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ABSTRACT 
Access control policies in software systems can be implemented 
incorrectly for various reasons. This paper presents a model-based 
approach for automated testing of access control implementation. 
To feed the model-based testing process, test models are 
constructed by integrating declarative access control rules and 
contracts (preconditions and post-conditions) of the associated 
activities. The access control tests are generated from the test 
models to exercise the interactions of access control activities. 
Test executability is obtained through a mapping of the modeling 
elements to implementation constructs. The approach has been 
implemented in an industry-adopted test automation framework 
that supports the generation of test code in a variety of languages, 
such as Java, C, C++, C#, and HTML/Selenium IDE. The full 
model-based testing process has been applied to two systems 
implemented in Java. The effectiveness is evaluated in terms of 
access-control fault detection rate using mutation analysis of 
access control implementation. The experiments show that the 
model-based tests killed 99.7% of the mutants and the remaining 
mutants caused no policy violations.   

Categories and Subject Descriptors 
D.2.5 [Testing and debugging]: Testing tools (e.g., data 
generators, coverage testing). D.4.6 [Security and protection]: 
Access Controls 

General Terms 
Reliability, Security, Verification. 

Keywords 
Access control, software testing, model-based testing, Petri nets, 
mutation analysis. 

1. INTRODUCTION 
Access control is a fundamental mechanism for providing 
security-intensive software with first-level security by regulating 
user access to resources. An access control policy is usually 
expressed in terms of declarative rules, defining the conditions to 
which the access to resources can be granted and to whom. 

Although the specification of an access control policy can be 
supported by powerful verification techniques, the specified 
policy and its mechanism may not be implemented correctly for 
various reasons, such as programming errors, omissions, and 
misunderstanding of the policy specification. The flaws in an 
incorrect implementation may result in serious violations of 
access control policy, such as unauthorized accesses and 
escalation of privileges. Therefore, it is important to reveal the 
potential discrepancy between the policy specification and the 
actual implementation. 

Software testing is a major means for software quality assurance. 
It aims at finding errors by executing a program with test cases, 
including test inputs and test oracles (expected results). To reveal 
access control violations, one approach is to devise test cases for 
individual access control rules. The main issue of testing 
individual rules, however, is that it cannot see the forest for the 
trees because access control rules are often related to each other. 
In a library management system, for example, access control rules 
may be defined for such activities as borrow and return, where a 
precondition of return is that there is a borrowed book. Testing the 
individual borrow and return rules would lead to duplicated tests – 
testing the return activity typically involves a borrow activity. In 
addition, it is difficult to cover all the interactions among access 
control activities by testing individual rules. 

To address the above issue, this paper presents a model-based 
approach to testing access control policies. Model-based testing 
uses models of a system under test (SUT) for generating test 
cases. It is an appealing approach to software testing because of 
several potential benefits [1]. First, the modeling activity helps 
clarify requirements and enhances communication between 
developers and testers. Without a good understanding about the 
SUT, testers would not be able to perform effective testing. 
Second, automated test generation enables more test cycles and 
assures the required coverage of test models. Third, model-based 
testing can help improve fault detection capability due to the 
increased number and diversity of test cases [2]. Nevertheless, 
studies have shown that the tester’s ability to build quality models 
or required expertise in rigorous modeling is a major barrier to the 
effective application of model-based testing [3]. There is little 
work on how to build access control test models in a structured, 
repeatable process. Existing literature typically focuses on what 
modeling notation is used and how tests are generated and 
executed. Another issue is that abstract tests generated from 
models need to be transformed into concrete tests for execution, 
which can be a time-consuming process. As will be detailed in the 
related work section, these two issues remain largely open. 
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The approach in this paper generates executable access control 
tests from a MID (Model-Implementation Description) 
specification, which consists of an access control test model and a 
MIM (Model-Implementation Mapping) description. The 
underlying test model, represented by a Predicate/Transition (PrT) 
net [4][5][6], is constructed from the given access control rules 
and functional requirements according to which the SUT is 
designed and implemented. PrT nets are high-level Petri nets, a 
well-studied formal method for system modeling and verification. 
We use contracts (preconditions and post-conditions) to construct 
test models for two considerations. First, design by contracts [7] is 
a widely accepted approach to functional specification. Second, 
access control rules as security constraints on system functionality 
cannot be tested without involving system functionality. Access 
control testing requires understanding of the preconditions and 
post-conditions of the related activities. Consider testing the rule 
that a student is allowed to return books on working days. The test 
cannot be performed unless the functional precondition “book is 
borrowed” is satisfied. The accurate test oracle cannot be 
determined without knowing its post-condition “book becomes 
available”. For test generation purposes, we integrate declarative 
access control rules and contracts into an operational PrT net. For 
code generation purposes, we create the MIM description by 
mapping the elements in a test model to the implementation 
constructs based on the SUT’s programming interface. The 
generated code can then be executed with the SUT.  

Our approach has been implemented in MISTA (formerly ISTA)1, 
a framework for automated generation of test code in a variety of 
languages, including Java, C, C++, C#, and HTML/Selenium IDE 
(a Firefox plugin for testing web applications) [6][8]. We have 
conducted case studies using two Java applications, LMS (a 
library management system) and ASMS (an auction sale 
management system) [9][10]. To assess the fault detection 
capability of our approach, we applied mutation analysis of access 
control implementation. Mutants were created by seeding faulty 
rules in policy implementation. A mutant is said to be killed or 
detected if a failure is reported during at least one test execution. 
Mutation analysis is a widely applied method for evaluating the 
effectiveness of software testing techniques. Since the injected 
faults would represent the defects that likely occur in software 
implementation, the percentage of mutants killed by the test cases 
created from a testing technique is often a good indicator of how 
effective the testing technique is (For further information on 
mutation testing, a survey can be found in [11]). For each case 
study, we constructed the access control test models in the subject 
program, generated executable tests from the test models, and 
executed the tests against the mutants. Our experiments show that 
our approach is highly effective in detecting policy violations 
since the generated tests killed a large percentage of mutants. 

