
Analyzing Temporal Role Based Access Control Models

Emre Uzun
Rutgers University

emreu@rutgers.edu

Vijayalakshmi Atluri
Rutgers University

atluri@rutgers.edu

Shamik Sural
Indian Institute of Technology

shamik@cse.iitkgp.ernet.in

Jaideep Vaidya
Rutgers University

jsvaidya@business.
rutgers.edu

Gennaro Parlato
University of Southampton

gennaro@ecs.soton.ac.uk

Anna Lisa Ferrara
University of Bristol

anna.lisa.ferrara@bristol.ac.uk

P. Madhusudan
University of Illinois at
Urbana-Champaign

madhu@illinois.edu

ABSTRACT

Today, Role Based Access Control (RBAC) is the de facto
model used for advanced access control, and is widely de-
ployed in diverse enterprises of all sizes. Several extensions
to the authorization as well as the administrative models for
RBAC have been adopted in recent years. In this paper, we
consider the temporal extension of RBAC (TRBAC), and
develop safety analysis techniques for it. Safety analysis is
essential for understanding the implications of security poli-
cies both at the stage of specification and modification. To-
wards this end, in this paper, we first define an administra-
tive model for TRBAC. Our strategy for performing safety
analysis is to appropriately decompose the TRBAC anal-
ysis problem into multiple subproblems similar to RBAC.
Along with making the analysis simpler, this enables us to
leverage and adapt existing analysis techniques developed
for traditional RBAC. We have adapted and experimented
with employing two state of the art analysis approaches de-
veloped for RBAC as well as tools developed for software
testing. Our results show that our approach is both feasible
and flexible.

Categories and Subject Descriptors

H.1.0 [Information Systems Models and Principles]:
General

General Terms

Design, Security, Verification

Keywords

Access Control, Temporal RBAC, Safety Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

1. INTRODUCTION
Providing restrictive and secure access to resources is a

challenging and socially important problem. Role-based ac-
cess control (RBAC), which allocates permissions to users
via roles, is one of the primary access control models. It
has been successfully incorporated in a variety of commer-
cial systems, and has become the norm in many of today’s
organizations for enforcing security.

One major advantage with RBAC is that, unlike in discre-
tionary access control (DAC) where users can grant access
privileges at their own discretion, organizations have cen-
tral control over its resources. For large organizations, it is
normal to have roles in the order of thousands and users in
the order of tens of thousands. Typically, security adminis-
tration is performed by a system security officer (SSO) and
is decentralized by delegating administrative activities as it
is overwhelming for a single SSO to administer all roles.
Administrative RBAC (ARBAC) [14], is a comprehensive
model of using RBAC to administer RBAC, by introduc-
ing administrative roles and associated privileges. Admin-
istrative activities of ARBAC include user-role assignment
(URA), permission-role assignment (PRA) and role-to-role
assignment (to specify the role hierarchies).

While decentralized RBAC administration enhances the
flexibility and scalability, an obvious side effect of it is re-
duced organizational control over its resources. Therefore,
certain security guarantees are essential to ensure controlled
delegation and to retain the desired level of control. Such
guarantees can only be ensured through a formal analysis of
the security properties of the RBAC system. A study of the
formal behavior of RBAC models helps organizations gain
confidence on the level of control they have on the resources
they own. Moreover, security analysis helps them set poli-
cies so that owners do not unknowingly lose their control
on resources, and aids them make to changes to the policies
only if the analysis yields no security policy violations.

Several extensions to RBAC have been proposed for im-
plementation in different domains such as geospatial, mobile
and temporal. Noted examples include: temporal RBAC
(TRBAC) [2], generalized temporal RBAC (GTRBAC) [10],
and Geo-RBAC [3].

177

In this paper, we limit our focus to the temporal exten-
sions of RBAC. In temporal RBAC, it is possible to specify
that a role can be enabled only during a certain time inter-
val (fixed or periodic), or a role can be enabled as long as
another role is enabled. In advanced temporal RBAC mod-
els there are additional constraints that introduce the notion
of role activation, temporal validity on the user-to-role and
permission-to-role assignments. Bertino et al. [2] propose a
model for TRBAC which has temporal constraints on role
activation and deactivation, periodic role enabling and dis-
abling. Later, Joshi et al. [10] propose a generalized version
of TRBAC (GTRBAC) that has temporal constraints on
user and permission assignments, in addition to the existing
temporal constraints on TRBAC.

The main goal of this paper is to offer formal analysis
of TRBAC. In order to accomplish this, we first define an
administrative model for TRBAC (called ATRBAC). In con-
ventional RBAC systems, where administration is done by
users with specific administrative privileges (separation of
duty), a separate administrative model in which, the poli-
cies to control role assignments, role revocations and other
possible operations are declared. These policies are often
represented by can-assign and can-revoke rules, which al-
low administrative users to assign or revoke roles for users
that satisfy certain preconditions, or assign or revoke per-
missions from roles. Therefore, the assignment / revocation
operations are limited to the extent covered by the policies.

The first comprehensive administrative model for RBAC
is called ARBAC97 [14], which introduces the notion of
an administrator role (AR) with administrative permissions
(AP). ARBAC97 has three components: URA97 (user-role
assignment), PRA97 (permission-role assignment) and
RRA97 (role-role assignment) dealing with the different as-
pects of RBAC administration. URA97 and PRA97 are ex-
act duals of each other, and are based on the notions of pre-
requisite conditions and role ranges. They use “can assign”

and “can assignp” rules for role and permission assignments,
respectively. These rules use the notions of (1) the role range
that an administrator role has authority over, and (2) the
prerequisite role (or prerequisite condition) needed to ex-
ercise that authority. Later, several other administrative
models are proposed by Crampton and Loizou [4], Kern et
al. [11], Li and Mao [12], Dekker et al. [5] and Bertino et
al. [1] to cover more advanced administrative structures.

The temporal constraints can be considered as an addi-
tional layer of preconditions to the access control policies,
but they are not limited to them. There are two differ-
ent ways to embed temporal constraints in RBAC. The role
assignments can have a temporal dimension, denoting the
time intervals (we denote them as role schedules) in which
the role assignment is valid, or the administrative rules can
have a temporal dimension denoting the time intervals (we
denote them as rule schedules) in which a particular rule is
executable. The former restricts the time intervals that the
users assume a given role, whereas the latter restricts the
time intervals that the administrators execute an adminis-
trative rule in the system.

The safety problem, first identified by Harrison, Ruzzo
and Ullman [8] can be formulated as testing the follow-
ing: “Whether there exists a reachable authorization state
in which a particular subject possesses a particular privi-
lege for a specific object”. Stoller et al. [15] have developed
a fixed parameter tractable algorithm to perform security

analysis for a simplified version of RBAC. Another security
analysis on RBAC using reduction based algorithms is pro-
posed by Li and Tripunitara [12]. Jha et al. [9] compared
the use of model checking and first order logic program-
ming for the security analysis of RBAC, and concluded that
model checking is a promising approach for security analy-
sis. Ferrara et al. [7] propose an RBAC reachability analysis
which exploits abstraction techniques as used in program
verification. Their approach reduces the RBAC model into
a program and makes a sound analysis to prove whether a
particular state is unreachable. While none of the above
work address the TRBAC analysis, recently, a timed au-
tomata based analysis of GTRBAC is proposed by Mondal
et al. [13]. Since it assumes continuous time model, the cost
of analysis has been shown to be very expensive; in this
paper, we tackle the problem by considering discrete time
intervals.

