
Concurrency in Linear Hashing

CARLA SCHLATTER ELLIS
University of Rochester

Concurrent access to complex shared data structures, particularly structures useful as database
indices, has long been of interest in the database community. In dynamic databases, tree structures
such as B-trees have been used as indices because of their ability to handle growth; whereas hashing
has been used for fast access in relatively static databases. Recently, a number of techniques for
dynamic hashing have appeared. They address the major deficiency of traditional hashing when
applied to databases that experience significant change in the amount of data being stored. This
paper presents a solution that allows concurrency in one of these dynamic hashing data structures,
namely linear hashfiles. The solution is based on locking protocols and minor modifications in the
data structures.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-concur-
rency; deadlocks; multiprocessing; synchronization; E.l [Data Structures]: H.3.2 [Information
Storage and Retrieval]: Information Storage---file organization

General Terms: Algorithms

Additional Key Words and Phrases: data structures, dynamic hashing, concurrency control, concur-
rent algorithms, locking protocols

1. INTRODUCTION

Concurrent access to complex shared data structures, particularly structures
useful as database indices, has long been of interest in the database community.
The need to provide multiple users with acceptable response times has motivated
such work even in the more traditional computing environments. With the
increasing availability of truly parallel architectures, the techniques developed
for specialized concurrency control in database structures may be transferred to
a wider range of data structures in a variety of parallel application areas.

In dynamic databases, tree structures, such as B-trees, have been used as
indices because of their ability to handle growth. Recently, a number of techniques
for dynamic hashing have appeared. They include Extendible Hashing [71, Linear
Hashing [12], Exponential Hashing [13], and Dynamic Hashing [lo]. These
methods address a major deficiency of traditional hashing when it is applied to

The preparation of this paper was supported in part by the National Science Foundation under grant
number IST-8025761. A preliminary report on this research appears in the Proceedings of the 4th
ACM SZGACT-SZGMOD Symposium on the Principles of Database Systems (Portland, Ore., March
1985), pp. l-7.
Author’s current address: Department of Computer Science, Duke University, Durham, NC 27706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0362-5915/87/0600-0195 $00.75

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987, Pages 195-217.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22952.22954&domain=pdf&date_stamp=1987-06-01

196 l Carla S. Ellis

databases that experience significant change in the amount of data being stored.
In this paper, we present a solution, based on locking protocols and minor
modifications in the data structure, that allows concurrency in linear hashfiles.

There have been many algorithms proposed for the allowance of concurrent
access to other dynamic search structures such as B-trees [l, 2,9, 11,15, 161 and
binary search trees [3,8,14]. Concurrency in various dynamic hash structures is
beginning to receive attention. A preliminary version of the solution being
described here was presented in [5]. Solutions for concurrent access in extendible
hashfiles have also been developed [4,6]. A recent report [17] specifies concurrent
algorithms for several dynamic search structures including Lomet’s exponential
hashing [13]. That solution uses techniques similar to those found in our
algorithms. Several simple solutions for linear hashing have also been proposed
[181. These algorithms are primarily based on two-phase locking.

The solutions described here apply several techniques that have been used
previously in various tree structures. The linear hashfile represents a different
type of data structure from those of the earlier concurrency studies. In particular,
it is not a linked structure. The solution for concurrent linear hashing requires a
rethinking and generalization of those familiar techniques.

In the next section, the sequential version of linear hashing is described. The
concurrent algorithms are developed in Section 3. In Section 4, correctness
arguments are given. Finally, Section 5 summarizes the work.

2. SEQUENTIAL ALGORITHM

The basic sequential algorithm assumes a contiguous logical address space of
primary buckets each capable of holding some number b of records. Collisions
(i.e., attempts to insert into a full primary bucket) are handled by creating a
chain of overflow buckets associated with that particular bucket address.

The hash function to be applied changes as the file grows or shrinks. Each
new hash function assigns new bucket addresses to some of the records previously
placed using the old function. This new hash function is applied to one bucket
chain at a time in the linear ordering. The resulting modification in the data
structure is called a split and moves some records from the original bucket to a
new primary bucket that is appended at the current end of the hashfile. Splitting
serves to reduce the accumulation of overflow chains, which degrade performance,
by linearly increasing the address space of primary buckets. The split operation
is applied cyclically.

To be specific, there is the function ho: k + 10, 1, . . . , N - l), initially used to
load the file and a sequence of functions hl, hz, . . . , hi, . . . , such that for any
key value k, either hi(k) = hi-l(k) or Iti(hi-i(k) + 2’-‘N. If a split is called
for, it is performed on the bucket that is next in line to be split (a pointer next
indicates which bucket this is). For each pass with a new hash function hi, the
next pointer travels from bucket 0 to 2’-‘N. A variable level is used to determine
the appropriate hash function for find, insert, or delete operations using the
following procedure:

bucket c hlevel (key)
if bucket < next then bucket c h,,,,+, (key)
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing 197

Splitting causes these variables to be updated as follows:

next + (next + 1) mod(N*2’“‘)
if next = 0 then level c level + 1.

There are a couple of rules that can be used to decide when to split in the
linear hashing approach. One possibility is to attempt to maintain an approxi-
mately constant storage utilization. In this approach, a split is done only when
the load factor exceeds some threshold. The other policy is to split the next
bucket in the cycle whenever any bucket overflows. These are called controlled
and uncontrolled splits, respectively. In developing a solution that allows con-
currency, it is necessary to specify which rule is to be used, because the different
information requirements may call for different synchronization. The solution
given below is based on the uncontrolled approach because it is simpler. Later,
we indicate what is required for the more popular controlled splitting.

Deletion of records may result in merging buckets, moving next back, and
readjusting level. In the controlled approach, merging is performed when overall
space utilization falls below some threshold. In the uncontrolled approach,
emptying an individual primary bucket by a delete operation triggers a merge.

Figure 1 shows a linear hash table before and after an insertion that triggers a
splitting operation. Here hlevel (key) is key mod 2”“‘N where N = 2. In this
example, the key to be inserted is 42. To find the target bucket, one applies the
hash function indicated by the value of level (h, (42) = 2) and compares the result
with the next pointer to determine whether the hash function hz should be used
instead. The value of next is 0, indicating that hl is the appropriate function.
The record for key 42 is added to the bucket chain at bucket address 2 after
checking that it is not already there. This causes the creation of an overflow
bucket. Under the uncontrolled splitting policy, the overflow triggers a split
operation. All the records in the bucket pointed to by the next pointer, bucket 0,
are rehashed using hz. This eliminates the overflow bucket associated with bucket
0 and creates a new primary bucket at address 4. The next pointer is advanced
to bucket 1. Suppose now that a find operation is requested for key 20. Calculating
h,,,l yields hl (20) = 0, but now 0 is less than next, and the target bucket address
is recalculated using h2 (20 mod 8). The desired record is found when bucket 4 is
searched.