The contribution of this paper is threefold. First, we formalize 
several desired characteristics of role-based access control rules 
(consistency, non-redundancy, and completeness) and deal with 
incomplete specification of access control rules. Incompleteness 
of specification is a norm in real-world software development and 
the undefined situations more likely lead to security holes in the 
implementation. Second, we present an automated process for 
constructing operational test models by integrating declarative 
access control rules and contracts into PrT nets. The test models 
can cover all access control rules and contexts. Third, we generate 
                                                                    
1 The beta release of MISTA can be downloaded at: 
http://www.homepages.dsu.edu/dxu/research/MBT.html. 

executable test code automatically to cover the access control 
rules and their contexts. Once the MID specification is completed, 
test generation and execution would need no human intervention. 
To the best of our knowledge, none of the above aspects has been 
addressed in the literature on model-based access control testing. 

The remainder of this paper is organized as follows. Section 2 
introduces the role-based access control model used in this paper, 
formalizes the desired characteristics of access control rules, and 
deals with incomplete access control rules. Section 3 describes 
how test models are constructed from access control rules and 
contracts. Section 4 discusses how executable test code is 
generated from test models. Section 5 presents the case studies. 
Section 6 reviews and compares our approach to the related work. 
Section 7 concludes this paper. 

2. The Role-Based Access Control Model 
2.1 Role-based Access Control  
Our approach is based on role-based access control (RBAC) 
extended with the contexts and prohibition rules. An access 
control policy consists of the following elements: 

• A set of roles R,  
• A role hierarchy H,  
• A set of objects (or resources) O,  
• A set of contexts C, 
• A set of operations A (called activities in this paper),  
• A set of authorization types {Permission, Prohibition},  
• A set of subjects (human users or computer agents) Sub,  
• A role assignment Sub→2R (one subject may play a set 

of roles), and  
• A set of role-based access control rules ℜ. ℜ(r) is the 

set of access control rules defined for role r. 

Definition 1 (Access control rule). An access control rule is a 5-
tuple <r, o, a, c, τ>, where r∈R, o∈O, a∈A, c is a Boolean 
expression representing the policy’s context, and τ∈{ Permission, 
Prohibition}. It means that role r’s activity a on object o is 
permitted (when τ=Permission) or prohibited (when τ= 
Prohibition) when context c holds. 

Table 1. Access control rules for borrower in LMS 

No Object Activity Context Auth_Type 

1 Book GiveBackBook day(HD) Prohibition 

2 Book BorrowBook day(HD) Prohibition 

3 Book BorrowBook day(WD) Permission 

4 Book GiveBackBook day(WD) Permission 

5 Book ReserveBook day(HD) Prohibition 

6 Book ReserveBook day(WD) Permission 

 

A role hierarchy H ⊆R×R is a partial-order relation on R. Given 
(r’, r) ∈ H, r’ is said to be a direct super-role of r, and r is a direct 
sub-role of r’. Role r is called a primitive role if r is a leaf in the 
role hierarchy. In LMS, for example, the set of roles is {student, 
teacher, director, secretary, admin, borrower, personnel}, the role 
hierarchy is {<borrower, student>, <borrower, teacher>, 
<personnel, director>, <personnel, secretary>} (borrower is the 
super-role of student and teacher, whereas personnel is the super-
role of director and secretary), the set of objects is {book, 
borrowerAccount, personnelAccount}, and the set of activities is 



{BorrowBook, ReserveBook, GiveBackBook, AdminActivity, 
ManageAccess, CreateAccount, Modify Account, DeliverBook, 
FixBook, ConsultBorrowerAccount}. Table 1 shows the rules 
specified for the borrower role. day(HD), day(WD), and day(MD) 
denote holiday, working day, and maintenance day, respectively. 
day(HD) can also be interpreted as day(d) ∧ d=HD, where d is a 
variable. According to rule 1, a borrower is not allowed to give 
back books on holidays. According to rule 3, a borrower is 
allowed to borrow books on working days. 

In a role hierarchy, each role inherits all rules from its super roles. 
According to this semantics, we can flatten a role hierarchy. For 
each primitive role r∈R, the set of all defined access control rules 
with respect to r, denoted by℘(r), includes and only includes the 
access control rules defined for role r and its super roles in ℜ. If 
roles are allowed to override the inherited rules, the overriding 
can also be handled in the flattening process. Therefore, without 
loss of generality, this paper focuses on the access control rules of 
primitive roles after the hierarchy is flattened. In LMS, student, as 
a sub-role of borrower, inherits all the access control rules in 
Table 1. Suppose there is no other rule defined with respect to the 
student role in ℜ. The rules in Table 1 are all the rules defined for 
student, i.e., ℘(student) ={rules 1-6 in Table 1}. 

2.2 Characteristics of Access Control Rules  
In the following, we formalize several characteristics required of a 
good access control policy. They provide a basis for building 
sound test models. 

Definition 2 (Consistency). A set of access control rules ℘ is said 
to be consistent if, for any r∈R, there do not exist conflicting rules 
in ℘(r). Two rules for the same role, object, and activity, <r, o, a, 
c1, τ1> and <r, o, a, c2, τ2>, are said to conflict with each other if 
τ1≠τ2 (one of τ1 and τ2 is Permission and the other is Prohibition) 
and c1∧ c2 is satisfiable (may evaluate to true). 

For example, <student, book, borrow, day(WD), Permission> and 
<student, book, borrow, true, Prohibition >are inconsistent. The 
former implies that student is allowed to borrow books on 
working days. The latter says that student is prohibited from 
borrowing books on any day. 

Definition 3 (Non-redundancy). A set of access control rules ℘ is 
said to be non-redundant if there do not exist two rules for the 
same role, object, and activity such that one rule’s context 
subsumes the other rule’s context. Formally, there do not exist 
two rules <r, o, a, c1, τ>and <r, o, a, c2, τ> in ℘(r) such that 
c1→ c2. (c1 implies c2) 

For example, {<student, book, borrow, true, Permission>, 
<student, book, borrow, day(WD), Permission>} is redundant 
because the first rule subsumes the second one.  

Definition 4 (Completeness). A set of access control rules ℘ is 
said to be complete if and only if ℘ provides an authorization 
definition for any role, object, activity, and context. Formally, for 
any r∈ R, o∈O, a∈A, ℘(r) must contain one or more rules, say 
<r, o, a, c1, τ1>,…, <r, o, a, ck, τk>(k≥1), such that c1∨…∨ck=true 
(tautology).  

