
Probabilistic Predicate Transformers

CARROLL MORGAN, ANNABELLE McIVER, and KAREN SEIDEL

Oxford University

Probabilistic predicates generalize standard predicates over a state space; with probabilistic pred-
icate transformers one thus reasons about imperative programs in terms of probabilistic pre- and
postconditions. Probabilistic healthiness conditions generalize the standard ones, characterizing
“real” probabilistic programs, and are based on a connection with an underlying relational model
for probabilistic execution; in both contexts demonic nondeterminism coexists with probabilis-
tic choice. With the healthiness conditions, the associated weakest-precondition calculus seems
suitable for exploring the rigorous derivation of small probabilistic programs.

Categories and Subject Descriptors: D.2.4 [Program Verification]: Correctness Proofs; D.3.1
[Programming Languages]: Formal Definitions and Theory; F.1.2 [Modes of Computation]:
Probabilistic Computation; F.3.1 [Semantics of Programming Languages]: Specifying and Ver-
ifying and Reasoning about Programs; G.3 [Probability and Statistics]: Probabilistic Algorithms

General Terms: Verification, Theory, Algorithms, Languages

Additional Key Words and Phrases: Galois connection, nondeterminism, predicate transformers,
probability, program derivation, refinement, weakest preconditions

1. MOTIVATION AND INTRODUCTION

The weakest-precondition approach of Dijkstra [1976] has been reasonably success-
ful for rigorous derivation of small imperative programs, even (and especially) those
involving demonic nondeterminism. The associated space of predicate transformers
has been studied as a semantic model in its own right.

We adapt that standard (nonprobabilistic) approach to include programs con-
taining probabilistic choice, aiming to extend rigorous reasoning to situations such
as the following.

Distributed Systems. Explicit probability can be used to construct distributed
algorithms for which no standard counterpart exists (symmetry breaking).

Randomized Algorithms. Some algorithms achieve high efficiency at the expense
of only probable correctness (primality testing).

Morgan was partially supported during this work by the Dutch Specification and Transformation
of Programs (STOP) project. McIver and Seidel were supported by the EPSRC.
Authors’ address: Programming Research Group, Wolfson Building, Parks Rd, Oxford OX1 3QD,
UK; email: {carroll; anabel; karen}@comlab.ox.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1996 ACM 0164-0925/96/0500-0325 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 325–353.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F229542.229547&domain=pdf&date_stamp=1996-05-01

326 · Carroll Morgan et al.

Quantifiable Unreliability. Probability may be unavoidably present in an imple-
mentation due to inherent unreliability of components (communication protocols
over unreliable media).

Success will depend in part on achieving a low cost for the extra reasoning required.
Probabilistic predicates can be defined in a way first proposed by Kozen [1983],

which we extend to allow nondeterminism as well. As an introduction, consider
deterministic, nondeterministic, and probabilistic programs in turn.

To express that the deterministic program n: = 1 is guaranteed to establish n = 1,
using ordinary predicate transformers, we write

wp.(n: = 1).(n = 1) = true .

Deterministic programs take each initial state to at most one terminating final
state.

Nondeterministic programs can have more than one terminating final state for
each initial state: for example, the program n: = 1 u n: = 2 chooses demonically
between the two alternatives n: = 1 and n: = 2. Although it is guaranteed to
establish n = 1∨n = 2, we can say nothing about whether it will establish n = 1
or n = 2 separately. The weakest-precondition formulation

wp.(n: = 1 u n: = 2).(n = 1) = false = wp.(n: = 1 u n: = 2).(n = 2)

expresses that pessimistic view (the usual): there are no conditions under which
termination establishing n = 1 (or n = 2) is guaranteed.

Finally, the probabilistic program

n: = 1 1
2
⊕ n: = 2

also chooses between two alternatives, and clearly it too is guaranteed to establish
n = 1∨n = 2. Here however we can say something about whether it will establish
n = 1 or n = 2 separately: with a suitable generalization of wp we will find that

wp.(n: = 1 1
2
⊕ n: = 2).(n = 1) =

1
2

= wp.(n: = 1 1
2
⊕ n: = 2).(n = 2) ,

expressing that termination establishing n = 1 (or n = 2) is guaranteed with
probability at least 1/2.

Our source for the probabilistic predicate transformers is Claire Jones’ thesis
[1990], where it is shown how Jones and Plotkin’s general technique for introducing
probability into a semantic domain, described in Jones and Plotkin [1989], can be
used to reproduce the probabilistic predicate transformer model proposed earlier
by Kozen [1983].

Since Kozen and Jones consider only deterministic programs, their underlying
operational model is one of functions from initial to final state. Jifeng He [1996]
proposed a relational (rather than functional) model of probabilistic execution,
adding nondeterminism by exploiting the “convex and up-closed” sets of distribu-
tions proposed in Morgan et al. [1994]. (Nondeterminism as sets of distributions is
suggested in Lowe [1993] also.)

The technical contribution of this article is to link Kozen’s and He’s models—
we show that the relations of He provide a more general operational semantics
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 327

underlying the predicate transformers of Kozen, leading in particular to a sim-
ple treatment of nondeterminism and probability together. In the standard case
such a link generates “healthiness” (well-formedness) conditions for predicate trans-
formers, characterizing collectively the images of relational programs in the richer
predicate-transformer space: strictness, monotonicity, positive conjunctivity, and
continuity.

In the probabilistic case, we are able to formulate and prove probabilistic health-
iness conditions that generalize the standard ones.

The presentation is as follows: in Section 6 we introduce the correspondence be-
tween He’s and Kozen’s models; in Section 7 we propose probabilistic healthiness
conditions; in Section 8 we show that those conditions characterize “real” programs
exactly; and in Section 9 we extend Kozen’s work to include nondeterminism. Sec-
tion 10 discusses probabilistic termination and recursion.

Earlier sections summarize He’s and Kozen’s approaches, on which our work is
based; and example programs are given in Sections 2, 4, 9, 10, and 11.

Applications of our results to practical program derivation appear in Morgan
[1995].

We use infix dot for function application (thus f.x, not f(x)), and it associates
to the left; we use the syntax

(Qs:S | range · expr)

for Q-quantification (for example, Q as ∀, ∃, λ, or set comprehension) of the values
expr formed when s ranges over those elements of S satisfying range. A glossary is
given in Appendix B.

2. DETERMINISTIC PROBABILITY

Standard programs are “deterministic” when their final states (or outputs) are
predictable from their initial states (or inputs). We call probabilistic programs
deterministic when the distribution of their final states is predictable from their
initial states. Thus flipping a fair coin (repeatedly) is a deterministic activity, since
the distribution of head/tail results is known in advance.1

We now consider a simple operational model for deterministic probabilistic be-
havior.

An imperative program begins execution in an initial state and terminates (if
it does) in a final state. Without probability, we take deterministic to mean that
for every initial state from which termination is guaranteed there is exactly one
corresponding final state; from an initial state that can lead to nontermination,
however, any final state is possible as well.2

That operational view is expressed as follows: given a set S of states, a (nonprob-
abilistic) deterministic program denotes a total function of type S → S⊥, where
we write S⊥ for the set S ∪ {⊥} so that nontermination can be indicated when

1Making an arbitrary choice from a collection of biased coins, and then flipping that, is nonde-

terministic: although the distribution is fixed once the choice is made, it cannot be predicted
beforehand.
2Some writers call that predeterministic, others liberally deterministic [Hesselink 1992]: it means
“deterministic if terminating.”

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

328 · Carroll Morgan et al.

appropriate by an (improper) final state ⊥. We call nonprobabilistic programs
standard.

In this article we require the state space S to be finite.3

A probabilistic program takes an (initial) state to a (final) probability “distribu-
tion” over S rather than to some element of S⊥:

Definition 2.1. For state space S, the set of distributions over S is

S : = {D:S → [0, 1] |
∑
D ≤ 1} ,

the set of functions from S into the closed interval of reals [0, 1] that sum to no
more than 1. (We write

∑
D to abbreviate

∑
s:S D.s.)

Thus a distribution over S assigns a probability to every element individually of S,
and those probabilities must sum to no more than 1.4

Definition 2.1 differs slightly from the usual “probability function over an event
space” of elementary probability (e.g., Grimmett and Welsh [1986]). It is more
specific in that by assigning probabilities to individual elements of S we are taking
the (discrete) event space comprising all subsets of S, which means for example
that we cannot describe a “uniform” distribution if S is infinite: we are therefore
unable to treat programs like

x: = “some value chosen uniformly from [0, 1]” .

