it reached after completion of the execution on tj.l,
that is, the program internal state is memorized between
two consecutive program executions.

This notion o f program internal state differs from the
program state used by Zeil [Zei 89] which does not include
the PC value. It is similar to the program data state defined
by Voas [Voa 92b], the difference lies in the fact that all
variables of the program data state have undefined values
before a program execution on an input begins. Indeed,
Voas's program data state would not allow us to analyze
possible error propagation between successive program
executions.

2 . 2 Error, error trace, error f low

In this paper, the term e r r o r is used to denote one incorrect
variable/value pairing (vari, vali) or (PC, x) of the program
internal state 1. Hence, an erroneous internal state may
contain one or several errors, depending on the number of
incorrect pairings. An incorrect (vari, val i) pairing
corresponds to a data f l ow error, and an incorrect (PC, x)
pairing characterizes a control f l o w error. In order to
distinguish between the fault activation step and the error
propagation step, error(s) produced upon fault activation
will be labelled as i m m e d i a t e error(s) .

In the experiments we have conducted, each faulty program
was executed on a sequence of several input patterns
(t 1 tp). The term test case will be used to denote
one input pattern ti and a sequence of test cases (tl tp)
will be called a test sequence. The program execution on
one test case corresponds to one execution cycle. A program
e x e c u t i o n trace is associated with the completion of a
test sequence, thus involving p execution cycles. Given a
program and a test sequence, the successive internal states
of the program, and then the errors in cases of faulty
program, are identified from the analysis of the execution
traces 2.

In order to identify and analyze the fault activation and error
propagation mechanisms, we will focus on a subset of each
program execution trace, called e r r o r trace [Mur 94],

In our experiments, the correctness is determined by
referring to the internal state of the original program, that
is the program without any seeded fault (see Section 3.1).

The execution traces were obtained by the command ctrace
(available on SunOS 4.1) that allows us to list the text of
each executed instruction and the values of all referenced or
modified variables.

159

which represents the sequence of errors identified by
comparison between the correct and the incorrect execution
traces. An error trace can be quite complex since it may
involve several fault activations occurring at different
execution cycles, and thus several immediate errors which
in turn may propagate. Then, to facilitate the comparison
between error traces associated with different faulty
programs, the behavior o f a particular error (whether
immediate or not) will be characterized by its e r r o r flow
which is a subset of the error trace: starting with the target
error, the error flow draws the errors created by the
propagation o f this error up to completion o f the test
sequence. An error flow which starts with an immediate
error will be called an immediate error flow.

2 . 3 P r o g r a m b e h a v i o r s

When focusing on a faulty program behavior within a
single execution cycle - - i.e. independently of the preceding
cycles and assuming (implicitly) that the internal state is
correct before the execution begins - - four issues are
possible (see e.g. [Voa 92a]):

1. The fault is not activated during the execution cycle;
the program internal state remains correct (including
the output results);

2. The fault is activated at least once but no error is
created; the program internal state remains correct
(including the output results);

3. The fault is activated, an immediate error (or more) is
created but output results are correct; this is the
problem of coincidental correctness. At the end of the
cycle, the program internal state is either correct if the
errors produced during execution were all corrected
before the end of the execution cycle, or erroneous if
the errors produced during execution were not used to
assign an output variable, or were masked before or
when affecting the outputs;

4. The fault is activated, an immediate error (or more) is
created and propagates to at least one output variable;
the program internal state is erroneous and a failure
occurs, thus revealing the presence of the fault.

These program behaviors represent only part o f those
observed during our experimentation. Indeed, intricate
evolutions of the internal state were identified by observing
faulty program behaviors on sequences of several execution
cycles since, in that case, the internal state after each
execution cycle depends on both the test case executed on
and the internal state reached at the end of the preceding
execution cycle.

Figure 1 shows the possible transitions between the
following three states that characterize the program behavior
at the execution cycle level:

(i) Correct: the program internal state is correct (thus,
including the output variables);

(ii) Incorrect without failure: the program internal state is
incorrect but the errors do not affect the output
variables;

(iii) Failure: the program internal state is incorrect and at
least one error affects an output variable.

The outcoming transitions of state Correct - - that is, trl,
tr2 and tr 3 - - correspond to the case where the internal state
is correct at the start of the execution cycle: the associated
behaviors are those identified above, when focusing on a
single cycle. The other transitions relate to execution cycles
starting with an incorrect internal state, thus involving
other types of behaviors, e.g.:

• A failure may occur without fault activation during
the current execution cycle (tr 6, tr9);

• An error may propagate during successive cycles
without being detected (trs) or before detection (tr6);

An error may disappear before being detected (tr4);

Successive failures may be observed (tr9); we may
observe either the same failures during successive
cycles due to the same errors present in the internal
state, or other failures due to a new fault activation or
to the propagation of another error;

The internal state may be totally (tr4, trT) or partially
(e.g. trs) corrected, when the current execution cancels
error(s) present when it begins; tr8 is a noticeable case
of partial correction which means that in spite of the
fact that the observable errors (those affecting the
outputs) are cancelled, the internal state remains
incorrect;

A fault can be activated while the internal state is
already incorrect, thus creating additional errors; the
combination of these errors with the previous ones
may facilitate either further propagation (tr6, tr9) or
error cancellation (tr4, tr7, tr8).

tr I tr 2 tr 5

tr 9

Fig.l: State graph of program behavior

160

These observations contribute to explain some complex
mechanisms of error propagation. To improve the
understanding of these mechanisms, it is necessary to
analyze internal states produced at different points in an
execution cycle (i.e. after execution of each statement). This
analysis has been performed in the series of experiments
concerning the real faults; our observations will be
presented in Section 4.2 and illustrated with examples
provided by the case study.

