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This paper studies evolutionary clustering, a recently emerged hot topic with many important applications,
noticeably in dynamic social network analysis. In this paper, based on the recent literature on Nonpara-
metric Bayesian models, we have developed two generative models DPChain and HDP-HTM. DPChain is
derived from the Dirichlet Process Mixture (DPM) model with an exponential decaying component along
with the time. HDP-HTM combines the Hierarchical Dirichlet Process (HDP) with a Hierarchical Transi-

tion Matrix (HTM) based on the proposed Infinite Hierarchical Markov State model (iHMS). Both models
substantially advance the literature on evolutionary clustering in the sense that not only they both perform
better than the existing literature, but more importantly they are capable of automatically learning the
cluster numbers and explicitly addressing the correspondence issues over the evolution. Extensive evalua-
tions have demonstrated the effectiveness and the promise of these two solutions against the state-of-the-art
literature.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data mining; G.3 [Probability and

Statistics]: Nonparametric statistics; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Clustering

General Terms: Algorithms

Additional Key Words and Phrases: Evolutionary Clustering, DPChain, HDP-HTM, iHMS, Hierarchical
Transition Matrix

1. INTRODUCTION

Evolutionary clustering has a wide spectrum of applications, such as daily news anal-
ysis to observe the changing news foci, blog analysis to observe the community devel-
opment and evolution, and scientific publication analysis to identify the new and hot
research directions in a specific area. As a result, evolutionary clustering research has
recently emerged as a hot and active research topic in data mining. Evolutionary clus-
tering refers to the scenario where a collection of data evolves over the time; at each
time, the collection of the data has a number of clusters; when the collection of the data
evolves from one time to another, new data items may join the collection and existing
data items may disappear; similarly, new clusters may appear and at the same time
existing clusters may disappear. Consequently, both the data items and the clusters of
the collection may change over the time, which poses a great challenge to the problem
of evolutionary clustering as the model selection problem in the traditional clustering
is still an open problem.
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Chakrabarti et al. in 2006 [Chakrabarti et al. 2006] were probably considered as the
first to address the evolutionary clustering problem in the data mining literature. In
their work, a general framework was proposed and two specific clustering algorithms
within this framework were developed — evolutionary k-means and evolutionary ag-
glomerative hierarchical clustering. Recently, Chi et al. [Chi et al. 2007] presented an
evolutionary spectral clustering approach by incorporating the temporal smoothness
constraint into the solution. In order to fit the current data well into the clustering
but at the same time not to deviate the clustering from the history too dramatically,
the temporal smoothness constraint is incorporated into the overall measure of the
clustering quality. Based on the spectral clustering approach, two specific algorithms,
PCM and PCQ, were proposed.

These two efforts were developed by explicitly incorporating the history clustering
information into the existing classic clustering algorithms, specifically, k-means, ag-
glomerative hierarchical clustering, and spectral clustering approaches [Ng et al. 2002;
Shi and Malik 2000]. While incorporating the history information into the evolution-
ary clustering certainly advances the literature on this topic, there is a very restrictive
assumption in their work – it is assumed that the number of the clusters over the time
stays the same. It is clear that in many applications of evolutionary clustering, this
assumption is violated.

From the statistical point of view, we may first model the data collection as a gen-
erative process in order to describe the generation of a sample or data point at each
time; then a solution to the evolutionary clustering problem may be made as an infer-
ence to learn the distribution of the data at different times consistent with the original
data distribution. Consequently, the following two properties are natural to a typical
evolutionary clustering problem: (1) The number of clusters as well as the clustering
structures at different evolutionary times may change. (2) The clusters of the data be-
tween neighboring times should stay the same or have a smooth change; but after a
long time, clusters may drift substantially.

Since some clusters at different times might be the same while others may be differ-
ent, another challenging problem is the correspondence problem, which refers to the
correspondence among different local clusters across different times, resulting in the
cluster-cluster correspondence and the cluster transition correspondence issues. We
assume that the cluster structure at each time follows a mixture model of the clus-
ters for the data collection at this time. Thus, clusters at different times may share
common clusters, resulting in explicitly addressing the cluster-cluster correspondence
issue. Further, these clusters evolve over the time and some may become more popular
while others may become outdated, making the cluster structures and the number of
the clusters change over the time.