It is more general in that the restriction
∑
D ≤ 1 is not an equality, so that for

D in S the difference

1−
∑
D

may be regarded as the probability of “no state at all”—a convenient treatment of
nontermination that allows us to forgo ⊥.

There is a partial order over S, inherited pointwise from [0, 1]:

Definition 2.2. For D,D′:S we define

D v D′ : = (∀s:S · D.s ≤ D′.s) .
The least element of S is (λs:S · 0), which we write 0; and D in S is maximal

when
∑
D = 1, in which case D indicates certain termination.

Thus we define a space of probabilistic deterministic programs together with a
refinement order:

Definition 2.3. For state space S the space of deterministic probabilistic pro-
grams over S is defined

DS : = (S → S,v) ,

where for programs d, d′ in S → S we define v pointwise (again):

d v d′ : = (∀s:S · d.s v d′.s) .

3Infinite state spaces interfere not so much with definitions as with proofs: Lemma 8.4 would
then be argued in an infinite dimensional Euclidean space, where Lemma A.2 does not apply.

In McIver and Morgan [1996] the results of this article are shown to apply in the infinite case
provided continuity is imposed on the predicate transformers.
4In the terminology of Kozen [1981, p.331] such distributions would be called discrete subproba-
bility measures.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 329

The order v of DS is called the refinement order.

It is easy to see that DS is a complete partial order; and its least element is the
nowhere-terminating program

abort.s : = 0 or equivalently abort.s.s′ : = 0 , (1)

for any initial state s and final state s′. (Recall that abort is deterministic in our
sense, because it is nowhere-terminating.) We see thus that for every program d in
DS we have abort v d .

In general, if
∑
d.s = 1 then d.s.s′ is the probability that d takes s to s′; but if∑

d.s < 1 then d.s.s′ is only a lower bound for that probability, since the aborting
component of weight 1 −

∑
d.s is unpredictable. Thus for abort itself, where

that lower bound is 0, we are told nothing about the probability of reaching any
particular final s′.

For state s in S we write s for the distribution “certainly s”:

Definition 2.4. For state s the point distribution at s is defined

s.s′ : = 1 if s = s′

0 otherwise.

Thus a standard deterministic program can be lifted into the probabilistic space
as follows:

Definition 2.5. For every standard deterministic program t in S → S⊥ there is
a corresponding probabilistic program in DS, defined

t.s : = t.s if t.s 6= ⊥
0 otherwise,

where s is an arbitrary (initial) state. Equivalently we could define (for arbitrary
final state s′)

t.s.s′ : = 1 if t.s = s′

0 otherwise,

noting that s, s′ are restricted to proper values (not ⊥).

A properly probabilistic program over state space (some finite subset of) N is
for example

n: = 1 1
3
⊕ n: = 2 , (2)

where in general p⊕ chooses its left, right operand with probability p, 1− p respec-
tively. The meaning of (2) is d, where

d.n.n′ : = 1/3 if n′ = 1
2/3 if n′ = 2
0 otherwise.

(The absence of n on the right reflects only that (2) is insensitive to its initial state.)
We do not give here the definitions of program operators for DS, since we treat

them later in a more general setting (Definitions 5.5–5.7). But note for example
that if we define

n: = 1 1
3
⊕ abort (3)

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

330 · Carroll Morgan et al.

by d′ where

d′.n.n′ : = 1/3, if n′ = 1
0, if n′ = 2
0, otherwise,

then we have abort < d′ < d, thus illustrating both nonstrictness of 1/3⊕ and
proper (nontrivial) refinement. Note also that terminating programs in DS are
maximal in the refinement order, which justifies further their being called deter-
ministic.

3. EXPECTED VALUES

Expected values of random variables are the basis for probabilistic predicate trans-
formers.

A random variable α is a real-valued function over the sample space5 (for us, S),
and given a probability distribution D (from S) we can define the expected value
of α as follows [Grimmett and Welsh 1986]:

Definition 3.1. For random variable α:S → R and distribution D:S the expected
value of α over D is ∫

D

α : =
∑
s:S

(α.s×D.s) .

(We use the integral notation for compatibility with expectations in general.6)
With Definition 3.1 we can write the expectation of the square of the final value

delivered by a program d, if executed in initial state n, as∫
d.n

n2 dn , (4)

where we read (n2 dn) as the function (λn · n2) over (that finite subset of) the
natural numbers forming the state space. Note that n in the subscript d.n is free
(the initial state), but n in the body (n2 dn) is bound. Applying (4) to Program
(2) gives us (1/3)12 + (2/3)22, or expectation 3 for the square of the final values
delivered.7

More significantly, Definition 3.1 can be used to apply a probabilistic program
to a distribution of initial states (rather than only to a “definite” single state),

5That simple definition is possible because of the discrete nature of our distributions DS; the
functions are “measurable,” satisfying for example Grimmett and Welsh [1986, p.22, Cond. 2]
trivially.
6For example, the expectation (or average) of the function f : R → R over the interval [a, b] is
given in analysis by

1

b− a
×
∫ b

a

f(x) dx ,

which in the above style one could write
∫
〈a,b〉 f , inventing the notation 〈a, b〉 to denote a uniform

distribution on [a, b]. We are in fact dealing with integration over measures; but for ease of
calculation we write

∫
µ
f rather than the

∫
fdµ of Jones [1990].

7In practice we consider only nonnegative random variables, so that even in the presence of
nondeterminism we get a “minimum” expectation.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 331

for example to the (intermediate) distribution yielded by the program immediately
before it in a sequential composition. Following Jones [1990, Sec. 4.2] we have

Definition 3.2. For d:DS, (initial) distribution I:S and (final) state s′:S we
define d†, an element of S → S, as follows:

d†.I.s′ : =
∫
I

d.s.s′ ds .

Thus we may if we wish regard probabilistic deterministic programs as homogeneous
functions (from S to itself), taking initial to final distributions—the distributions
then represent “probabilistic states,” as for example in Kozen [1981], and in execu-
tion the program moves from one probabilistic state to the next.8

The specialization to our earlier view (S → S) is obtained for initial state s
by taking the point distribution s concentrated there; we then observe that from
Definition 3.2 (with change of bound variable) and Definition 3.1 we have

d†.s.s′ =
∫
s

d.s′′.s′ ds′′ = d.s.s′ ,

so that d.s is recovered as d†.s .
The homogeneous view allows for example a simple definition for sequential com-

position of the deterministic programs d, d′; but we postpone consideration of pro-
gram operators until Section 5, where we treat nondeterminism as well.

4. PROBABILISTIC PROGRAM LOGIC

The logic of Jones [1990, Ch. 7] treats deterministic probabilistic programs at the
level of Hoare triples [Hoare 1969] and weakest preconditions [Dijkstra 1976]. We
summarize it below and then generalize to include nondeterminism.

A standard program t is said to satisfy

{pre} t {post} [Hoare 1969] but total
or equivalently pre ⇒ wp.t.post [Dijkstra 1976],

for predicates pre, post over the state space S, if whenever execution of t begins in
a state satisfying pre it will terminate in a state satisfying post .

In the probabilistic case we use random variables α, β rather than predicates
pre, post , and expected values rather than membership. For a probabilistic and
deterministic program d, the formulae

{α} d {β} or equivalently α ≤ wp.d.β

mean that for every initial state s we have

α.s ≤
∫
d.s

β .

A more symmetric form comes from taking the homogeneous approach of the last
section: we have for any initial distribution I that∫

I

α ≤
∫
d†.I

β .

8But our programs d† satisfy Kozen [1981, Thm. 6.1] by construction: they are completely deter-
mined by their behavior on the point distributions s of S.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

332 · Carroll Morgan et al.

standard expression probabilistic

true iff x and y are equal x = y 1 if x equals y, 0 if they differ
true iff α is false ¬α 1− α

true iff α or β is true α∨ β α t β, the maximum of α and β .

Fig. 1. Idioms for probabilistic predicates.

Finally we generalize to nondeterministic programs, which can take an initial
distribution I to many final distributions F ; that gives

for every pair of distributions I, F :S such that (initial) I can be taken
to (final) F , we have ∫

I

α ≤
∫
F

β . (5)

Thus whereas in the standard case “the truth value of the assertions must not
decrease as execution proceeds,” in the probabilistic case it is the expectations that
must not decrease.

It is instructive to lift the standard logic into the probabilistic. We consider pre
and post as subsets of S, and we form random variables

α : = χ
pre

β : = χ
post

where for general subset T of S we write χT for the characteristic function of T .
The standard {pre} t {post} then says about t just what the probabilistic

{χpre} h {χpost}

says about h; if we take for I, F the point distributions s, s′ corresponding to
standard initial and final states s, s′ then (5) becomes

for every pair of states s, s′:S, such that s can be taken to s′, we have∫
s

χ
pre ≤

∫
s′

χ
post .

