
A Model-Based Approach to Automated Testing of Access
Control Policies

Dianxiang Xu, Lijo Thomas, Michael Kent
National Center for the Protection of the Financial

Infrastructure, Dakota State University
Madison, SD 57042, USA

+1 605 256 5694

{dianxiang.xu, lthomas, mjkent}@dsu.edu

Tejeddine Mouelhi, Yves Le Traon
Interdisciplinary Centre for Security, Reliability and

Trust, University of Luxembourg, Campus Kirchberg
L-1359, Luxembourg, Luxembourg

+352 46 66 44 5840

{tejeddine.mouelhi, Yves.LeTraon}@uni.lu

ABSTRACT
Access control policies in software systems can be implemented
incorrectly for various reasons. This paper presents a model-based
approach for automated testing of access control implementation.
To feed the model-based testing process, test models are
constructed by integrating declarative access control rules and
contracts (preconditions and post-conditions) of the associated
activities. The access control tests are generated from the test
models to exercise the interactions of access control activities.
Test executability is obtained through a mapping of the modeling
elements to implementation constructs. The approach has been
implemented in an industry-adopted test automation framework
that supports the generation of test code in a variety of languages,
such as Java, C, C++, C#, and HTML/Selenium IDE. The full
model-based testing process has been applied to two systems
implemented in Java. The effectiveness is evaluated in terms of
access-control fault detection rate using mutation analysis of
access control implementation. The experiments show that the
model-based tests killed 99.7% of the mutants and the remaining
mutants caused no policy violations.

Categories and Subject Descriptors
D.2.5 [Testing and debugging]: Testing tools (e.g., data
generators, coverage testing). D.4.6 [Security and protection]:
Access Controls

General Terms
Reliability, Security, Verification.

Keywords
Access control, software testing, model-based testing, Petri nets,
mutation analysis.

1. INTRODUCTION
Access control is a fundamental mechanism for providing
security-intensive software with first-level security by regulating
user access to resources. An access control policy is usually
expressed in terms of declarative rules, defining the conditions to
which the access to resources can be granted and to whom.

Although the specification of an access control policy can be
supported by powerful verification techniques, the specified
policy and its mechanism may not be implemented correctly for
various reasons, such as programming errors, omissions, and
misunderstanding of the policy specification. The flaws in an
incorrect implementation may result in serious violations of
access control policy, such as unauthorized accesses and
escalation of privileges. Therefore, it is important to reveal the
potential discrepancy between the policy specification and the
actual implementation.

Software testing is a major means for software quality assurance.
It aims at finding errors by executing a program with test cases,
including test inputs and test oracles (expected results). To reveal
access control violations, one approach is to devise test cases for
individual access control rules. The main issue of testing
individual rules, however, is that it cannot see the forest for the
trees because access control rules are often related to each other.
In a library management system, for example, access control rules
may be defined for such activities as borrow and return, where a
precondition of return is that there is a borrowed book. Testing the
individual borrow and return rules would lead to duplicated tests –
testing the return activity typically involves a borrow activity. In
addition, it is difficult to cover all the interactions among access
control activities by testing individual rules.

To address the above issue, this paper presents a model-based
approach to testing access control policies. Model-based testing
uses models of a system under test (SUT) for generating test
cases. It is an appealing approach to software testing because of
several potential benefits [1]. First, the modeling activity helps
clarify requirements and enhances communication between
developers and testers. Without a good understanding about the
SUT, testers would not be able to perform effective testing.
Second, automated test generation enables more test cycles and
assures the required coverage of test models. Third, model-based
testing can help improve fault detection capability due to the
increased number and diversity of test cases [2]. Nevertheless,
studies have shown that the tester’s ability to build quality models
or required expertise in rigorous modeling is a major barrier to the
effective application of model-based testing [3]. There is little
work on how to build access control test models in a structured,
repeatable process. Existing literature typically focuses on what
modeling notation is used and how tests are generated and
executed. Another issue is that abstract tests generated from
models need to be transformed into concrete tests for execution,
which can be a time-consuming process. As will be detailed in the
related work section, these two issues remain largely open.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06…$10.00.

The approach in this paper generates executable access control
tests from a MID (Model-Implementation Description)
specification, which consists of an access control test model and a
MIM (Model-Implementation Mapping) description. The
underlying test model, represented by a Predicate/Transition (PrT)
net [4][5][6], is constructed from the given access control rules
and functional requirements according to which the SUT is
designed and implemented. PrT nets are high-level Petri nets, a
well-studied formal method for system modeling and verification.
We use contracts (preconditions and post-conditions) to construct
test models for two considerations. First, design by contracts [7] is
a widely accepted approach to functional specification. Second,
access control rules as security constraints on system functionality
cannot be tested without involving system functionality. Access
control testing requires understanding of the preconditions and
post-conditions of the related activities. Consider testing the rule
that a student is allowed to return books on working days. The test
cannot be performed unless the functional precondition “book is
borrowed” is satisfied. The accurate test oracle cannot be
determined without knowing its post-condition “book becomes
available”. For test generation purposes, we integrate declarative
access control rules and contracts into an operational PrT net. For
code generation purposes, we create the MIM description by
mapping the elements in a test model to the implementation
constructs based on the SUT’s programming interface. The
generated code can then be executed with the SUT.

Our approach has been implemented in MISTA (formerly ISTA)1,
a framework for automated generation of test code in a variety of
languages, including Java, C, C++, C#, and HTML/Selenium IDE
(a Firefox plugin for testing web applications) [6][8]. We have
conducted case studies using two Java applications, LMS (a
library management system) and ASMS (an auction sale
management system) [9][10]. To assess the fault detection
capability of our approach, we applied mutation analysis of access
control implementation. Mutants were created by seeding faulty
rules in policy implementation. A mutant is said to be killed or
detected if a failure is reported during at least one test execution.
Mutation analysis is a widely applied method for evaluating the
effectiveness of software testing techniques. Since the injected
faults would represent the defects that likely occur in software
implementation, the percentage of mutants killed by the test cases
created from a testing technique is often a good indicator of how
effective the testing technique is (For further information on
mutation testing, a survey can be found in [11]). For each case
study, we constructed the access control test models in the subject
program, generated executable tests from the test models, and
executed the tests against the mutants. Our experiments show that
our approach is highly effective in detecting policy violations
since the generated tests killed a large percentage of mutants.