Consequently, we propose two statistical models as the two solutions to the evolu-
tionary clustering problem — DPChain and HDP-HTM [Xu et al. 2008a; 2008b]. The
DPChain model is based on the Dirichlet Process Mixture (DPM) model [Antoniak
1974; Escobar and West 1995], which automatically learns the number of the clus-
ters from the evolutionary data; in addition, the exponential decaying trend is used to
model the change of the cluster mixture proportion over the time. In the HDP-HTM
model, we apply the Hierarchical Dirichlet Processes (HDP) [Teh et al. 2007] to han-
dle the global and local cluster correspondence problems; further, we develop the state
transition matrix to explicitly reflect the cluster-cluster transitions between different
times. These solutions are proven to work well in different real-world evolutionary
clustering applications. They are capable of automatically learning the number of the
clusters at each time during the evolution. In addition, the clustering performances
are more accurate than those in the existing literature.
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(a) (b)

Fig. 1. Graphical Models (a) DPM model (b) HDP model

In the following text, boldface symbols are used to denote vectors or matrices, and
non-boldface symbols are used to denote scalar variables. Also for all the variables we
have defined, adding a symbol −s either in the subscript or in the superscript of a
variable defines the whole range of the variable except for the item indicated as s.

The remainder of this paper is outlined as follows. Section 2 reviews the related
statistical background and Section 3 further reviews the related work in the litera-
ture. In Section 4 we introduce the first model DPChain and how to learn that model.
Sections 5 and 6 describe the iHMS model as the Hierarchical Transition Matrix for
HDP-HTM and the representation and inference method of HDP-HTM model. Section
7 reports the experimental results on three data sets for the proposed DPChain and
HDP-HTM models against the exisiting evolutionary clustering algorithms (PCQ and
PCM) and the related models LDA and HDP from the literature. In Section 7.3, we
discuss the potential application of HDP-HTM on the community discovery of dynamic
social networks. Finally, in Section 8, we conclude the paper.

2. RELATED STATISTICAL BACKGROUND

The Dirichlet process (DP) [Ferguson 1973] is a distribution over distributions, and is
usually used as a prior in Nonparametric Bayesian models. The definition of a Dirchelt
process follows [Teh 2007].

Definition 2.1. Let base distribution H be a distribution over a parameter space
and α be a positive real number. For any finite measurable partition A1 ,A2 , ...Ak of the
parameter space, the vector (G(A1 ),G(A2 ), ...G(Ak )) is a random vector. We denote G

as the Dirichlet Process with parameter α and base measure H with G ∼ DP(α,H ) if

(G(A1 ),G(A2 ), ...G(Ak )) ∼ Dir(αH (A1 ), αH (A2 ), ...α(H (Ak )))

The Dirichlet Process can be represented as a Chinese Restaurant Process (CRP) [Al-
dous 1983] — a distribution over partitions. Suppose that we have a Chinese restau-
rant with an infinite number of tables; each table is capable of holding an infinite
number of customers. The first customer comes in and sits at the first table; the sub-
sequent customers may sit either randomly at a table already with customers with a
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probability proportional to the number of the customers already at that table, or at a
new table with a probability proportional to a constant parameter.

Draws from DP can also be represented as a weighted sum of point masses. The stick
breaking process (also known as GEM) [Sethuraman 1994] provides a constructive
definition of Dirichlet Process as follows:

G =

∞
∑

k=0

πkδφk
φk ∼ H

πk = βk

k−1
∏

l=1

(1− βl) βk ∼ Beta(1, α) (1)

Here we define π as stick(α) distributed in terms of Eq. 1. πk is the weight proportion
of cluster k. The overall proportions of an infinite number of the clusters are summed
to 1.

Different from the traditional finite mixture models with a finite number of clusters,
Dirichlet Process Mixture model [Antoniak 1974] is able to represent an infinite num-
ber of clusters. According to the stick breaking process representation of the Dirichlet
Process, we have a description of DPM shown in Figure 1(a).

φk|H ∼ H

π|α ∼ stick(α)

zi|π ∼ Mult(π)

xi|zi, {φt} ∼ F (φzi)

Here zi is the cluster assignment taking cluster k with probability πk; H is the prior
distribution for the cluster parameters.

HDP [Teh et al. 2007] is a hierarchical extension of DPM as is shown in Figure 1(b).
The process defines a global random probability measure G0 distributed as a Dirichlet
process, and a set of random probability measures Gj , each of which forms a Dirichlet
process controlled by the global measure G0 .