That simplifies (using Definition 3.1) first to χpre .s ≤ χpost .s
′ and finally to

s ∈ pre ⇒ s′ ∈ post .

We call random variables over the state (probabilistic) predicates, when used
like α, β above for reasoning about programs: they are our preconditions and post-
conditions. And we call such a predicate standard if it takes values in {0, 1} only
(equivalently, if it is χT for some T a subset of S).

In practice, probabilistic predicates are written as real-valued expressions over
the program variables, punning as indicated in Figure 1 between Boolean values and
{0, 1} where convenient. With those conventions we give in Figure 2 the weakest-
precondition semantics of a simple (deterministic) probabilistic language [Jones
1990, p. 146 simplified].

Returning to Program (2), for example, we have from Figure 2 that
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 333

wp.abort.β : = 0
wp.skip.β : = β

wp.(x: = E).β : = β[x: = E]
wp.(h;h′).β : = wp.h.(wp.h′.β)

wp.(if B then h else h′ fi).β : = B × wp.h.β + (¬B) × wp.h′.β
wp.(h p⊕ h′).β : = p× wp.h.β + (1− p)× wp.h′.β

The notation β[x: = E] denotes syntactic replacement of all free occurrences of variable x in
predicate β by expression E.

Fig. 2. Probabilistic predicate semantics.

wp.(n: = 1 1
3
⊕ n: = 2).(n = 1)

= 1/3× wp.(n: = 1).(n = 1) + 2/3× wp.(n: = 2).(n = 1)
= 1/3× (1 = 1) + 2/3× (2 = 1)
= 1/3× 1 + 2/3× 0 punning between true and 1, false and 0

= 1/3 , (6)

and similarly wp.(n: = 1 1
3
⊕ n: = 2).(n = 2) is 2/3. Finally, we reason

wp.(n: = 1 1
3
⊕ n: = 2).(n = 1∨n = 2)

= 1/3× (1 t 0) + 2/3× (0 t 1)
= 1 . (7)

Note that the final values 1/3, 2/3, and 1 are (constant) expressions over the state
variables and should be regarded when necessary as constant functions (λn · 1/3)
etc.

An interpretation of (6) and (7) is that Program (2) has (at least) probability
1/3 of establishing n = 1, and has probability 1 (thus the certainty) of establishing
n = 1∨n = 2. The general reasoning leading to those conclusions is as follows.

Let h be a probabilistic program, post a set of (desired final) states, α a proba-
bilistic precondition, and s an (initial) state. Then

{α} h {χpost} (8)

means that for any initial distribution I, and final distribution F produced by h
from it, we have ∫

I

α ≤
∫
F

χ
post .

Taking I to be s in particular, and referring to Definition 3.1, we have then

α.s ≤
∑
s′:post

F.s′ , (9)

and thus that the value of α at the initial state s bounds below the probability that
the final state s′ lies in post , no matter what final F may be chosen by h executed
from s. Since wp.h.β is in general the weakest (largest) α such that {α} h {β}, we
conclude that

wp.h.χpost .s (10)

is the largest α.s satisfying (9) for all such F , and so is the minimum probability,
over all possible final distributions, that h takes initial s into final post . (That

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

334 · Carroll Morgan et al.

“minimum” view will prove to be convenient later, when we consider nondetermin-
ism explicitly: demonic choice strives to make the probability of reaching post as
low as possible.)

More generally than (8), however, the postconditions will not be standard, and
then the (properly) probabilistic predicates will work backward through sequential
composition as in this example:

wp.((x: = 1 1
2
⊕ x: = 2); (y: = 1 1

2
⊕ y: = 2)).(x ≤ y)

= wp.(x: = 1 1
2
⊕ x: = 2).(wp.(y: = 1 1

2
⊕ y: = 2).(x ≤ y))

= wp.(x: = 1 1
2
⊕ x: = 2).((x ≤ 1)/2 + (x ≤ 2)/2) (11)

= (1 ≤ 1)/4 + (1 ≤ 2)/4 + (2 ≤ 1)/4 + (2 ≤ 2)/4
= 1/4 + 1/4 + 0/4 + 1/4
= 3/4 .

Note in particular that at line (11) the “intermediate” postcondition

(x ≤ 1)/2 + (x ≤ 2)/2

is not standard, yet the overall result may still be interpreted as at (8) and (10)
above: the program establishes x ≤ y with probability at least 3/4. (In fact
it is exactly 3/4, because the program is deterministic and terminating.) Jones
[1990, Sec. 7.8] relates the operational view of Section 2 to the axiomatic view
(this section), showing soundness and completeness. For deterministic probabilistic
program h and initial state s, the connection she gives is

wp.h.β.s =
∫
h.s

β and h.s.s′ = wp.h.χ{s′}.s .

Our function wp of Section 6 generalizes that.

5. NONDETERMINISM AND RELATIONS

He et al. [1996] propose a relational model for imperative probability more general
than in Section 2 (from Kozen [1981] and Jones [1990, Ch. 7]): a program executed
in an initial state produces not a (single) final distribution but rather a set of
them, and the plurality of the set represents nondeterminism. We show that He’s
construction, with a slight modification, provides a model for the program logic
and indeed motivates its extension to include nondeterminism. In this section we
explain He’s model, and in the following we give the connection between it and the
probabilistic program logic.

Not every set of distributions is appropriate as the result of a probabilistic non-
deterministic program; we consider only nonempty, up-closed, convex, and Cauchy-
closed sets, constraints which we now discuss.

Nonemptiness is imposed to avoid “miracles,” or “infeasible programs” [Morgan
1988; Morris 1987; Nelson 1989]. Although they simplify the space structurally (see
footnote following Definition 8.1) the presentation here would be complicated by
∞ values in the arithmetic over R.

For up-closure, we recall from Definition 2.2 that S is a cpo; thus we have the
following definition.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 335

Definition 5.1. A subset F of S, a set of distributions, is up-closed if it is closed
under refinement of its elements—if for all F, F ′:S we have

F ∈ F ∧F v F ′ ⇒ F ′ ∈ F .

As in Morgan et al. [1994, Sec. 13.3] we insist on up-closure so that refinement (of
nondeterministic programs) is expressed by reverse subset inclusion of their result
sets: program h is refined by h′ if for every initial state s we have h′.s ⊆ h.s.

Recall for example the program abort. The standard abort takes every s to ⊥;
in the deterministic probabilistic model of Section 2 it takes every s to the constant
distribution 0; and so in our current model it takes every s to the up-closure of
{0}. But 0 is the least element of S—and so the up-closure is S itself, allowing
every possible behavior just as one expects from abort.

Convexity of a set of distributions is defined as follows:

Definition 5.2. A set F of distributions is convex if for every F, F ′:F and p: [0, 1]
we have F p⊕ F ′ ∈ F also, where

(F p⊕ F ′).s : = p× F.s + (1− p)× F ′.s .

We insist on convexity so that nondeterminism is refined by any probabilistic
choice. Consider for example the program

n: = 1 u n: = 2 , (12)

where we use u to indicate nondeterministic (demonic) choice.9 The result set of
distributions will contain the two point-distributions 1, 2, and by convexity will
contain also the distributions 1 p⊕ 2 for any p: [0, 1]. Thus our notion of refinement
allows Program (12) to be refined to

n: = 1 p⊕ n: = 2 ,

for any probability p.
For Cauchy-closure, we note that our distributions F in S are points in Euclidean

space, where each axis corresponds to an element s of S and the s-coordinate of F
is F.s. We have then

Definition 5.3. A set of distributions over S is Cauchy-closed if as a subset of
RN it is closed in the usual (Euclidean) sense, where N is the (finite) cardinality
of S.

We now give the relational model for nondeterministic probabilistic programs.

Definition 5.4. Given a (finite) state space S, the set of nonempty, up-closed,
convex, and Cauchy-closed subsets of S is written CS. The cpo of nondeterministic
probabilistic programs over S is then

HS : = (S → CS,v) ,

where for h, h′:HS we have

h v h′ : = (∀s:S · h.s ⊇ h′.s) .

9The standard definition is wp.(t u t′).post : = wp.t.post ∧wp.t′.post .

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

336 · Carroll Morgan et al.

Note that Cauchy-closure in CS ensures that HS is indeed a cpo, for the infinite in-
tersection of a ⊇-directed collection of nonempty closed subsets of [0, 1]N cannot be
empty. The other conditions on CS are preserved trivially by arbitrary intersection.