The contribution of this paper is threefold. First, we formalize
several desired characteristics of role-based access control rules
(consistency, non-redundancy, and completeness) and deal with
incomplete specification of access control rules. Incompleteness
of specification is a norm in real-world software development and
the undefined situations more likely lead to security holes in the
implementation. Second, we present an automated process for
constructing operational test models by integrating declarative
access control rules and contracts into PrT nets. The test models
can cover all access control rules and contexts. Third, we generate

1 The beta release of MISTA can be downloaded at:
http://www.homepages.dsu.edu/dxu/research/MBT.html.

executable test code automatically to cover the access control
rules and their contexts. Once the MID specification is completed,
test generation and execution would need no human intervention.
To the best of our knowledge, none of the above aspects has been
addressed in the literature on model-based access control testing.

The remainder of this paper is organized as follows. Section 2
introduces the role-based access control model used in this paper,
formalizes the desired characteristics of access control rules, and
deals with incomplete access control rules. Section 3 describes
how test models are constructed from access control rules and
contracts. Section 4 discusses how executable test code is
generated from test models. Section 5 presents the case studies.
Section 6 reviews and compares our approach to the related work.
Section 7 concludes this paper.

2. The Role-Based Access Control Model
2.1 Role-based Access Control
Our approach is based on role-based access control (RBAC)
extended with the contexts and prohibition rules. An access
control policy consists of the following elements:

• A set of roles R,
• A role hierarchy H,
• A set of objects (or resources) O,
• A set of contexts C,
• A set of operations A (called activities in this paper),
• A set of authorization types {Permission, Prohibition},
• A set of subjects (human users or computer agents) Sub,
• A role assignment Sub→2R (one subject may play a set

of roles), and
• A set of role-based access control rules ℜ. ℜ(r) is the

set of access control rules defined for role r.

Definition 1 (Access control rule). An access control rule is a 5-
tuple <r, o, a, c, τ>, where r∈R, o∈O, a∈A, c is a Boolean
expression representing the policy’s context, and τ∈{ Permission,
Prohibition}. It means that role r’s activity a on object o is
permitted (when τ=Permission) or prohibited (when τ=
Prohibition) when context c holds.

Table 1. Access control rules for borrower in LMS

No Object Activity Context Auth_Type

1 Book GiveBackBook day(HD) Prohibition

2 Book BorrowBook day(HD) Prohibition

3 Book BorrowBook day(WD) Permission

4 Book GiveBackBook day(WD) Permission

5 Book ReserveBook day(HD) Prohibition

6 Book ReserveBook day(WD) Permission

A role hierarchy H ⊆R×R is a partial-order relation on R. Given
(r’, r) ∈ H, r’ is said to be a direct super-role of r, and r is a direct
sub-role of r’. Role r is called a primitive role if r is a leaf in the
role hierarchy. In LMS, for example, the set of roles is {student,
teacher, director, secretary, admin, borrower, personnel}, the role
hierarchy is {<borrower, student>, <borrower, teacher>,
<personnel, director>, <personnel, secretary>} (borrower is the
super-role of student and teacher, whereas personnel is the super-
role of director and secretary), the set of objects is {book,
borrowerAccount, personnelAccount}, and the set of activities is

{BorrowBook, ReserveBook, GiveBackBook, AdminActivity,
ManageAccess, CreateAccount, Modify Account, DeliverBook,
FixBook, ConsultBorrowerAccount}. Table 1 shows the rules
specified for the borrower role. day(HD), day(WD), and day(MD)
denote holiday, working day, and maintenance day, respectively.
day(HD) can also be interpreted as day(d) ∧ d=HD, where d is a
variable. According to rule 1, a borrower is not allowed to give
back books on holidays. According to rule 3, a borrower is
allowed to borrow books on working days.

In a role hierarchy, each role inherits all rules from its super roles.
According to this semantics, we can flatten a role hierarchy. For
each primitive role r∈R, the set of all defined access control rules
with respect to r, denoted by℘(r), includes and only includes the
access control rules defined for role r and its super roles in ℜ. If
roles are allowed to override the inherited rules, the overriding
can also be handled in the flattening process. Therefore, without
loss of generality, this paper focuses on the access control rules of
primitive roles after the hierarchy is flattened. In LMS, student, as
a sub-role of borrower, inherits all the access control rules in
Table 1. Suppose there is no other rule defined with respect to the
student role in ℜ. The rules in Table 1 are all the rules defined for
student, i.e., ℘(student) ={rules 1-6 in Table 1}.

2.2 Characteristics of Access Control Rules
In the following, we formalize several characteristics required of a
good access control policy. They provide a basis for building
sound test models.

Definition 2 (Consistency). A set of access control rules ℘ is said
to be consistent if, for any r∈R, there do not exist conflicting rules
in ℘(r). Two rules for the same role, object, and activity, <r, o, a,
c1, τ1> and <r, o, a, c2, τ2>, are said to conflict with each other if
τ1≠τ2 (one of τ1 and τ2 is Permission and the other is Prohibition)
and c1∧ c2 is satisfiable (may evaluate to true).

For example, <student, book, borrow, day(WD), Permission> and
<student, book, borrow, true, Prohibition >are inconsistent. The
former implies that student is allowed to borrow books on
working days. The latter says that student is prohibited from
borrowing books on any day.

Definition 3 (Non-redundancy). A set of access control rules ℘ is
said to be non-redundant if there do not exist two rules for the
same role, object, and activity such that one rule’s context
subsumes the other rule’s context. Formally, there do not exist
two rules <r, o, a, c1, τ>and <r, o, a, c2, τ> in ℘(r) such that
c1→ c2. (c1 implies c2)

For example, {<student, book, borrow, true, Permission>,
<student, book, borrow, day(WD), Permission>} is redundant
because the first rule subsumes the second one.

Definition 4 (Completeness). A set of access control rules ℘ is
said to be complete if and only if ℘ provides an authorization
definition for any role, object, activity, and context. Formally, for
any r∈ R, o∈O, a∈A, ℘(r) must contain one or more rules, say
<r, o, a, c1, τ1>,…, <r, o, a, ck, τk>(k≥1), such that c1∨…∨ck=true
(tautology).

Consider rules 2 and 3 in Table 1. They are the only rules related
to activity BorrowBook for student. Their contexts are day(HD)
and day(WD). They do not cover maintenance days (MD).
day(HD) ∨ day(WD) is not tautology. In other words, ¬day(HD)
∧¬day(WD) is satisfiable: ¬day(HD)∧ ¬day(WD)= day(MD).
Thus, the rules in Table 1 are incomplete.

Consistency, non-redundancy, and completeness can be checked
automatically. Dealing with inconsistent and redundant
specifications is beyond the scope of this paper. In the following,
we discuss how to deal with incomplete rules.