Consider rules 2 and 3 in Table 1. They are the only rules related 
to activity BorrowBook for student. Their contexts are day(HD) 
and day(WD). They do not cover maintenance days (MD). 
day(HD) ∨ day(WD) is not tautology. In other words, ¬day(HD) 
∧¬day(WD) is satisfiable: ¬day(HD)∧ ¬day(WD)= day(MD). 
Thus, the rules in Table 1 are incomplete. 

Consistency, non-redundancy, and completeness can be checked 
automatically. Dealing with inconsistent and redundant 
specifications is beyond the scope of this paper. In the following, 
we discuss how to deal with incomplete rules.  

2.3 Dealing with Incomplete Rules 
Given a set of access control rules℘, we obtain a complete set of 
access control rules℘’ as follows.  

• We extend the authorization types from {Permission, 
Prohibition} to {Permission, Prohibition, Undefined}. 
“Undefined” means that authorization is not defined for 
the given role, activity, object, and context. We also 
initialize℘’as℘.  

• For each r∈ R, o∈O, a∈A, if there is no such rule <r, o, 
a, c, τ>∈℘(r), then we add rule <r, o, a, true, 
Undefined> to ℘’(r)  

• For each r∈ R, o∈O, a∈A, if ℘(r) contains k (k≥1) 
consistent rule(s), <r, o, a, c1, τ1>,…,<r, o, a, ck, τk>, 
such that c1∨…∨ck is not tautology or ¬c1∧…∧¬ck is 
satisfiable, we add rule <r, o, a, ¬c1∧…∧¬ck, 
Undefined> to ℘’(r)  

We can prove that the addition of these new rules does not cause 
inconsistency or redundancy if ℘ is consistent and non-
redundant. In LMS, because borrowing books on a maintenance 
day is not defined, we add rule <student, Book, BorrowBook, 
day(MD), Undefined> to ℘’(student). This is similar for 
ReserveBook and GiveBackBook. Therefore, we have rules 7-9 in 
Table 2. Consider FixBook for student. ℘(student) does not 
contain any rule for FixBook under any context. So we add rule 
<student, Book, FixBook, day(d), Undefined> to ℘’(Student). 
Here day(d) is true for any d ∈{HD, WD, MD}. This is similar for 
DeliverBook. Therefore we have rules 10-11 in Table 2. Here we 
apply all activities to each role. It may require a large number of 
access control rules to complete the specification. To deal with 
complex models, our approach allows tests to be generated with 
respect to various coverage criteria and can reduce the search 
space by using partial ordering and pairwise combination 
techniques. This will be discussed in Section 4.1. 

Table 2. Access control rules added to ℘’(student) 
No Object Activity Context Auth_Type 

7 Book BorrowBook day(MD) Undefined 

8 Book ReserveBook day(MD) Undefined 

9 Book GiveBackBook day(MD) Undefined 

10 Book FixBook day(d) Undefined 

11 Book DeliverBook day(d) Undefined 

 

According to the security design principle “secure by default”, a 
secure system should prohibit the activity from being performed 
under an unspecified context. If this security principle is followed, 
the effect of an activity under an unspecified context is similar to 
prohibition. This paper takes a more general approach - we 
differentiate the undefined contexts from prohibition contexts so 
that test models can be independent of implementation choices. In 
LMS and ASMS, for example, prohibition due to a prohibition 
context and prohibition due to an undefined context have different 
effects. The attempt of an activity under an undefined context will 



lead to an exception of UndefinedSecuritPolicyException, 
whereas the attempt of a prohibited activity will result in 
SecuritPolicyViolationException. 

3. Construction and Analysis of Test Models 
In this section, we first give an introduction to the PrT nets used in 
this work. Then, we describe how to integrate access control rules 
and contracts into PrT nets. We also discuss how test models can 
be analyzed through simulation and verification.  

3.1 PrT Nets  
The PrT nets in this paper, as in the previous work [5][8], are a 
lightweight version of the original PrT nets [4]. They have both 
operational and declarative semantics. The operational semantics 
refers to removal and addition of tokens when transitions are 
fired. The declarative semantics interprets each transition as a 
first-order logic formula and transition firing as logical inference. 
The declarative semantics ensures the correctness of transforming 
declarative access control rules and contracts (preconditions and 
post-conditions in first-order logic) into a PrT net. The operational 
semantics provides a basis for the generation of test sequences 
(firing sequences) from PrT nets. 

A PrT net consists of places (data and conditions), transitions 
(activities), normal and bidirectional arcs between places and 
transitions (input and output conditions of activities), inhibitor 
arcs from places to transitions (negative input conditions), and 
initial markings (states). A transition can be associated with a 
guard condition. An arc can be labeled by a list of arguments 
(constants and variables). If an arc is not labeled, the default label 
is the zero-argument tuple <>. In Figure 1, available, day, and 
borrowed are places (circles); BorrowBook and GiveBackBook are 
transitions (rectangles). The guard condition of BorrowBook is 
d=WD. An arrow (e.g., from available to BorrowBook) represents 
a normal arc. A bi-directional arc (arc without arrow) between n1 
and n2 represents two arcs: one from n1 to n2 and the other from 
n2 to n1. A marking is a set of tokens in all places. A token in p is 
a tuple of constants <X1, …, Xn>, also denoted as p(X1, …, Xn). 
The zero-argument tuple is denoted as <>. For token <> in p, we 
also denote it as p. We associate a transition with a list of 
variables as formal parameters, if any. Multiple initial states can 
be associated with the same net for generating multiple test suites.  

 
Figure 1. A simple net 

Place p is called an input (or output) place of transition t if there is 
a normal or bi-directional arc from p to t (or from t to p). p is 
called an inhibitor place if there is an inhibitor arc between p and 
t. Let x/V be a variable binding (variable x is bound to value V). A 
substitution is a set of variable bindings. For example, {b/B1, 
d/WD} is a substitution where b and d are bound to B1 and WD, 
respectively. Let θ be a substitution and l be an arc label. l/θ 
denotes the tuple (or token) obtained by substituting each variable 
in l for its bound value in θ. For instance, if l = <b> and θ = 
{b/B1, d/WD}, then l/θ = <B1> 

Transition t is enabled by substitution θ under a marking if the 
following conditions are satisfied: 

• Each input place p has a token that matches l/θ, where l 
is the label of the input arc from p to t;  

• Each inhibitor place p has no token that matches l/θ, 
where l is the label of the inhibitor arc between p and t;  

• The guard condition evaluates to true according to θ. 