For a full account of the structure of HS we refer to He et al. [1996]; here
we discuss only probabilistic choice p⊕, nondeterministic choice u, and sequential
composition. For well-definedness (preservation of the closure conditions) we refer
to He et al. [1996] for the first two; we have added Cauchy-closure ourselves, and
it is discussed following the definitions.

Probabilistic choice between programs is formed by taking the appropriate com-
binations of the elements of the result sets.

Definition 5.5. For two programs h, h′:HS, their p-probabilistic combination is
defined as

(h p⊕ h′).s : = {F :h.s;F ′:h′.s · F p⊕ F ′} .
Nondeterministic choice is formed by taking all possible probabilistic combina-

tions. Thus

Definition 5.6. For two programs h, h′:HS, their nondeterministic combination
is defined as

(h u h′).s : = (∪p: [0, 1] · (h p⊕ h′).s) .
Note that the extreme values 1,0 for p ensure that h u h′ v h and h u h′ v h′.

Finally, for sequential composition we have

Definition 5.7. For two programs h, h′:HS, their sequential composition is de-
fined as

(h;h′).s : = {F :h.s; d:DS | h′ v d · d†.F} ,
where by h′ v d we mean (∀s:S · d.s ∈ h′.s), agreeing with the notion of refinement
that would result were DS to be embedded in HS in the obvious way.

Thus the sequential composition is formed by taking all possible “intermediate”
distributions F that h can deliver from s and for each continuing with all possible
deterministic refinements d of h′.

For well-definedness we are obliged to show that for Cauchy-closed arguments
each of the above three operators produces a Cauchy-closed result. The reason is
the same in each case: a continuous function between Euclidean spaces is applied to
a closed and bounded (hence compact) set, and so its image is closed. We consider
Definition 5.6 as an example:

Lemma 5.8. If subsets h.s, h′.s of S are Cauchy-closed then so is

(∪p: [0, 1] · (h p⊕ h′).s) .
Proof. By Definition 5.5 the set concerned may be written

{F :h.s;F ′:h′.s; p: [0, 1] · F p⊕ F ′} ,
which is the image in RN through a continuous function of the closed and bounded
subset

h.s× h′.s× [0, 1]

of R2N+1, where N is the cardinality of S.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 337

standard probabilistic

relational [S ↔ S⊥] HS

predicate PS ← PS JS

Fig. 3. Nomenclature for the four models.

6. REGULAR PREDICATE TRANSFORMERS

6.1 The Relational and Predicate Models

A relational model for standard nondeterministic programs over S is

S ↔ S⊥ ,

where a standard program t relates s to s′ just when executing t from initial state
s can yield final state s′. A convenient constraint on elements t of S ↔ S⊥ is that
whenever s is taken by t to ⊥ then it is taken to all of S⊥ (thus allowing simple ⊇
to be the refinement order).

If an element of S ↔ S⊥ relates every initial state to at least one final state,
we say that it is total; and if it relates every initial state to at most finitely many
final states, we say that it is image finite.10 We write [S ↔ S⊥] for the total and
image-finite elements of S ↔ S⊥.

A probabilistic analogue for [S ↔ S⊥] is HS—totality corresponds to nonempti-
ness of result sets, and image-finiteness corresponds to their Cauchy closure.

The predicate-transformer model for standard nondeterministic programs is

PS ← PS ,

where we write the functional arrow backward to emphasize that such programs
map sets of final states (postconditions) to sets of initial states (weakest precondi-
tions). A probabilistic analogue for PS ← PS is suggested by the program logic of
Section 4:

Definition 6.1.1. For state space S, the set of probabilistic predicates over S is
defined

PS : = (S → R≥,≤) ,

where R≥ is the nonnegative reals, and ≤ is inherited pointwise from R≥. The
probabilistic predicate transformer model for programs is then

JS : = (PS ← PS,v) ,

where the refinement order v over programs is derived pointwise from the order on
PS.

We refer to the four models as shown in Figure 3; thus JS for example is the
probabilistic predicate model.

The standard relations can be embedded in the standard predicate transformers
PS ← PS such that the image of S ↔ S⊥ is characterized by positive conjunctivity
[Hesselink 1992]:

10That latter happens automatically under our present assumption that S is finite.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

338 · Carroll Morgan et al.

a predicate transformer p: PS ← PS is the embedding of some relation
in S ↔ S⊥ iff for all postconditions post , post ′ in PS we have

p.(post ∩ post ′) = p.post ∩ p.post ′ .

Note that it is the finiteness of S that allows us to consider only finite
conjunctions.

Thus the standard predicate model is richer than the relational precisely because
not all of its programs are positively conjunctive.11

In the remainder of this section we construct an embedding for the probabilistic
models.

6.2 Embedding the Relational Model in the Predicate Model

Recall from Section 4 that for program h:HS, initial s and every possible F that
h may produce from s, we must have

wp.h.β.s ≤
∫
F

β . (13)

(Specialize (5) to I : = s and α : = wp.h.β.) Noting that wp.h.β.s should be as large
as possible while satisfying (13) for all F in h.s, we propose

Definition 6.2.1. The injection wp:HS → JS is defined

wp.h.β.s : = (uF :h.s ·
∫
F

β) ,

for program h:HS, predicate β:PS, and state s:S.

It is a consequence of Lemma 8.2 below that (probabilistic) wp is indeed an injection.
That we take the minimum u over result distributions F is related to our demonic

view of nondeterminism: the demon resolves nondeterminism in a way that makes
the weakest precondition as small (as strong) as possible. Note that well-definedness
of the minimum is guaranteed by nonemptiness of h.s, which is why we impose it;
a more general treatment is possible however if ∞ is allowed as a possible value for
wp.h.β.s.

It is instructive to specialize Definition 6.2.1 to the standard case. Let β there
be χpost for arbitrary standard postcondition post and suppose h is standard, so
that h.s is the closure of some set of point distributions; then

wp.h.χpost .s
= (uF :h.s ·

∫
F
χ

post)
= h is a standard program: see below

(us′: “standard results of h.s” ·
∫
s′
χ

post)
= (us′: “standard results of h.s” · χpost .s

′)

= 1 if “standard results of h.s” ⊆ post
0 otherwise.

11The extra constraints on [S ↔ S⊥] induce strictness and continuity on the corresponding pred-
icate transformers.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 339

In considering only the standard results of h.s (ignoring the closures), we note
that the minimum over F of

∫
F β, for any β, is unaffected by leaving out the

points generated by closure—up-closure, for example, only increases that value,
and convex closure generates only values between the extremes.

Thus wp.h.χpost is the characteristic function of those initial states all of whose
final states produced by h lie in post ; and that is the standard embedding of S ↔ S⊥
into PS ← PS.

With the function wp we define a subset of JS, the image of HS there:

Definition 6.2.2. The set of regular probabilistic predicate transformers JrS over
S is the wp-image of HS in J S, thus defined as

JrS : = {h:HS · wp.h} .
In the next section we establish properties of JrS, and in the section follow-

ing that we show they characterize it, thus identifying a probabilistic analogue of
conjunctivity.

7. HEALTHINESS CONDITIONS FOR PROBABILISTIC PROGRAMS

Dijkstra [1976] imposes “healthiness conditions” on the standard predicate trans-
formers PS ← PS: they are strictness,12 monotonicity, positive conjunctivity, and
continuity. The conditions characterize the images, under the standard embedding,
of the total and image-finite relations [S ↔ S⊥].

In this section we consider probabilistic healthiness, and we see that the proba-
bilistic analogues of strictness, monotonicity, positive conjunctivity, and continuity
characterize JrS.

The analogue of standard positive conjunctivity is probabilistic sublinearity:

Definition 7.1. A predicate transformer j:J S is said to be sublinear iff for all
β1, β2:PS and c0, c1, c2: R≥ we have

c1(j.β1) + c2(j.β2)	 c0 ≤ j.(c1β1 + c2β2	 c0) ,

where 	 denotes subtraction in R≥, so that x	 y = (x − y) t 0, and we write cβ
for the pointwise multiplication of the predicate β by the scalar c.

Because 	 does not associate with +, we define its (lower) syntactic precedence:
by x+ y	 z we mean (x+ y)	 z.

We now show that all regular predicate transformers are sublinear.

Lemma 7.2. (Sublinearity).

All members of JrS are sublinear.

Proof. We write j = wp.h for h:HS, and then proceed using the notation of
Definition 7.1. For arbitrary s:S, we calculate

wp.h.(c1β1 + c2β2	 c0).s (14)
= (uF :h.s ·

∫
F (c1β1 + c2β2	 c0)) Definition 6.2.1

≥ (uF :h.s ·
∫
F

(c1β1 + c2β2 − c0)) monotonicity of
∫
F

and u
= (uF :h.s · c1

∫
F β1 + c2

∫
F β2 − c0

∫
F 1) distribute +,−,× through

∫
F

12The Law of the Excluded Miracle.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

340 · Carroll Morgan et al.