2.3 Dealing with Incomplete Rules
Given a set of access control rules℘, we obtain a complete set of
access control rules℘’ as follows.

• We extend the authorization types from {Permission,
Prohibition} to {Permission, Prohibition, Undefined}.
“Undefined” means that authorization is not defined for
the given role, activity, object, and context. We also
initialize℘’as℘.

• For each r∈ R, o∈O, a∈A, if there is no such rule <r, o,
a, c, τ>∈℘(r), then we add rule <r, o, a, true,
Undefined> to ℘’(r)

• For each r∈ R, o∈O, a∈A, if ℘(r) contains k (k≥1)
consistent rule(s), <r, o, a, c1, τ1>,…,<r, o, a, ck, τk>,
such that c1∨…∨ck is not tautology or ¬c1∧…∧¬ck is
satisfiable, we add rule <r, o, a, ¬c1∧…∧¬ck,
Undefined> to ℘’(r)

We can prove that the addition of these new rules does not cause
inconsistency or redundancy if ℘ is consistent and non-
redundant. In LMS, because borrowing books on a maintenance
day is not defined, we add rule <student, Book, BorrowBook,
day(MD), Undefined> to ℘’(student). This is similar for
ReserveBook and GiveBackBook. Therefore, we have rules 7-9 in
Table 2. Consider FixBook for student. ℘(student) does not
contain any rule for FixBook under any context. So we add rule
<student, Book, FixBook, day(d), Undefined> to ℘’(Student).
Here day(d) is true for any d ∈{HD, WD, MD}. This is similar for
DeliverBook. Therefore we have rules 10-11 in Table 2. Here we
apply all activities to each role. It may require a large number of
access control rules to complete the specification. To deal with
complex models, our approach allows tests to be generated with
respect to various coverage criteria and can reduce the search
space by using partial ordering and pairwise combination
techniques. This will be discussed in Section 4.1.

Table 2. Access control rules added to ℘’(student)
No Object Activity Context Auth_Type

7 Book BorrowBook day(MD) Undefined

8 Book ReserveBook day(MD) Undefined

9 Book GiveBackBook day(MD) Undefined

10 Book FixBook day(d) Undefined

11 Book DeliverBook day(d) Undefined

According to the security design principle “secure by default”, a
secure system should prohibit the activity from being performed
under an unspecified context. If this security principle is followed,
the effect of an activity under an unspecified context is similar to
prohibition. This paper takes a more general approach - we
differentiate the undefined contexts from prohibition contexts so
that test models can be independent of implementation choices. In
LMS and ASMS, for example, prohibition due to a prohibition
context and prohibition due to an undefined context have different
effects. The attempt of an activity under an undefined context will

lead to an exception of UndefinedSecuritPolicyException,
whereas the attempt of a prohibited activity will result in
SecuritPolicyViolationException.

3. Construction and Analysis of Test Models
In this section, we first give an introduction to the PrT nets used in
this work. Then, we describe how to integrate access control rules
and contracts into PrT nets. We also discuss how test models can
be analyzed through simulation and verification.

3.1 PrT Nets
The PrT nets in this paper, as in the previous work [5][8], are a
lightweight version of the original PrT nets [4]. They have both
operational and declarative semantics. The operational semantics
refers to removal and addition of tokens when transitions are
fired. The declarative semantics interprets each transition as a
first-order logic formula and transition firing as logical inference.
The declarative semantics ensures the correctness of transforming
declarative access control rules and contracts (preconditions and
post-conditions in first-order logic) into a PrT net. The operational
semantics provides a basis for the generation of test sequences
(firing sequences) from PrT nets.

A PrT net consists of places (data and conditions), transitions
(activities), normal and bidirectional arcs between places and
transitions (input and output conditions of activities), inhibitor
arcs from places to transitions (negative input conditions), and
initial markings (states). A transition can be associated with a
guard condition. An arc can be labeled by a list of arguments
(constants and variables). If an arc is not labeled, the default label
is the zero-argument tuple <>. In Figure 1, available, day, and
borrowed are places (circles); BorrowBook and GiveBackBook are
transitions (rectangles). The guard condition of BorrowBook is
d=WD. An arrow (e.g., from available to BorrowBook) represents
a normal arc. A bi-directional arc (arc without arrow) between n1
and n2 represents two arcs: one from n1 to n2 and the other from
n2 to n1. A marking is a set of tokens in all places. A token in p is
a tuple of constants <X1, …, Xn>, also denoted as p(X1, …, Xn).
The zero-argument tuple is denoted as <>. For token <> in p, we
also denote it as p. We associate a transition with a list of
variables as formal parameters, if any. Multiple initial states can
be associated with the same net for generating multiple test suites.

Figure 1. A simple net

Place p is called an input (or output) place of transition t if there is
a normal or bi-directional arc from p to t (or from t to p). p is
called an inhibitor place if there is an inhibitor arc between p and
t. Let x/V be a variable binding (variable x is bound to value V). A
substitution is a set of variable bindings. For example, {b/B1,
d/WD} is a substitution where b and d are bound to B1 and WD,
respectively. Let θ be a substitution and l be an arc label. l/θ
denotes the tuple (or token) obtained by substituting each variable
in l for its bound value in θ. For instance, if l = and θ =
{b/B1, d/WD}, then l/θ = <B1>

Transition t is enabled by substitution θ under a marking if the
following conditions are satisfied:

• Each input place p has a token that matches l/θ, where l
is the label of the input arc from p to t;

• Each inhibitor place p has no token that matches l/θ,
where l is the label of the inhibitor arc between p and t;

• The guard condition evaluates to true according to θ.

Suppose {available(B1), day(WD), day(MD)} is an initial marking
for the net in Figure 1. A simple net BorrowBook is enabled by θ
={b/B1, d/WD} because token <B1> in the input place book
matches /θ, token <WD> in the input place day matches
<d>/θ , and the guard d=WD is true according to θ. Only enabled
transitions can be fired.

Firing an enabled transition t with substitution θ under
marking kM0 removes the matching token from each input place
and adds new token l/θ to each output place, where l is the label of
the arc from t to the output place. This leads to new marking kM1 .

We denote a firing sequence as kM0 [t1θ1> kM1 … [tnθn> k
nM ,

where ti(1≤i≤n) is a transition, θi(1≤i≤n) is the substitution for
firing ti, and k

iM (1≤i≤n) is the marking after ti fires, respectively.

A marking M is said to be reachable from kM0 if there is such a

firing sequence that transforms kM0 to M.