Suppose {available(B1), day(WD), day(MD)} is an initial marking 
for the net in Figure 1. A simple net BorrowBook is enabled by θ 
={b/B1, d/WD} because token <B1> in the input place book 
matches <b>/θ, token <WD> in the input place day matches 
<d>/θ , and the guard d=WD is true according to θ. Only enabled 
transitions can be fired.  

Firing an enabled transition t with substitution θ under 
marking kM0 removes the matching token from each input place 
and adds new token l/θ to each output place, where l is the label of 
the arc from t to the output place. This leads to new marking kM1 . 

We denote a firing sequence as kM0  [t1θ1> kM1 … [tnθn> k
nM , 

where ti(1≤i≤n) is a transition, θi(1≤i≤n) is the substitution for 
firing ti, and k

iM (1≤i≤n) is the marking after ti fires, respectively. 

A marking M is said to be reachable from kM0  if there is such a 

firing sequence that transforms kM0  to M. 

The PrT nets can be interpreted in terms of logic formulas and 
inference. Given a net, each input (output) place p, together with 
the associated arc label <x1, …xn> is corresponding to an input 
(output) predicate p(x1, …xn); each inhibitor place p, together with 
the associated arc label <x1, …xn>,is corresponding to a negative 
predicate ¬p(x1, …xn) (called inhibitor predicate). Each transition 
can be captured by logic formula P→Q, where precondition P is 
the conjunction of the inhibitor predicates, input predicates, and 
guard condition, and post-condition Q is the conjunction of the 
output predicates and negation of each input predicate. P and Q 
are universally quantified. For BorrowBook in Figure 1, P= 
available (b)∧ day(d) ∧d=WD and Q=¬available(b)∧ 
borrowed(b)∧day(d). This lays a theoretical foundation for the 
transformation of access control rules and contracts. 

3.2 Construction of Test Models  
Contracts are in the form of precondition → post-condition. 
Suppose available(b) means book x is available and borrowed(b) 
means book b is borrowed. The contract of GiveBackBook(b) is 
for any b, borrowed(b) → available(b). An activity can be 
associated with multiple contracts, representing different 
situations. A general precondition in the disjunctive form 
P1∨…∨Pn can be represented by multiple contracts P1→Q1…, 
Pn→Qn. For example, the contract of BorrowBook(b) is for any b, 
available(b) → borrowed(b)∧ ¬available(b) or for any b, 
reserved(b) → borrowed(b)∧ ¬reserved(b), where reserved(b) 
means book b is reserved. In this paper, the preconditions and 
post-conditions are not necessarily accurate specifications of 
activity’s semantics. They may represent ordering constraints for 
testing the activities involved in access control rules. 

The process for transforming access control rules together with 
the contracts of relevant activities is as follows. First, we partition 
the complete rule set ℘’ into a number of subsets in terms of roles 



and relevant activities so that a PrT net will be constructed for 
each subset. In LMS, student and teacher are independent roles 
although they have similar activities. So we group the access 
control rules for student and teacher into different subsets. 
Second, each subset together with the contracts of the relevant 
activities is integrated into a PrT net. This is done by converting 
each rule and the contract of the corresponding activity into a net 
and composing the nets of all rules into a single net. Third, we 
define test data and system settings as initial markings of the PrT 
net so that it can be analyzed for correctness and then used for test 
generation. 

Suppose the access control rules with respect to activity a∈A are 
<r, o, a, c1, τ1>,<r, o, a, c2, τ2>, …, <r, o, a, cm, τm> and 
p1(x1)∧…∧pn(xn)→q1(y1)∧…∧qk(yk) ∧¬p1(x1)…is a contract of 
activity a. Here m>0 because ℘’(r) is a complete set of access 
control rules. We handle each rule <r, o, a, ci=r1∧…∧ru, τi> 
(1≤i≤m) as follows: 

• If τi=Permission, we first convert the contract into a net 
with one transition named after activity a. Generally, 
predicates p1(x1),… ,pn(xn) in the precondition are 
corresponding to the input places of the transition if 
they are not built-in functions such as arithmetic and 
relational operations (e.g., z=x+y and x>y). Built-in 
predicates are transformed into part of the transition’s 
guard condition. Predicates q1(y1),…,qk(yk) in the post-
condition are corresponding to the output places of the 
transition. The input/output arcs are labeled by the 
arguments of the corresponding predicates. The input 
arc for pj is bi-directional if its negation ¬pj does not 
appear in the post-condition. As the context in an access 
control rule is an additional precondition of the activity 
in the rule, the predicates r1,…,ru in the context lead to 
additional input places for the transition. The arc labels 
depend on the corresponding arguments. If ri(zi) does 
not have negation and zi is a variable, then the arc label 
is <zi>. If ri(Zi) does not have negation and Zi is a 
constant, then the arc label is <zi>, and zi=Zi is added to 
the guard condition of the transition2. If ri(Zi) is a 
negative predicate and Zi is a constant, then the arc label 
is <zi>, and zi≠Zi is added to the guard condition of the 
transition. The arcs are bi-directional unless the activity 
negates the context. Figure 2 shows the net, where the 
arc between p1 and a is directed because p1(x1) is 
negated in the post-condition; the arc between pn and a 
is bi-directional as we assume that ¬pn(xn) does not 
appear in the post-condition. 

 
Figure 2. PrT net for a permission rule 

• If τi= Prohibition, we convert the precondition of the 
contract into a net with one transition named Pa (“P” 

                                                                    
2ri(Zi) is equivalent to ri(zi) ∧ zi = Zi. Alternatively, <Zi> can be 

used directly as the arc label, with no change to the guard 
condition.  

denotes “prohibition”). The post-condition of the 
contract is not used because the activity is prohibited. 
The predicates in the precondition are corresponding to 
input places and the arcs are labeled by the 
corresponding arguments. The arcs are all bidirectional 
because, when the prohibited activity is attempted under 
the specified context, it should not change the system’s 
state. The context is handled in the same way as 
τi=Prohibition. Figure 3 shows the net. 