Taking advantage of the strick breaking representation of Dirichlet process, we have
the representation of HDP:

φk|H ∼ H

π|γ ∼ stick(γ)

θj |α0,π ∼ DP(α0,π)

zj,i|θj ∼ Mult(θj)

xj,i|zj,i, {φk} ∼ F (φzj,i)

To extend Hidden Markov Model (HMM) [Rabiner 1989] to an infinitely count-
able number of states, Beal et. al. [Beal et al. 2002] proposed the Infinite Hidden
Markov Model (iHMM), which has an infinitely coutable number of states in space
S = {1, 2, ..., k, ...}. The Dirichlet process (represented as a stick-breaking process) is
adopted to model the probabilities. The initial state probabilities for each state π are
the stick breaking strengths:

π|α ∼ stick(α)
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Each row of the transition matrix can also be constructed as a Dirichlet process with
probability

πi→j = p(st+1 = j|st = i) =







ni→j

(
∑

K
j=1

ni→j+β)
if k ∈ {1, 2, ...,K}

β

(
∑

K
j=1

ni→j+β)
if k is a new state

Here we assume that K states have appeared at the current time; β is the concentra-
tion parameter; ni→j is the expected number of transitions from state i to state j.

Beal et al. [Beal et al. 2002] go further resulting in an HDP to model the transition
matrix. Similarly, the emission matrix is also constructed by HDP. Recently, Fox et al.
[Fox et al. 2007] have revisited the HDP-HMM model and have developed methods
which allow more efficient and effective learning from realistic time series data. Ni et
al. [Ni et al. 2007] have proposed a new hierarchical Nonparametric Bayesian model by
imposing a nested Dirichlet process prior to the base distributions of iHMMs to learn
the sequential data. More recently, Gael et al. [Gael et al. 2008] have introduced a new
inference algorithm for iHMM called the beam sampling algorithm which is also more
efficient and robust. There are also many interesting efforts on topic modeling beyond
the bag of words approaches [Griffiths et al. 2005; Boyd-Graber and Blei 2008; Gruber
et al. 2007; Wallach 2006]. Work in [Griffiths et al. 2005; Boyd-Graber and Blei 2008;
Gruber et al. 2007] mainly combines latent topic modeling for document semantic in-
formation and Markov modeling for sequential information. The paper [Wallach 2006]
incoporates latent variables and n-gram statistics to form a hierarchical Dirichlet bi-
gram language model.

3. FURTHER RELATED WORK

There are many noticeable applications of the Dirichlet process based models in text
analysis and topic modeling. Blei et al. [Blei et al. 2003] proposed the well-known
Latent Dirichlet Allocation (LDA) model for text modeling and clustering with an as-
sumed known constant number of the topics set in advance. For the topic evolution
analysis, Blei and his colleagues [Blei and Lafferty 2006; Wang et al. 2008] have de-
signed the probabilistic models to develop effective solutions. Based on LDA, Griffiths
et al. [Griffiths and Steyvers 2004] tried to identify ”hot topics” and ”cold topics” by the
text temporal dynamics. The number of the topics was decided by a Bayesian model se-
lection. Wang et al. [Wang and McCallum 2006] introduced an LDA-style topic model to
represent the time as an observed continuous variable attempting to capture the topic
evolutionary trends. Zhu et al. [Zhu et al. 2005] further developed a time-sensitive
Dirichlet process mixture model for clustering documents with the temporal correla-
tions between time instances considered. However, all these models fail to automati-
cally learn the number of the topics (i.e., the clusters). Further, they also fail to address
the correspondence issues during the evolution.

There are also many methods developed for community discovery based on graph
partitioning such as [Flake et al. 2000] and [Abou-Rjeili and Karypis 2006]. Recently,
statistical graphical models provide new promising solutions to this problem. McCal-
lum et al. [Mccallum et al. 2005] proposed the Author-Recipient-Topic (ART) model for
social network analysis to learn the topic distribution based on LDA and AT (Author-
Topic [Rosen-Zvi et al. 2004]) model. Zhang et al. [Zhang et al. 2007; Zhang et al.
2007; Zhang et al. 2007] proposed a series generative models SSN-LDA, GWN-LDA,
and HSN-PAM to address this problem. In SSN-LDA (Simple Social Network LDA),
communities are modeled as the latent variables in the model and are defined as the
distributions over the social actor space. GWN-LDA (Generic weighted network-LDA)
is a hierarchical Bayesian model derived from the LDA model, for discovering the
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Fig. 2. The DPChain Model