3. CONCURRENT SOLUTION

Our goal is to allow a high degree of concurrency among processes executing find,
insert, and delete operations on a shared linear hashfile. We discuss the parallel
behavior of this solution in terms of its five major procedures. The user’s requests
to search or modify the set of keys stored in the hashfile correspond to the
routines find, insert, and delete. The procedures Split and Merge are con-
cerned with the restructuring of the hashfile. Since the uncontrolled splitting
strategy is being used, restructuring decisions are not affected by actions taken
by other updates between the time that it is determined that restructuring is
called for and the split or merge is actually executed. Owing to this independence,
the restructuring operations can be viewed as separate operations in spite of the
fact that they are called from the procedures insert and delete.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

198 l Carla S. Ellis

NEXT LEVEL = 1

(4

NEXT LEVEL = 1

b)

Fig. 1. Sequential linear hashing (a) before inserting 42
into bucket 2; (b) after inserting into bucket 2 and split-
ting bucket 0.

In our solution, the find operation can be performed concurrently with other
processes executing the procedures find, insert, delete, and Split. Processes
executing the insert and delete procedures may operate in parallel if they are
working on different bucket chains. A split may be performed in parallel with
insert and delete operations that are not accessing the particular chain being
split. The interaction between a merge and processes doing find, insert, or delete
operations is more complicated. Those processes may not access the two buckets
being merged and may not read the values of level and next while the merging
process is using them. At most, one restructuring operation can be executing at
any time.

The most interesting interaction described above involves the concurrency
allowed between the split operation and that phase of find, insert, and delete in
which the target bucket is being located. The basic strategy is to permit the use
of potentially obsolete information to access a bucket initially and then, if it
turns out to be the wrong bucket, to follow a remedial path through related
buckets.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7.

Concurrency in Linear Hashing

Table I

l 199

Existing lock

Lock Reauest Read lock Selective lock Exclusive lock

Read lock
Selective lock
Exclusive lock

yes
yes
no

Yes
no
no

no
no
no

Locks are used to control access to the shared variables level and next, which
are referred to as root variables, and to the bucket chains. The primary bucket
and all its overflow buckets are locked as a unit. The compatibility of lock types
is given by Table I.

The find algorithm calls for the use of lock-coupled read locks. Lock-coupling
is a particular flow of locking in which the next component (assuming some
ordering) is locked before releasing the lock on the current component. The
procedures insert and delete read-lock root and selective-lock buckets with lock
coupling. The split operation uses selective locks. Exclusive locks are used for
merging chains and deallocating old overflow buckets.

In our model of computation, a number of actions are assumed to be inherently
atomic. These include the lock and unlock operations. Reading or writing a single
shared variable, such as level or next, is also considered an indivisible step. Each
bucket of a chain occupies a disk page, and the data are transferred into private
buffers for processing. The operations of reading or writing a single physical disk
page are also assumed to be atomic.

Organization of the keys within a chain becomes important when insertion
and deletion can occur in parallel with searching. When multiple disk pages make
up the chain, reading the chain is not an indivisible step. If keys are kept ordered
within a chain, one insertion can affect every page, and care must be taken that
intermediate states are not visible while the chain is being rewritten. All we
actually require is that a single disk write makes visible the reorganized chain
resulting from inserting or deleting one record or splitting a chain. This procedure
can be implemented in several ways. One approach is to build a new chain of
overflow buckets on disk and then to replace the primary bucket with new
contents including a pointer to the new chain. This last disk write makes the
new chain available. However, the old chain cannot be immediately destroyed,
since it is possible for a reader to still be using it. Disk pages removed from the
official chain can be remembered and deallocated later (e.g., in a separate phase).
In our presentation, the removal of old overflow buckets is done in a procedure
called GarbageCollect. This procedure involves briefly acquiring an exclusive
lock on the affected chain to ensure that readers have finished using the old
version before the buckets are subject to deallocation. In the Merge routine,
garbage buckets are directly deallocated (embedded in a procedure, Merge-
Chains), since the process doing the merge already holds exclusive locks on the
chains.

Concurrency is enhanced by allowing a searching process to operate in parallel
with a split operation, but there must be some means for it to reorient itself when
the wrong chain is reached because of out-of-date root values. In this scheme,

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

200 l Carla S. Ellis

NEXT LEVEL = 1

16
24
32

42 0
Fig. 2. Concurrent linear hashing.

each chain includes an additional field locallevel that specifies the hash function
appropriate to that bucket chain. This field captures the fact that in the most
recent split affecting this bucket (not inverted by a subsequent merge), it was
the hash function hloeallevel that was used to divide up the keys. Basically, the
locallevel value characterizes the set of key values that can belong in this chain.
Note that locallevel is entirely redundant information (with level and next),
when no concurrent restructuring operations are in progress. In that case, all
bucket chains with addresses less than the value of next have locallevel =
level + 1. Buckets with addresses greater than or equal to 21eve’N also have values
of locallevel = level + 1. All of the buckets in between have locallevel = level,
which indicates that they have not effectively been split in the current round
of restructuring. If there is a process actively doing a split operation, the two
reorganized buckets may already be in place while the old root values are still
being used. Storing locallevel in the primary bucket ensures that the searching
process can decide if it has the right chain without requiring the accuracy of the
shared root variables. The modified data structure is shown in Figure 2.

The irtuition behind the search phase of the find, insert, and delete algorithms
(in a procedure called LocateAndLockChain) is the key to understanding this
solution. A process executing in its locate phase behaves as follows: The root
variables are read, and the values seen determine which hash function is to be
used initially. Let the private variable lcu record the hash function applied,
namely hieV. So, the first value of lev is the value of level at the time the root
variables were read. Upon gaining access to a bucket, the process checks whether
lev matches that bucket’s locallevel, and if not, it increments its lev value and
recalculates the address hi&) until a match is found. This is referred to as the
rehashing loop. It essentially reenacts the history of splits that have affected the
placement of the target key. In other words, the rehashing loop calculates in turn
each bucket chain that should have contained the target key in each restructuring
pass. This may mean revisiting the same bucket chain in successive iterations.
The rehashing loop starts with the round indicated by the root values seen and
continues through the round indicated by the value of locallevel contained in the
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 201

target bucket. Note that this approach is somewhat analogous to the use of the
next links in [4] and [ll], but in a very different form.

The calculated address at each iteration of the rehashing loop will always be
less than or equal to the address of the eventual destination. This is a direct
consequence of the definition of the sequence of hash functions (i.e., keys moved
from a bucket b during a split using hi go to the higher addressed chain
b + 2’-‘N). Thus, the bucket chain in which the desired key belongs should be
reachable using this rehashing strategy as long as each address calculated is
within the valid address space at the time of access.