The PrT nets can be interpreted in terms of logic formulas and
inference. Given a net, each input (output) place p, together with
the associated arc label <x1, …xn> is corresponding to an input
(output) predicate p(x1, …xn); each inhibitor place p, together with
the associated arc label <x1, …xn>,is corresponding to a negative
predicate ¬p(x1, …xn) (called inhibitor predicate). Each transition
can be captured by logic formula P→Q, where precondition P is
the conjunction of the inhibitor predicates, input predicates, and
guard condition, and post-condition Q is the conjunction of the
output predicates and negation of each input predicate. P and Q
are universally quantified. For BorrowBook in Figure 1, P=
available (b)∧ day(d) ∧d=WD and Q=¬available(b)∧
borrowed(b)∧day(d). This lays a theoretical foundation for the
transformation of access control rules and contracts.

3.2 Construction of Test Models
Contracts are in the form of precondition → post-condition.
Suppose available(b) means book x is available and borrowed(b)
means book b is borrowed. The contract of GiveBackBook(b) is
for any b, borrowed(b) → available(b). An activity can be
associated with multiple contracts, representing different
situations. A general precondition in the disjunctive form
P1∨…∨Pn can be represented by multiple contracts P1→Q1…,
Pn→Qn. For example, the contract of BorrowBook(b) is for any b,
available(b) → borrowed(b)∧ ¬available(b) or for any b,
reserved(b) → borrowed(b)∧ ¬reserved(b), where reserved(b)
means book b is reserved. In this paper, the preconditions and
post-conditions are not necessarily accurate specifications of
activity’s semantics. They may represent ordering constraints for
testing the activities involved in access control rules.

The process for transforming access control rules together with
the contracts of relevant activities is as follows. First, we partition
the complete rule set ℘’ into a number of subsets in terms of roles

and relevant activities so that a PrT net will be constructed for
each subset. In LMS, student and teacher are independent roles
although they have similar activities. So we group the access
control rules for student and teacher into different subsets.
Second, each subset together with the contracts of the relevant
activities is integrated into a PrT net. This is done by converting
each rule and the contract of the corresponding activity into a net
and composing the nets of all rules into a single net. Third, we
define test data and system settings as initial markings of the PrT
net so that it can be analyzed for correctness and then used for test
generation.

Suppose the access control rules with respect to activity a∈A are
<r, o, a, c1, τ1>,<r, o, a, c2, τ2>, …, <r, o, a, cm, τm> and
p1(x1)∧…∧pn(xn)→q1(y1)∧…∧qk(yk) ∧¬p1(x1)…is a contract of
activity a. Here m>0 because ℘’(r) is a complete set of access
control rules. We handle each rule <r, o, a, ci=r1∧…∧ru, τi>
(1≤i≤m) as follows:

• If τi=Permission, we first convert the contract into a net
with one transition named after activity a. Generally,
predicates p1(x1),… ,pn(xn) in the precondition are
corresponding to the input places of the transition if
they are not built-in functions such as arithmetic and
relational operations (e.g., z=x+y and x>y). Built-in
predicates are transformed into part of the transition’s
guard condition. Predicates q1(y1),…,qk(yk) in the post-
condition are corresponding to the output places of the
transition. The input/output arcs are labeled by the
arguments of the corresponding predicates. The input
arc for pj is bi-directional if its negation ¬pj does not
appear in the post-condition. As the context in an access
control rule is an additional precondition of the activity
in the rule, the predicates r1,…,ru in the context lead to
additional input places for the transition. The arc labels
depend on the corresponding arguments. If ri(zi) does
not have negation and zi is a variable, then the arc label
is <zi>. If ri(Zi) does not have negation and Zi is a
constant, then the arc label is <zi>, and zi=Zi is added to
the guard condition of the transition2. If ri(Zi) is a
negative predicate and Zi is a constant, then the arc label
is <zi>, and zi≠Zi is added to the guard condition of the
transition. The arcs are bi-directional unless the activity
negates the context. Figure 2 shows the net, where the
arc between p1 and a is directed because p1(x1) is
negated in the post-condition; the arc between pn and a
is bi-directional as we assume that ¬pn(xn) does not
appear in the post-condition.

Figure 2. PrT net for a permission rule

• If τi= Prohibition, we convert the precondition of the
contract into a net with one transition named Pa (“P”

2ri(Zi) is equivalent to ri(zi) ∧ zi = Zi. Alternatively, <Zi> can be

used directly as the arc label, with no change to the guard
condition.

denotes “prohibition”). The post-condition of the
contract is not used because the activity is prohibited.
The predicates in the precondition are corresponding to
input places and the arcs are labeled by the
corresponding arguments. The arcs are all bidirectional
because, when the prohibited activity is attempted under
the specified context, it should not change the system’s
state. The context is handled in the same way as
τi=Prohibition. Figure 3 shows the net.

Figure 3. PrT net for a prohibition rule

• If τi= Undefined, the transformation is similar to that for
τi= Prohibition. The only difference is that the
transition is named as Ua (“U” denotes “Undefined”).

Consider rules 2, 3, and 7 in Tables 1 and 2. For contract
available(b)→borrowed(b)∧¬available(b) of BorrowBook, we
transform rule 2, together with the contract, into transition
BorrowBook, as shown in Figure 4(A). Its input places are
available (resulted from the precondition) and day (resulted from
the context in rule 2), its output places are borrowed (resulted
from the post-condition) and day (resulted from the context in rule
2), and its guard condition is d=WD (resulted from the context in
rule 2). Then we transform rule 3, together with the precondition
of the contract, into transition PBorrowBook. Its input and output
places are available (resulted from the precondition) and day
(resulted from the context in rule 3) and its guard condition is
d=HD. Likewise, we transform rule 7 into transition
UBorrowBook.

Figure 4. Composition of nets

Similarly, reserved(b)→borrowed(b)∧¬reserved(b), with rules 2,
3, and 7, can be transformed into the net in Figure 4 (B). It is the
same as (A) except that available is replaced by reserved. We
compose multiple nets into one net through place fusion - places
with the same name in different nets become one place in the
composed net. However, transitions with the same name in
different nets become different transitions in the composed net
(each of them is assigned a unique internal identity). In Figure 4
(A) and (B) share places borrowed and day after they are
composed. The resultant net can further be composed with the
nets obtained from other access control rules and contracts. Figure
5 shows the net that covers all the rules in Tables 1 and 2. For

clarity, an annotation is used to specify day as a global predicate,
meaning that there is a bidirectional arc between day and each
transition

Figure 5. Access control model of the student role

According to the semantics of the PrT nets, we can prove that the
above transformations have preserved the semantics of contracts
and access control rules. For the sake of simplicity, the above
discussion focuses on rules for individual roles. We can build a
test model that involves multiple roles. The transformation of
access control rules into a net essentially depends on the given
subset of access control rules and the contracts of involved
activities. If the given rules involve different roles, then the net
captures the behaviors of different roles. In this case, we enhance
the net with a new place, named role, new arcs from place role to
each transition labeled with <r>, and additional guard condition
for each transition (e.g., r=Student). In essence, this is to use
role(r) as an additional precondition for each activity. In ASMS,
for example, the complete auction process involves various
activities (e.g., creation of a sale, change of the state of a sale for
auction, comments and bids by buyers) performed by different
roles (e.g., seller, admin, and buyer). We can build the test models
based on the auction process, rather than individual roles.