3 . E X P E R I M E N T A L F R A M E W O R K

3.1 Original program

The experiments have been conducted on a critical program
from the civil nuclear field previously involved in our work
on software statistical testing [The 93]. It belongs to the
part of a nuclear reactor safety shutdown system that
periodically scans the position of the reactor's control rods.
At each operating cycle, 19 rod positions are processed in
the following way: the information (rod positions in Gray
code as well as monitoring data) is read through five 32-bit
interface cards; then, these data are checked and filtered; after
filtering, the measurements of the rod positions are
converted into a number of mechanical steps.

The program under study is a version developed by a student
from the industrial specification. This version, called STU,
is written in the C language and the size of its source code
approximates one thousand lines without comments. The
program consists of a collection of 15 functions. All the
data processed by the program are integers, representing
either Booleans or numbers. As the software is critical, the
use of pointers was forbidden. Each execution cycle on an
input pattern achieves the processing of 19 rod positions.
During previous experiments [The 93], 12 residual faults
were uncovered in the STU version, thus providing us with
a sample of real faults (Section 3.2). In the experiments
reported in this paper, the original program (assumed to
be correct) corresponds to the new version of STU produced
by fixing the 12 identified faults.

A noticeable feature of this program is that it is a
program with memory , due to the check and filtering
function: at each execution cycle, the checks performed on
the rod positions acquired may depend on the outcome of
the checks performed on the rod positions acquired and
processed at the preceding execution; the corresponding
information being stored into internal variables. As a result,
errors infecting these internal variables may propagate from
an execution to the following one, before occurrence of a
first failure.

3.2 Target faults

The experiments were conducted on 36 faulty programs:
each faulty program differs from the original program in
containing either one of the 12 real faults or one mutation.

The 12 real faults (denoted A L) are of different
types: faults A, G and J are coding faults; faults B to F and
fault I result from the lack of understanding of the
requirements by the student; faults H, K and L are
initialization faults. They correspond to either faulty
statements (A, D, I, K, L) or missing statements (B, C, E,
H, J) or additional statements (F) or misplaced statements
(G), in the corresponding faulty program. Table la gives
a brief description of these faults and the number of
instructions involved in the "fix" of each of them.

The 24 muta t ions (denoted M1 M24) analyzed in
this study were selected from a set of 2419 mutations
involved in a mutation analysis previously conducted on
our target program with the aim of assessing the efficiency
of several statistical test sets [The 95]. These mutations are
lst-order mutations, that is, single-point, syntactically
correct changes introduced in the original program. They
encompass three types of change: constant value alteration,
symbol (i.e. identifier of a variable or array) replacement,
and operator replacement by either an operator of the same
type or of another type (e.g. an assignment operator can be
replaced by a relational operator, or an arithmetic operator
by a logical operator).

As the error behaviors due to mutation activation were a
priori unknown, we tried to choose a various, though
small, sample of mutations. Yet, in order to make feasible
the comparison of immediate error flows produced by
mutations with those produced by real faults, some (but not
all) mutations had to be performed on instructions involved
in the "fix" of the real faults. Then, the general features of
the 24 mutations finally selected are the following ones:

• M1 M9 are constant value alterations; M10
M13 are operator replacements; M14 M24 are
symbol replacements;

• 5 mutations (M4, MI3, M20, M21, M24) are located
on 4 different conditional statements; the 19 others are
located on 16 different assignments infecting directly
14 different variables (variables in the left expression
of the assignment);

• 16 mutations are located on instructions involved in
the "fix" of the real faults: they are listed in Table lb;
the 8 others (M8, M9, M13, M20 M24) affect
statements selected arbitrarily.

Note that no mutation can affect the statements related to
fault F since these statements must be deleted to remove F
and the mutations are performed on the fixed program.

161

(a) Real faults (b) Mutat ions

Description # statements Location with respect Type of
in the fix to real fault change

A Wrong operator in three assignments 3 1st statement --4 M10 O
2ndstatement ---> M1 C
3rd statement ----> M2 C

B Two missing assignments 2 1st statement ---> M14 O
2ndstatement ---> M3 C

C Two missing assignments 2 1st statement ---> M15 S

D Wrong operator in a conditional statement 1 M4 C

E One missing assignment 1 M1 I, M I 6 O, S

F Added conditional statement and assignment 3

G Incorrect placement of four statements 6 1st statement ~ M12 O

H Missing initialization for four variables 4 Ist statement ---> M5 C
1st statement --4 M17 S

I Wrong expression in an assignment 1 M 18 S

J Missing assignment 1 M19 S

K Incorrect initial value of a variable 1 M6 C

L Incorrect initial value of a variable 1 M7 C

Table 1: Characteristics of the 12 real faults and of 16 of the 24 mutations
(C: constant value alteration; O: operator replacement; S: symbol replacement)

3.3 Overview of the experiments

In previous work on statistical testing [The 93], 16 sets of
test patterns were defined and randomly generated according
to different probability distributions over the program input
domain. They encompass 4 types of statistical test patterns:

(i) One set of 5300 test patterns generated according to a
uniform distribution over the input domain;

(ii) Five sets of 500 test patterns generated according to a
structural input distribution, i.e. a distribution derived
from the structure of the STU program in order to
ensure a balanced coverage of its control flow graph;

(iii) Five sets o f 441 test patterns generated according to
funct ional input distr ibutions derived from a
hierarchical specification of the program functions
based on finite state machines (FSMs) and decision
tables (DTs); these distributions ensure a balanced
coverage of the FSMs states and DTs rules;

(iv) Five sets of 441 test patterns generated according to
functional input distributions derived from another
hierarchical specification produced in the STATEMATE
environment; these distributions ensure a balanced
coverage of the basic states of the statecharts involved
in the STATEMATE specification.