The first problem is to ensure that a process does not prematurely try to access
a new chain being created by a concurrent @lit operation, The two new chains
resulting from a split appear atomically to other processes because of the order
in which they are written to disk. Specifically, the chain at the new bucket
address is written before the new version replaces the chain at the target bucket
address. At this point, no information contained in the hsshfile points to the
existence of this new bucket. Once the primary bucket at the head of the chain
at the target address has been written, its locallevel value indicates that the
bucket has split and a new bucket has been incorporated into the data structure.
All the information from the original chain is still available through the rehashing
scheme. After the reorganized chains are safely in place, the root information is
changed to allow direct calculation of the address of the new chain. Here also
the order of changing next and level matters because seeing incorrect values
must give the view of a smaller valid address space than actually exists. The
order given in the algorithm allows a reader to see a new value of next with an
old value of level, possibly resulting in a rehash. By contrast, consider a change
in the Split routine, such that level is incremented before next gets reset to zero.
It could appear to a searching process that the next round of splitting is already
half done, and thus invaiid addresses could be generated.

The second aspect to ensuring valid addressing is that a concurrent merge
operation should not make a calculated address invalid. The lock-coupling
protocol used in the locate phase prevents interference by merging processes.
While reading level and next for the initial address calculation, searching proc-
esses place a read lock on root and hold the lock until a lock (read lock for find,
selective lock for insert or delete) is placed on that bucket chain. If rehashing is
called for, a lock is placed on the subsequent bucket before the lock is released
on the current wrong bucket. A process responsible for merging two buckets
holds exclusive locks on root and both partners of the merge, while it makes its
changes. The read lock on root held by the searching process prevents a merge
from decreasing the size of the address space (by updating level and next) during
the initial bucket access. If it appears that another iteration of the rehashing
loop is necessary, the next address calculated must be valid, because a lock is
still being held on the bucket that would be its partner in any merge operation
that could cause the new destination to disappear. In such a situation, the
merging process would need the incompatible exclusive lock on the partner.

During the locate phase of find, insert, and delete, locks are placed according
to a well-defined ordering. Merges and splits also respect the ordering in request-
ing their locks. Thus, deadlock cannot occur.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

202 ’ Carla S. Ellis

Searching for the key as part of a deletion, or for the place to insert as part of
an insertion, requires that the effects of previous updates (even those still active)
be seen. Selective locks are placed on the chains during the locate phase to
serialize writers of the same individual buckets so that only up-to-date infor-
mation is seen. This guarantees that two changes being performed in private
buffers are not based on the same version of the bucket chain, and that two suc-
cessive put operations to the same primary bucket will not lose the effect of an
update. So, there is no interference between concurrent executions of insert
and delete.

Merges and splits are completely serialized with respect to one another by
incompatible locks on the root. All affected bucket chains are also locked by a
restructuring process for the duration of the step. The Split procedure allows,
because of its selective lock, only processes executing the find routine to concur-
rently access the chain being split. The exclusive locks held during a merging
process do not permit any concurrent use of the partner buckets of the merge or
the root variables until they have been changed. After the root variables have
been changed to reflect the smaller hashfile that will result from the merge, the
lock on root is converted to a selective lock, and processes entering their locate
phase may then concurrently access root.

The pseudocode procedures are presented in Figures 3,4, and 5.
An example of a parallel computation involving three requests is given in

Figure 6. The vertical columns of text give the steps executed by each of the
three processes. The horizontal alignment of these steps indicates when con-
current execution is assumed. Gaps show when delays occur (possibly caused by
blocking on lock requests). The hashfile shown in Figure 2 is assumed to be the
initial state. Figure 7 shows the updated data structure at designated points in
this computation. The notation SLi means that Process I (the inserter) holds a
selective lock on that bucket. Similarly, RLr is a read lock held by Process F.

This example illustrates several of the important interactions between proc-
esses. At the beginning of the computation, the process attempting to delete 15
and the process inserting 40 can concurrently locate and modify the data in their
respective target bucket chains. Each process places a selective lock, but since
they are working with different parts of the data structure, they do not conflict.
Both of these updates trigger a restructuring. In the second phase of the
computation, the merge and the split operations are serialized by the incompatible
locks required on root. Process I manages to acquire its selective lock on root
first and performs the split while process D is blocked. Meanwhile, process F
starts executing the find operation in parallel with the split and involving the
same buckets. This demonstrates the rehashing strategy that is fundamental in
the locate phase. The first address calculated using the value of level (1) read by
process F is for bucket chain 1. Process F reads the primary bucket (i.e.,
getchain(1, current)) after the newly split version has been written by process
I. Seeing a locallevel value of 2, process F rehashes and calculates the address 5.
It places a read lock on bucket chain 5 and releases the lock on bucket chain 1
(lock-coupling). In the final part of the computation, Process I has finished,
allowing process D to get its lock on root. Now, it is process F with its read locks,
first on bucket 1 and then on 5, that delays process D in acquiring exclusive locks
on these two partners of the merge.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 203

Shared data for the linear hashing algorithms:
root is a lockable abstraction representing next and level
const N = some constant
type buffer = record

local level,
count : integer;
link : AddrofOverflow;
data[numentries] : integer

end;
var level, next : integer;

1
2
3

4

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18

procedure find(k : integer);
var bucketchain : integer; /* index of chain *I

B : buffer;
current : Tbuffer;

begin
current := addressof (B);
LocateAndLockChain (bucketchain, current, k, Read);
/* lust getchain is decisive action for find */
if (search (current, k) is successful)
/* searches current buffer for k;
reads subsequent buckets of chain as necessary “/

then found (k);
else notfound (k);
UnLock (Read, bucketchain)

end

procedure LocateAndLockChain (var bucketchain : integer,
var current : Ibuffer, k : integer, locktype : Read or Selective);
var lev, previous : integer;

begin
Lock (Read, root);
lev := level;
bucketchain := hash(lev, k);
if (bucketchain < next) then
begin

lev := lev + 1;
bucketchain := hash(lev, k)

end;
Lock (locktype, bucketchain);
UnLock (Read, root);
getchain (bucketchain, current);
/* Getchain reads the primary bucket of bucketchain from disk into current buffer */
while (currentf . locallevel not = lev) do/* wrong bucket */
begin

lev := lev + 1;
previous := bucketchain;
bucketchain := hash(lev, k);
if (bucketchain not = previous) then

19 begin
20 Lock (locktype, bucketchain);
21 UnLock (locktype, previous);
22 getchain (bucketchain, current)
23 end
24 end
25 end

Fig. 3. Searching: Algorithm for the find operation and procedure for locate phase.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

204 l Carla S. Ellis

procedure insert (k : integer);
var bucketchain : integer;

A : buffer;
current : fbuffer;
overflow : Boolean;
deleted : list; /* of removed overflow buckets */

begin
current := addressof(
LocateAndLockChain (bucketchain, current, k, Selective);
overflow := AddRecord (current, bucketchain, k, deleted);
/* AddRecord “atomically” updates b&etch&n :
it reorganizes the data in current and existing overflow buckets,
writes out any new overflow buckets needed,
builds a list (deleted) of old overflow buckets to be removed,
and then writes the primary bucket of buck&chain
(Case a of structural consistency proof and the decisive action for insert).
If chained buckets are required, AddRecord returns true; otherwise, returns false. “1
UnLock (Selective, bucketchain);
if (overflow) then Split;
GarbageCollect (bucketchain, deleted) /* Case b */

end

procedure delete (k : integer);
var bucketchain : integer;