Specifically, we make the following contributions in this
paper. (1) We propose an administrative model for the TR-
BAC that governs the access control rights of the users. (2)
We propose a novel approach for security analysis of TR-
BAC. The main strategy we use while performing the secu-
rity analysis is to decompose the TRBAC analysis problem
into multiple subproblems similar to RBAC. Essentially, we
split the problem into simpler RBAC subproblems so that
deciding whether a particular target state is reachable or
not can be potentially simpler. Additionally, it lends itself
to employ the analysis techniques developed for traditional
RBAC.

We present two different decomposition strategies – (1)
Decomposition using rule schedules and (2) Decomposition
using role schedules. Though we can employ any RBAC
reachability analysis method, in this paper, we have used
the approach developed by Stoller et al. [15] and Ferrara
et al. [7], where the latter method can perform multi-user
analysis.

The rest of the paper is organized as follows. In Section 2,
we review the preliminaries. In Section 3, we introduce the
temporal constraints and propose our administrative model
for TRBAC. In Section 4, we discuss our two different de-
composition strategies that map the TRBAC into a series
of subproblems. In Sections 5 and 6, we present the details
of the methodologies along with their experimental results.
In Section 7, we provide a discussion to compare these two
strategies and introduce an approach to analyze the multi-
user case. In Section 8, we give our concluding remarks and
future work.

2. PRELIMINARIES
In this section, we review the definition of our adminis-

trative model for TRBAC. Since we reduce the problem of
analyzing administrative TRBAC systems to that of admin-
istrative RBAC, we also recall the definition of RBAC and
administrative RBAC.

2.1 RBAC and Administrative RBAC
A RBAC policy [6] is a tuple 〈U, R,PRMS , UA,PA〉 where

U , R and PRMS are finite sets of users, roles, and permis-

sions, respectively, UA ⊆ U ×R is the user-role assignment

relation, PA ⊆ PRMS ×R is the permission-role assignment

relation. A tuple (u, r) ∈ UA represents that user u belongs
to role r. Similarly, (p, r) ∈ PA represents that members of
role r are granted permission p.

178

The Administrative RBAC (ARBAC) [14] model specifies
rules to modify an RBAC system. It is composed of three
modules URA user-role administration, PRA permission-role
administration, and RRA role-role administration. In this
paper we focus on administrative permissions to assign users
to roles, therefore, we will only describe the URA component.

The URA policy allows to make changes to the user-role as-
signment relation UA by using assignment/revocation rules
performed by administrators. Administrators are those users
that belong to administrative roles. We denote the set of ad-
ministrative roles as AR. Some policies consider the set AR

to be disjoint from the set of roles R. Those policies are
said to meet the separate administration constraint [15]. We
assume that the set of administrative roles AR is included
in the set of roles R, unless differently specified. A user can
be assigned to a role if she satisfies the precondition associ-
ated to that role. A precondition is a conjunction of literals,
where each literal is either in positive form r or in negative
form ¬r, for some role r in R. Following [7], we represent
preconditions by two sets of roles Pos and Neg . A user u

satisfies a precondition (Pos ,Neg) if u is member of all roles
in Pos and does not belong to any role of Neg .

Rules to assign users to roles are specified by the set:

can assign ⊆ AR × 2R × 2R × R.

A can-assign tuple (admin, Pos,Neg , r) ∈ can assign allows
a member of the administrative role admin to assign a user
u to roles r provided u’s current role memberships satisfies
the precondition (Pos,Neg).

Rules to revoke users from roles are specified as follows:

can revoke ⊆ AR × R.

If (admin, r) ∈ can revoke , a member of the administrative
role admin ∈ AR, can revoke the membership of any user
from role r ∈ R.

A URA system can be seen as a state-transition system de-
fined by the tuple S = 〈U, R,UA, can assign, can revoke〉.
A configuration of S is any user-role assignment relation
UR ⊆ U × R. A configuration UR is initial if UR = UA.
Given two S configurations c = UR and c′ = UR′, there is a
transition (or move) from c to c′ with rule m ∈ (can assign∪

can revoke), denoted c
τm−−→ c′, if there exists an administra-

tive user ad and administrative role admin with (ad , admin) ∈

UR and a user u ∈ U , and one of the following holds:

[can-assign move] m = (admin, P, N, r), P ⊆ {r′ | (u, r′) ∈
UR}, N ⊆ R \ {r′ | (u, r′) ∈ UR}, and UR′ = UR∪{(u, r)};

[can-revoke move] m = (admin, r), (u, r) ∈ UR, and
UR′ = UR \ {(u, r)}.

A run (or computation) of S is any finite sequence of S

transitions π = c1

τm1−−−→ c2

τm2−−−→ . . . cn

τmn−−−→ cn+1 for some
n ≥ 0, where c1 is the initial configuration of S . An S
configuration c is reachable if c is the last configuration of a
run of S .
Reachability Problem: Given an URA system S over the set
of roles R and a role goal ∈ R and a user u, the role-

reachability problem asks whether a configuration c with
(u, goal) ∈ c is reachable in S .

2.2 Temporal RBAC
We consider a TRBAC model which is a simplified version

of prior work [2, 10]. Temporal RBAC enriches the definition
of RBAC by associating to each component a schedule that
enables users to assume roles only in certain time intervals.
Let TMAX be a positive integer. A time slot of Times is a pair
(a, a+1), where a is an integer, and 0 ≤ a < a+ 1 ≤ TMAX .
A time slot (a, a + 1) represents the set of all times in the
set [a, b), i.e., {t | a ≤ t < b}. We use a time interval,
consisting of a pair (a, b) where a, b are two integers and
0 ≤ a < a+1 ≤ TMAX , to represent the set of corresponding
time slots {(a, a + 1), (a + 1, a + 2), . . . (b − 1, b)} succinctly.
A schedule over TMAX is a set of time slots.

For instance, consider a hospital that works for 24 hours
with three shifts (between 8 am and 4 pm, between 4 pm and
12 am, and between 12 am and 8 am). If we want to have the
precision of hours, we choose TMAX = 24, and a schedule s

that covers shifts 8 am–4 pm and 4 pm–12 am is represented
as s = {(8, 9), (9, 10), . . . , (23, 24)}. The schedule definition
is a simplified version of the Calendar definition in Bertino
et al. [2], where we have simpler periodic constraints and do
not have duration constraints. We assume that the system
is periodic, thus the schedules repeat themselves after any
TMAX ; in the hospital example above, time intervals are
repeated each 24 hours. Given a schedule s over TMAX and
an real number t, we say that t belongs to s, denoted t ∈ s, if
there is a time interval (a, b) ∈ s such that t′ ∈ [a, b), where
t′ = t mod TMAX .