3.3 Analysis of Test Models
After the structure of a PrT net is constructed, we define its initial
markings by specifying test data (e.g., actual arguments of the
activities) and test configurations (e.g., system settings and
contexts in the access control rules). Consider the net in Figure 5.
Let M0={m0}, where m0={available(B1), day (WD), day(HD),
day(MD)}. The net and M0 form a test model for the student role.
In m0, test data available(B1) can reach the activities of
BorrowBook, ReserveBook and GivebackBook. day(WD),
day(HD), and day(MD) represent all possible contexts in the rules
so that the test model can cover all the contexts.

Our approach provides three techniques for analyzing and
debugging the specifications of test models – verification of
transition reachability, verification of state reachability, and
model simulation. In a test model, each transition is corresponding
to an access control rule under a certain condition of the involved
activity. Thus, all transitions should be reachable from some
initial state. If there is one transition that is unreachable from the
given initial states, then the transition will not be covered by any
tests to be generated from the specified test model. In this case,
either the net or the initial states is specified incorrectly. Suppose
M0={m1}, where m1= {available(B1), day(WD), day(MD)}.
UBorrowBook is not reachable from m1 in the net in Figure 5. In
this case, M0 is not specified properly.

If a goal state is known to be reachable (or unreachable), but the
verification reports that it is unreachable (or reachable), then the
net or the initial states is specified incorrectly. For example,

{reserved(B1)} is a state reachable from m0={available(B1),
day(WD), day(MD), day(HD)}.It can be reached by transition
firings ReserveBook(b/B1, d/WD). However, if the arc from
transition ReserveBook to place reserved is missing, the
verification would report that the above state is not reachable.

Our approach also provides an animator for stepwise simulation
of test models. At each state, the animator shows the number of
tokens in each place and highlights the enabled transitions. The
user can choose to manually fire one enabled transition at a time
or continuously fire randomly selected enabled transitions. This
can help find out whether the expected behaviors are specified
correctly in a test model. Suppose M0={m1}, where m1=
{available(B1), day(WD), day(MD), day(HD)} for the net in
Figure 5. We choose to fire BorrowBook(b/B1, d/WD) under m1,
which results in ={borrowed(B1), day(WD), day(MD), day(HD)}.
At this state, the animator should highlight three enabled
transitions: GiveBackBook, PGiveBackBook, and
UGiveBackBook. If any one of them is not highlighted, we can
check if the transition’s associated arcs are described correctly.

4. Generation of Access Control Tests
In this section, we first describe how MISTA generates model-
level access control tests from a test model. Then we discuss how
to create a MIM specification so that executable test code can be
generated.

4.1 From Transition Firings to Access
Control Tests
Definition 5 (Model-level access control test). Given an access
control test model represented by a PrT net, a test case is a firing
sequence < kM0 [t1θ1> kM1 ,…, [tnθn> k

nM > in the PrT net, where

• kM0 is the initial setting of the test,

• Transition firings t1θ1,…,tnθn are test inputs, i.e., calls to
the activities in access control rules. Suppose transition
ti is corresponding to activity a(x1,…,xm) and
substitution θi={x1/u1, …, xm/um}. Then tiθi (1≤i≤n)
represents component call a(u1,…,um), where uj (1≤j≤m)
is xj’ actual argument.

• kM1 ,…, k
nM are test oracles for respective test inputs

tiθi (1≤i≤n). For each place p∈P and each token
<v1,…,vm>∈)(pM k

i , proposition p(v1,…,vm), when
used as an oracle value, is expected to evaluate to true
in the SUT.

For example, m0, Reserve(b/B1, d/WD), m1, Borrow (b/B1, d/WD),
m2, UGiveBackBook(b/B1, d/HD), m3 is a firing sequence in the
test model in Figure 5. Access control model of the student role
where M0={m0} and m0={available(B1), day(WD), day(HD),
day(MD)}. Thus:

m1={reserved(B1), day(WD), day(HD), day(MD)},

m2={borrowed(B1), day(WD), day(HD), day(MD)}

m3={borrowed(B1), day(WD), day(HD), day(MD)}

The firing sequence is a test case that exercises three access
control rules: reserve books on working days (permitted), borrow
books on working days (permitted), and give back books on
holidays (prohibited). The states of book B1, reserved(B1),
borrowed(B1), and borrowed(B1), represent the expected results

of these activities. We assume that a prohibited activity, such as
PGiveBackBook(b/B1, day/HD), should not change the system
state. Here day(WD), day(HD), day(MD) are not used as test
oracles because they represent different system settings for access
control contexts.

Therefore, test generation from a test model in our approach is to
produce firing sequences from the test model according to a
certain strategy (e.g., to achieve a coverage criterion). MISTA
supports automated test generation for several coverage criteria,
such as reachability tree coverage, state coverage, and transition
coverage. In an access control test model, a transition is
corresponding to one access control rule. A test suite is said to
meet transition coverage if each transition is covered by at least
one test. A test suite is said to meet state coverage if each state is
covered by at least one test. A test suite is said to meet
reachability tree coverage if each edge in the reachability graph
(i.e., each transition firing under each reachable marking) is
covered by at least one test. Reachability tree coverage subsumes
transition coverage and state coverage because the reachability
tree includes each reachable transition and each reachable state.
The case studies in this paper use the reachability tree coverage.

In MISTA, test cases are structured as a test tree, where each path
from an initial marking to a leaf is corresponding to a firing
sequence (i.e., test case). Figure 6 shows portion of the test tree
generated for the reachability tree coverage of the test model in
Figure 5. Node “1 new” represents the initial marking, i.e., the
initial setting of each test. The path 1→1.1→1.1.2 exercises two
access control rules. It first borrows book B1 on a working day,
which should be permitted, and attempts to return the book on a
holiday, which should be prohibited.