A : buffer;
current : fbuffer;
deleted : list;
underflow : Boolean;

1 begin
2 current := addressof (A);
3 LocateAndLockChain (bucketchain, current, k, Selective);
4 underflow := RemoveRecord (current, bucketchain, k, deleted);

/* RemoveRecord uatomicallyn updates bucketchain:
It reorganizes the data in current and overflow buckets,
writes any overflow buckets needed,
builds a list (deleted) of old overflow buckets to be removed,
writes the primary bucket of buck&chain
(Case a of structural consistency proof and decisive action for delete),
and returns true if chain becomes “too empty;” false otherwise */

5 UnLock (Selective, bucketchain);
6 if (underflow) then Merge;
7 GarbageCollect (bucketchain, deleted) /* Case b */
8 end

procedure GarbageCollect (chain : integer, deleted : list);
begin

if (deleted is not an empty list) then
begin

/* ensure that readers with obsolete information have cleared out; then it is safe to deallocate
without holding locks *f
Lock(Exclusive, chain);
UnLock(Exclusive, chain);
Deallocate(deleted);

end
end

Fig. 4. Algorithms for changing the data in the hashfile: insert and delete procedures.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

procedure Split;
var last : integer;

deleted : list;
A, B, C : buffer;
chainl, chain2, original : fbuffer;

1 begin
2 chain1 := addressof (A);
3 chain2 := addressof (B);
4 original := addressof (C);

5 Lock(Selective, root);
6 Lock(Selective, next);
I getchain (next, original);
8 deleted := ConstructChains(chain1, chain2, original);

/* rehash the data in the original buffer and overflow buckets into two new chains;
increment locallevel value for new chains;
write overflow buckets to disk;
the primary buckets of the new chains are returned in buffers, chain1 and chuin2;
return list of garbage buckets for later removal */
putchain (next + N * 2 ** level, chain2); /* Case c */
/* write primary bucket to disk */
putchain (next, chainl); /* Case d */
/* write primary bucket to disk ‘1
last := next;

9

10

11
12
13
14
15
16

next := (next + 1) mod (N * 2 ** level); /* Case e */
if (next = 0) then level := level + 1; /* Case f */
UnLock (Selective, root);
UnLock (Selective, last);
GarbageCollect (last, deleted)

11 end

procedure Merge;
var partner : integer;

A, B, C : buffer;
chainl, chain2, newchain : fbuffer;

1 begin
2
3
4

5
6
I
8
9
10
11

12
13
14

15

16
17
18

chain1 := addressof (A);
chain2 := addressof (II);
newchain := addressof (C);

Lock(Exclusive, root);
if (next = 0) then level := level - 1;
next := (next - 1) mod (N * 2 ** level);
Lock(Exclusive, next);
partner := next + N * 2 ** level;
Lock(Exclusive, partner);
DowngradeLock(root, ExclusiveToSelective);
/* Case g-atomically converts exclusive lock to selective lock */
getchain (next, chainl);
getchain (partner, chain2);
MergeChains(chain1, chain2, newchain);
/* build one chain out of the data accessible from buffers chain1 and chain2,
decrement locallevel value for newchnin;
write any overflow buckets to disk;
the primary bucket of the merged chuin is in buffer newchain;
deallocate garbage buckets */
putchain (next, newchain);
/* write primary bucket to disk */
UnLock(Exclusive, partner);
UnLock(Exclusive, next) /* Case h */
UnLock(Selective, root);

19 end

Fig. 5. Restructuring operations: Split and merge procedures.

206 l Carla S. Ellis

Process D: delete (15) Process I: insert (40) Process F: find (13)

LocateAndLxxkChain:
Lock(Read, root)
read level : lev = 1
hush : bucketchain = 3
read next to compare
Lock(Se1, 3)
Unlock(Read, root)
getchain(3, current)
locallevel = lev, quit

RemoveRecord:
write primary bucket 3

Unlock(Sel,3)
Merge:

Lock(Ex, root)-waits

Lock(Ex, root)-succeeds

Decrement next

Lock(Ex, 1)
Lock(Ex, 5)--waits

LocateAndLackChuin:
Lock(Read, root)
read level : lev = 1
hash : bucketchain = 0
read next to compare
rehash : bucketchain = 0
Lock(Se1, 0)
Unlock(Read, root)
getchain(0, current)
locallevel = lev, quit

AddRecord:
write out overflow bucket
write primary bucket 0

(See Fig. 7a)

Unlock(Se1, 0)
Split:

Lock(Se1, root)
Lock(Se1, 1)
getchain(1, original)
ConstructChains
write new partner, 5
rewrite 1
Increment next

LocateAndLockChuin:
Lock(Read, root)
read level : lev = 1
hush : bucketchain = 1
read next to compare
Lock(Read, 1)
Unlock(Read, root)

(See Fig. 7b)

Unlock(Se1, root)
Unlock(Se1, 1)

GarbageCollect : empty

getchain(1, current)
locallevel # lev
rehush urith Lv = 2
Lock(Read, 5)
Unlock(Read, 1)

Lock(Ex, 5)-succeeds
DowngradeLock on root
getchains 1 & 5
MergeChains : deallocate 5
putchain (1, newchain)
Unlock(Ex, 5)
Unlock(Ex, 1)
Unlock(Se1, root)

(See Fig. 7c)

getchain(5, current)
locallevel = lev, quit

Search : found (13)
Unlock(Read, 5)

Fig. 6. Example computation.

It is worthwhile to mention some possible variations on this solution. In
particular, there are alternative ways of handling the split and merge operations.
Decoupling the restructuring actions from the requested insert and delete oper-
ations and doing them as a separate background activity is easy with these
algorithms. One way of doing this is to define a new shared integer that records
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing 207

(4

NEXT LEVEL = 1

NEXT LEVEL = 1

LL = 2 L =

q N 20

(c)

Fig. 7. Progressive states of the bashfile.

the balance between the number of overflows and underflows that have occurred.
A positive value would signify the need for splitting, and a negative value, the
need for merging. Instead of calling Split, the insert algorithm would atomically
increment this variable. Similarly, the delete procedure would atomically dec-
rement it rather than calling Merge. Then a single maintenance process could
wait for a nonzero value, update it, and call the Split or Merge procedure, as
appropriate. Modifying the solution for controlled splitting would involve requir-
ing each operation that changes the data structure to update shared utilization
data atomically. Using this approach, the separate maintenance process would
monitor the utilization data. Finally, if a translation table is used for noncontig-
uous allocation of buckets in physical storage, locks can simply be associated
with the table entries rather than the chains themselves.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7.