 
Figure 3. PrT net for a prohibition rule 

• If τi= Undefined, the transformation is similar to that for 
τi= Prohibition. The only difference is that the 
transition is named as Ua (“U” denotes “Undefined”). 

Consider rules 2, 3, and 7 in Tables 1 and 2. For contract 
available(b)→borrowed(b)∧¬available(b) of BorrowBook, we 
transform rule 2, together with the contract, into transition 
BorrowBook, as shown in Figure 4(A). Its input places are 
available (resulted from the precondition) and day (resulted from 
the context in rule 2), its output places are borrowed (resulted 
from the post-condition) and day (resulted from the context in rule 
2), and its guard condition is d=WD (resulted from the context in 
rule 2). Then we transform rule 3, together with the precondition 
of the contract, into transition PBorrowBook. Its input and output 
places are available (resulted from the precondition) and day 
(resulted from the context in rule 3) and its guard condition is 
d=HD. Likewise, we transform rule 7 into transition 
UBorrowBook. 

 
Figure 4. Composition of nets 

Similarly, reserved(b)→borrowed(b)∧¬reserved(b), with rules 2, 
3, and 7, can be transformed into the net in Figure 4 (B). It is the 
same as (A) except that available is replaced by reserved. We 
compose multiple nets into one net through place fusion - places 
with the same name in different nets become one place in the 
composed net. However, transitions with the same name in 
different nets become different transitions in the composed net 
(each of them is assigned a unique internal identity).  In  Figure 4 
(A) and (B) share places borrowed and day after they are 
composed. The resultant net can further be composed with the 
nets obtained from other access control rules and contracts. Figure 
5 shows the net that covers all the rules in Tables 1 and 2. For 



clarity, an annotation is used to specify day as a global predicate, 
meaning that there is a bidirectional arc between day and each 
transition 

 
Figure 5. Access control model of the student role 

According to the semantics of the PrT nets, we can prove that the 
above transformations have preserved the semantics of contracts 
and access control rules. For the sake of simplicity, the above 
discussion focuses on rules for individual roles. We can build a 
test model that involves multiple roles. The transformation of 
access control rules into a net essentially depends on the given 
subset of access control rules and the contracts of involved 
activities. If the given rules involve different roles, then the net 
captures the behaviors of different roles. In this case, we enhance 
the net with a new place, named role, new arcs from place role to 
each transition labeled with <r>, and additional guard condition 
for each transition (e.g., r=Student). In essence, this is to use 
role(r) as an additional precondition for each activity. In ASMS, 
for example, the complete auction process involves various 
activities (e.g., creation of a sale, change of the state of a sale for 
auction, comments and bids by buyers) performed by different 
roles (e.g., seller, admin, and buyer). We can build the test models 
based on the auction process, rather than individual roles.  

3.3 Analysis of Test Models 
After the structure of a PrT net is constructed, we define its initial 
markings by specifying test data (e.g., actual arguments of the 
activities) and test configurations (e.g., system settings and 
contexts in the access control rules). Consider the net in Figure 5. 
Let M0={m0}, where m0={available(B1), day (WD), day(HD), 
day(MD)}. The net and M0 form a test model for the student role. 
In m0, test data available(B1) can reach the activities of 
BorrowBook, ReserveBook and GivebackBook. day(WD), 
day(HD), and day(MD) represent all possible contexts in the rules 
so that the test model can cover all the contexts. 

Our approach provides three techniques for analyzing and 
debugging the specifications of test models – verification of 
transition reachability, verification of state reachability, and 
model simulation. In a test model, each transition is corresponding 
to an access control rule under a certain condition of the involved 
activity. Thus, all transitions should be reachable from some 
initial state. If there is one transition that is unreachable from the 
given initial states, then the transition will not be covered by any 
tests to be generated from the specified test model. In this case, 
either the net or the initial states is specified incorrectly. Suppose 
M0={m1}, where m1= {available(B1), day(WD), day(MD)}. 
UBorrowBook is not reachable from m1 in the net in Figure 5. In 
this case, M0 is not specified properly. 

If a goal state is known to be reachable (or unreachable), but the 
verification reports that it is unreachable (or reachable), then the 
net or the initial states is specified incorrectly. For example, 

{reserved(B1)} is a state reachable from m0={available(B1), 
day(WD), day(MD), day(HD)}.It can be reached by transition 
firings ReserveBook(b/B1, d/WD). However, if the arc from 
transition ReserveBook to place reserved is missing, the 
verification would report that the above state is not reachable. 

Our approach also provides an animator for stepwise simulation 
of test models. At each state, the animator shows the number of 
tokens in each place and highlights the enabled transitions. The 
user can choose to manually fire one enabled transition at a time 
or continuously fire randomly selected enabled transitions. This 
can help find out whether the expected behaviors are specified 
correctly in a test model. Suppose M0={m1}, where m1= 
{available(B1), day(WD), day(MD), day(HD)} for the net in 
Figure 5. We choose to fire BorrowBook(b/B1, d/WD) under m1, 
which results in ={borrowed(B1), day(WD), day(MD), day(HD)}. 
At this state, the animator should highlight three enabled 
transitions: GiveBackBook, PGiveBackBook, and 
UGiveBackBook. If any one of them is not highlighted, we can 
check if the transition’s associated arcs are described correctly. 

4. Generation of Access Control Tests 
In this section, we first describe how MISTA generates model-
level access control tests from a test model. Then we discuss how 
to create a MIM specification so that executable test code can be 
generated.  

4.1 From Transition Firings to Access 
Control Tests 
Definition 5 (Model-level access control test). Given an access 
control test model represented by a PrT net, a test case is a firing 
sequence < kM0 [t1θ1> kM1 ,…, [tnθn> k

nM > in the PrT net, where 

• kM0 is the initial setting of the test,  

• Transition firings t1θ1,…,tnθn are test inputs, i.e., calls to 
the activities in access control rules. Suppose transition 
ti is corresponding to activity a(x1,…,xm) and 
substitution θi={x1/u1, …, xm/um}. Then tiθi (1≤i≤n) 
represents component call a(u1,…,um), where uj (1≤j≤m) 
is xj’ actual argument.  