Since it would not be feasible to analyze the execution
traces associated with such large test sets, we have selected
subsets of them in the following way:

1. First, the 16 complete test sets were supplied to each
of the 12 programs containing one real fault in order
to identify the particular test cases that reveal these
faults;

2. Then, for each of these 12 faulty programs, we have
selected among the 10 sets of functional test patterns,
one test sequence such that: its first test case triggers a
program reset, it contains between 2 and 10 test cases,
and it reveals the corresponding fault at least once;
these small test sequences are denoted TI T12;

3. The 12 test sequences Ti were supplied to each of the
24 programs containing one mutation, in order to
check whether or not at least one of them leads to
failure(s); two mutations (namely, M9 and M23) were
not revealed;

4. Then, an additional sequence of 7 test cases has been
selected which allows the observation of failures due
to M9 and of failures due to M23; this test sequence is
denoted T 13.

162

To analyze the errors created upon fault activations and their
propagation mechanisms, the experiments were conducted
on each of the 36 faulty program as follows:

(i) The faulty program and the original program are
executed on a test sequence Tj which reveals the fault;

(ii) The differences between the execution traces of the
faulty program and the original program are identified;

(iii) Each difference observed corresponds to an error and is
recorded in a data base; the set of errors recorded during
the execution of Tj represents the error trace.

Two data bases have thus been created: the "real fault data
base" which contains the error traces related to the 12 real
faults and the "mutation data base" which contains those
related to the 24 mutations. They are described below.

3 . 4 Collected Data Bases

The information collected in an error record contains:

1. An error number;

2. The error type: data flow error or control flow error;

3. The error identification: incorrect variable or branch
predicate;

4. Both correct and incorrect values;

5. The test sequence executed on: T1 or T13;

6. The error location in the execution trace: line number
in the source code, test case number and loop index if
necessary;

7. Its origin: fault or error(s) that created it;

8. Its consequence: error(s) or failure(s) it creates.

The two last information items, origin and consequence, are
used to identify the error traces and the error flows.

During the experiments, we observed similar errors, that is
errors with the same error type, identification, correct and
incorrect values, and locat ion in the source code. These
errors were recorded under the same number. This means
that a same error number may appear several t imes in an
error trace, or in an error flow, or in different error traces.
Two errors label led with different numbers are said to be
d i s t i n c t e r r o r s .

The rea l f au l t data base contains 1458 error records
representing 255 distinct errors. A reduced real fault data
base containing only the dis t inct errors has then been
generated. The mutation data base contains 2272 error
records representing 349 distinct errors. A reduced mutation
data base has also been generated (349 records). Detai led
analyses of the four data bases have been performed, whose
main results are described in Section 4.

4. A N A L Y S E S OF DATA B A S E S

First , two types of ana lyses were pe r fo rmed on the
complete real fault data base in order to:

1. Collect information on real fault behaviors from the
study of the error traces: immediate errors created upon
activation, number of immediate error flows generated,
total number of errors produced (Section 4.1);

2. Co l l ec t i n fo rma t ion about e r ror behav io r s by
examination of the immediate error flows: propagation
through execution cycles, interactions between errors,
etc. (Section 4.2).

Then, comparative analyses between the two complete data
bases on the one hand, and the two reduced data bases on the
other hand, were conducted in order to determine the number
of common errors (Section 4.3). F inal ly , the complete
mutation data base was analyzed to study similarit ies and
discrepancies between mutation and real fault behaviors
(Section 4.4).

4 . 1 Real fault behaviors

The first twelve test sequences (T1 T12) were used
during the experiments on the real faults. Tab le 2 gives an
overview of some results of error trace analysis. For each
real fault, it tabulates:

• The test sequence(s) supplied to the faulty program;

• The number of immediate errors created upon fault
activation(s) during the successive execution cycles,
together with the number of immediate errors created
per activation and their types (incorrect variable, or
branch predicate denoted BP);

• The number of immediate error flows identified in the
error trace; except for fault A for which the immediate
errors affect directly output results, we dist inguish
between immedia te error f lows leading to one or
several failures (noted FF), and immediate error flows
for which no failure is observed (noted FU) leaving
the errors not detected after complet ion of the test
sequence;

• The total number of errors recorded in the error trace.