Figure 6. Portion of a test tree

In order to represent tests generated from multiple initial markings
that represent different sets of test data and system settings, the
test tree uses an invisible root node whose child nodes are
corresponding to the initial markings. The test tree for reachability
tree coverage is constructed as follows. The nodes of initial
markings are put into a stack (if depth-first search is used) or
queue (if breadth-first search is used) for expansion. When a node
is expanded, all possible transition firings (including all
substitutions for each transition) under the current marking are
computed and a child node is created for each possible firing. The
child node will also be expanded if the new marking has not
expanded before. Due to the combinatorial nature of transition
firings, the test tree for a complex model may have a large number
of tests. MISTA provides two effective techniques for reducing
the number of tests: partial ordering and pairwise combination.
The total ordering of n (n>1) independent or concurrent transition
firings yield n! sequences, where the partial ordering only

produces one sequence. When there are more than two inputs, the
pairwise technique covers all pairs of inputs, rather than all
combinations of inputs. Suppose each of 10 input variables has 10
values. There are 1010 combinations of these variables. In MISTA,
however, 120 combinations can cover all pairs of the variables.

4.2 Building MIM Specification for Test Code
Generation
The model-level tests in Definition 5 are not executable because
they are generated solely from a given test model, which can be
independent of the SUT. The test model of student does not
specify how BorrowBook can be performed against the SUT. In
our approach, a MIM specification for a test model can be created
so that all model-level tests can be converted into test code
automatically. A MIM specification maps the elements in a test
model into corresponding constructs in the SUT. It consists of the
following main components: object function fo, method function
fc, accessor function fo, mutator function fm, a list of setting
predicates ls, and helper code function fh. Table 3 presents an
example of these components in LMS.

Object function fo maps objects in the test model to objects in the
SUT. In LMS, book B1 in the test model of student is
corresponding to a named constant, referring to a book titled
“Software Security”. Method function fc maps activities in the test
model to test operations in the SUT. For example, the
implementation of BorrowBook is a method doPermittedBorrow.
Accessor functionfa maps predicates in the test model to accessors
in the SUT. It is used for verifying oracle values. For example,
book b is borrowed on day d in a test case, i.e., borrowed(b, d),
can be verified by method isBookBorrowed(b). Mutator function
fa maps the system setting predicates in ls to operations in SUT so
that the SUT can be configured to a specific state. For example,
predicate day in LMS is a system setting. As an access control
precondition, it must be set correctly because the individual
activities can be called. Setting LMS to a working day, i.e.,
making day(WD) true, can be done by the following statement:
ContextManager.currentContext=Context Manager. workingday;
Helper code function fh includes header code (e.g., package and
import statements in Java), constant and variable declarations,
setup, teardown, and methods for testing individual activities. All
of this code will be included in the test code. The methods for
testing individual activities depend on how the SUT is
implemented, e.g., what types of security exceptions will be
reported. In the case studies, the exceptions for prohibited
activities and undefined activities are
SecuritPolicyViolationException and
UndefinedSecuritPolicyException, respectively. Thus, a test for a
permitted activity fails if the SUT throws an exception of
SecuritPolicyViolationException or UndefinedSecurit
PolicyException. A test for a prohibited activity fails if no
exception is thrown or the thrown exception is not
SecuritPolicyViolationException. A test for an undefined activity
fails if no exception is thrown or the thrown exception is not
UndefinedSecuritPolicyException.

Table 3. Sample MIM specification

MIM Model
element

Implement
ation
element

Notes

fo B1 Book1Title Book1Title is a named
constant in the helper code

fc BorrowBo
ok(b,d)

doPermitedB
orrow(b)

doPermittedBorrow is a test
method in the helper code. It
fails if an exception is
thrown.

fo borrowed(
b,d)

isBookBorro
wed(b)

isBookBorrowed is a query
method for verifying
whether the status of the
book is borrowed by the
borrower

fm day(WD) ContextMan
ager.current
Context =
ContextMan
ager.working
day;

It sets the concurrent context
to working day.

ls day day is a system setting

fh(PA
CKA
GE)

package
com.library.test.software.m
odeltest;

Helper code for the package
statement of Java test code

fh(CO
DE)

private final String
Book1Title = "Software
security"; …

Declarations and methods to
be included in the test code

Given a complete MID specification (i.e., test model and MIM),
the executable test code for all model-level tests can be generated
automatically. Each model-level test is corresponding to a test
method. For the aforementioned test: m0, ReserveBook(b/B1,
d/WD), m1, BorrowBook(b/B1, d/WD), m2, PGiveBackBook(b/B1,
d/HD), m3, the Java test method is as follows:

public void test12() throws exception {
 System.out.println(“Test 12”);
 ContextManager.currentContext=ContextManager.workingday;
 doPermittedReserve(Book1Title);
 assertTrue(isBookReserved(Book1Title));
 ContextManager.currentContext = ContextManager.workingday;
 doPermittedBorrow(Book1Title);
 assertTrue(isBookBorrowed(Book1Title));
 ContextManager.currentContext = ContextManager.holiday;
 doProhibitedGiveBack(Book1Title);
 assertTrue(isBookBorrowed(Book1Title));
}

5. EMPIRICAL STUDIES
5.1 Experiment Setup
Our case studies are based on two Java programs, LMS and
ASMS [9][10]. Table 4 presents the main parameters, where R is
the number of roles, PR is the number of primitive roles, O is the
number of objects, A is the number of activities, and RL is the
total number of specified rules for the primitive roles. The
mutants of the access control rules were created by the MutaX
tool3 using five types of mutation operators [9][10]: replacing
permission rule with prohibition, replacing prohibition rule with
permission, changing role, changing context, and adding a rule.
They were created before this work was initiated. To evaluate the
proposed approach, the following mutants were excluded:

• Mutants related to non-implemented activities are not
used because the tests could not be performed.

• Mutants with inconsistent access control rules are not
used because our approach assumes that the given

3https://sites.google.com/site/servalteam/tools/mutax

access control rules are consistent. These mutants are
typically created by the operator that adds new rules..

• Equivalent mutants, which have the same behavior as
the original version because of the implementation
issues in the original version (e.g., some access control
contexts, hard-coded in the implementation, are not
affected by mutation of access control rules).

Table 4. Subjects in the empirical studies
 LOC Classes/

Methods
R PR O A RL

LMS 3,204 62/335 7 5 4 12 33

ASMS 10,703 134/797 8 6 6 23 107

The protocol of our experiment is as follows. First, we specify the
contracts of the activities involved in access control rules, and
construct and analyze the test models. Second, we create the MIM
specification for each test model as described in Section 4. Thus
complete MID specifications are obtained for test code
generation. Third, we use MISTA to generate test code from the
MID specifications. Fourth, we execute the generated test code
against the original version such that no test fails (the original
version is considered as the correct version). If there is a failure,
then the previous steps need to be repeated. Finally, we run the
test code against each mutant.