Let S be the set of all possible schedules over TMAX . A
TRBAC policy over TMAX is a tuple M = 〈U, R,PRMS ,

TUA,PA,RS〉 where U , R and PRMS are finite sets of users,
roles, and permissions, respectively, TUA ⊆ (U × R × S) is
the temporal user-role assignment relation, PA ⊆ (PRMS ×
R) is the permission-role assignment relation, and RS ⊆
(R × S) is the role-status relation. A tuple (u, r, s) ∈ TUA

represents that user u is a member of the role r only during
the time intervals of schedule s. During the life time of the
system, a role can be either enabled or disabled. A tuple
(r, s) ∈ RS imposes that role r is enabled only during the
time intervals of s (and therefore it can be assumed to be
a member of r only at these times), and disabled otherwise.
As in classical RBAC, a tuple (p, r) ∈ PA means that per-
mission p is associated to role r. Thus, a user u is granted
permission p at time t ∈ [0, TMAX] provided that there ex-
ists a role r ∈ R such that (u, r, s1) ∈ TUA, (r, s2) ∈ RS,
(p, r) ∈ PA, and t ∈ (s1 ∩ s2), for some time intervals s1 and
s2.

Throughout the paper, we assume that relation RS for
each role r ∈ R contains always exactly one pair with first
component r. Similarly, the relation TUA contains exactly
one tuple for each pair in U ×R. Thus, if a role r is disabled
in any time interval, we require that RS relates r with the
empty schedule. Similarly, if a user u does not belong to a
role r in any time interval, the pair (u, r) is associated to
the empty schedule by the relation TUA.

In the next section we introduce our administrative model.

3. ADMINISTRATIVE TRBAC
In temporal RBAC, it is important to decide on the ex-

tent to which the notion of time is embedded into the system.
Theoretically, if one wants to capture complete behavior of
the system at every piece of time instance, then a contin-

179

uous time model should be built and for the analysis, con-
tinuous time models like timed automata should be used.
However, continuous time analysis adds extra complexity
to the model, since in real life systems, temporal decisions
on access control are usually handled in discrete time inter-
vals. For instance, the access control schemes may change
depending on predefined intervals like day-time hours and
night-time hours, weekdays and weekends (in both cases we
have two discrete intervals), or even hourly (24 discrete in-
tervals). Thus, it is sufficient to analyze the behavior of the
system in only these intervals rather than having a continu-
ous time analysis.

In the following, we propose an administrative model that
allows administrators to make changes to the role-status re-
lation RS and the temporal user-role assignment relation
TUA by using respectively enable / disable and assignment
/ revocation rules. More specifically, the goal of an en-
able/disable (respectively, assignment/revocation) rule for
a role r (for a user u and a role r, resp.) is that of updating
the time intervals of the current schedule s associated to each
pair (r, s) ∈ RS (respectively, each triple (u, r, s) ∈ TUA).

In the following, we describe a Temporal URA system (TURA)
as a state-transition system. A TURA system is a tuple S

T
=

〈M, can enable, can disable, t can assign, t can revoke〉
where M = 〈U, R,PRMS ,TUA,PA,RS〉 is a TRBAC pol-
icy over TMAX , and can enable , can disable, t can assign ,
t can revoke ⊆ (R × S × 2R × 2R × S × R).

A configuration of S
T

is a pair (ER,TUR) where ER ⊆
(R × S) is an enabled-role assignment relation and TUR ⊆
(U × R × S) is a user-role assignment relation. A con-
figuration (ER,TUR) is initial if ER = RS and TUR =
TUA. Given two S

T
configurations c = (ER,TUR) and

c′ = (ER′,TUR′), we describe below the conditions under
which there is a transition (or move) from c to c′ at time
t ∈ N with rule m ∈ MALL = (can enable ∪ can disable ∪

t can assign ∪ t can revoke), denoted c
(τm,t)
−−−−→ c′.

Before defining the transition relation, we first describe
the components of move m = (admin, srule , Pos ,Neg , srole , r).
Move m can be executed only by a user, say ad , belonging to
the administrative role admin ∈ R. The times t in which ad

can execute m are all those in which ad is assumed to be a
member of role admin, and furthermore, t must also belong
to the schedule srule which denotes the time intervals when
m can be fired (or we say valid): t ∈ (sad ∩ sadmin ∩ srule)
where (ad , admin, sad) ∈ TUR and (admin, sadmin) ∈ ER.
In the rest of the section we say that m can be executed at
time t whenever t fulfills the above condition. The compo-
nent srole is used to update the schedule of a role, or the
membership of a user to a role, depending on the kind of
rule of m. The pair of disjoint role sets (Pos,Neg) is called
the precondition of m whose fulfillment depends by the kind
of the rule m.

The fulfillment of the precondition of a can-enable and
can-disable rule depends on the current status of the other
roles. Let ŝ ⊆ srole . A can-enable or can-disable rule m =
(admin, srule ,Pos ,Neg , srole , r) satisfies its precondition
(Pos ,Neg) w.r.t. candidate schedule ŝ, if for every time
slot α ∈ ŝ, if 1) for every role pos ∈ Pos, α ⊆ spos where
(pos , spos) ∈ ER, 2) for every role neg ∈ Neg , α ∩ sneg = ∅,
where (neg , sneg) ∈ ER, and 3) α satisfies all preconditions.
In other words, a candidate schedule ŝ ⊆ srole satisfies a
precondition only if each time slot α ∈ ŝ satisfies the pre-
condition individually. Let (r, s) ∈ ER.

[Enabling Rules] A can-enable rule adds a new schedule
to a specific role. A tuple (admin, srule , Pos, Neg , srole , r) ∈
can enable allows to update the tuple (r, s) ∈ RS to (r, s∪ŝ)
for some schedule ŝ, provided that m can be executed at
time t and also satisfies its precondition. Formally, rule m is
executable at time t, m satisfies its precondition (Pos,Neg)
w.r.t. schedule ŝ, ER′ = (ER \ {(r, s)}) ∪ {(r, s ∪ ŝ)}, and
TUR′ = TUR.
[Disabling Rules] A can-disable rule removes a schedule
from a designed role. A tuple m = (admin, srule , Pos , Neg ,

srole , r) ∈ can disable allows to update the tuple (r, s) ∈ RS

to (r, s\ ŝ), for some schedule ŝ, provided that m can be exe-
cuted at time t, and satisfies its precondition. Formally, m is
executable at time t, m satisfies its precondition (Pos,Neg)
w.r.t. schedule ŝ, ER′ = (ER \ {(r, s)}) ∪ {(r, s \ ŝ)}, and
TUR′ = TUR.