These results call for some general comments. First, due to
the presence of loops, a fault may be activated several times
during one execution cycle; this explains the fact that the
number of immediate errors may be higher than the number
of execution cycles (see e.g., faults D and E). Second,
immediate errors do not always propagate, either because
the incorrect variables are no more used up to completion of
the test sequence, or because they have been corrected before
being used: hence, the number of immediate error flows
may be lower than the number of immediate errors (this is
especially true for faults J, K and L which are commented
upon below). A total of 88 immedia te error flows were

163

i m m e d i a t e errors --,
F a u l t Test s e q u e n c e i m m e d i a t e errors per # i m m e d i a t e error # errors

(#test cases) f a u l t a c t i v a t i o n f l ows (FF or FU)

A T1 (6) 3 --* 3 incorrect var. 3 failures 3
T2 (9) 23 ~ 3 incorrect var. 23 failures 23

B T1 (6) 16 ~ 2 incorrect var. 2 FF & 1 FU 77

C T3 (6) 4 --* 2 incorrect var. 1 FF & 3 FU 107

D T3 (4) 10 --* 1 incorrect BP 4 FF & 6 FU 244

E T4 (6) 8 ~ 1 incorrect var. I FF & 7 FU 63
T5 (7) 10 "-~ 1 incorrect var. 1 FF & 9 FU 87

F T6 (3) 14 ~ 1 incorrect var. 1 FF & 12 FU 93

G T7 (4) 16 ~ 4 incorrect var. 3 FF & 1 FU 97

H T7 (4) 4 --* 4 incorrect var. 1 FF 91

! T8 (5) 6 --* 1 incorrect var. 1 FF & 5 FU 127

J T9 (4) 72 ~ 1 incorrect var. 1 FF & 1 FU 78

K T10 (5) 18 --* 1 incorrect var. 1 FF & 9 FU 83
T l l (5) 18 ~ 1 incorrect var. 1 FF & 4 FU 67

L T12 (10) 18 --* 1 incorrect var. I FF & 11 FU 218

Table 2: Analysis of the error traces due to real faults
(BP: branch predicate; FF: flow leading to failure(s); FU: flow without failure)

identified in the complete real fault data base, from which
only 19 lead to failure occurrence(s) while the 69 others do
not (due to error masking or cancellation). As a result, the
percentage of errors detected in comparison with the total
amount of errors generated is rather weak.

Fault F is the only fault resulting in additional statements
and it may be interesting to have a closer look at its
behavior. Fault F is activated 14 times by the test sequence
T6, affecting each time the same variable. Thirteen of the
immediate errors propagate and only one error flow affects
output results. This error flow leads to failure because the
corresponding errors can propagate during two successive
execution cycles without being cancelled before affecting
the output variables. Most of the immediate error flows (9
FU) concern only one execution cycle and contain less than
four errors each; they lead to errors that are not used during
the subsequent execution cycles. The three remaining FU
propagate during two execution cycles and contain between
10 and 25 errors each; but all of them lead to either
cancelled errors or masked errors (e.g. incorrect variables
that have the same effect on the output results as the correct
ones).

Faults G and H were experimented on the same test
sequence with the objective of comparing their error traces.
Indeed, in previous experiments [The 93], both faults
exhibited the same external behavior: they were revealed by

the same test cases and they produced the same failures. G
and H are not of the same type (see Table la) and are not
located in the same part of the code; but they affect the
same four variables. The comparison of the execution traces
shows that:

1. From the four variables infected upon fault activation,
only one is concerned by the propagation; thus
generat ing a single immedia te error f low per
activation;

2. Fault activation modes are different: H is activated
once at the first execution cycle, while G is activated
at each of the four execution cycles; hence, after
completion of the test sequence T7, one immediate
error flow (FF) is observed for H, and four immediate
error flows (3 FF & 1 FU) for G;

3. The immediate error flow generated by H corresponds
to the concatenation of the four immediate error flows
generated by G: the corresponding immediate error
created by H is equivalent to the one created by G; it
is created by H at the first execution cycle and it
propagates during the three successive cycles (no. 2,
3, 4), while the corresponding immediate error created
by G is generated at each cycle (after each fault
activation).

As a result, both faulty programs fail on the same test cases
and supplied identical incorrect results.

164

As regards faults J, K and L, a detailed analysis of the
error traces and error flows provides us with information to
understand why they were seldom revealed. Fault J generates
many immediate errors (72 during three successive
execution cycles): only two of them propagate, each one
creating three errors from which only one leads to failure. K
and L create many immediate errors which propagate during
five execution cycles before being detected; such long error
flows facilitate the occurrence of masking or cancellation
mechanisms (this case will be illustrated on Figure 2, in
the next section).

4 . 2 Error behaviors

Investigations on error flows focus on how an error may
propagate through executions creating other errors, but also
on how an error is masked or cancelled and thus, is not
detected. A graphical representation of an error flow is given
in Figure 2: it represents one of the immediate error flows
due to fault K. Each node is associated with an error. For
each error, the incorrect variable/value pairing and the
number of the execution cycle during which the error was
created are indicated. For clarity, this graph is simplified,
the location of each error being not mentioned. For
example, the notation (CO_AQU_DIF = 0/1)1 means that
the variable CO_AQU_DIF was assigned the incorrect value
'0' versus the correct value '1' during the first execution
cycle. The graph edges denote the cause/effect chain between
errors: the error at the arrow's tail is used to create, cancel or
mask the error at the arrow's head. Errors in bold represent
wrong output results (failure occurrence). Errors in italic
affect output variables but are masked or cancelled before
the end of the execution cycle (no failure occurrence).
Framed errors are those remaining in the program internal
state after completion of the test sequence: they could
further propagate if an additional test case were executed
(without initialization). The other errors (normal style) are
cancelled before completion of the test sequence, the
incorrect variables being overwritten.