208 l Carla S. Ellis

4. CORRECTNESS ARGUMENTS

Showing the correctness of this solution requires a proof that it is deadlock free
and that requested operations perform correctly both with respect to the target
key and the integrity of the data structure. Specifically, we must prove the
following properties:

Pl. The system is deadlock free.
P2. The data structure is always consistent.

A consistent linear hashfile is defined by the following four statements:

Sl. The contents of each bucket chain are characterized by the locallevel value
of that chain. Specifically, for all keys k contained in bucket i, hi.lmallevel(k) = i.

S2. The buckets fall into N equivalence classes related to the N original
buckets established by hash function ho. If h&k) = i, then k belongs in one of
the buckets from the ith equivalence class. The relationship between the contents
of any two buckets from the same equivalence class can be represented by a
binary tree, as in Figure 8. Nodes at depth d of this tree correspond to the buckets
from this class accessible using hd. The two children of a node indicate how the
contents of the parent are divided by the next hash function. From this tree
formulation, it is clear that buckets from disjoint subtrees contain disjoint sets
of keys.

S3. The locallevel values of any two buckets present in the hashfile differ by
at most one. In particular, level I locallevel I level + 1 holds for all bucket
chains. The data structure can be described by a pattern of locallevel values
across the sequence of buckets. Let a be the symbol representing the value of
level and b be the symbol for level + 1. Define x, y, and z such that x I n/2,
y = 21eve’N - X, and x 5 z I x + 1. Then, considering the sequence of locallevel
values as a string over the alphabet (a, b), the pattern is given by the regular
expression bXaYbz.

54. Let n denote the number of buckets. Then the size of the hashfile can be
expressed as 21eve’N + next 5 n I 21eve’+lN with next I 21eve’N - 1.

Note that stronger statements of consistency can be made initially and when
no restructuring operation (split or merge) is in progress:

S2’. The contents of all bucket chains are disjoint.
S3’. The pattern bxaYb’is observed with x = z = next and y # 0.
S4’. The size of the hashfile is n = 2’“‘N + next.

It can be seen that upon initially loading the hashfile with function h,,, the
data structure is consistent.

P3. When the search phase of the find, insert, and delete operations (i.e., in
the procedure LocateAndLockChain) stops, an appropriate target bucket has
been locked (called bucketchain in each algorithm) and its contents read into a
private buffer (called current). Intuitively, the key k specified in the request
belongs among the contents of bucketchain. At the time of the last call to
getchain, hbucketchtin.locallevel (k) = bucketchain.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing 209

Fig. 8. Evolution of equivalence class i (through h3).

P4. Parallel computations possible in this solution are semantically serializable
(e.g., [17]) on the basis of observed results of the requested operation). The set
of records in the hashfile at the completion of the decisive step of an update is
the set existing prior to the operation plus (minus) the record inserted (deleted).
The term decisive step is taken from 1171 and distinguishes one particular step
in the execution of a requested operation. For insert and delete operations, the
decisive step is the writing of the primary bucket in AddRecord and
RemoveRecord, respectively. The decisive step for the find operation is the
final getchain in the call to LocateAndLockChain. The subsequent call to
search acts upon those contents read into current.

Note that starvation is theoretically (but not practically) possible.
In the following discussion, the emphasis is on the problems that arise because

of concurrency. The algorithms are assumed to correctly perform the find, insert,
and delete functions when executed in the absence of parallel operations.

Several of our arguments require that the concurrent execution of a set of
requested operations can be viewed as an interleaved computation of the steps
within those operations. The program executed in response to a request imposes
a total ordering on its own steps. Within a parallel computation involving multiple
requests, steps of different processes may be ordered by locking constraints or
because the steps are inherently atomic. Thus, there is a partial order defined on
the steps of a computation. If all pairs of actions that do not fall under this
partial order commute with the same results, then there should exist a new
computation in which there is a total ordering of steps that is consistent with
the partial order. This interleaved computation yields the same results as the
original concurrent computation. One can see by inspecting pairs of operations,
allowed to execute in parallel, that they do commute.

4.1 Freedom from Deadlock

The freedom from deadlock argument depends on the fact that locks are requested
according to an ordering on the lockable components of the structure. We define
an ordering relation (<) as follows: For any bucket chain b root c b. The ordering

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

210 l Carla S. Ellis

between any two buckets is based on the integer values of the logical bucket
addresses. Specifically, let bi denote the bucket with address i. Then, bi < bj if the
integer value i is less than j.

All of the locks needed in the find operation and in the first phase of the insert
and delete operations (i.e., when the target record is being added or removed) are
acquired in the LocateAndLockChain procedure. The root is locked first, then
one bucket chain is locked, possibly followed by the locking of successively higher
addressed chains related to the initial chain through the sequence of hash
functions. Each address calculated in the rehashing loop is generated by the
successive hash function and is guaranteed to be greater than or equal to the
current bucket address, by definition. A lock is requested only when the new
address is greater. Thus, this locking protocol respects the ordering relation.

Before checking the conditions that call for a split or merge operation, the
updating process releases all locks that it holds. The Split procedure places
selective locks first on root and then on the chain designated as the next one to
be split (indicated by the variable, next). This clearly follows the ordering as
defined. After releasing the selective locks, deleted overflow buckets, if any, are
deallocated using a single exclusive lock which obviously cannot cause a deadlock
problem. In the Merge procedure, three exclusive locks are held simultaneously.
Root is locked first, followed by the bucket chain into which the merged records
will be written (next), and finally by the bucket chain at address next + 2ie”‘N.
Again, this obeys the ordering.

4.2 Structural Consistency
We present an inductive argument to show that the data structure remains
consistent as defined. Initial consistency is assumed. For induction, we assume
that the hashfile is consistent at time t. Time is viewed as proceeding in discrete
intervals defined in terms of atomic changes in the data structure. Thus, between
time t and t + 1 exactly one such modification isdone. For each type of atomic
change, the resulting structure must be shown to also be consistent.

Actions that can be considered atomic modifications include the inherently
atomic operations of assigning a new value to next, assignment to level, and
writing a bucket to disk. Since new overflow buckets do not become accessible
through the structure until the primary bucket is rewritten, only putchain calls
on primary buckets are important. Exclusive locks are used in Merge to create
a critical section involving multiple modifications. Then, releasing the exclusive
lock makes a sequence of changes appear as an atomic change to other processes.
Thus, there are eight cases to consider: (a) replacement of the primary bucket
after reorganizing the target bucket chain to add or delete a single record (in
AddRecord and RemoveRecord); (b) deallocation of garbage overflow buckets;
(c) writing the new bucket chain created in the Split routine; (d) rewriting the
target bucket chain of a split operation; (e) moving next forward in Split; (f)
conditionally incrementing level in Split; (g) downgrading the exclusive lock on
updated values of root during a merge operation; and (h) release of the lock on a
merged chain in the Merge procedure. These cases cover all actions that cause
visible changes in the data structure (i.e., all assignments to root variables and
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 211

all putchain calls on primary buckets). Note that only Case a changes the set of
keys stored in the hashfile.