The next two rules are similar to those given above with
the difference that we now update the schedules associated
to each element of the user-role relation. Another differ-
ence is that can-assign and can-remove rules have a differ-
ent semantics to fulfill their preconditions. A user u ∈ U

satisfies a precondition (Pos, Neg) w.r.t. a schedule ŝ if for
every time slot α ∈ ŝ, 1) for every (u, pos , spos) ∈ TUR with
pos ∈ Pos , α ⊆ spos , 2) for every (u,neg , sneg) ∈ TUR with
neg ∈ Neg , α∩ sneg = ∅, and 3) α satisfies all preconditions.
Let (u, r, s) ∈ TUR.
[Assignment Rules] A tuple (admin, srule ,Pos ,Neg , srole ,

r) ∈ t can assign allows to update the user-role assignment
relation for the pair (u, r) as follows. Let ŝ be a schedule over
TMAX with ŝ ⊆ srole . Then, if m can be executed at time t,
and user u satisfies the precondition (Pos ,Neg) w.r.t. sched-
ule ŝ, then the tuple (u, r, s) is updated to (u, r, s ∪ ŝ), i.e.
TUR′ = (TUR \ {(u, r, s)})∪ {(u, r, s ∪ ŝ)}, and ER′ = ER.
[Revocation Rules] A tuple (admin, srule ,Pos ,Neg , srole ,

r) ∈ t can revoke allows to update the user-role assignment
relation for the pair (u, r) as follows. Let ŝ be a schedule
over TMAX with ŝ ⊆ srole . Then, if m can be executed at
time t, and user u satisfies the precondition (Pos ,Neg) w.r.t.
schedule ŝ, then the tuple (u, r, s) is updated to (u, r, s \ ŝ),
i.e. TUR′ = (TUR \ {(u, r, s)}) ∪ {(u, r, s \ ŝ)}, and ER′ =
ER.

Reachability problems: A run (or computation) of S
T

is any finite sequence of S
T

transitions π = c1

(τm1
,t1)

−−−−−→

c2

(τm2
,t2)

−−−−−→ . . . cn

(τmn
,tn)

−−−−−−→ cn+1 for some n ≥ 0, where c1

is an initial configuration of S
T
, t1 = 0, and ti ≤ ti+1 for

every i ∈ [n − 1]. An S
T

configuration c is reachable within

time t, if there exists a run π in which cn+1 = c and tn ≤ t.
Furthermore, c is simply reachable if c is reachable within
time t, for some t ≥ 0.

Let S
T

be a TURA system over TMAX , u and r be a user
and a role of S

T
, respectively, and s be a schedule over

TMAX . Given a time t, the timed reachability problem for
(S

T
, u, r, s, t) asks whether there is a reachable configuration

within time t of S
T

in which user u is a member of role
r in the schedule s. Similarly, the reachability problem for
(S

T
, u, r, s) is defined as above where there is no constraint

on time t.
In our analyses, we assume Separate Administration, in

which there is an administrative user who is assigned to the
required administrative roles which are enabled all the time.
Hence, the times to fire a rule is only restricted by srule.

180

Example 1. Let us now consider an example of a TR-
BAC system deployed in a hospital. Assume that there
are 7 different roles, namely, Employee (EMP), Day Doctor
(DDR), Night Doctor (NDR), Practitioner (PRC), Nurse
(NRS), Secretary (SEC) and Chairman (CHR). Hospital
works for 24 hours and there are three different shifts (time
slots) from 8 am to 4 pm (Time Slot 1), 4 pm to 12 am
(Time Slot 2) and 12 am to 8 am (Time Slot 3). Only the
Chairman role (CHR) has administrative privileges.

1. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)},PRC)∈ can enable:
At time slots 1 and 2, a chairman can enable the role
Practitioner for the first time slot if the role Day Doc-

tor is also enabled during this time slot.

2. (CHR, {(0, 3)}, {EMP , NDR}, {(2, 3)}, NRS)
∈ can disable: At time slots 1, 2 and 3, a chairman
can disable the role Nurse for the third time slot if the
roles Employee and Night Doctor are enabled at this
time slot.

3. (CHR, (0,2), {EMP}, {NRS}, (0,2), DDR,)
∈ t can assign: At time slots 1 and 2, a chairman can
assign the role Day Doctor for the first and the second
time slots to any user that has Employee role and does
not have Nurse role during these time slots.

4. (CHR, {(2, 3)}, {EMP}, {NRS}, {(2, 3)}, NDR)
∈ t can assign: At time slot 3, a chairman can assign
the role Night Doctor for the third time slot to any
user that has Employee role and does not have Nurse

role during this time slot.

5. (CHR, {(0, 2)}, {EMP}, {DDR,NDR}, {(0, 3)},NRS)
∈ t can assign: At time slots 1 and 2, a chairman can
assign the role Nurse for all time slots of any user that
has Employee role and does not have Day Doctor and
Night Doctor role during these time slots.

6. (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)},PRC)
∈ t can assign: At time slots 1 and 2, a chairman can
assign the role Practitioner for the first time slot of any
user that has Day Doctor role during this time slot.

7. (CHR, {(0, 3)},{NDR}, ∅, {(2, 3)}, PRC)
∈ t can assign : At time slots 1, 2 and 3, a chairman
can assign the role Practitioner for the third time slot
to any user that has Night Doctor role during this time
slot.

8. (CHR, {(0, 3)}, ∅, ∅, {(0, 3)}, SEC) ∈ t can revoke :
At time slots 1 and 2, a chairman can revoke the role
Secretary for all time slots of any user that has Secre-

tary role assigned in these slots.

In short, the TRBAC system has t can assign and
t can revoke rules for users and can enable and can disable

rules for roles. Using this distinction, we can analyze the
system by two separate subsystems, since t can assign -
t can revoke rules and can enable and can disable rules are
mutually exclusive. Suppose that a rule is used to assign
a role to a user. This assignment process and the schedule
update operation can be done even though the role is not
enabled at that moment. This implies that the user has the
rights to assume the role with respect to the given sched-
ule in the future only if the role is enabled at that time.
The preconditions for the t can assign rules only check the
presence of role assignments, not the enabled / disabled
state of the roles. Enabling/disabling operation on roles

is a completely separate procedure handled by can enable /
can disable rules. Hence, for a complete reachability analy-
sis, first we need to trace the roles assigned to a particular
target user and then we need to trace the time periods that a
particular role (a set of roles) can be enabled. Since the lat-
ter is similar to the former, in the analysis, we only consider
t can assign/t can revoke rules.

Our TRBAC administrative model and analysis assume
a static set of users, permissions, roles and administrative
rules and only cover the user to role assignments without
any role hierarchies.

In the next two sections, we propose two alternative strate-
gies to perform security analysis on TRBAC systems.

4. PROPOSED TRBAC ANALYSIS STRATE-

GIES
As outlined in Section 1, security analysis is essential to

understand the implications of the policies and changes to
them. The typical analysis questions in a TRBAC related to
safety, liveness and mutual exclusion include the following:

1. Safety:

(a) Will there be no reachable state in which a user
u is assigned to a role r at time t?

(b) Will an enabled role r eventually be disabled?

(c) Will a user u ever assigned to a role r?

2. Liveness:

(a) Will an enabled role remain enabled at time t?

(b) Will a user u eventually be assigned to a role r?