When a variable is not referenced at a given point in either
the incorrect execution trace or the correct one, its value is
not observed. This case, denoted U (for Unobserved) in
Figure 2, occurs when the execution of the original
program and the execution of the faulty program follow
distinct paths, thus affecting different variables. This
notation allows us to identify in the error flow the errors
due to the incorrect execution of a branch statement
(consequences of a control flow error).

At a given point of the execution, the use of an incorrect
variable or incorrect branch predicate may result in the
creation of new error(s) or/and the masking or/and the
cancellation of other errors. These mechanisms can
affect: 1) the same variable, 2) another variable or
conditional predicate, 3) several variables (resulting in a
division of the error flow in subsequent sub-flows). In the
same way, the combined use of several errors (incorrect
variables and incorrect branch predicate) may result in the

creation, masking or cancellation of errors. The complexity
of such behaviors and interactions is increased by the fact
that the program internal state and the original (correct)
internal state are modified concurrently and a modification
in the original internal state may result in the cancellation
or the masking of an error in the incorrect internal state.

Error creation and propagation have been investigated
in other studies [Ric 88, Voa 92a, Voa 92b, Gor 93, Tho
93]. The RELAY model [Ric 88, Tho 93] provides detailed
descriptions of propagation mechanisms (computational
transfer and information flow transfer) from the creation of
immediate errors until the occurrence of a failure, and the
authors explored information flow transfer on simple
modules. During our experimental study, we observed the
same types of transfer, amplified by: 1) the size of the
software program, 2) the error ability to propagate between
successive execution cycles, 3) the use of AND operators,
4) the parameter passing by value in C.

We have also explored the mask ing and cancellation
mechanisms. They are often associated in other studies
[Voa 92b, Gor 93] but, here, we differentiate between them
since they do not have the same effect on the error graph
and on the program internal state. Cancellation just stops
the extension of an error flow and the cancelled error is
either deleted or replaced by a new error in the internal state,
whereas masking may stop temporarily the extension of an
error flow but the error remains in the internal state and can
propagate further.

Cancellation occurs when:

• An incorrect variable is overwritten in the faulty
program; either the new value is correct (the error is
deleted from the internal state), or it is still incorrect
and a new error is created;

• The correct value is modified in the original program
and the new value becomes equal to the previously
incorrect one;

• In cases of control flow error, when the execution of a
branch incorrectly selected is completed, the PC value
turns into the correct one;

• etc.

Masking occurs when:

• An incorrect variable is not used in current
computations, stopping temporarily the extension of
the error flow; this error may be manifested later;

• An incorrect variable (or more) is used in a
computation to affect another variable and the
resulting value is equal in both programs; this
phenomenon, called "blindness" by Zeil [Zei 89] was
also observed and explained by Bishop [Bis 89]; it is
amplified in our study by the use of OR operators and
shift operators in many computations;

• etc.

165

(CO_AQU_DIF=0/I) 1

(CO_AQU_DIF=I/2) 1
(CO_AQU_DIF=2/3) 2

(CO_AQU_DIF=3/4) 3

(CO_AQU_DIF=4/5) 4

[1]

(BP 9.2~T/F)4 (INVALID_PA=0/1)4

(M E S U ~

(INVALID_PA = 1/UFI

__(CO_AQU_EGA=U/1)4

[2 (VALID--MES= 1/0)4

(V ALI[D~_]FILT~R_VO IE= 1/0)4 (DER_MES U:~ 2/U) 5) ~CO_AQU_D~= 1/U) , ~ C O _ A Q U ~ E G A:U/2,5)
((VALID_MES= 1/0)5)

VOl l,O,,)
((VALID_FILTR_VOIE= 1/0)5~

- j (POS_VGRAPPE=109/U)5

Fig. 2: E x a m p l e o f an error f low graph due to faul t K

Some illustrations of the error propagation, masking and
cancellation mechanisms are indicated on Figure 2, where
different types of interactions and impacts on the error flow
graph are observed:

[1] Propagation on the same variable resulting in the
simple extension of the error flow; this error evolves
through 4 successive execution cycles, both programs
following the same path during the first 3 cycles;

[2] Propagation affecting two variables resulting in the
division of the error flow into subsequent error flows;
the error created on the variable VALID_DER VAL is
masked during the rest of the 4th execution cycle, and
then used in the 5th cycle enabling error propagation
to an output result (failure occurrence);

[3] Propagation by parameter passing which results in a
simple extension of the error flow;

166

[4] C o m b i n e d use o f two errors resu l t ing in the
convergence o f the co r respond ing sub-f lows; an
incorrect variable is used in an incorrectly selected
branch creating a new incorrect variable;

[5] C o m b i n e d use o f two errors resu l t ing in the
convergence o f the cor respond ing sub-f lows; an
incorrect variable is overwritten in the faulty program,
by execution of a branch incorrectly selected; then the
new value becomes correct, thus cancelling one of the
previous error.

4 .3 Comparison of errors

The compar ison between the comple te real fault and
mutation data bases shows that:

(i) 1930 errors recorded in the mutation data base are
present in the real fault data base (i.e. 85%);

(ii) Among the 342 other records represent ing "new"
errors in the mutation data base, 158 are immediate
errors (i.e. 7%) and 184 are propagated errors (8%).