Case a. (Figure 4, line 4 in procedures insert and delete, within calls to
s AddRecord and RemoveRecord) At time t prior to the replacement of the

primary bucket, the updating process holds a selective lock on the correct target
bucket chain, bucketchain. In the next section, we show that given a consistent
hashfile, the search phase finds the correct target bucket. Here, we assume
consistency holds at all times up to and including time t, so the correct target
bucket has been found and locked.

This selective lock prevents other updating processes from locking the chain
and then reading the contents of its buckets. All bucket modifications require an
incompatible lock (either selective or exclusive) on the bucket before it is accessed.
Thus, modifications to individual bucket chains are serialized.

The contents of the resulting bucket chain that is made accessible by atomically
writing the primary bucket back to disk are exactly the contents of the original
chain plus or minus the single key used to locate this chain. The contents of
other buckets are not affected. All other records remain assigned to buckets in
exactly the same way as they were before. Thus, statements Sl and S2 hold at
time t + 1.

This update has no effect on the size or organization of the hashfile or on the
locallevel values (statements S3-S4).

Case b. (Figure 4, line 7 in procedures insert and delete) Deallocating
garbage buckets that have been removed from a chain and are not reachable
through the hashfile structure cannot affect its consistency.

Case c. (Figure 5, line 9 in procedure Split)’ The first change made to
the hashfile during a split operation is the writing of the new primary bucket
2’““‘N + next. Merge and split operations execute sequentially because of
incompatible locks on root; so at time t, the stronger definition of consistency
applies to the hashfile. The process performing the split holds selective locks on
root and the next bucket chain, next.

The bucket chain at location next is the one with the lowest numbered index
such that its locallevel = level. This bucket is represented by the first a symbol
in b”aYb”. The conditions that x = next and y # 0 imply that such an a exists.

The records in the target bucket chain have been divided up in private buffers
according to hash function hlevel+l, and the overflow buckets of the new chains
have been written to disk, but are not yet part of the hashfile. The second partner
of the split (i.e., the chain addressed 2 levelN + next) is officially incorporated into
the hashfile upon writing the primary bucket (from buffer, chain2). Thus, at time
t + 1, all records with keys k, such that hlevel+l(k) = 21eve’N -I- next, are available
at that address (statement Sl).

The contents of this new bucket chain are contained in the contents of the
current version of the target bucket chain that is still present at location next.
In the tree formulation, bucket 2 levelN + next is the right child of bucket next,
and disjointness of bucket contents is not required in this situation. The contents
of all other buckets remain distinct from those in this subtree (S2).

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

212 l Carla S. Ellis

The locallevel of the new bucket is set to the value level + 1 and in the pattern
bxuYbz, z = x + 1 = next + 1 (S3). The size of the structure is n = 21eve1N + next
+ 1. Since next I 21eve’N - 1, n I 21eve’+lN (S4).

Case d. (Figure 5, line 10 in procedure Split) The consistent hashfile present
at time t has the same size and structure as the hashfile resulting from the writing
of the new partner, considered above. The actual bucket contents may have been
affected by insertions and deletions. The restructuring process continues to hold
the selective locks.

At time t + 1, a subset of the records available in the original target bucket are
present in the new version of that chain. This subset consists of all records in
the bucket chain at time t with keys k such that h~~~~l+~(k) = next (Sl).

The contents of all bucket chains are disjoint in the resulting hashfile. Basi-
cally, writing this bucket supplies a left son to the node that corresponds to next
at depth level of the tree formulation. All buckets are represented by leaves in
the tree that describes the state of the data structure (S2’).

The locallevel of the new version is set to level + 1. The effect is to change
the leading a in the string bXuYb” at time t to a b, incrementing x and
decrementing y. Since z = x + 1 = next + 1 at time t, x = z at time t + 1. At
time t, y # 0, so next = x < 21eve’N. After incrementing x (time t + l), it is still
true that x 5 n/2 (S3).

This action has no effect on the size of the hashfile n = 2’eve’N + next + 1 (S4).

Case e. (Figure 5, line 12 in procedure Split) Advancing next (i.e., the
assignment next t (next + 1) mod (2”““N)) has no effect on the statements
regarding bucket contents (Sl and S2’). The remaining issues are the size (S4)
and organization (S3) of the hashfile.

At time t, n = 21eve1 N + next + 1. If the new value of next is not zero, then
n = 2reve’N + next at time t + 1. Since x = z = next + 1 in the string at time t,
x = next after this action.

If the new value of next is zero, the old value of next = 21eve’N - 1 and
n = 21eve1+lN at time t + 1. Then, x = n/2 = 21eve’N, and y = 0 in the string b”uYb”
attimet+l.

Case f. (Figure 5, line 13 in Split) Following the step of advancing next in
the split operation, the value of level is conditionally adjusted. The consistent
data structure at time t inherits the size, pattern of locallevel values, and
disjointness characteristics of the hashfile resulting from the previous action.
Concurrent inserts and deletes may have changed the particular bucket contents.

This change has no effect on bucket contents (Sl and S2’).
The value of level is incremented if the value of next has just become zero.

Since n = 21eve1+lN at time t, n = 2 Leve’N + next with the new value of level at
time t + 1 (S4’). All locallevel values equal level + 1 at time t, so increasing level
has the effect of making all locallevel values equal level. In bxuYbz, y = 2’““‘N, and
x = z = 0 = next (S3’). Note that the strong definition of consistency is again in
effect.

Case g. (Figure 5, line 11 in procedure Merge) Now consider updating the
root values in the merge operation. Since merge and split operations execute
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 213

sequentially, the stronger definition of consistency holds at time t. The process
performing the merge has acquired exclusive locks on root and both partners.
The root values are guaranteed to be accurate when the partners are located
because of the exclusive lock.

Downgrading the exclusive lock on root to a selective lock makes the updated
values of level and next visible in a single step to processes executing find, insert,
or delete operations. Note that completely releasing the exclusive lock on root
also works and allows .some overlap of merge operations, but this severely
complicates the correctness proof. The new values are the result of the following
statements:
if next = 0 then level t level - 1;
next + (next - 1) mod 2’““‘N,

These updates have no effect on the bucket contents or disjointness constraint
(Sl and S2’).

If next is not zero at time t, then the value of level remains unchanged, and
the relationships between locallevel values and the value of level are unaffected.
The pattern bW’b* also remains the same. Since x = next prior to modifying
next, then x = next + 1 at time t + 1 (S3). The size of the hashfile it does not
change, but the expression of the lower bound on n in terms of next does. At
time t, n = 21eve’N + next. Decrementing next makes IZ = 21eve’N + next + 1 5
21eve’+lN at time t + 1 (S4). The resulting hashfile satisfies the conditions for
consistency.