3. Mutual Exclusion: Will a user u be assigned to roles
r1 and r2 at the same time (i.e., do the time intervals
during which u is assigned to roles r1 and r2 overlap?

The reachability analysis of TRBAC that we do in this
paper can be easily modified to answer all the above ques-
tions. Our main idea for performing the reachability analy-
sis is to use a divide and conquer strategy. Since the time
dimension is discrete, we decompose the TRBAC analysis
problem into multiple subproblems, so that each instance
can be treated similar to an RBAC system. We employ
two different alternative decomposition strategies – the rule

schedule strategy and the the role schedule strategy. In the
following, we explain these two strategies in detail, and we
provide computational complexity analysis and the results
of the computational experiments in Sections 5 and 6.

4.1 Rule Schedule Strategy
Under this strategy, we split the problem into smaller sub-

problems with respect to the schedules associated with the
rules (srule) and analyze them serially with respect to time.

Let m ∈ M ⊆ MALL be a subset of all rules in the sys-
tem. A constant region C(a, b,M) is a bounded time interval
between t = a and t = b, a ≤ b such that ∀m ∈ M, (a, b) ⊆

sm
rule and 6 ∃m′ 6∈ M such that sm′

rule ⊆ (a, b). Informally, if
a rule m is included in a constant region C then it should
be valid in all time slots α ∈ (a, b), and there should not be
any other rule m′ that is valid in some but not all of the
time slots of (a, b). In the rule schedule approach, we split
the timeline from 0 to TMAX into non overlapping constant
regions Ci w.r.t the srule of the roles. Because the rules

181

are static in each Ci, it can be treated similar to an RBAC
system. Then, we trace the state space in each constant re-
gion serially w.r.t time. In order to control the expansion
of the state space, we provide a Sub-schedule assumption to
restrict the number of states generated. This assumption
and the other details of this decomposition is explained in
Section 5.

Rule 6

Rule 7

Rule 8

Rule 3

Rule 4

Rule 5

0 1 2 3 4

Rule 1

Rule 2

Time : s
rule

Figure 1: Rule Schedules

Example 2. Now, let us consider the hospital example
given in Section 3. There are eight different administrative
rules with different valid periods as depicted in Figure 1,
where the bars indicate their respective rule schedules. As
can be seen from the figure, the set of valid rules does not
change in interval (0,2) C1 and (2,3) (C2). More specifically,
the valid rules for C1 are 1, 3, 4, 5, 6, 7, 8 and the valid rules
for C2 are 2, 5, 7, 8. Essentially, we decompose the analysis
problem of TRBAC into two subproblems which are similar
to RBAC problems pertaining to these constant regions.

4.2 Role Schedule Strategy
Under this strategy, we decompose the TRBAC analysis

problem into multiple subproblems using schedules associ-
ated with the roles (srole).

Let T (α,M) be a subproblem for time slot α ∈ (0, TMAX),
where a rule m ∈ M if α ⊆ sm

role. Informally, a subproblem
for a time slot contains all of the rules that is valid w.r.t
its role schedule (i.e.: the rules that is authorized to change
ER and TUR relations for that particular time slot). The
details of this decomposition is explained in Section 6.

Example 3. Consider Figure 2, which shows the role
schedules of the rules in the hospital example given in Sec-
tion 3. Here, we have three distinct time slots (Time Slot 1:
(0,1), Time Slot 2: (1,2), Time Slot 3: (2,3)) with different
rules. The rules for Time Slot 1 are Rule 1, 3, 4, 6, and 8;
for Time Slot 2 are Rule 1, 3, and 8; for Time Slot 3 are
Rule 2, 3, 5, 7, and 8.

Rule 6

Rule 7

Rule 8

Rule 3

Rule 4

Rule 5

Rule 6

0 1 2 3 4

Rule 1

Rule 2

0 1 2 3 4
Time : s

role

Figure 2: Role Schedules

5. REACHABILITY ANALYSIS USING

RULE SCHEDULE STRATEGY
As noted earlier, in this strategy, we split the TRBAC

analysis problem into multiple RBAC analysis problems us-
ing the rule schedules. In order to handle the RBAC prob-
lems, we have adapted the ideas from Stoller et al. [15] and
modified them to suit to the temporal case.

In the analysis, we keep track of different configurations
c that can be reachable from an initial state c0. Since we
only consider t can assign and t can revoke rules and one

target user, c is composed of (T̂ UR) where T̂ UR ⊆ R × S.
Hence in each configuration, we track (role, srole) pairs. In
the algorithm, we trace constant regions C1, C2, ... serially
with respect to time. These regions can be seen as separate
RBAC systems. However, Ci+1 depends on Ci,∀i, which im-
plies the output of an RBAC reachability analysis at Ci is
an input (or initial configuration) to Ci+1. Since an RBAC
analysis could result in multiple configurations, then, in each
constant region , a separate RBAC analysis should be per-
formed for each configuration generated by the analysis done
in the previous constant region . Moreover, there are other
issues related to role schedules that are assigned by the rules.
Recall that all of the rules have a role schedule which denotes
the time intervals that the role can be assigned. But, accord-
ing to the rule definitions, the administrators are free to
choose a sub schedule of the role schedule and assign/revoke
the role only for some of the designated time intervals. This
further complicates the reachability analysis, since in a serial
fashion, one should keep all of the possible schedule combina-
tions for the subsequent time intervals. Therefore we make
the following assumption to simplify the algorithm:
Sub-schedule Assumption: For each t can assign and
t can revoke rule, the assignment and revocation operations
are performed using the entire schedule srole. In other words,
assume that a schedule srole covers all time slots. This
means that an administrator may use this rule to assign the
associated role r to a user u, all of the subsets of the schedule
srole (as long as the preconditions are satisfied). In our anal-
ysis, we assume that srole is assigned or revoked completely
- no sub schedule assignments are allowed. Hence, this as-
sumption ensures that a rule can generate only one (new)
configuration, which is actually similar to the non temporal
analysis.

Here we provide a sketch of the algorithm. The TRBAC
reachability analysis starts with an initial configuration c0

and constant region C1. The state space is expanded using
Stoller’s algorithm and the rules that are valid at time t = 0.
At the end of this step, a set of reachable configurations,
S1 = {c1, c2, ..., cM} are obtained. Afterwards, the analysis
moves to C2. For each distinct configuration obtained so far,
Stoller’s algorithm is used to expand these configurations us-
ing the valid rules in this constant region. At the end of this
step, we obtain an updated set of reachable configurations
S2 ⊇ S1. The algorithm then moves to C3 and the trace
goes in this fashion for a specified number of cycles P of
length TMAX (The algorithm returns to C1 whenever TMAX

is reached). Since TURA tuple ST is finite and since the iter-
ations are bounded by the number of cycles, the algorithm
is guaranteed to terminate. However since this approach is
a greedy heuristic, we are not guaranteed to get an optimal
solution.

182

Employee (1 , 3)

Secretary (1 , 2)
Employee (1 , 3)

Rule 7

Rule 1

Employee (1 , 3)

D ay D octor (1 , 2)

Rule 1

Figure 3: State diagram for the first constant region.