probabilistic community profiles in social networks based on two different network
encoding approaches. In HSN-PAM (Hierarchical Social Network-Pachinko Allocation
Model) communities are classified into two categories: super-communities and regular-
communities; the model is able to discover not only the correlations among the social
actors but also the correlations among the hidden groups. Xu et al. [Xu et al. 2008]
proposed the infinite hidden relational model (IHRM) for social network modeling and
analysis. In order to incorporate both the link and content information into the analy-
sis, Pathak et al. [Pathak et al. 2008] presented a social topic model CART (community-
Author-Receipient-Topic) for the community extraction. However, all these models only
consider the static social networks and ignore the dynamics of social networks when
the evolution is in consideration. Furthermore, these models do not consider how to
automatically learn and track the number of the social communities. More recently, to
do statitiscal inference for diverse networks ranging from biology to social sciences,
Ahmed et al. [Ahmed and Xing 2009] presented a machine learning method built
upon a temporally smoothed l1-regularized logistic regression formalism as a convex-
optimization problem which may be sovled efficiently and is scalable to large networks.
Fortunato et al. [Fortunato 2010] gave a comprehensive review on the community de-
tection in graphs, including traditional and state-of-the-art techniques such as graph
partitioning, spectral algorithms, hierarchical clustering, and probabilistic graphical
models (including generative models).

4. DIRICHLET PROCESS MIXTURE CHAIN (DPCHAIN)

The first model we propose is based on the DPM [Antoniak 1974; Escobar and West
1995], which is called DPChain model in this paper. For DPChain model, we assume
that at each time t a collection of data has Kt clusters and each cluster is derived from
a unique distribution. Kt is unknown and is learned from the data. We denote Nt as
the number of the data items in this collection at time t.

4.1. DPChain Representation

Figure 2 illustrates the DPChain model. We incorporate the indicator variables to rep-
resent the DPChain model. First we introduce the notations. α denotes the concen-
tration parameter for a Dirichlet Process. H denotes the base measure of a Dirichlet
distribution with the pdf h. F denotes the distribution of the data with the pdf f . φt,k

denotes the parameter of cluster k of the data at time t. At time t, φt,k is a sample from
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distribution H , represented as a parameter of F .

φt,k|H ∼ H

πt is the cluster mixture proportion vector at time t. πt,k is the weight of the corre-
sponding cluster k at time t. Consequently, πt is distributed as stick(α) [Sethuraman
1994] which is described as follows.

πt = (πt,k)
∞

k=1 πt,k = πt,k
′

k−1
∏

l=1

(1− πt,l) πt,k
′ ∼ Beta(1, α) (2)

Let zt,i be the cluster indicator at time t for data item i. zt,i follows a multinomial
distribution with parameter πt.

zt,i|πt ∼ Mult(πt)

Let xt,i denote data item i from the collection at time t. xt,i is modeled as being gener-
ated from F with parameter φt,k by the assignment zt,i.

xt,i | zt,i, (φt,k)
∞

k=1 ∼ f(x|φt,zt,i)

In evolutionary clustering, cluster k smoothly changes from time t− 1 to t. With this
change of the clustering, the number of the data items in each cluster may also change.
Consequently, the cluster mixture proportion as an indicator for the population of a
cluster also changes accordingly. In the classic DPM model, πt represents the cluster
mixture. We extend the classic DPM model to the DPChain model by incorporating the
temporal information into πt. When a cluster smoothly changes, more recent history
has more influence on the current clustering than less recent history. Thus, a cluster
with a higher mixture proportion at the current time is more likely to have a higher
proportion at the next time. Hence, the cluster mixture at time t may be constructed
as follows.