If next does equal zero, both level and next are modified. Since x = z =
next = 0 in bXuybz, all locallevel values equal the value of level at time t, and
decrementing level makes all locallevel values equal level + 1. This meets the
condition about the relationship between locallevel values and level. In b+uYbZ,
y=O,andx = z = n/2 = next + 1 at time t + 1 (S3). At time t, n = 2’““‘N. Thus,
after decreasing the value of level and without changing the size of the hashfile,
n = 2*eve’+1N (S4). Since next = 2’““‘N - 1, the size can also be expressed as
n = 21eve’N + next + 1.

Case h. (Figure 5, line 17 in Merge) Release of the exclusive lock on the
target bucket next makes the merged bucket chain appear atomically. The
hashfile at time t inherits size, the locallevel pattern, and the tree representation
from the previous step. The merging process retains the exclusive locks on next
and its partner.

The fact that x = z = next + 1 indicates that the target bucket chain corresponds
to the last b symbol in the b” prefix of bxuYb”. Thus, its locallevel = level + 1,
and its partner exists in the data structure. Merging those two buckets and
setting the locallevel value of the resulting bucket to level has the effect of
decreasing z and x each by one and incrementing y. Merging also decreases the
size by one; thus, n = 21eve’N + next. Thus, statements S3’ and S4’ hold.

The contents of the two buckets being merged are characterized by the function
hlevel+l, since locallevel = level + 1 in both buckets. For all keys k in these two
buckets, h,,l(k) = next. Thus, the contents of the merged bucket at time t + 1
is characterized by hlocallevel (Sl). The effect is to prune off the two children of
the node that corresponds to next at depth level of the tree formulation. As a

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

214 l Carla S. Ellis

result, the bucket at location next is represented by a leaf, and its contents are
therefore disjoint from the contents of all other buckets (S2’).

4.3 Correctness of Searches

For split and merge operations, locating the appropriate target bucket chain is
trivially correct because the lock placed on root by the restructuring process
guarantees accuracy of the value of next.

Finding the target chain in the search phase of find, insert, or delete depends
on the functioning of the rehashing scheme in the procedure LocateAnd-
LockChain. The correctness of this search phase relies on the consistency of
the data structure, the atomicity of individual bucket reads, and the lock-coupling
protocol. We need to show that (a) the bucket address initially calculated using
the values of level and next seen by the searching process is in the currently
valid address space; (b) subsequent probes in the rehashing loop also fall within
the valid address space; (c) the bucket chain that should contain the target key
k is reachable by rehashing from the current bucket; and (d) it is possible to
decide when the right chain has been reached. So, if the rehashing loop termi-
nates, k belongs in the returned bucketchain.

(a) At the time that the root values are read by the searching process, it holds
a read lock on them. Therefore, no merge can be underway, and the size of the
data structure cannot decrease while the initial address is being calculated. Let
leu denote the value of level and nx denote the value of next seen by the process.
The initial calculation generates an address between 0 and 2’“N + nx - 1. The
size of the hashfile is given by statement S4 of the consistency property P2 as
n 2: 2ieve’N + next. Throughout this step, level 2 lev. If level = lev, either next 1
nx, or a split operation is at the stage in which n = 21eve1+lN (i.e., between setting
next to zero and incrementing level). If level > lev or next L nx, 2”“N + nx 5
21eve1N + next. In the special case of the split, 2’““N + nx I 21eve’+lN. Thus, the
initial probe is within range.

(b) Starting with the hash function hi,, the rehashing loop iterates through
successive functions (by incrementing lev) until the hash function hi,,, used to
reach the current chain, bucketchain, matches the function characterizing the
contents of that chain, hbucke~bain.locallevel. In other words, the loop terminates when
lev = bucketchain.locallevel at the time the bucket was read. Because of the lock
coupling done in this search and the fact that merging requires exclusive locks
on both partners of the merge, lev is guaranteed to be less than or equal to the
locallevel value of the bucket reached using hl,,. Statement S3 of property P2
says that level I locallevel 5 level + 1 holds for all bucket chains. If lev 5 level,
then 2’“‘N 5 21eve1N 5 n. The function 4, generates addresses within the range
0 to 2’““N - 1. If lev = level + 1, then the previous hash function hle;vei accessed
a bucket represented within the b” prefix of the string bxuy@, since the locallevel
of that bucket equals level + 1, h level generates addresses in the range 0 to
21eve1N - 1, and x + y = 21eve1N by S5 of P2. In this case, the function hl,,
calculates a value between 0 and 21eve’N + x - 1. Except in the special case
during a split (when next = 0, and level has not yet been incremented, and
n = 21eve1+1N), 21eve1N + x i 2’““N + next I n.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 215

(c) In order to make this argument somewhat more formal, we adapt some
terminology from [17]. The set of possible key values is called Key&ace. The
hash function b partitions KeySpace into N subsets associated with the N
equivalence classes described in S2 of P2. We define keyset (b) to be those values
of KeySpace that are in or could be in the bucket chain b. More precisely,
kwet (b) = (k 1 ~b.localhel (k) = b). Let reach (1, b) be the set of keys reachable
from b, given that hl was used to access b. Formally, reach(l, b)= {k 1 hi(k) = b}.
Applying the successive hash function hi+1 determines two sets, reach(i + 1, b)
and reach (i + 1, b + 2’N), where reach(i, b) = reach(i + 1, b) U reach(i -t 1,
b + 2’N). This partitioning of reach(i, b) corresponds to the split of b
that took place when level equalled i and divided keyset into keyset
and keyset(b + 21eve1N). The split operation (using hlevel+l)has no effect on
reach(i, b), i 5 level.

The rehashing loop of LocateAndLockChain visits the sequence of buckets
found by applying each hash function in sequence to the desired key k. From the
definition of reach(l, b) given above it can be seen that with each iteration of the
rehashing loop, k E reach(lev, bucketchain), lev 5 bucketchain.locallevel.

Another way of looking at this is in terms of the tree formulation of the
hashfile in Figure 8. Each address calculated in the rehashing loop is in the same
equivalence class as the initial probe. A node of this tree at depth dep with label
(i.e., bucket address) lab also represents the set reach(dep, lab). Then, the
rehashing scheme can be viewed as a search of the tree in which lev gives the
depth of the current probe, and the correct target bucket is reachable from the
node representing the current bucket address at that depth. The lock-coupling
protocol guarantees that the target bucket remains reachable from the current
point along the searching process’s path (i.e., preventing interference by a merge).
Splitting serves to lengthen some paths, but reachability is not threatened.

(d) The ability to decide whether the right bucket has been reached follows
from statements Sl and S2 of the consistency property. Formally, k E reach
(lev, bucketchain) and lev = bucketchain.locallevel at the final getchain call
imply k E keyset(bucketchain).