Employee (1 3)Rule 2
Employee (1 , 3)

Employee (1 , 3)

D ay D octor (1 , 2)

Employee (1 , 3)
N ight D octor (2 , 3)

Employee (1 , 3)

D ay D octor (1 , 2)
N ight D octor (2 3)

Rule 2

Rule 2

N ight D octor (2 , 3)

Figure 4: State diagram for the second constant re-
gion.

Example 4. Now, suppose we are interested in check-
ing whether a particular part time employee, Alice, with
TUA records (Alice, EMP, (1,3)) and (Alice, SEC, (1,2))
would eventually get “Day Doctor” and “Practitioner” roles
at the same time. In the configuration c0, only the roles
Employee and Secretary exist with the schedules (1,3) and
(1,2), respectively (The other roles have an empty sched-
ule). Then implementing the Stoller’s algorithm in the first
constant region results two new configurations, c1 and c2

(Figure 3). In the next constant region , the search starts
with two configurations, and implementing Stoller’s algo-
rithm on these configurations separately results (any dupli-
cate configuration is discarded) two new configurations c3

and c4. 4. Revisiting the first and the second constant

regions does not generate new configurations. Hence the
possible reachable configurations of this TRBAC system is
c1, c2, c3, c4. Afterwards, one should trace the can enable

and can disable rules in the same fashion to conclude on
the enabled roles on each constant region. Since there are
no configuration that “Day Doctor” and “Practitioner” ap-
pear together, we can conclude that the goal is unreachable.

The complexity of the algorithm depends not only on the
number of roles and rules but also depends on the number
of time slots, and the schedules (rule-role) that are assigned
to the roles. The state space that is generated by this al-
gorithm tends to be exponential in the worst case since it
is a brute force state space exploration algorithm. We have
implemented our algorithm with C programming language
and have run it on a computer with 3 GB RAM and Intel
Core2Duo 3.0 GHz processor running Debian Linux oper-
ating system. In the experiments, the initial state is set to
be an empty state (meaning that none of the roles are as-
signed), and the rules and the goal are created randomly by
the code with respect to the corresponding parameter val-
ues for the number of rules, number of roles, number of time
slots and the number of cycles. The parameter settings are
shown on Table 1. 10 replications are done for each param-
eter setting and their average is reported. The results are in
Figure 5(a),5(b) and 5(c).

According to the results obtained, the run time perfor-
mances of the algorithms do not tend to be exponential,
especially for the number of roles. A possible explanation to
this situation is that the datasets are generated randomly.

Table 1: Parameter Settings
Number of Roles |R| 100, 500, 900

Number of Rules |MALL| 100, 500, 900
Number of Time Slots TMAX 100, 500, 900

Number of Cycles P 30 for all cases

Hence there does not exist any “pattern” among the rules.
We mean pattern in the sense that, the components that de-
termine the usability of the rules, i.e., all of the precondition
relations, rule and role schedules of the moves are generated
randomly – so it might become probabilistically harder to
satisfy all of these conditions. Nevertheless, the results give
some insight about how the algorithm is likely to behave
under different parameter settings.

The effect of number of rules while all other parameters
are constant is more significant and tends to be an increasing
relationship as number of rules increases (See Figure 5(b)).
Moreover, the increasing tendency becomes more significant
as the number of roles and number of time slots increase.
Furthermore, there is a noticeable group formation between
the fixed parameters (number of roles and number of time
slots). The groups are formed by different number of time
slots values indicating that the effect of number of roles is
comparably smaller. Finally, Figure 5(c) denotes the re-
lationship between different values of number of time slots
parameter when the other two parameters are kept constant.
The results show that for the majority of the cases, there is
a linearly increasing relationship with the increasing number
of rules.

6. REACHABILITY ANALYSIS USING

ROLE SCHEDULE STRATEGY
In this approach, we split the TRBAC problem into smaller

RBAC subproblems using the role schedules of the rules.
The main idea is to generate subproblems T (α,M) for each
time slot α ∈ (0, TMAX) with nontemporal administrative
rules, so that the system can be treated like an RBAC. In or-
der to achieve nontemporal administrative rules, (and hence
an RBAC system for each time slot), we need to remove
two components: Rule schedules and Role Schedules and we
need show the inter-time slot independency.

The removal of the role schedules follows the definition of
subproblems T (α,M). For the rule schedules, we observe
the Long Run Behavior property of the administrative model
that we propose.
Long Run Behavior: In the long run, rule schedules of
the rules can be neglected, if the system is periodic.

Here we give the intuition of this result. Rule schedules
restrict the times that a particular rule can be fired. This
means that if a rule m is valid in at least one time slot
and if the assignment/revocation (or enabling/disabling) op-
eration that is going to be performed m is necessary for
the other rules m′, one can wait until m becomes valid,
and perform the necessary operation. The other rules m′

can be fired next time when the system periodically re-
peats itself. For example, suppose that we have two roles,
r1 and r2 and two t can assign rules (..., (4, 10), r1, ...) and
(..., (1, 3), {r1}, r2, ...). The first rule states that we can use
it only within (4, 10); the second rule states that we can
only use it within (1, 3). Notice that if the rules are serially
applied with respect to time, then since the second rule has

183

1 0

1 2

1 4
s
e

c
o

n
d

s
)

1 0 0 -1 0 0

1 0 0 -5 0 0

1 0 0 -9 0 0

5 0 0 -1 0 0

Rules - Time Slots

2

4

6

8

R
u

n
n

in
g

 T
im

e
 (

in
 s 5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 -1 0 0

9 0 0 -5 0 0

9 0 0 -9 0 0

0

2

1 0 0 5 0 0 9 0 0

R

N umber of Roles

(a) Effect of Number of Roles

1 0

1 2

1 4

s
e

c
o

n
d

s
) 1 0 0 -1 0 0

1 0 0 -5 0 0

1 0 0 -9 0 0

Roles - Time Slots

2

4

6

8

R
u

n
n

in
g

 T
im

e
 (

in
 s 1 0 0 9 0 0

5 0 0 -1 0 0

5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 -1 0 0

0

2

1 0 0 5 0 0 9 0 0

R

N umber of Rules

9 0 0 -5 0 0

9 0 0 -9 0 0

(b) Effect of Number of Rules

1 0

1 2

1 4

s
e

c
o

n
d

s
)

1 0 0 -1 0 0

1 0 0 -5 0 0

Roles - Rules

2

4

6

8

R
u

n
n

in
g

 T
im

e
 (

in
 s

1 0 0 -9 0 0

5 0 0 -1 0 0

5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 1 0 0

0

2

1 0 0 5 0 0 9 0 0

R

N umber of Time Slots

9 0 0 -1 0 0

9 0 0 -5 0 0

9 0 0 -9 0 0

(c) Effect of Number of Time Slots

Figure 5: Rule Schedule Approach

0 .1

0 .1 2

0 .1 4

s
e

c
o

n
d

s
)