≥ (uF :h.s · c1
∫
F
β1 + c2

∫
F
β2 − c0) F ∈ h.s ⊆ S implies

∫
F

1 ≤ 1

= (uF :h.s · c1
∫
F
β1 + c2

∫
F
β2)− c0

≥ + and (c×) monotonic for c ∈ R≥
c1(uF :h.s ·

∫
F β1) + c2(uF :h.s ·

∫
F β2)− c0

= c1(wp.h.β1.s) + c2(wp.h.β2.s)− c0 , Definition 6.2.1

and since (14) is nonnegative we may replace the final (−c0) by (c0).

That sublinearity is indeed the probabilistic analogue of conjunctivity may be
seen by considering a special case: suppose sublinear j:JS takes standard post-
conditions to standard preconditions. We then have

j.(χpost1∩post2
)

= j.(χpost1
u χpost2

)
= j.(χpost1

+ χ
post2

	 1)
≥ j.χpost1

+ j.χpost2
	1 sublinearity

= j.χpost1
u j.χpost2

, j.χpost1,2 standard

and equality follows from monotonicity of j (below).
The other probabilistic healthiness conditions are all consequences of sublinear-

ity;13 we treat them in turn, beginning with monotonicity:

Lemma 7.3. (Monotonicity). If j:J S is sublinear then it is monotonic.

Proof. Take β1, β2:PS with β1 ≥ β2. Then

j.β1 = j.(β1 − β2 + β2) ≥ j.(β1 − β2) + j.β2 ≥ j.β2 .

Probabilistic monotonicity generalizes standard monotonicity, just as ≤ general-
izes implication.

Feasibility (exclusion of miracles) is expressed as follows:

Lemma 7.4. (Feasibility). If j:J S is sublinear, then for all β:PS we have

j.β ≤ tβ ,

where tβ abbreviates (ts:S · β.s) .

Proof. We prove first the special case in which β = 0; for then

2× j.0 ≤ j.(2× 0) = j.0 ,

so that j.0 = 0. Now for the general case we continue

0 = j.0 = j.(β	tβ) ≥ j.β	tβ ,

so that tβ ≥ j.β as required.

Note that the special case j.0 = 0 corresponds to standard strictness, since we
identify 0 and false.

Another consequence of sublinearity is the following.

13They are also easily proved from Definition 6.2.1 directly, a useful exercise.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 341

feasibility j.β ≤ tβ for β:PS
monotonicity β1 ≥ β2 ⇒ j.β1 ≥ j.β2 for β1, β2:PS

scaling j.(cβ) = c(j.β) for β:PS and c: R≥

sublinearity
c1(j.β1) + c2(j.β2)	 c0

≤ j.(c1β1 + c2β2	 c0)
for β1, β2:PS and c0, c1, c2: R≥

continuity j.(tB) = (tβ:B · j.β) for ≥-directed subset B of PS

Note that in the presence of scaling we can decompose sublinearity into the two properties

subadditivity j.β1 + j.β2 ≤ j.(β1 + β2) for β1, β2:PS

truncation j.β	1 ≤ j.(β	1) for β:PS

The following shows that truncation is essential: let S be the two-element state space {a, b}, and
define j:JS so that

j.β.s : = β.a+ β.b−

√
(β.a)2 + (β.b)2

2
.

Then j is feasible, monotonic, scaling, and continuous, and moreover it is subadditive. But it does
not satisfy truncation (and so is not sublinear): take β.a, β.b : = 2, 1 and consider j.(β	1).

Fig. 4. Summary of properties characterizing JrS, the regular predicate transformers.

Lemma 7.5. (Scaling). If j:J S is sublinear, then for all β:PS and c: R≥

j.(cβ) = c(j.β) .

Proof. Given sublinearity, we need only prove ≤; and for c 6= 0 we have

j.(cβ) = c(1/c)(j.(cβ)) ≤ c(j.((1/c)cβ)) = c(j.β) .

When c = 0 the result is immediate from feasibility.

There seems to be no standard analogue for scaling.
Finally, for continuity we appeal to the finiteness of S.

Lemma 7.6. (Bounded Continuity). If j:J S is sublinear and B is a
≥-directed and bounded subset of PS, so that tB exists, then

j.(tB) = (tβ:B · j.β) .

Proof. By monotonicity we need only show j.(tB) ≤ (tβ:B · j.β).
Take any c with c > 1. For every state s there is a βs in B such that tB.s ≤ cβs.s;

since B is directed and S is finite we can thus find a single βc with βs ≤ βc for all
s, so that tB ≤ cβc. For any such c we have

j.(tB)
≤ j.(cβc) monotonicity

= c(j.βc) scaling

≤ c(tβ:B · j.β) , βc ∈ B

which suffices since c can be arbitrarily close to 1.

We summarize the properties of JrS in Figure 4. It remains to show that those
properties characterize JrS exactly, and for that we define an inverse to wp.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

342 · Carroll Morgan et al.

8. CHARACTERIZING REGULAR PROGRAMS

We now show that sublinearity characterizes the regular predicate transformers
JrS: they are exactly the sublinear members of J S.

We begin by defining a map rp from J S back to HS, to be inverse to wp on
JrS. Thus for j:JrS in particular the corresponding relation rp.j should produce
from initial s exactly those final distributions F that satisfy (13) for all possible
postconditions β:

Definition 8.1. The function rp:JS → HS is defined

rp.j.s : = {F :S | (∀β:PS · j.β.s ≤
∫
F

β)} ,

for transformer j:J S and state s:S.

Concerning definedness of rp, we note that rp.j.s satisfies the closure conditions
for CS: in fact for fixed j, β, s the constraint

j.β.s ≤
∫
F

β

on F represents a closed upper half-space in RN which satisfies the three closure
conditions trivially, and those conditions are preserved by intersection. (It is an
upper half-space because β takes only nonnegative values.)

If rp.j.s is empty for some s, we consider rp to be undefined at that j; but
Lemma 8.5 below shows rp.j to be defined whenever j is sublinear.14

Our first use of rp is to show that wp is indeed an injection:

Lemma 8.2. For any h:HS we have

rp.(wp.h) = h .

Proof. Direct from the definitions we have (taking the contrapositive), for ar-
bitrary F :S, we have

F 6∈ rp.(wp.h).s
iff F 6∈ {F :S | (∀β:PS · wp.h.β.s ≤

∫
F
β)} Definition 8.1

iff (∃β:PS · wp.h.β.s >
∫
F
β)

iff (∃β:PS · (uF ′:h.s ·
∫
F ′ β) >

∫
F β) Definition 8.1

iff (∃β:PS; r: R · (∀F ′:h.s ·
∫
F ′
β > r)∧

∫
F
β < r)

iff F 6∈ h.s . see below

The deferred “only if” is trivial. For “if” we need the separating-hyperplane
lemma, which states that any point not in a closed convex subset of RN can be
separated from it by a hyperplane. (See Appendix A.)

In our use of the lemma, the point concerned is F ; and h.s is the closed and
convex subset of RN that F is not in, as stated on the last line of the proof above.

14If HS did note impose nonemptiness (Definition 5.4), allowing miracles, then rp would be
everywhere defined; in that case for definedness of wp we would require

PS : = S → (R≥ ∪ {∞}) .

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 343

The plane separating F from h.s is given to us by Lemma A.1, and can be described
by its coefficients β and a constant term r—that is, a point F ′ lies on that plane iff

r =
∫
F ′
β .

We choose the signs of β, r so that “h.s on one side” is expressed

(∀F ′:h.s ·
∫
F ′
β > r) , (15)

and “F on the other side” is expressed∫
F

β < r ,

which two conditions together with the existence of β, r give us our deferred “if”
above. Note that the coefficients β are nonnegative since, by up-closure of h.s,
Condition (15) could not be true otherwise.

The Cauchy-closure condition on h.s is essential for Lemma 8.2: if h.s were for
example

{p: (0, 1) · 0 p⊕ 1} ,
thus all probabilistic combinations of the point distributions 0 and 1 excluding the
endpoints, then rp.(wp.h).s would be

{p: [0, 1] · 0 p⊕ 1} ,
in which closure has occurred.

Our next step is to prove an analogous result for the opposite direction; but since
rp is not defined for all J S (for j 6∈ JrS it may be that rp.j.s is empty for some
s), we state the lemmas conditionally.