• kM1 ,…, k
nM are test oracles for respective test inputs 

tiθi (1≤i≤n). For each place p∈P and each token 
<v1,…,vm>∈ )(pM k

i , proposition p(v1,…,vm), when 
used as an oracle value, is expected to evaluate to true 
in the SUT. 

For example, m0, Reserve(b/B1, d/WD), m1, Borrow (b/B1, d/WD), 
m2, UGiveBackBook(b/B1, d/HD), m3 is a firing sequence in the 
test model in Figure 5. Access control model of the student role 
where M0={m0} and m0={available(B1), day(WD), day(HD), 
day(MD)}. Thus:  

m1={reserved(B1), day(WD), day(HD), day(MD)}, 

m2={borrowed(B1), day(WD), day(HD), day(MD)} 

m3={borrowed(B1), day(WD), day(HD), day(MD)} 

The firing sequence is a test case that exercises three access 
control rules: reserve books on working days (permitted), borrow 
books on working days (permitted), and give back books on 
holidays (prohibited). The states of book B1, reserved(B1), 
borrowed(B1), and borrowed(B1), represent the expected results 



of these activities. We assume that a prohibited activity, such as 
PGiveBackBook(b/B1, day/HD), should not change the system 
state. Here day(WD), day(HD), day(MD) are not used as test 
oracles because they represent different system settings for access 
control contexts. 

Therefore, test generation from a test model in our approach is to 
produce firing sequences from the test model according to a 
certain strategy (e.g., to achieve a coverage criterion). MISTA 
supports automated test generation for several coverage criteria, 
such as reachability tree coverage, state coverage, and transition 
coverage. In an access control test model, a transition is 
corresponding to one access control rule. A test suite is said to 
meet transition coverage if each transition is covered by at least 
one test. A test suite is said to meet state coverage if each state is 
covered by at least one test. A test suite is said to meet 
reachability tree coverage if each edge in the reachability graph 
(i.e., each transition firing under each reachable marking) is 
covered by at least one test. Reachability tree coverage subsumes 
transition coverage and state coverage because the reachability 
tree includes each reachable transition and each reachable state. 
The case studies in this paper use the reachability tree coverage.  

In MISTA, test cases are structured as a test tree, where each path 
from an initial marking to a leaf is corresponding to a firing 
sequence (i.e., test case). Figure 6 shows portion of the test tree 
generated for the reachability tree coverage of the test model in 
Figure 5. Node “1 new” represents the initial marking, i.e., the 
initial setting of each test. The path 1→1.1→1.1.2 exercises two 
access control rules. It first borrows book B1 on a working day, 
which should be permitted, and attempts to return the book on a 
holiday, which should be prohibited.  

 
Figure 6. Portion of a test tree  

In order to represent tests generated from multiple initial markings 
that represent different sets of test data and system settings, the 
test tree uses an invisible root node whose child nodes are 
corresponding to the initial markings. The test tree for reachability 
tree coverage is constructed as follows. The nodes of initial 
markings are put into a stack (if depth-first search is used) or 
queue (if breadth-first search is used) for expansion. When a node 
is expanded, all possible transition firings (including all 
substitutions for each transition) under the current marking are 
computed and a child node is created for each possible firing. The 
child node will also be expanded if the new marking has not 
expanded before. Due to the combinatorial nature of transition 
firings, the test tree for a complex model may have a large number 
of tests. MISTA provides two effective techniques for reducing 
the number of tests: partial ordering and pairwise combination. 
The total ordering of n (n>1) independent or concurrent transition 
firings yield n! sequences, where the partial ordering only 

produces one sequence. When there are more than two inputs, the 
pairwise technique covers all pairs of inputs, rather than all 
combinations of inputs. Suppose each of 10 input variables has 10 
values. There are 1010 combinations of these variables. In MISTA, 
however, 120 combinations can cover all pairs of the variables.    

4.2 Building MIM Specification for Test Code 
Generation 
The model-level tests in Definition 5 are not executable because 
they are generated solely from a given test model, which can be 
independent of the SUT. The test model of student does not 
specify how BorrowBook can be performed against the SUT. In 
our approach, a MIM specification for a test model can be created 
so that all model-level tests can be converted into test code 
automatically. A MIM specification maps the elements in a test 
model into corresponding constructs in the SUT. It consists of the 
following main components: object function fo, method function 
fc, accessor function fo, mutator function fm, a list of setting 
predicates ls, and helper code function fh. Table 3 presents an 
example of these components in LMS. 

Object function fo maps objects in the test model to objects in the 
SUT. In LMS, book B1 in the test model of student is 
corresponding to a named constant, referring to a book titled 
“Software Security”. Method function fc maps activities in the test 
model to test operations in the SUT. For example, the 
implementation of BorrowBook is a method doPermittedBorrow. 
Accessor functionfa maps predicates in the test model to accessors 
in the SUT. It is used for verifying oracle values. For example, 
book b is borrowed on day d in a test case, i.e., borrowed(b, d), 
can be verified by method isBookBorrowed(b). Mutator function 
fa maps the system setting predicates in ls to operations in SUT so 
that the SUT can be configured to a specific state. For example, 
predicate day in LMS is a system setting. As an access control 
precondition, it must be set correctly because the individual 
activities can be called. Setting LMS to a working day, i.e., 
making day(WD) true, can be done by the following statement: 
ContextManager.currentContext=Context Manager. workingday; 
Helper code function fh includes header code (e.g., package and 
import statements in Java), constant and variable declarations, 
setup, teardown, and methods for testing individual activities. All 
of this code will be included in the test code. The methods for 
testing individual activities depend on how the SUT is 
implemented, e.g., what types of security exceptions will be 
reported. In the case studies, the exceptions for prohibited 
activities and undefined activities are 
SecuritPolicyViolationException and 
UndefinedSecuritPolicyException, respectively. Thus, a test for a 
permitted activity fails if the SUT throws an exception of 
SecuritPolicyViolationException or UndefinedSecurit 
PolicyException. A test for a prohibited activity fails if no 
exception is thrown or the thrown exception is not 
SecuritPolicyViolationException. A test for an undefined activity 
fails if no exception is thrown or the thrown exception is not 
UndefinedSecuritPolicyException. 