Figure 3 illustrates the result of the comparison between
the reduced real fault and mutation data bases, showing the
amount of dist inct errors shared by the two data bases.
These raw results are in favor of a good representativeness
of the e r rors g e n e r a t e d by muta t ions . The 30%
miscel laneous dist inct errors in the mutat ion data base
represent new errors due to erroneous computations leading
to many incorrect values on the same integer variables: a
majority of these errors occurred only once and are due to
mutations whose behaviors are described in Section 4.4.2.
Most of the 13% miscel laneous distinct errors in the real
fault data base are either created upon activations of fault K
under the test sequence T10, or errors due to fault D. Indeed,
the behaviors of these two faults are those which were least
reproduced by the selected mutations as explained in the
next section.

60%

10% 5%

a) Mutation DB b) Real fault DB

I I Distinct errors present in both data bases
Immediate errors (specific to the fault)
Miscellaneous propagated errors

Fig. 3: Analysis of the distinct error sets:
a) in the mutation data base (349 distinct errors)
b) in the real fault data base (255 distinct errors)

4 . 4 Error flow comparison

For complexity reason and due to the large amount of errors
produced, the compara t ive analysis of error flows was
focused on immediate error flows. In this section, the errors
in the real fault data base are called actual error (for short)
and actual errorflows denote the associated flows.

A total of 41 immediate error flows leading to at least one
failure (FF) and 128 immedia te error flows resulting in
masked or cancelled errors (FU) have been identified in the
complete mutation data base. It is worth noting that this
proportion of FF and FU obtained from the 24 mutations is
similar to the one obtained from the 12 real faults (19 FF
and 69 FU, see Section 4.1). This lends support to the
assumption that mutations can exhibit error behaviors as
complex as those produced by real faults.

A mutation is said to totally model a real fault when it
generates the same immediate error flows than the real fault,
except for the immediate error(s) directly related to the fault
syntax and semantic. A mutation partially models a real
fault when they produce common error flows that result in
the same failures or in the same masked or cancelled errors
affecting output variables. The compar ison of the error
flows shows that:

• All the real faults are totally or partially modelled by
mutations;

• Only 4 mutat ions (M4, M9, M23, M24) do not
generate any immediate error flow similar to an actual
error flow.

These two general results are commented upon in Sections
4.4.1 and 4.4.2, respectively.

4 . 4 . 1 Real fault behavior modell ing

For purposes of comparison, we consider that an error flow
due to a mutation totally reproduces an actual error flow
when either the two flows are identical (except for the
immediate error), or the mutation error flow contains the
actual error flow. It partially reproduces an actual error flow
when it constitutes or contains a sub-f low of the actual
error flow; in that case the common sub-flows have to
result, after complet ion of the test sequence, in the same
errors affecting the output variables (same failures in case of
a FF, and same cancelled or masked errors in case of a FU).

A total of 16 from the 19 actual immediate error flows
leading to failure (FF) and 49 from the 69 actual immediate
error flows leading to masking (FU) are reproduced - - either
to ta l ly or pa r t i a l ly - - in the muta t ion da ta base.
Surprisingly, the 3 actual FF that have not been reproduced
upon mutation activation are related to faults D and K that
correspond each to a single faulty statement in the source
code and thus are s imi lar to muta t ions of "opera tor
replacement" and "symbol replacement" type, respectively.

167

Faul t

A

B

C

D

E

F

G

H

M u t a t i o n
Tes t

sequence
(# test cases)

Actual immediate error
flows (FF or FU)

reproduced

M10 T2 (8) same failures

M1 T5 (7) same failures

M2 same failures

M14

M3

M15

M20*

M4

M20*

M l l

M16

M21*

T1 (6)

T1 (6)

T1 (6)

T3 (9)

T3 (4)

T3 (2)

T3

T4

T5

T6

T6 M22"

M5 T7

M12 T6

M13* T7

M17 T7

M5 T7

M12 T6

M13* T7

M17 T7

Actual immediate
error flows

not reproduced

2 FF totally

1 FF partially

1 FF and 1 FU totally

1 FU partially

no similarity

(4) 2 FF and 1 FU partially

(6) 1 FF and 7 FU totally

(8) 1 FF and 9 FU totally

(2) 1 FF and 1 FU partially

(2) 1 FF and 1 FU partially

(4) 1 FF partially

(2) 1 FF totally

(3) 2 FF partially

(4) 3 FF and 1 FU partially

(4) 1 FF partially

(2) 1 FF partially

(3) 1 FF partially

(4) 1 FF partially

(4)

(4) 1 FF and I FU totally

3 from 6 distinct

failures

1 F U

2 F U

2 FF and 5 FU

none

11 FU

none

none

I M18 T8 1 FF totally and 5 FU partially none

J M 19 T9 none

K M6 T11 (5) 1 FF and 4 FU totally

M8* T3 (8) 3 FU totally

L M7 T12 (7) 1 FF and 1 FU totally none

1 FF and 1 FU

due to T10

Table 3: Similarities between real fault and mutation behaviors
(* mutations selected arbitrarily)

168

Table 3 summarizes the similarities observed between the
mutation behaviors and the real fault behaviors identified in
Table 2. It tabulates:

• For each real fault, the mutations that totally or
partially model it;

• For each mutation, the test sequence executed on and
the number of actual immediate error flows it
reproduces partially or totally; mutations marked with
an * are those chosen arbitrarily (not listed in
Table lb), and thus, not located on the instructions
involved in the "fix" of the real faults;

• For each fault, the number of immediate error flows
not reproduced by the studied mutations.