Our first lemma concerns members of JS generally:

Lemma 8.3. For any j:J S, if rp.j is defined then

wp.(rp.j) w j.

Proof. Take any β:PS and s:S; directly from the definitions we have:

wp.(rp.j).β.s ≥ j.β.s
iff (uF : rp.j.s ·

∫
F
β) ≥ j.β.s Definition 6.2.1; rp.j defined by assumption

iff (∀F : rp.j.s ·
∫
F β ≥ j.β.s)

iff (∀F :S · (∀β′:PS · j.β′.s ≤
∫
F
β′)⇒

∫
F
β ≥ j.β.s)

iff true .

Our second lemma is restricted to sublinear elements of JS:

Lemma 8.4. If j:JS is sublinear and rp.j is defined, then

wp.(rp.j) v j .

Proof. We proceed by contradiction: for arbitrary s:S and β:PS, we have
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

344 · Carroll Morgan et al.

wp.(rp.j).β.s > j.β.s
iff (uF : rp.j.s ·

∫
F β) > j.β.s Definition 6.2.1; rp.j defined by assumption

implies (∀F : rp.j.s ·
∫
F
β > j.β.s) (16)

iff (∀F :S · (∀β′:PS · j.β′.s ≤
∫
F β
′)⇒

∫
F β > j.β.s) Definition 8.1

iff (∩β′:PS · {F :S | j.β′.s ≤
∫
F β
′}) ⊆ {F :S |

∫
F β > j.β.s}

iff A ⊆ B iff A ∩BC = ∅
(∩β′:PS · {F : RN | j.β′.s ≤

∫
F β
′})

∩ {F : RN | −j.β.s ≤
∫
F (−β)}

∩ {F : RN | −1 ≤
∫
F

(−1)}
= ∅ ,

(17)

where we have negated the second term to make the inequalities uniform. The third
term, also negated, is added because of the retyping of the bound variables F : in
(17) they are taken from all of RN , rather than the more restrictive S, and so we
must compensate by requiring explicitly∑

F =
∫
F

1 ≤ 1 .

(The remaining constraints F.s ≥ 0 applying to members F of S, for every s:S, are
included already in the first term above: take β′ : = χ{s} and recall that 0 ≤ j.β′.s.)

Now we argue that some finite subcollection of the sets (17) has empty intersec-
tion also. Take the sets determined by β′ : = χ{s} for each s:S (finitely many),
and the final set {F : RN | −1 ≤

∫
F
−1}: they determine a closed hyperpyramid in

the positive hyperoctant of RN (whose apex points downward toward the origin).
Since the pyramid is bounded, it is compact—and so the finite-intersection lemma15

applies within it. Thus we can restrict our attention to a collection of just M , say,
of the sets (17).

We now appeal to another lemma in the style of linear programming (Appendix A).
The finite M -collection from (17) with empty intersection may be regarded as a
system of M equations

A ·x ≥ r (18)

that has no solution in x, where A is an M ×N matrix (of coefficients, representing
the β′’s, −β, and −1), x is an N × 1 column vector (representing points F in RN),
and r is an M×1 column vector (of constant terms, representing the j.β′.s’s, −j.β.s,
and −1). The expression A ·x denotes matrix multiplication, and the inequality ≥
is taken rowwise.

Lemma A.2 then gives us a 1×M row-vector C of nonnegative reals such that

C ·A = 0 but C · r > 0 .

Returning to (17), we thus have a finite number of nonnegative coefficients c,
c0 · · · cM−2 such that

cβ = c1β
′
1 + · · ·+ cM−2β

′
M−2	 c0

15The finite-intersection lemma states that a collection of closed subsets of a compact set has
empty intersection only if some finite subcollection of it does.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 345

but

c(j.β.s) < c1(j.β′1.s) + · · ·+ cM−2(j.β′M−2.s)	 c0 ,
where in both cases we can use 	 on the right because the left-hand side is non-
negative.

We then finish with

c(j.β.s)
< c1(j.β′1.s) + · · ·+ cM−2(j.β′M−2.s)	 c0 above

≤ j.(c1β′1 + · · ·+ cM−2β
′
M−2	 c0).s , sublinearity of j

= j.(cβ).s , above

which contradicts scaling (implied by sublinearity).

Finally we deal with definedness of rp:

Lemma 8.5. If j:JS is sublinear, then rp.j is defined.

Proof. The three closure conditions have already been dealt with. For nonempti-
ness, again we proceed by contradiction: suppose for some s:S that rp.j.s is empty.
Then we have immediately

(∀F : rp.j.s ·
∫
F

β > j.β.s) ,

by quantifying universally over the empty set (the body of the quantification is
irrelevant). But that is identical to (16) in the proof of Lemma 8.4, and rp is not
mentioned beyond that point. Thus we proceed to a contradiction as before.

We thus have thus established the following:

Lemma 8.6. If j:JS is sublinear, then rp.j is defined and

wp.(rp.j) = j .

Proof. The result is immediate from Lemmas 8.3–8.5.

With Lemmas 7.2 and 8.6 we have finally our characterization of JrS:

Theorem 8.7. The regular predicate transformers JrS are characterized by sub-
linearity: j in JS is sublinear iff it is in JrS.

Proof. “If” is given by Lemma 7.2; “only if” is given by Lemma 8.6.

Note that Theorem 8.7 shows also that the conditions of Figure 4 characterize
JrS collectively, since by Lemmas 7.2–7.6 they are all implied by sublinearity.

9. NONDETERMINISM AND PREDICATE TRANSFORMERS

We have now seen that HS and JrS are placed in 1-1 correspondence by the
mutual inverses wp:HS → JrS and rp:JrS → HS. But for the two spaces to
give equivalent semantics for regular programs requires further that the program
operators preserve the correspondence—that for example Definitions 5.5–5.7, for
relations, correspond with the definitions of Figure 2 for predicate transformers.

In fact neither Kozen nor Jones treats nondeterminism, and thus in the case of
Definition 5.6 rather than prove a correspondence we must generate a definition:
for h1, h2:HS, β:PS and s:S we calculate

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

346 · Carroll Morgan et al.

wp.(h1 u h2).β.s
= (uF : (h1 u h2).s ·

∫
F β) Definition 6.2.1

= (uF1:h1.s;F2:h2.s; p: [0, 1] ·
∫
F1p⊕F2

β) Definition 5.6

= (uF1:h1.s;F2:h2.s; p: [0, 1] · p(
∫
F1
β) + (1− p)(

∫
F2
β)) Definition 3.1

= minimum occurs at extremes, thus at p = 0 or p = 1

(uF1:h1.s;F2:h2.s ·
∫
F1
β u

∫
F2
β)

= (uF1:h1.s ·
∫
F1
β) u (uF2:h2.s ·

∫
F2
β)

= wp.h1.β.s u wp.h2.β.s . Definition 6.2.1

Thus we are given a definition of nondeterminism over JrS, which we extend to
JS:

Definition 9.1. For j1, j2:J S, β:S, and s:S we have

(j1 u j2).β.s : = j1.β.s u j2.β.s .

Variations on Example (11) from Section 4 illustrate well the interaction of prob-
abilistic choice and demonic nondeterminism. Suppose first that x is chosen non-
deterministically (rather than probabilistically), and that we take postcondition
x = y. Then

wp.((x: = 1 u x: = 2); (y: = 1 1
2
⊕ y: = 2)).(x = y)

= wp.(x: = 1 u x: = 2).((x = 1)/2 + (x = 2)/2)
= ((1 = 1)/2 + (1 = 2)/2) u ((2 = 1)/2 + (2 = 2)/2)
= (1/2 + 0/2) u (0/2 + 1/2)
= 1/2 ,

from which we see that program establishes x = y with probability at least 1/2: no
matter which value is assigned to x, with probability 1/2 the second command will
assign the same to y.

Now suppose instead that it is the second choice that is nondeterministic. Then
we have

wp.((x: = 1 1
2
⊕ x: = 2); (y: = 1 u y: = 2)).(x = y)

= wp.(x: = 1 1
2
⊕ x: = 2).((x = 1) u (x = 2))

= ((1 = 1) u (1 = 2))/2 + ((2 = 1) u (2 = 2))/2
= (1 u 0)/2 + (0 u 1)/2
= 0 ,

reflecting that no matter what value is assigned probabilistically to x, the demon
could choose subsequently to assign a different value to y.

Thus it is clear that the execution order of occurrence of the two choices plays a
critical role in their interaction, and in particular that the demon in the first case
cannot make the assignment “clairvoyantly” to x in order to avoid the value that
later will be assigned to y.