4.4 Correctness of Updates
The first step is to show that the target chain remains appropriate throughout
the lifetime of the operation. For insertions and deletions, the locate phase ends
with a selective lock placed on the target bucket. This lock guarantees no
interference by concurrent updates with the contents of the version of the bucket
in the private buffer, current, during the subsequent decisive action. The affected
buckets of splits and merges are also locked for the duration of the step.

The locate phase of the find operation ends with a read lock on the target
bucket chain and the contents of the primary bucket atomically read into a
private buffer (the decisive step). The results of the subsequent search are
meaningful. The atomicity of writing a reorganized bucket chain means that the
version of the chain in current is valid (i.e., pure readers may see either the old
or new version of concurrent updates, but not intermediate states). The old
overflow buckets reachable through the pointer in the old version of the primary

ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7.

216 l Carla S. Ellis

bucket (if that is what the reader possesses) are protected from deallocation by
the read lock held by the reader on the chain.

In order to make the argument that updates are serializable, it must be possible
to construct an equivalent serial schedule of user-observable events. It is easy to
identify the atomic changes to the data structure that affect the set of records
contained in the hashfile. For each update request, there is exactly one such
event (the decisive action), and that event can be considered the point of
completion of the operation. It is at this point that the user could be notified of
success.

For insert and delete operations, the atomic rewrite of the primary bucket in
the AddRecord or RemoveRecord procedures represents the completion point.
The selective lock on the target bucket after the final search phase excludes
other updaters from sharing the version of the bucket being manipulated and
thus interfering with the update.

Split and merge operations preserve the set of records in the hashfile and are
essentially invisible to users. Therefore, it is not necessary to argue, using our
criteria for serializability, that they fit into the serial schedule.

5. SUMMARY

Linear hashing is one of the techniques recently proposed to allow adjustment in
the range of the hashing function as the amount of data stored grows and shrinks.
The existence of a highly concurrent dynamic indexing structure can be extremely
important for databases designed to support a large number of users and varia-
bility in the size of the database. In this paper, we have presented a solution for
concurrent access to a shared centralized linear hashfile.

This solution appears to deliver a very high degree of concurrency. The locking
scope (i.e., the maximum number of locks held at one time by any process) is
constant and small (5 3). The use of the most restrictive lock type, exclusive
locks, is minimal and most exclusive locks are held for a very short time (e.g.,
during access to root for a merge, momentary locking of a chain for garbage
collection). Since this is a hashing approach, requests are expected to be spread
out evenly over the address space. Assuming a sufficient number of requests,
this solution should be able to support essentially n (the number of buckets)
concurrent updaters and an unlimited number of readers.

As in proposals for concurrency in other data structures, making modifications
to the data structure has proved to be a useful technique for achieving greater
concurrency. In this solution, the modifications are relatively minor (i.e., the
addition of a locallevel field to each bucket chain), yet sufficient to detect the
effects of concurrent updates and allow the search to resume from that point
along an alternate path.

This solution also demonstrates that lock-coupling protocols, found to be
useful in B-trees and other linked structures, carry over to a fundamentally
different type of data structure. The linear hashfile is basically not a linked
structure (ignoring the overflow chains), and there is no explicit notion of
reachability built into it. Recovering from the use of obsolete information is done
by rehashing with a sequence of functions rather than by following a detour
through physical pointers, and it may require repeatedly visiting the same bucket
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Concurrency in Linear Hashing l 217

chain. Thus, this reorientation technique, although inspired by the earlier
algorithms based on links, has a significantly different flavor in this solution.

Although traditionally viewed as a database problem, concurrent access to
structured data is an issue that will become increasingly more important as
applications are developed for multicomputer architectures. This paper illustrates
a set of techniques applied to one particular data structure. We hope that some
of these ideas can transfer to new problem domains and different architectural
models. For instance, we are investigating using these techniques in various data
structures of a multiprocessor operating system, and the solution presented here
has been used as the basis for a version of linear hashing intended for a distributed
system.

REFERENCES
1. BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on B-trees. Acta Znf. 9 (1977),

1-21.
2. ELLIS, C. Concurrent search and insertion in 2-3 trees. Acta Znf. 14 (1980), 63-86.
3. ELLIS, C. Concurrent search and insertion in AVL trees. IEEE Trans. Comput. C-29,9 (Sept.

1980), 811-817.
4. ELLIS, C. Extendible hashing for concurrent operations and distributed data. In Proceedings of

the 2nd ACM SZGACT-SZGMOD Symposium on Principles of Database Systems (Atlanta, Ga.,
Mar. 21-23). ACM, New York, 1983, pp. 106-116.

5. ELLIS, C. Concurrency and linear hashing. In Proceedings of the 4th ACM SZGACT-SZGMOD
Symposium on Principles of Database Systems (Portland, Ore., Mar. 25-27). ACM, New York,
1985,1-7.

6. ELLIS, C. Distributed data structures: A case study. IEEE Trans. Comput. C-34,12 (Dec. 1985),
pp. 1178-1185.

7. FACIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H. R. Extendible hashing-a fast
access method for dynamic tiles. ACM Trans. Database Syst. 4,3 (Sept. 1979), 315-355.

8. KUNG, H. T., AND LEHMAN, P. L. Concurrent manipulation of binary search trees. ACM Trans.
Database Syst. 5,3 (Sept. 1980) 354-382.

9. KWONG, Y. S., AND WOOD, D. New method for concurrency in B-trees. IEEE Trans. Softw.
Eng. SE-8,3 (May 1982) 211-222.

10. LARSON, P. Dynamic hashing. BIT 17 (1978), 184-201.
11. LEHMAN, P., AND YAO, S. B. Efficient locking for concurrent operations on B-trees. ACM

Trans. Database Syst. 6,4 (Dec. 1981), 650-670.
12. LITWIN, W. Linear hashing: A new tool for file and table addressing. In Proceedings of the 6th

Conference on Very Large Data Bases (Montreal, 1980), 212-223.
13. LOMET, D. Bounded index exponential hashing. ACM Trans. Database Syst. 8, 1 (Mar. 1983),

136165.
14. MANBER, U., AND LADNER, R. E. Concurrency control in a dynamic search structure.) ACM

Trans. Database Syst. 9,3 (Sept. 1984), 439-455.
15. MILLER, R., AND SNYDER, L. Multiple access to B-trees. In Proceedings of Conference on

Information Sciences & Systems (Baltimore, Md., Mar. 1978), (preliminary report).
16. SAGIV, Y. Concurrent operations on B-trees with overtaking. In Proceedings of the 4th ACM

SZGACT-SZGMOD Symposium on Principks of Database Systems (Portland, Ore., Mar. 25-27).
ACM, New York, 1985,28-37.

17. SHASHA, D., AND GOODMAN, N. Concurrent search structure algorithms. To appear in ACM
Trans. Database Syst.

18. WV, C. T., AND BURKHARD, W. A. Concurrency in linear and interpolation hashing. Unpub-
lished manuscript. Northwestern University, Evanston, Ill., (1983).

Received May 1986; revised August 1986; accepted October 1986

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