This table shows that several real faults were totally
modelled by mutations under the same test sequence (e.g.
faults E, J, K, L). If we have a closer look at the real faults
that are located on a single statement, they correspond either
to missing statements (faults E and J), or to faulty
statements (faults D, I, K and L). For the later type of
faults, it is worth noting that the mutations studied don't
reproduce totally the same behaviors (e.g. faults D and I),
though it would have been possible to select mutations
among the 2419 mutations available that generate the same
error flows. I f we examine how the behaviors generated by
real faults that affect several statements (faults B, C, F, G,
H) are reproduced by the selected mutations, we can notice
that all the actual error flows leading to failures were
partially or totally reproduced.

In Section 4.1, it was noticed that faul ts G and H
exhibit similar behaviors: this explains that the same four
mutations (M5, M12, M13, M17) modelled both faults G
and H.

Similarities between faul t K and mutation M8 are
noticeable: in spite of the fact that M8 and K are not located
on the same instruction and that the faulty programs were
not executed on the same test sequence, M8 reproduced 3
FU related to fault K.

Fault D was incompletely modelled. In particular, there
was no similarity with mutation M4 located on the same
instruction. The reason is that the activation of D may only
produce an incorrect branch predicate whose value is "false"
(versus "true" in the original program). M4 affects the same
branch predicate, but its activation may only produce the
incorrect value "true" (versus "false" in the original
program). Hence, D and M4 affect the same location in the
code but they always create distinct error flows (no common
errors). We will return to the behavior of M4 in the next
section.

Fault F corresponds to additional statements in the source
code; it was therefore impossible to select a mutation that
affects the same location. However, mutations M21 and
M22 partially model F. M21 creates an immediate error that
is an actual error produced by F; thus one FF generated by
M21 corresponds to a sub-flow extracted from the actual
FF. M22 creates new immediate errors but it reproduces the
same FF as M21 (the corresponding FF are identical from
the second error present in the immediate error flows). The
actual FU partially reproduced by M21 and M22 are one of
the longest described in Section 4.1. Moreover, although
fault F behaviors are the least modelled by mutations, all
the actual errors generated by F are present in the mutation
data base.

To conclude this comparative analysis, it is worth noting
that the studied mutations have easily reproduced: 1) the
same subtle behaviors as those observed for faults J, K and
L; 2) the same behaviors as those identified for omission
faults (missing statements).

4 . 4 . 2 Mutations M4, M9, M23 and M24

Mutations M9, M23, M24 were selected arbitrarily among
the 2419 mutations available. Mutation M4 affects the
same location as fault D but it does not produce immediate
errors upon the same fault activations. For these four
mutations, all the immediate error flows were different
from the actual ones. Thus, we only analyzed the
representativeness of the errors they produced, independently
of the error flows they belong to.

Test sequence # immediate
M u t a t i o n (# test cases) error flows # errors created # new errors

M 4 T3 (2) 14 FF & 14 FU 300 98 (56 distinct)

M 9 TI3 (7) 1 FF 23 13 (8 distinct)

M 2 3 T13 (7) 1 FF 29 11 (6 distinct)

M 2 4 T9 (4) 2 FF & 27 FU 147 32 (17 distinct)

Total = 499 Total -- 154

Table 4: Analysis of M4, M9, M23 and M24

169

The results are summarized in Table 4 which gives, for
each mutation:

• The test sequence executed;

• The number of immediate error flows;

• The total amount of the errors present in the error
lrac~;

• The number of "new" errors (i.e. not recorded in the
real fault data base) with the number of distinct errors
they represent in the reduced mutation data base.

These mutations produced 154 from the 342 new errors
contained in the complete mutation data base (see Section
4.3), that is to say 45%. Even if they do not model any real
fault, 69% of the errors produced are actual errors: this
result is encouraging with respect to the representativeness
of the errors produced by mutations.

5 . S U M M A R Y A N D C O N C L U S I O N S

This paper reports on a real case study involving real faults
and mutations. The experiments related here were conducted
on a student version of a critical program from the civil
nuclear field. They focus on the analyses of the errors
produced by 12 real faults on the one hand and by 24
mutations on the other hand. The results are in favor of a
good representativeness of the errors generated by
mutations: 85% of the errors produced by the mutations
were also generated by the real faults. This positive
outcome is confirmed by the qualitative analysis on error
behaviors. It demonstrates how mutations can produce,
upon activation, error behaviors as complex as the real
faults did. We expect these results to be relevant as the
studied mutations were not purposely selected to exhibit the
same error behaviors as those identified for real faults.
Indeed, we did not know a priori if any similarity could be
observed.

One may consider that the faulty programs corresponding to
the 12 real faults are syntactically close to the correct
program, in spite of the fact that the types of the studied
faults are diverse: they are either coding faults, or
initialization faults, or the results of a misunderstanding of
the requirements by the programmer. Unfortunately,
identification of errors by comparison between the
execution trace of a faulty program and the execution trace
of the correct program would not have been possible if both
programs were too syntactically different.

The exploration of error behaviors on a complex program is
tedious and may not generally be conceivable: this explains
the relative small number of mutat ions studied.
Nevertheless, this exploration is necessary to understand the
complex mechanisms of error propagation, error masking
and error cancellation through successive execution cycles.
Such experiments are currently being conducted on another

real case study to see whether or not the results are
confirmed.