It is straightforward, with calculations like that preceding Definition 9.1, to estab-
lish the correspondence of the remaining relational operators with their predicate-
transformer counterparts. Usually the latter are simpler.
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 347

10. EXAMPLE: TERMINATION AND RECURSION

Definition 8.1 suggests that a program j:JrS should be said to terminate from
initial state s:S just when j.1.s = 1; for then we have 1 ≤

∫
F

1 for the final
distributions F that rp.j delivers, and the discussion preceding Definition 2.2 char-
acterizes those as terminating. By monotonicity and scaling (both properties of
JrS), that is equivalent to the following definition:

Definition 10.1. (Termination). A program j:JrS is said to terminate at an
(initial) state s:S if for all β:PS we have

uβ ≤ j.β.s .

We have already a similar characterization of feasibility: at a state s, Lemma 7.4
requires j.β.s ≤ tβ, giving a duality between the two notions just as in the standard
case;16 and thus j is both feasible and terminating (at all states) just when for all
β:PS

uβ ≤ j.β ≤ tβ .

We now consider an example of probabilistic termination, the recursive program

G : = skip 1
2
⊕G (19)

that chooses repeatedly with probability 1/2 between termination and (fruitless)
recursion. From Figure 2, for any β:PS, we have

wp.G.β = β/2 + (wp.G.β)/2 ,

whose unique solution is given by wp.G.β = β. Thus by Definition 10.1 we see that
G terminates at every state; indeed, from Figure 2 we have that G = skip.

The above reasoning goes through for any p⊕ when 0 < p and illustrates well
how the familiar concept of “termination with probability 1” appears for us here:
the program G has probability (1− p)n of recursing at least n times, and thus for
nonzero p has probability 0 of recursing forever (as n→∞).

Treatment of recursions in general, however, relies on the existence of fixed points
in JrS. Since we consider only feasible programs, it is easy to see that v-directed
sets of programs have least upper bounds, in spite of the fact that limits in PS
do not necessarily exist: for any directed set G of programs, the limit is defined
pointwise—thus for any β:PS

(tG).β : = (tG:G · G.β) ,

and the limit exists on the right because feasibility gives G.β ≤ tβ for all elements
G of G. (We have the existence of tβ itself from our assumption that S is finite.)
Since sublinearity is preserved by taking limits, by continuity of the arithmetic
operators, we have tG ∈ JrS provided G ⊆ JrS.

16The standard duality is that termination is indicated by true ⇒ j.true, and feasibility by
j.false⇒ false.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

348 · Carroll Morgan et al.

Thus, with continuity, recursions are given meaning via the usual ω-limit con-
struction. Consider for example the program over N :17

n: = 0;
(µG · skip 1

2
⊕ (n: = n+ 1;G)) . (20)

Beginning with the second statement, we calculate wp.G.(n = N) by taking the
limit (ti: N · γi), where

γ0 = abort.(n = N) = 0
γi+1 = (n = N)/2 + (γi[n: = n+ 1])/2 .

Induction shows that γi =
∑

i′<i(n + i′ = N)/2i
′+1, and thus in the limit we find

that

wp.G.(n = N) =
∑
i

(n+ i = N)/2i+1 .

Hence for the whole program we have

wp.(n: = 0;G).(n = N)
= wp.(n: = 0).(

∑
i(n+ i = N)/2i+1) above

=
∑
i(i = N)/2i+1 Figure 2 for n: = 0

= 1/2N+1 ,

showing that Program (20) sets n finally to N with probability at least 1/2N+1.
That it terminates can be seen as in our earlier example; alternatively, sublinearity
and continuity can be used to sum the probabilities for all N , giving (at least) 1 as
a total.

Note that we have found an “unboundedly probabilistic” program—every one of
its infinitely many final states is accessible, however small the associated probability
might be. But that differs from unbounded (demonic) nondeterminism; the pro-
gram (as a predicate transformer) remains continuous and is in fact deterministic,
since it is maximal with respect to v.

11. COMPARISONS AND CONCLUSIONS

The key to a systematic exploration of probabilistic predicate transformers seems
to have been the connection between Kozen’s probabilistic PDL [Kozen 1983] and
the more recent work of He et al. [1996]. (Our contribution to the latter directly is
the introduction of Cauchy closure to characterize continuity.) Dijkstra’s presen-
tation of standard healthiness conditions, and their dependence on the embedding
of standard relations in the standard predicate transformers, then suggested the
approach reported here.

Rao [1992; 1994] extends UNITY [Chandy and Misra 1988] with a statement that
chooses between its components with some unknown but nonzero probability for
each one. Restrictions on the execution of the program as a whole (“unconditional,”

17This example comes from Jones [1990], and since it contains no nondeterminism it can be treated
by the model there—even over its infinite state space. Our treatment for infinite S [McIver and
Morgan 1996] would be the same. We thus relax our assumption that S is finite in order to make
our later point about unbounded nondeterminism.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 349

and “extreme” fairness) then allow conclusions to be drawn about the eventual
execution of each probablistic alternative, independent of the actual probabilities
concerned; and from that an extension of the UNITY logic allows properties (for
example, termination) to be proved to hold with probability 1.

In our case, given components j and j′ the program

j p⊕ j′ u j′ p′⊕ j

executes j, j′ with probability at least p, p′ respectively, provided p + p′ ≤ 1; but
Cauchy closure (equivalently continuity, or bounded nondeterminism) prevents our
abstracting from the specific values of p, p′: we cannot write a program such that
they are arbitrarily small but nonzero.

Rao’s nondeterminism (between statements) is less demonic than ours: with the
unconditional-fairness assumption of UNITY (applied by analogy to an explicit
recursion) the program

(µG · skip uG)

would terminate because the body cannot be executed indefinitely without selecting
its first component skip. However under the standard interpretation [Dijkstra
1976], thus ours as well, that program is equivalent to abort.

To approach the elegance of Rao’s termination proofs (for example, Rao [1994,
Sec. 15]) we use the probabilistic analogue of invariants and variants: proof rules
for those turn out to be simple generalizations of their standard counterparts, and
the rules are themselves proved using sublinearity [Morgan 1995]. For termination
with probability 1, in particular, the 0–1 Law [Hart et al. 1983; Morgan 1995] allows
us very easily to ignore explicit (but nonzero) probabilities if we wish.

More generally, termination arguments may come to be based on simple proba-
bilistic systems such as “random walk” or “gambler’s ruin” [Grimmett and Welsh
1986]. For example, an approach as for Program (19) shows that the program

x 6= 0→
x: = x+ 1 1

2
⊕ x: = x− 1

,

for x: Z , terminates with probability 1. (That cannot be done in Rao [1994] because
the explicit probability 1/2 is essential in the argument.)

That “symmetric random walk” pattern, or others, could be found spread out
and “well buried” in more general programs—with x represented by an expression
over many program variables. It could then be extracted using probabilistic data
refinement (an analogue of the techniques of Gardiner and Morgan [1991] perhaps),
in that way maintaining full rigor in the argument if desired. Once the pattern was
revealed, the termination argument could be made separately.

Other investigations of the link between nondeterminism and probability address
the situation of probabilistic programs running concurrently under a nondetermin-
istic scheduler [Hart et al. 1983; Lehmann and Rabin 1981; Rabin 1982], often in
the framework of temporal logic. It is shown that the “extent” of nondeterminism
in the scheduler is crucial: can it take advantage of probabilistic choices already
made, or even yet to be made? Here, like Lehmann and Rabin [1981], our nondeter-
minism is demonic rather than indifferent (it takes advantage of earlier probabilistic

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

350 · Carroll Morgan et al.

choices), but not clairvoyant (it cannot take advantage of probabilistic choices still
in the future).

Further work on the theory of probabilistic predicate transformers is reported
in McIver and Morgan [1996], treating in particular the extension to infinite state
spaces, the arithmetic characterization of standard programs (semilinearity) and
deterministic programs (simple linearity), and exploring the more general trans-
formers that do not correspond to relational programs (only semi-sublinearity).
Those last include the “nonconjunctive” programs containing “angelic” choice; and
for them there is a decomposition result in the probabilistic space, extending the
standard result [Back and von Wright 1990].

More practical work is reported in Morgan [1995], where the results here have
been used to reconstruct—for probabilistic programs—the standard apparatus for
reasoning about loops. We believe the examples there show the cost of including
explicit probability, at least in small programs, to be commensurate with the extra
information gained about their behavior—thus that rigor in probabilistic imperative
programming incurs a relative penalty no higher than in the standard case.

Another introduction to probabilistic predicate transformers in practice is given
in Seidel et al. [1996], where informal explanations for some features of the model
are provided, and the further use of probabilistic postconditions to reason about
expected time to termination (probabilistic efficiency) is illustrated by example.