1 0 0 -1 0 0

1 0 0 -5 0 0

Rules - Time Slots

0 0 2

0 .0 4

0 .0 6

0 .0 8

R
u

n
n

in
g

 T
im

e
 (

in
 s

1 0 0 -9 0 0

5 0 0 -1 0 0

5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 1 0 0

0

0 .0 2

1 0 0 5 0 0 9 0 0

R

N umber of Roles

9 0 0 -1 0 0

9 0 0 -5 0 0

9 0 0 -9 0 0

(a) Effect of Number of Roles

0 .1

0 .1 2

0 .1 4

s
e

c
o

n
d

s
)

1 0 0 -1 0 0

1 0 0 -5 0 0

1 0 0 9 0 0

Roles - Time Slots

0 0 2

0 .0 4

0 .0 6

0 .0 8

R
u

n
n

in
g

 T
im

e
 (

in
 s 1 0 0 -9 0 0

5 0 0 -1 0 0

5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 -1 0 0

0

0 .0 2

1 0 0 5 0 0 9 0 0

R

N umber of Rules

9 0 0 -5 0 0

9 0 0 -9 0 0

(b) Effect of Number of Rules

0 .1

0 .1 2

0 .1 4

s
e

c
o

n
d

s
)

1 0 0 -1 0 0

1 0 0 -5 0 0

1 0 0 9 0 0

Roles - Rules

0 0 2

0 .0 4

0 .0 6

0 .0 8

R
u

n
n

in
g

 T
im

e
 (

in
 s 1 0 0 -9 0 0

5 0 0 -1 0 0

5 0 0 -5 0 0

5 0 0 -9 0 0

9 0 0 -1 0 0

0

0 .0 2

1 0 0 5 0 0 9 0 0

R

N umber of Time Slots

9 0 0 -5 0 0

9 0 0 -9 0 0

(c) Effect of Number of Time Slots

Figure 6: Role Schedule Approach

a precondition of r1, we cannot fire second rule if we do not
have r1 already assigned. It means that first we need to
wait until first rule becomes valid (until t = 4) and assign
r1. Then we should wait until the system restarts from t = 0
(since it is periodic) to fire second rule. Then the Long Run
Behavior property ensures that for the reachability analysis
purposes, if one waits sufficient amount of time then the ef-
fects of these kind of rule conflicts can safely be neglected.
This property allows us to treat all of the rules valid on the
entire time line. Hence, the srule restrictions can be relaxed
from the rules.

In order to handle the independency issues among differ-
ent time slots, we need to consider preconditions. Recall
that in Section 3, we define the preconditions as (Pos ,Neg)
relationships to be satisfied in order to fire a rule. Now
consider a rule m ∈ M which belongs to T (α,M), and
ŝ = α. In order to fire m, the precondition relations de-
clared by (Pos,Neg) of m must be satisfied for ŝ. For each
role pos ∈ Pos (neg ∈ Neg , resp.) ŝ ⊆ spos (ŝ ∩ spos = ∅,
resp.) must be satisfied, which simply depends on the cor-
responding (single) time slot in spos (sneg , resp.). Then it is
sufficient to check the schedule only for time slot α for each
rule. This implies that the preconditions do not depend on
other time slots, hence the time slots are independent.

So, using the Long Run Behavior property and the inde-
pendency of time slots, one can perform an RBAC reacha-
bility analysis using the rules m ∈ M for time slot α. Then,
the whole TRBAC system can be analyzed by a series of
independent RBAC systems Ti traced separately. This re-
duction provides usability of any RBAC reachability analysis
procedure proposed in the literature.

The computational complexity of the algorithm depends
on the RBAC analyzer. Suppose that the RBAC analyzer
has the complexity O(·) then our approach yields a com-
plexity of O(TMAX ·) since we utilize the RBAC analyzer

for each time slot (Totally we have TMAX of them). Since
the algorithm runs for TMAX iterations and given that the
RBAC analyzer terminates, our algorithm is guaranteed to
terminate.

We perform computational experiments of this approach
under the same parameter and hardware setup as the rule
schedule approach. We again report the average run time
of 10 replications for each parameter setting. We use the
RBAC analyzer by [15]. According to the results obtained,
there is a linear and increasing relationship with 100, 500
and 900 roles in the system while all other parameters are
constant (See Figure 6(a)). The effect of number of rules
while all other parameters are constant is very similar to
the effect of roles. There is an increasing relationship in the
running time as the number of rules increases (See Figure
6(b)).

Finally, Figure 6(c) denotes the relationship between dif-
ferent values of number of time slots parameter when the
other two parameters are kept constant. The results show
that there is a linearly increasing behavior as the number of
time slots increase. This result is expected since the com-
plexity of the algorithm linearly depends on this parameter.

7. DISCUSSION
The procedures that we propose have certain advantages

and disadvantages to be considered. The advantage of using
the rule schedule approach is that it simulates the system
in a serial fashion until a given time in the future. This is
crucial, since it can determine exactly when the goal state
is reachable, so it can answer many of the security ques-
tions like, will the system be safe at the end of a specified
amount of time? On the other hand, the algorithm has an
exponential complexity, so running this algorithm for large
number of time slots can explode the state space, which
may lead to scalability issues. This is depicted in Figure

184

7, where the number of states that should be considered in
subsequent constant regions simply explodes. Lastly, this
algorithm tracks the assignments on only one target user.

1-1 1-1

2-1

2 2

2-1

2 21-1

1-2

1-1

1-2

2-2

2-3

2-2

2-3

0

1-3 1-3 2-4 2-4

...

1-4 1-4
2-5 2-5

2-6 2-6

Constant Region 1 Constant Region 2 Constant Region 3

Figure 7: Depicting the Complexity of the Rule
Schedule approach

The advantage of the role schedule approach is that it de-
termines the worst case scenarios in the long term by simply
running the algorithm for the number of time slots TMAX .
Moreover, it provides a direct mapping from TRBAC to a
series of independent RBAC problems so that the user is
flexible to choose the RBAC analyzer that she wants to use.
The performance of this approach will completely depend on
the underlying RBAC analyzer. Since the overall complexity
depends linearly on the number of time slots, this approach
is more scalable than the prior one. The disadvantage of
this approach is that, the algorithm only outputs whether
the goal state is reachable or not, but it does not output
the exact moment when it becomes reachable. In this case,
certain security queries, that can be answered by the rule
schedule approach, cannot be answered by this approach.
An example query can be: “Will there be no reachable state
in which a user u is assigned to a role r at time t?”. Fur-
thermore, the approach does not work if the time slots are
not independent, meaning that the precondition relations
require tracking the system status in the other time slots.

From the experimental results, it is clear that the run-
ning time of the rule schedule approach grows faster than
that of the role schedule approach. Hence, if the security
question of interest only covers a short amount of time,
then rule schedule approach is useful, but for large num-
ber of slots, there might be computational problems related
to state space. Role schedule approach is better for these
problems but it fails to answer certain time-specific security
questions as noted above.

Multi-user Reachability Analysis: In real life systems,
where there is no separate administration, there might be
certain relations between users in such a way that they might
obtain administrative privileges and could use these privi-
leges to assign roles to other users. Our reachability analyses
(presented in Sections 5 and 6), that track one target user,
cannot capture these specific instances. Hence, the analyses
should also support multiple target user tracing to be fully
applicable in more realistic scenarios.