5.2 Results
The results of our experiments are summarized in Table 5, where
T is the total number of transitions, P is the total number of places
(they reflect the complexity of test models), TC is the number of
test cases, LOC is the number of lines of code generated, M is the
total number of mutants, K is the number of mutants killed by the
test, and FDR is the fault detection rate (i.e., number of mutants
killed/total mutants tested also called mutation score).

Table 5. Results of the empirical studies

 Models Tests Mutation Analysis

T P TC LOC M K FDR

LMS 73 27 207 3,086 243 233 95.9%

ASMS 126 30 179 4,680 914 914 100%

For LMS, 207 test cases in 3,086 lines of non-comment code were
generated. They killed 233 out of 243 mutants, with an overall
detection rate of 95.9%. The 10 remaining mutants not killed by
the tests have the same nature – they contain a new rule created by
the adding-rule operator but can never cause security problems
because the functional precondition of the activity in the added
rule is not satisfiable. These mutants do not violate the required
security policies. Consider a mutant with the following added rule
that allows the admin role to return books on any day: (admin,
Book, GiveBackBook, true, Permission). According to the
required access control policies, none of the Borrower’s activities,
BorrowBook, ReserveBook, and GiveBackBook, is intended for
use by the admin role (no access control rules with respect to
these activities are specified for admin). The above rule can never
enable the admin role to return books because the precondition of
GiveBackBook- “the book is borrowed” (by the same person) - is
unsatisfiable. This precondition can only be fulfilled by
BorrowBook. In the mutant, however, Admin is not able to borrow

books (BorrowBook is undefined for admin). It is worth pointing
out that our approach killed the mutant with the following added
rule that allows admin to borrow books: (admin, Book,
BorrowBook, true, Permission). In ASMS, 179 tests in 4,680 lines
of code were generated. They killed all of the 914 mutants.

There are two main reasons for the near-perfect mutation scores in
our case studies. First, our approach for dealing with incomplete
access control specification makes it possible to reveal all
undefined situations. The tests generated to cover these situations
are not only necessary but also powerful for revealing potential
policy violations in an implementation. Second, the tests
generated for the reachability graph coverage can cover all access
controls, objects, activities, and contexts. This was feasible thanks
to the automation of both test generation and test execution. In
comparison, transition coverage (or rule coverage) has a low fault
detection capability. As an initial experiment, the application of
transition coverage to the student role in LMS only killed about
50% of the mutants. The reason was that many objects and
contexts were not exercised. Thus, we decided not to continue the
empirical evaluation of the transition coverage.

5.3 Threats to Validity
The main result of the case studies is that our approach is highly
effective in detecting violations of access control rules. The key
aspects that have led to this result include the access control
model, the formalization of contracts, generation of access control
tests with the reachability tree coverage, generation of executable
test code, and mutation analysis of access control rules. In the
following, we discuss how these aspects can be affected when our
approach is applied to real-world software where access control is
an important security mechanism.

First, our approach focuses on testing of access control rules. It
does not cover every aspect of RBAC, such as role assignment
and session management. Second, due to the small sizes of the
subject programs, we were able to generate tests to cover all rules
and combinations of objects, resources, and contexts. Generation
of such comprehensive tests may not be feasible for complex or
large-scale software systems where access control is involved in
very large state space. In order to deal with such systems, testers
may try to divide the system to several small components/modules
and apply our approach to each one in an independent way. This
will reduce the complexity and the testing effort. Since our
technique was not applied to such systems, we cannot evaluate the
effectiveness of this strategy. Third, we were able to generate
executable test code by completing the MIM specifications of the
test models. In the MIM specifications, invocations to individual
activities and verification of test oracles are programmed. For
real-world software, the individual activity tests and the test
oracles may not be completely programmable. Fourth, although
our approach is applicable to a variety of languages and
applications (Java, C, C++, C#, VB, HTML/Selenium IDE)
supported by MISTA, the subject programs were limited to Java
applications. Finally, the evaluation of fault detection capability is
based on the mutation analysis of access control rules. Although
the mutants were created by five different operators, they do not
necessarily represent all possible access control flaws in real-
world software.

6. RELATED WORK
Software security testing involves two different perspectives -
testing of security policies and performing security attacks
(penetration testing) to identify vulnerabilities. This paper focuses
on policy testing.

In recent years, Le Traon’s group have investigated various issues
of testing access control policies, such as test criteria of access
control policies [9], test generation from access control models
[10], mutation analysis of access control policies [12], and
selection and transformation of functional tests for policy testing
[13]. In the above work, test generation was not automated.
Pretschner, in collaboration with Le Traon’s group, has proposed
a model-based approach [14], where the access control model
consists of a role hierarchy, a permission hierarchy, and a context
hierarchy. They use a combinatorial testing technique to derive
test targets, i.e., combinations of roles, permissions, and contexts.
Each test target is relevant to one access control rule. In
comparison, this paper focuses on automatic test code generation
from models that capture the interactions of access control rules.
A test is usually a sequence of access control requests for
exercising multiple access control rules.

Masood et al. [15][16] have investigated a state-based approach to
test generation for RBAC policies. They first construct a finite
state machine (FSM) of the RBAC policy and then derive tests
from the FSM. This model essentially captures the behaviors of
role assignment, rather than access control rules. Different from
FSMs, PrT nets can capture both control flows and data flows
(e.g., test data and contexts). Based on the Assurance
Management Framework (AMF), Hu and Ahn have proposed an
approach to the generation of conformance tests of access control
policies through constraint verification [17]. Test cases are
derived through verification by either removing or negating the
security constraints. Our approach focuses on test generation with
respect to coverage criteria and transformation of model-level
tests into executable code. Mallouli et al. proposed a model-based
approach for integrating OrBAC (Organizational Based Access
Control) rules into an initial functional model represented by an
extended finite state machine [18]. Test sequences generated from
the integrated model will be able to exercise the OrBAC rules.
Different from this approach, we do not assume the availability of
the full functional model. We integrate the access control rules
with the contracts of the activities involved in the given rules.
This integration can handle incomplete specification of access
control rules. Jürjens has developed an approach for testing
security-critical systems based on UMLsec models [19]. Test
sequences for access control properties are generated from
UMLsec models to test the implementation for vulnerabilities. Li
et al. proposed an approach to test generation from security
policies specified as OrBAC rules [20]. It focuses on generation
of test purposes from individual OrBAC rules. In comparison to
these two approaches, our work integrates access control rules
into an operational model and generates tests to cover different
access control rules. Julliand et al. have proposed an approach to
generating security tests in addition to functional tests by re-using
the functional test model together with a new model of security
properties defined by a security engineer [21]. The security
properties describe tortuous situations that could violate security
policies. They did not use an explicit access control model.
Different from this work, our approach not only provides a
process for building the model of access control rules, but also
generates tests to exercise all access control rules and contexts.
Generally, the above model-based approaches focus on generating
model-level tests, not executable tests. Our approach can produce
executable test code by using a flexible mechanism that maps
modeling elements into implementation constructs.