We also intend to conduct similar experiments on faulty
programs containing two or more faults. However, we
suspect that the fault and error behaviors that will be
observed could be equivalent to those related to the
interactions between immediate error flows in our study.
That is to say, interactions between faults could be
essentially due to the interactions between the immediate
error flows they may create. Indeed, we have noticed that a
single fault may create several immediate errors and that
this fault could be activated several times in a single
execution cycle or during successive execution cycles;
interactions between immediate error flows have thus been
observed. Similar interactions should be identified between
error flows produced when several faults infect a program.

Finally, the large data bases of error records now available
provide us with valuable information to identify and model
fault and error behaviors. We noticed, in our study, that the
complexity of an error behavior is not related to the type of
fault but rather to the interactions of the errors with the
program dependencies [Pod 90]. Further theoretical
investigation will concern the use of program dependencies
to explain and model error behaviors.

A C K N O W L E D G E M E N T S

We wish to thank our colleague Yves CROUZET for having
provided us with the mutation analysis environment and the
whole set of mutations used in the experiments and for his
helpful suggestions about the analyses performed. We
would also like to thank the referees for their useful
comments, which lead, we hope, to an improved paper.

REFERENCES

IBis 89]

[DeM 78]

[DeM 94]

Bishop P.G. and Pullen F.D., "Error Masking: a
Source of Failure Dependency in Multi-Version
Programs", Proc. 1st IFIP Working Conference
on Dependable Computing for Critical
Applications (DCCA-I), Santa-Barbara, USA,
pp. 53-73, 1989.

DeMillo R.A., Lipton R.J. and Sayward F.G.,
"Hints on Test Data Selection: Help for the
Practicing Programmer", Computer, vol. 11,
no. 4, pp. 34-41, 1978.

DeMillo R.A. and Mathur A.P., "On the Use of
Software Artifacts to Evaluate the Effectiveness
of Mutation Analysis for Detecting Errors in
Production Software", Software Engineering
Research Center report, Purdue University,
W. Lafayette, USA, 1994.

170

[Gor 93]

[Lap 92]

[Mur 94]

[Off 89]

[Pod 90]

[Ric 88]

[Ric 93]

Goradia T., "Dynamic Impact Analysis : A
Cost-effective Technique to Enforce Error-
propagation", Proc. 1st International Symposium
on Software Testing and Analysis (ISSTA),
Cambridge, USA, pp. 171-181, 1993.

Laprie J.C. (Ed.), Dependability: Basic Concepts
and Terminology, Springer-Verlag, vol. 5,
Dependable Computing and Fault Tolerance
Systems, Springer-Verlag, 1992.

Murrill B.W. and Morell L., "An Experimental
Approach to Analyzing Software Semantics
Using Error Flow Information", Proc. 2nd
International Symposium on Software Testing
and Analysis (ISSTA), Seattle, USA, p. 200,
1994.

Offutt A.J., "The Coupling Effect: Fact or
Fiction?", Proc. 3rd Symposium on Testing,
Analysis and Verification (TA V 3), Key West,
USA, pp. 131-140, 1989.

Podgurski A. and Clarke L.A., "A Formal
Model of Program Dependences and Its
Implications for Software Testing, Debugging,
and Maintenance", IEEE Transactions on
Software Engineering, vol. 16, no. 9, pp. 965-
979, 1990.

Richardson D.J. and Thompson M.C., "The
RELAY Model of Error Detection and its
Application", Proc. 2nd Workshop on Software
Testing, Verification and Analysis, Banff,
Canada, pp. 223-230, 1988.

Richardson D.J. and Thompson M.C., "An
Analysis of Test Data Selection Criteria Using
the RELAY Model of Fault Detection", IEEE
Transactions on Software Engineering, vol. 19,
no. 6, pp. 533-553, 1993.

[The 93]

[The 95]

[Tho 93]

[Voa 92a]

[Voa 92b]

[Zei 89]

Th6venod-Fosse P. and Waeselynck H.,
"STATEMATE Applied to Statistical Software
Testing", Proc. 1st International Symposium on
Software Testing and Analysis (ISSTA),
Cambridge, USA, pp. 99-109, 1993.

Th6venod-Fosse P. and Crouzet Y., "On the
Adequacy of Functional Test Criteria Based on
Software Behaviour Models", Proc. 5th IFIP
Working Conference on Dependable Computing

for Critical Applications (DCCA-5), Urbana-
Champaign, USA, pp. 176-187, 1995.

Thompson M.C., Richardson D.J. and Clarke
L.A., "An Information Flow Model of Fault
Detection", Proc. 1st International Symposium
on Software Testing and Analysis (ISSTA),
Cambridge, USA, pp. 182-192, 1993.

Voas J.M. and Miller K.W., "The Revealing
Power of a Test Case", Journal of Software
Testing, Verification and Reliability, vol. 2,
pp. 25-42, 1992.

Voas J.M., Morell L.M. and Miller K.,
"Predicting Where Faults Can Hide from
Testing", IEEE Software, vol. 8, no. 2, pp. 41-
48, 1992.

Zeil S.J., "Perturbation Techniques for
Detecting Domain Errors", IEEE Transactions
on Software Engineering , vol. 15, no. 6,
pp. 737-746, 1989.

171