πt =

t
∑

τ=1

exp{−η(t− τ)}πτ (3)

where η is a smooth parameter.
This relationship is further illustrated by an extended CRP [Blackwell and Mac-

Queen 1973; Aldous 1983]. We denote nt,k as the number of the data items in cluster

k at time t, and n−i
t,k as the number of the data items belonging to cluster k except xt,i;

wt,k is the prior smooth weight for cluster k at the beginning of time t. According to Eq.
3, wt,k has the relationship to nτ,k at the previous time τ :

wt,k =

t−1
∑

τ=1

exp{−η(t− τ)}nτ,k (4)

Then, similar to CRP, the prior probability to sample a data item from cluster k given
the history assignment {z1 . . . zt−1} and the other assignment at time t, zt,−i = zt \ zt,i
is defined as follows.

p(zt,i = k|z1, ...zt−1, zt,−i) ∝






wt,k+n
−i

t,k

α+
∑Kt

j=1
wt,j+nt−1

if k is an existing cluster

α

α+
∑Kt

j=1
wt,j+nt−1

if k is a new cluster

(5)

where nt − 1 is the number of the data items at time t except for xt,i, and xt,i is con-
sidered as the last data item in the collection at time t. With Eq. 5, an existing cluster
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appears again with a probability proportional to wt,k + n−i
t,k, while a new cluster ap-

pears as the first time with a probability proportional to α. If at time t as well as the
times before t, the data of cluster k appear infrequently, cluster k has a relatively small
weight to appear again in the future time, which leads to a higher probability of be-
coming death for cluster k. Consequently, this model has the capability to describe the
birth and death of a cluster over the evolution. The data item generation process for
the DPChain model is listed as follows.

(1) Sample cluster parameter φt,k from the base measure H at each time. The number
of the clusters is not a fixed prior parameter but is decided by the data when a new
cluster is needed.

(2) First, sample the cluster mixture vector πt from stick(α) at each time; then, πt is
further smoothly weighted from the exponential sum according to Eq. 3.

(3) At time t, sample the cluster assignment zt,i for data item xt,i from the multinomial
distribution with parameter πt.

(4) Finally, a data item xt,i is generated from distribution f(x|φt,zt,i ) given the cluster
index variable zt,i and the cluster parameter φt,k.

At each time t, the concentration parameter α may be different. In the sampling
process, we just sample α from a Gamma distribution at each iteration. For a more
sophisticated model, α may be modeled as a random variable varying with time, as the
rate of generating a new cluster may change over the time.

4.2. DPChain Inference

Given the DPChain model, we use Markov Chain Monte Carlo (MCMC) method [Neal
1993] to sample the cluster assignment zt,i for each data item at time t. Specifically,
following the Gibbs sampling [Casella and George 1992], the aim is to sample the pos-
terior cluster assignment zt,i, given the whole data collection xt at time t, the history
assignment {z1 . . . zt−1}, and other assignment zt,−i at the current time.

We denote xt,−i as the whole data collection at time t except for xt,i. The posterior of
the cluster assignment is determined by Bayes rule:

p(zt,i = k|xt, zt,−i, z1, . . . zt−1) ∝
p(xt,i|zt,−i, z1, . . . zt−1,xk

−i)p(zt,i = k|z1, . . . zt−1, zt,−i)
(6)

where xk
−i = {xt,j : zt,j = k, j 6= i} donates all the data at time t assigned to cluster k

except for xt,i.
Since zt,i is conditionally independent of xt,−i given all the history assignment and

the current time assignment except for xt,i, we omit xt,−i at the second term in the

right hand side of Eq. 6. Further, denote f−i
k (xt,i) as the first term in the right hand

side of Eq. 6, which is the conditional likelihood of xt,i on cluster k, given the other
data associated with k and other cluster assignment.

If k is an existing cluster:

f−i
k (xt,i) =

∫

f(xt,i|φt,k) · h(φt,k|{xt,j : zt,j = k, j 6= i})dφt,k (7)

where h(φt,k|{xj : zt,j = k, j 6= i}) is the posterior distribution of parameter φt,k given
observation {xt,j : zt,j = k, j 6= i}. If F is conjugate to H , the posterior of φt,k is still in

the distribution family of H . Then we can integrate out φt,k to compute f−i
k (xt,i). Here

we only consider the conjugate case because our experiments reported in this paper
are based on this case. For the non-conjugate case, a similar inference method may be
obtained [Neal 2000].
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For a new cluster k, it is equivalent to computing the marginal likelihood of xt,i by
integrating out all the parameters sampled from H .

f−i
k (xt,i) =

∫

f(xt,i|φt,k)dH(φt,k) (8)

Finally, the posterior cluster assignment in the conjugate case is given as:

p(zt,i = k|xt, zt,−i, z1, . . . zt−1) ∝






wt,k+n
−i

t,k

α+
∑Kt

j=1
wt,j+nt−1

f−i
k (xt,i) if k is an existing cluster

α

α+
∑Kt

j=1
wt,j+nt−1

f−i
k (xt,i) if k is a new cluster

(9)