Table 3. Sample MIM specification 

MIM Model 
element 

Implement
ation 
element 

Notes 

fo B1 Book1Title Book1Title is a named 
constant in the helper code  



fc BorrowBo
ok(b,d) 

doPermitedB
orrow(b) 

doPermittedBorrow is a test 
method in the helper code. It 
fails if an exception is 
thrown. 

fo borrowed(
b,d) 

isBookBorro
wed(b) 

isBookBorrowed is a query 
method for verifying 
whether the status of the 
book is borrowed by the 
borrower 

fm day(WD) ContextMan
ager.current
Context = 
ContextMan
ager.working
day; 

It sets the concurrent context 
to working day. 

ls day day is a system setting 

fh(PA
CKA
GE) 

package 
com.library.test.software.m
odeltest; 

Helper code for the package 
statement of Java test code 

fh(CO
DE) 

private final String 
Book1Title = "Software 
security"; … 

Declarations and methods to 
be included in the test code  

 

Given a complete MID specification (i.e., test model and MIM), 
the executable test code for all model-level tests can be generated 
automatically. Each model-level test is corresponding to a test 
method. For the aforementioned test: m0, ReserveBook(b/B1, 
d/WD), m1, BorrowBook(b/B1, d/WD), m2, PGiveBackBook(b/B1, 
d/HD), m3, the Java test method is as follows: 

public void test12() throws exception { 
   System.out.println(“Test 12”); 
   ContextManager.currentContext=ContextManager.workingday; 
   doPermittedReserve(Book1Title);  
   assertTrue(isBookReserved(Book1Title)); 
   ContextManager.currentContext = ContextManager.workingday; 
   doPermittedBorrow(Book1Title); 
   assertTrue(isBookBorrowed(Book1Title)); 
   ContextManager.currentContext = ContextManager.holiday; 
   doProhibitedGiveBack(Book1Title); 
   assertTrue(isBookBorrowed(Book1Title)); 
} 

5. EMPIRICAL STUDIES 
5.1 Experiment Setup 
Our case studies are based on two Java programs, LMS and 
ASMS [9][10]. Table 4 presents the main parameters, where R is 
the number of roles, PR is the number of primitive roles, O is the 
number of objects, A is the number of activities, and RL is the 
total number of specified rules for the primitive roles. The 
mutants of the access control rules were created by the MutaX 
tool3 using five types of mutation operators [9][10]: replacing 
permission rule with prohibition, replacing prohibition rule with 
permission, changing role, changing context, and adding a rule. 
They were created before this work was initiated. To evaluate the 
proposed approach, the following mutants were excluded:  

• Mutants related to non-implemented activities are not 
used because the tests could not be performed.  

• Mutants with inconsistent access control rules are not 
used because our approach assumes that the given 

                                                                    
3https://sites.google.com/site/servalteam/tools/mutax 

access control rules are consistent. These mutants are 
typically created by the operator that adds new rules..  

• Equivalent mutants, which have the same behavior as 
the original version because of the implementation 
issues in the original version (e.g., some access control 
contexts, hard-coded in the implementation, are not 
affected by mutation of access control rules).  

Table 4. Subjects in the empirical studies 
 LOC  Classes/

Methods 
R PR O A RL  

LMS 3,204 62/335 7 5 4 12 33 

ASMS 10,703 134/797 8 6 6 23 107 

 

The protocol of our experiment is as follows. First, we specify the 
contracts of the activities involved in access control rules, and 
construct and analyze the test models. Second, we create the MIM 
specification for each test model as described in Section 4. Thus 
complete MID specifications are obtained for test code 
generation. Third, we use MISTA to generate test code from the 
MID specifications. Fourth, we execute the generated test code 
against the original version such that no test fails (the original 
version is considered as the correct version). If there is a failure, 
then the previous steps need to be repeated. Finally, we run the 
test code against each mutant. 

5.2 Results 
The results of our experiments are summarized in Table 5, where 
T is the total number of transitions, P is the total number of places 
(they reflect the complexity of test models), TC is the number of 
test cases, LOC is the number of lines of code generated, M is the 
total number of mutants, K is the number of mutants killed by the 
test, and FDR is the fault detection rate (i.e., number of mutants 
killed/total mutants tested also called mutation score).  

Table 5. Results of the empirical studies 

 Models Tests Mutation Analysis 

T P TC LOC M K FDR 

LMS 73 27 207 3,086 243 233 95.9% 

ASMS 126 30 179 4,680 914 914 100% 

 

For LMS, 207 test cases in 3,086 lines of non-comment code were 
generated. They killed 233 out of 243 mutants, with an overall 
detection rate of 95.9%. The 10 remaining mutants not killed by 
the tests have the same nature – they contain a new rule created by 
the adding-rule operator but can never cause security problems 
because the functional precondition of the activity in the added 
rule is not satisfiable. These mutants do not violate the required 
security policies. Consider a mutant with the following added rule 
that allows the admin role to return books on any day: (admin, 
Book, GiveBackBook, true, Permission). According to the 
required access control policies, none of the Borrower’s activities, 
BorrowBook, ReserveBook, and GiveBackBook, is intended for 
use by the admin role (no access control rules with respect to 
these activities are specified for admin). The above rule can never 
enable the admin role to return books because the precondition of 
GiveBackBook- “the book is borrowed” (by the same person) - is 
unsatisfiable. This precondition can only be fulfilled by 
BorrowBook. In the mutant, however, Admin is not able to borrow 



books (BorrowBook is undefined for admin). It is worth pointing 
out that our approach killed the mutant with the following added 
rule that allows admin to borrow books: (admin, Book, 
BorrowBook, true, Permission). In ASMS, 179 tests in 4,680 lines 
of code were generated. They killed all of the 914 mutants. 

There are two main reasons for the near-perfect mutation scores in 
our case studies. First, our approach for dealing with incomplete 
access control specification makes it possible to reveal all 
undefined situations. The tests generated to cover these situations 
are not only necessary but also powerful for revealing potential 
policy violations in an implementation. Second, the tests 
generated for the reachability graph coverage can cover all access 
controls, objects, activities, and contexts. This was feasible thanks 
to the automation of both test generation and test execution. In 
comparison, transition coverage (or rule coverage) has a low fault 
detection capability. As an initial experiment, the application of 
transition coverage to the student role in LMS only killed about 
50% of the mutants. The reason was that many objects and 
contexts were not exercised. Thus, we decided not to continue the 
empirical evaluation of the transition coverage. 