APPENDIX

A. LINEAR PROGRAMMING LEMMAS

Both of these lemmas are well known in linear programming.

Lemma A.1. (The Separating-Hyperplane Lemma). Let C be a convex
and Cauchy-closed subset of RN , and p a point in RN that does not lie in C. Then
there is a separating hyperplane S with p on one side of it and all of C on the other.

Proof. See for example Trustrum [1971, p.8].

Lemma A.2. (Farkas’ Lemma). Let A be an M × N matrix, x an N × 1
column-vector and r an M ×1 column-vector, and suppose that A and r are so that
the system of equations

A ·x ≥ r (21)

has no solution in x, where · denotes matrix multiplication. Then there is a 1×M
row-vector C of nonnegative values such that

C ·A = 0 but C · r > 0 . (22)

Proof. See for example Schrijver [1986, p.89], taking the contrapositive of
Corollary 7.1e there.

Lemma A.2 can be motivated by considering its converse, also true but trivially
so: if there is a C satisfying (22) then inequation (21) can have no solution—for if
it did, we could reason

0 < C · r ≤ C ·A ·x = 0 ·x = 0 ,
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 351

a contradiction. Thus the lemma can be read “if (21) has no solution in x then
there is a witness C to that fact.”

The connection between probability and linear programming is reported in Fagin
et al. [1990] also.

B. GLOSSARY OF NOTATION

wp.h.β The weakest precondition of (relational) program h with
respect to postcondition β.

j u j′ The demonic nondeterministic choice between programs j
and j′.

j p⊕ j′ The p-probabilistic choice between programs j and j′.
lhs : = rhs Define lhs to be rhs.
S⊥ State space S with a bottom element ⊥ adjoined.
f.x Function f applied to argument x.
S The set of distributions over state space S.
v The refinement order (over various domains).
(∀s:S · body) “For all s in S we have body .”
(λs:S · expr) The function over S yielding expr , in which s denotes the

argument.
The constant function yielding expr everywhere.

DS The deterministic probabilistic programs over state space
S.

s The point distribution at state s.
f ◦ g The functional composition of f and g.∫
D
α The expected value of random variable α over distribution

D; the integral of function α over measure D.
d† The distribution-to-distribution form of deterministic prob-

abilistic program d.
χ
T The characteristic function of set T .
β[x: = E] Syntactic substitution of E for free x in β; the equivalent

operation on β regarded as a function of the state.
HS The relational nondeterministic programs.
{s:S · expr} The set of values expr formed as s ranges over S.
{s:S | range} The set of values s in S that satisfy range.
{s:S | range · expr} The set of values expr formed as s ranges over those ele-

ments of S that satisfy range.
R≥ The nonnegative reals.
PS The set of all subsets of S.
PS The probabilistic predicates over S.
JS The probabilistic predicate transformers over S.
JrS The regular probabilististic predicate transformers over S.
[S ↔ S⊥] The total and image-finite relations between S and S⊥.
u Binary minimum; infinitary infimum.
cβ The pointwise multiplication of predicate β by scalar c.
	 Natural number (truncated) subtraction.
t Binary maximum; infinitary supremum.
(uF :F · expr) The infimum of values expr as F ranges over F .
(tβ:B · expr) The supremum of values expr as β ranges over B.
· Matrix multiplication.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

352 · Carroll Morgan et al.

ACKNOWLEDGEMENTS

As we carried out most of the work reported here, Morgan was enjoying the hospi-
tality of the Computer Science Department at Utrecht University.

We are grateful for the comments and contributions of Jifeng He, Tony Hoare, and
the participants in the probabilistic predicate transformer seminars at the SVRC
and Department of Computer Science of the University of Queensland: Mark Bofin-
ger, David Carrington, Ian Hayes, Ray Nickson, and Mark Utting.

We thank the referees for their careful reading and detailed recommendations.

REFERENCES

Back, R.-J. R. and von Wright, J. 1990. Duality in specification languages: A lattice theoretical
approach. Acta Inf. 27, 583–625.

Chandy, K. M. and Misra, J. 1988. Parallel Program Design: A Foundation. Addison-Wesley,
Reading, Mass.

Dijkstra, E. W. 1976. A Discipline of Programming. Prentice Hall International, Englewood
Cliffs, N.J.

Fagin, R., Halpern, J. Y., and Megiddo, N. 1990. A logic for reasoning about probabilities.
Inf. Comput. 87, 78–128.

Gardiner, P. H. B. and Morgan, C. C. 1991. Data refinement of predicate transformers. Theor.
Comput. Sci. 87, 143–162. Reprinted in On the Refinement Calculus, C.C. Morgan and T.N.
Vickers, Eds. Springer-Verlag, Berlin, 1994.

Grimmett, G. and Welsh, D. 1986. Probability: An Introduction. Oxford Science Publications.
Oxford University Press, Oxford.

Hart, S., Sharir, M., and Pnueli, A. 1983. Termination of probabilistic concurrent programs.
ACM Trans. Program. Lang. Syst. 5, 356–380.

He, J., McIver, A. K., and Seidel, K. 1996. Probabilistic models for the guarded command
language. Sci. Comput. Program. To appear in FMTA ’95 special issue. Also available via http
at http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

Hesselink, W. H. 1992. Programs, Recursion and Unbounded Choice. Cambridge Tracts in
Theoretical Computer Science, vol. 27. Cambridge University Press, Cambridge, U.K.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10
(Oct.), 576–580, 583.

Jones, C. 1990. Probabilistic nondeterminism. Ph.D. thesis, Monograph ECS-LFCS-90-105,
Edinburgh Univ. Edinburgh, U.K.

Jones, C. and Plotkin, G. 1989. A probabilistic powerdomain of evaluations. In Proceedings
of the IEEE 4th Annual Symposium on Logic in Computer Science. IEEE Computer Society
Press, Los Alamitos, Calif., 186–195.

Kozen, D. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350.

Kozen, D. 1983. A probabilistic PDL. In Proceedings of the 15th ACM Symposium on Theory
of Computing. ACM, New York.

Lehmann, D. and Rabin, M. O. 1981. On the advantages of free choice: A symmetric and fully-
distributed solution to the Dining Philosophers Problem. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages. ACM, New York, 133–138.

Lowe, G. 1993. Representing nondeterministic and probabilistic behaviour in reactive processes.
Programming Research Group, Oxford.

McIver, A. K. and Morgan, C. C. 1996. Probabilistic predicate transformers: Part 2.
Tech. Rep. PRG-TR-5-96, Programming Research Group, Oxford. Also available via http at

http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

Morgan, C. C. 1988. The specification statement. ACM Trans. Program. Lang. Syst. 10, 3 (July).
Reprinted in On the Refinement Calculus, C.C. Morgan and T.N. Vickers, Eds. Springer-Verlag,
Berlin, 1994.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Probabilistic Predicate Transformers · 353

Morgan, C. C. 1995. Proof rules for probabilistic loops. Tech. Rep. PRG-TR-25-
95, Programming Research Group, Oxford. To appear in Proceedings of the 7th BCS
FACS Refinement Workshop (July 1996), Springer-Verlag. Also available via http at
http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

Morgan, C. C., McIver, A. K., Seidel, K., and Sanders, J. W. 1994. Refinement-
oriented probability for CSP. Tech. Rep. PRG-TR-12-94, Programming Research Group,
Oxford. To appear in Formal Aspects of Computing. Also available via http at
http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

Morris, J. M. 1987. A theoretical basis for stepwise refinement and the programming calculus.
Sci. Comput. Program. 9, 3 (Dec.), 287–306.

Nelson, G. 1989. A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang. Syst. 11, 4
(Oct.), 517–561.

Rabin, M. O. 1982. The choice-coordination problem. Acta Inf. 17, 2 (June), 121–134.

Rao, J. R. 1992. Building on the UNITY experience: Compositionality, fairness and probability
in parallelism. Ph.D. thesis, Univ. of Texas at Austin, Austin, Tex.

Rao, J. R. 1994. Reasoning about probabilistic parallel programs. ACM Trans. Program. Lang.
Syst. 16, 3 (May).

Schrijver, A. 1986. Theory of Integer and Linear Programming. Wiley, New York.

Seidel, K., Morgan, C. C., and McIver, A. K. 1996. An introduction to probabilistic predicate
transformers. Tech. Rep. PRG-TR-6-96, Programming Research Group, Oxford. Also available
via http at http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

Trustrum, K. 1971. Linear Programming. Library of Mathematics. Routledge and Kegan Paul,
London.

Received February 1995; revised February 1996; accepted March 1996

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