Example 5. Consider once again the hospital example
given in Section 3. Suppose that we have two additional
t can assign rules as follows: (SEC , (1,3), {EMP}, {CHR,

SEC} ,(0,3), ASST) and (CHR, (0,3),{}, {ASST}, (1,3),

SEC) where the role “ASST” stands for “Assistant Chair”.
Now suppose that we have a target user “John” who has
a TUA record (“John”, EMP,(0,3)) and one initial admin-
istrative user, “CHR”. Given these rules, in order for John
to get “Assistant Chair” role, there must be a separate user
who is a secretary. Otherwise, the goal is always unreach-
able. Hence, multiple user reachability analysis is crucial to
capture a possible security breach in this scenario.

The approach of Ferrara et al. [7] can perform RBAC
reachability analysis with multiple target users. Since our
role schedule approach has the flexibility to utilize any of the
existing RBAC analyzing techniques without altering the al-
gorithm, we extend our analysis using the RBAC analyzer
of Ferrara et al. [7]. We perform reachability analysis under
the same hardware configuration with different number of
users having random initial role assignments. The parame-
ters used are on Table 2. According to the experiments, the
results in Figure 8 are obtained. It can be seen that the run-
ning time is significantly longer when the analysis involves
multiple users.

Number of Roles, Rules, Time Slots Number of Users
100-100-100 50,100,200
500-500-500 50,100,200
900-900-900 50,100,200

Table 2: Parameters used in the experiments

Finally, in Figure 9, we compare the runtime performance
of all three cases, (i) the rule schedule approach, (ii) the
role schedule approach with single target user, and (iii) the
role schedule approach with multiple target users. As can be
seen, the runtime performance of single target user cases are
significantly faster than multiple user cases. Furthermore,
the role schedule approach is faster than the rule schedule
strategy especially when the number of time slots is higher.

2 5

3 0

3 5

4 0

in
 m

in
u

te
s
)

1 0 0 -1 0 0 -1 0 0

Roles - Rules - Time Slots

5

1 0

1 5

2 0

R
u

n
n

in
g

 T
im

e
 (

5 0 0 -5 0 0 -5 0 0

9 0 0 -9 0 0 -9 0 0

0

5 0 1 0 0 2 0 0

N umber of Users

Figure 8: The results of the Role Schedule approach
via the RBAC algorithm by Ferrara et al.

8. CONCLUSIONS
Several different extensions of RBAC systems are pro-

posed to cover different requirements or constraints includ-
ing temporal and geospatial. Although RBAC and its exten-
sions provide a more manageable environment, security anal-
ysis is essential to capture any unforeseen security breaches.
In this paper, we propose an administrative model for a
TRBAC system, and present two different strategies for per-
forming the security analysis of TRBAC that enable one to
employ the already existing traditional RBAC analysis tech-
niques. The results of our computational studies indicate
that the algorithms are scalable and flexible.

185

1 5 0 0

2 0 0 0

2 5 0 0

s
e
c
o

n
d

s
) Rule

Schedule

Role

5 0 0

1 0 0 0

1 5 0 0
R

u
n

n
in

g
 T

im
e
 (

in

Schedule
w ith Single
User
Role
Schedule
w ith Multiple
Users

0

1 0 0 - 1 0 0 -1 0 0 5 0 0 - 5 0 0 -
5 0 0

9 0 0 - 9 0 0 -
9 0 0

R Users

Role - Rule - Time Slot Parameters

Figure 9: Comparison of all three cases

Although the administrative model that we propose is ca-
pable of handling many temporal access control scenarios,
it does not cover some of the characteristics such as role hi-
erarchies. We also assume a static environment so that no
new rules, roles, users and permissions are introduced to the
system. Hence the administrative model does not have rules
such as can create. As a future work, the model can be ex-
tended by including such components to fully represent real
life access control systems. The reachability analysis strate-
gies, especially role schedule strategy is flexible enough to
handle these additional components without any significant
change in the algorithm as long as the RBAC analyzer that
is being used supports them. Our computational analysis
can be extended to observe the behavior of the strategies
by implementing rules derived from real life access control
data. In addition, we plan to explore the analysis problem
in spatio-temporal RBAC models.

9. ACKNOWLEDGMENTS
The work of Uzun and Sural is supported in part by NSF

under grant number 1018414 and the work of Madhusudan is
supported in part by NSF grant number 1018182. The work
of Atluri is supported through the IR/D by the National
Sceince Foundation.

10. REFERENCES
[1] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati.

Decentralized administration for a temporal access
control model. Information Systems, 22(4):223–248,
1997.

[2] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A
temporal role based access control model. ACM

Transactions on Information and System Security,
4(3):191–233, 2001.

[3] E. Bertino, B. Catania, M. Damiani, and P. Perlasca.
GEO-RBAC: A spatially aware RBAC. ACM

Symposium on Access Control Models and Tecnologies,
pages 29–37, 2005.

[4] J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models. ACM

Transactions on Information and System Security,
6(2):201–231, 2003.

[5] M. Dekker, J. Crampton, and S. Etalle. RBAC
administration in distributed systems. ACM

Symposium on Access Control Models and

Technologies, pages 93–102, 2008.

[6] D. Ferraiolo and R. Kuhn. Role-based access control.
In 15th NIST-NCSC National Computer Security

Conference, pages 554–563, 1992.

[7] A. L. Ferrara, P. Madhusudan, and G. Parlato.
Security analysis of access control policies through
program verification. In 25th IEEE Computer Security

Foundations Symposium, 2012.

[8] M. Harrison, W. Russo, and J. Ullman. Protection in
operating systems. Communications of the ACM,
19(8), 1976.

[9] S. Jha, N. Li, M. Tripunitara, Q. Wang, and
W. Winsborough. Towards formal verification of role
based access control policies. IEEE Transactions on

Dependable and Secure Computing, 5(4):242–255,
October 2008.

[10] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A
generalized temporal role based access control model.
IEEE Transactions on Knowledge and Data

Engineering, 17(1):4–23, 2005.

[11] A. Kern, A. Schaad, and J. Moffett. An
administration concept for the enterprise role-based
access control model. ACM Symposium on Access

Control Models and Technologies, pages 3–11, 2003.

[12] N. Li and Z. Mao. Administration in role-bsed access
control. ACM Symposium on Informationi Computer

and Communications Security, pages 127–138, 2007.

[13] S. Mondal, S. Sural, and V. Atluri. Towards formal
security analysis of GTRBAC using timed automata.
In ACM Symposium on Access Control Models and

Technologies, pages 33–42, 2009.

[14] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for administration of roles.
Proceedings of the 14th ACM conference on Computer

and communications security, 2(1):105–135, 1999.

[15] S. Stoller, P. Yang, C. Ramakrishnan, and
M. Gofman. Efficient policy analysis for administrative
role based access control. ACM, pages 445–455, 2007.

186