5.3 Threats to Validity 
The main result of the case studies is that our approach is highly 
effective in detecting violations of access control rules. The key 
aspects that have led to this result include the access control 
model, the formalization of contracts, generation of access control 
tests with the reachability tree coverage, generation of executable 
test code, and mutation analysis of access control rules. In the 
following, we discuss how these aspects can be affected when our 
approach is applied to real-world software where access control is 
an important security mechanism. 

First, our approach focuses on testing of access control rules. It 
does not cover every aspect of RBAC, such as role assignment 
and session management. Second, due to the small sizes of the 
subject programs, we were able to generate tests to cover all rules 
and combinations of objects, resources, and contexts. Generation 
of such comprehensive tests may not be feasible for complex or 
large-scale software systems where access control is involved in 
very large state space. In order to deal with such systems, testers 
may try to divide the system to several small components/modules 
and apply our approach to each one in an independent way. This 
will reduce the complexity and the testing effort. Since our 
technique was not applied to such systems, we cannot evaluate the 
effectiveness of this strategy. Third, we were able to generate 
executable test code by completing the MIM specifications of the 
test models. In the MIM specifications, invocations to individual 
activities and verification of test oracles are programmed. For 
real-world software, the individual activity tests and the test 
oracles may not be completely programmable. Fourth, although 
our approach is applicable to a variety of languages and 
applications (Java, C, C++, C#, VB, HTML/Selenium IDE) 
supported by MISTA, the subject programs were limited to Java 
applications. Finally, the evaluation of fault detection capability is 
based on the mutation analysis of access control rules. Although 
the mutants were created by five different operators, they do not 
necessarily represent all possible access control flaws in real-
world software. 

6. RELATED WORK 
Software security testing involves two different perspectives - 
testing of security policies and performing security attacks 
(penetration testing) to identify vulnerabilities. This paper focuses 
on policy testing. 

In recent years, Le Traon’s group have investigated various issues 
of testing access control policies, such as test criteria of access 
control policies [9], test generation from access control models 
[10], mutation analysis of access control policies [12], and 
selection and transformation of functional tests for policy testing 
[13]. In the above work, test generation was not automated. 
Pretschner, in collaboration with Le Traon’s group, has proposed 
a model-based approach [14], where the access control model 
consists of a role hierarchy, a permission hierarchy, and a context 
hierarchy. They use a combinatorial testing technique to derive 
test targets, i.e., combinations of roles, permissions, and contexts. 
Each test target is relevant to one access control rule. In 
comparison, this paper focuses on automatic test code generation 
from models that capture the interactions of access control rules. 
A test is usually a sequence of access control requests for 
exercising multiple access control rules.  

Masood et al. [15][16] have investigated a state-based approach to 
test generation for RBAC policies. They first construct a finite 
state machine (FSM) of the RBAC policy and then derive tests 
from the FSM. This model essentially captures the behaviors of 
role assignment, rather than access control rules. Different from 
FSMs, PrT nets can capture both control flows and data flows 
(e.g., test data and contexts). Based on the Assurance 
Management Framework (AMF), Hu and Ahn have proposed an 
approach to the generation of conformance tests of access control 
policies through constraint verification [17]. Test cases are 
derived through verification by either removing or negating the 
security constraints. Our approach focuses on test generation with 
respect to coverage criteria and transformation of model-level 
tests into executable code. Mallouli et al. proposed a model-based 
approach for integrating OrBAC (Organizational Based Access 
Control) rules into an initial functional model represented by an 
extended finite state machine [18]. Test sequences generated from 
the integrated model will be able to exercise the OrBAC rules. 
Different from this approach, we do not assume the availability of 
the full functional model. We integrate the access control rules 
with the contracts of the activities involved in the given rules. 
This integration can handle incomplete specification of access 
control rules. Jürjens has developed an approach for testing 
security-critical systems based on UMLsec models [19]. Test 
sequences for access control properties are generated from 
UMLsec models to test the implementation for vulnerabilities. Li 
et al. proposed an approach to test generation from security 
policies specified as OrBAC rules [20]. It focuses on generation 
of test purposes from individual OrBAC rules. In comparison to 
these two approaches, our work integrates access control rules 
into an operational model and generates tests to cover different 
access control rules. Julliand et al. have proposed an approach to 
generating security tests in addition to functional tests by re-using 
the functional test model together with a new model of security 
properties defined by a security engineer [21]. The security 
properties describe tortuous situations that could violate security 
policies. They did not use an explicit access control model. 
Different from this work, our approach not only provides a 
process for building the model of access control rules, but also 
generates tests to exercise all access control rules and contexts. 
Generally, the above model-based approaches focus on generating 
model-level tests, not executable tests. Our approach can produce 
executable test code by using a flexible mechanism that maps 
modeling elements into implementation constructs. 

Martin et al. have investigated techniques for test generation from 
access control policy specifications written in XACML [22][23]. 
They have defined policy coverage criteria and developed a 



mutation-testing framework for XACML policies. To generate 
tests from policy specifications, they synthesize inputs to a 
change-impact analysis tool. Different from this work, our 
approach does not focus specifically on XACML and targets both 
PDP (policy decision point, where access control decisions are 
made) and the enforcement mechanisms inside the system. 

7. CONCLUSIONS 
We have presented a new model-based approach for automated 
testing of access control policies. It provides a tool-supported 
process for building access control test models from contracts and 
access control rules. Access control tests can then be generated 
and converted into executable code based on a MIM specification 
that maps the modeling elements into implementation constructs. 
By using mutation analysis of access control implementation, our 
empirical studies have demonstrated that our approach is highly 
effective in detecting violations of access control policies.  

In the case studies, tests were generated using the reachability tree 
coverage, which subsumes both transition coverage and state 
coverage. In addition, this paper has focused on access control 
rules, which define role and permission authorization. When a 
role is involved in a test case, a subject is created and assigned to 
that role. Our future work will deal with other RBAC features, 
such as role assignment and session management. 
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