Martin et al. have investigated techniques for test generation from
access control policy specifications written in XACML [22][23].
They have defined policy coverage criteria and developed a

mutation-testing framework for XACML policies. To generate
tests from policy specifications, they synthesize inputs to a
change-impact analysis tool. Different from this work, our
approach does not focus specifically on XACML and targets both
PDP (policy decision point, where access control decisions are
made) and the enforcement mechanisms inside the system.

7. CONCLUSIONS
We have presented a new model-based approach for automated
testing of access control policies. It provides a tool-supported
process for building access control test models from contracts and
access control rules. Access control tests can then be generated
and converted into executable code based on a MIM specification
that maps the modeling elements into implementation constructs.
By using mutation analysis of access control implementation, our
empirical studies have demonstrated that our approach is highly
effective in detecting violations of access control policies.

In the case studies, tests were generated using the reachability tree
coverage, which subsumes both transition coverage and state
coverage. In addition, this paper has focused on access control
rules, which define role and permission authorization. When a
role is involved in a test case, a subject is created and assigned to
that role. Our future work will deal with other RBAC features,
such as role assignment and session management.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF under grants CNS
1004843 and CNS1123220.

9. REFERENCES
[1] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,

Baumgartner, M., Sostawa, B., Zölch, R. and Stauner, T.
2005. One evaluation of model-based testing and its
automation. In Proc. of the 27th International Conf. on
Software Engineering (ICSE'05), 392-401.

[2] Pretschner, A., Slotosch, O., Aiglstorfer, E. and Kriebel, S.
2004. Model-based testing for real - The inhouse card case
study. J. Software Tools for Technology Transfer 5(2-3):
140-157.

[3] Zander, J., Schiefewrdecker, I., and Mosterman, P. J. (eds.).
2011. Model-Based Testing for Embedded Systems, CRC
Press.

[4] Genrich, H.J. 1987. Predicate/transition nets. Petri Nets:
Central Models and Their Properties, 207–247.

[5] Xu, D. and Nygard, K.E. 2006. Threat-driven modeling and
verification of secure software using aspect-oriented Petri
nets, IEEE Trans. on Software Engineering, vol. 32, no. 4,
265-278.

[6] Xu, D. 2011. A tool for automated test code generation from
high-level Petri nets. In Proc. of Petri Nets’11, LNCS 6709,
308-317, Newcastle upon Tyne, UK, June 2011.

[7] Meyer, B. 1997. Object-Oriented Software Construction, 2nd
Edition, Prentice-Hall PTR.

[8] Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D.,
and Xu, W. 2012. Automated security test generation with
formal threat models. IEEE Trans. on Dependable and
Secure Computing. In press.

[9] Le Traon, Y., Mouelhi, T., Pretschner, A., and Baudry, B.
2008. Test-driven assessment of access control in legacy

applications. In Proc. of the First IEEE International
Conference on Software, Testing, Verification and Validation
(ICST’08), Norway, 238-247.

[10] Mouelhi, T., Fleurey, F., Baudry, B., and Le Traon, Y. 2008.
A model-based framework for security policy specification,
deployment and testing. In Proc. of the ACM/IEEE 11th
International Conf. on Model Driven Engineering Languages
and Systems (MODELS'08), Toulouse, France.

[11] Jia, Y. and Harman, M. 2010. An analysis and survey of the
development of mutation testing. IEEE Trans. on Software
Engineering, vol. 37, no. 5, 649-678.

[12] Le Traon, Y., Mouelhi, T., and Baudry, B. 2007. Testing
security policies: going beyond functional testing. In Proc. of
the IEEE International Symposium on Software Reliability
Engineering (ISSRE'07), Sweden.

[13] Mouelhi, T., Le Traon, Y., and Baudry, B. 2009.
Transforming and selecting functional test cases for security
policy testing. In Proc. of the Second International Conf. on
Software Testing Verification and Validation (ICST'09).
Denver, USA.

[14] Pretschner, A. Le Traon, Y., and Mouelhi, T. 2008. Model-
based tests for access control policies. In Proc. of the First
IEEE International Conference on Software, Testing,
Verification and Validation (ICST’08). Norway.

[15] Masood, A. Bhatti, R., Ghafoor, A., Mathur, A. 2009.
Scalable and effective test generation for role-based access
control systems. IEEE Trans. on Software Engineering, vol.
35, no. 5, 654-668.

[16] Masood, A., Ghafoor, A., Mathur, A. 2010. Conformance
testing of temporal role-based access control systems. IEEE
Trans. on Dependable and Secure Computing, vol. 7, no. 2,
144-158.

[17] Hu, H. and Ahn, G. 2008. Enabling verification and
conformance testing for access control model. In Proc. of the
13th ACM Symposium on Access Control Models and
Technologies (SACMAT’08), 195–204.

[18] Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens,
F. 2007. A formal approach for testing security rules. In
Proc. of the 12th ACM Symposium on Access Control Models
and Technologies (SACMAT’07), 127-132.

[19] J. Jürjens, 2008. Model-based security testing using
UMLsec. Electronic Notes in Theoretical Computer Science
(ENTCS), 220(1): 93-104.

[20] Li, K., Mounier, L., Groz, R. 2007. Test generation from
security policies specified in Or-BAC. In Proc. of the 31st
Computer Software and Applications Conference
(COMPSAC'07), 255-260.

[21] Julliand, J., Masson, P.A., Tissot, R. 2008. Generating
security tests in addition to functional tests. In Proc. of the
Workshop on Automation of Software Test (AST’08), 41–44.

[22] Martin, E. and Xie, T. 2006. Defining and measuring policy
coverage in testing access control policies. In Proc. of the 8th
International Conference on Information and
Communications Security, 139-158.

[23] Martin, E. and Xie, T. 2007. A fault model and mutation
testing of access control policies. In Proc. of WWW’07, 667-
676.