4.3. Parameter Learning

We use the EM method [Dempster et al. 1977] to learn hyperparameters (α, η). Accord-
ing to Eq. 4, updating η results directly in updating wt,k. Consequently, we actually
update the hyperparameters Θ = (α,wt,k). Following [Escobar and West 1995], α is
sampled from the Gamma distribution at each iteration in the Gibbs sampling in the
E-step. In the M-step, similar to [Zhu et al. 2005], we update wt,k by maximizing the
cluster assignment likelihood. Suppose that, at an iteration, there are K clusters.

wnew
t,k =

nt,k

α+ nt − 1
·

K
∑

j=1

wold
t,j (10)

The EM framework works as follows:

— At time t, initialize parameters Θ and zt,i
— E-Step: Sample α from a Gamma distribution. Sample cluster assignment zt,i for

data item xt,i by Eq. 9.
— M-Step: Update wt,k by Eq. 10.
— Iterate the E-Step and the M-Step until the EM converges.

5. INFINITE HIERARCHICAL MARKOV STATE MODEL

The previous section focuses on DPChain model which does not explicitly address the
cluster correspondence issue; thus we introduce another model to explicitly address
this issue. Here, we propose a new infinite hierarchical hidden Markov state model
(iHMS) to construct the Hierarchical Transition Matrix (HTM) and to provide a pos-
terior inference scheme for HTM in the new model (covered in detail in Section 6).

5.1. Hierarchical Transition Matrix

Traditionally, HMM has a finite state space with K hidden states, say {1, 2, . . .K}. For
the hidden state sequence {s1, s2, . . . sT } up to time T , there is a K by K state transition
probability matrix Π governed by Markov dynamics with all the elements πi→j of each
row πi summed to 1.

πi→j = p(st = j|st−1 = i)

Here we elect to use s as another notation for a state in order to differentiate from
the other state notation z. The initial state probability for state i is p(s1 = i) with
the summation of all the initial probabilities equal to 1. For observation xt in the
observation sequence {x1, x2, . . . xT }, given state st ∈ {1, 2, . . . ,K}, there is a parameter
φst drawn from the base measure H which parameterizes the observation likelihood
probability.

xt|st ∼ F (φst)
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Fig. 3. The Hierarchical Transition Matrix by iHMS

However, when dealing with a countably infinite state space, {1, 2, . . .K, . . .}, we
must adopt a new model similar to that in [Beal et al. 2002] for a state transition
probability matrix with an infinite matrix dimension. πi, the ith row of the transition
probability matrix Π, may be represented as the mixing proportions for all the next
infinite states, given the current state. As a result, we model it as a Dirichlet process
with an infinite dimension with the summation of all the elements in a row to 1, which
leads to an infinite number of DPs’ construction for an infinite number of rows of a
transition probability matrix.

With no further prior knowledge on the state sequence, a typical prior for the tran-
sition probability may be the symmetric Dirichlet distributions. Similar to [Teh et al.
2007], we intend to construct a hierarchical Dirichlet model to keep different rows of
the transition probability matrix to share part of the prior mixing proportions of each
state at the top level. Consequently, we adopt a new state model, Infinite Hierarchical
Markov State model (iHMS), to construct the Infinite Transition Probability Matrix
which is called the Hierarchical Transition Matrix (HTM).

Similar to HDP [Teh et al. 2007], we draw a random probability measure on the
infinite state space β as the top level prior from stick(γ) represented as the mixing
proportions of each state.

β ∼ stick(γ)

The mixing proportion of state k, βk, may also be interpreted as the prior mean of the
transition probabilities leading to state k. Hence, β may be represented as the prior
for Dirichlet process measure of a transition probability.

For the ith row of the transition matrix, πi, we sample it from DP(λ,β) with a
smaller concentration parameter λ implying a larger variability around the mean mea-
sure β. πi is distributed as stick(λ) similar to Eq. 2:

πi ∼ stick(λ)
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Specifically, the jth element πi→j is the state transition probability from the previous
state i to the current state j as p(st = j|st−1 = i).

Now, each row of the transition probability matrix is represented as a Dirichlet pro-
cess which shares the same reasonable prior to the mixing proportions of the states.
For a new row corresponding to a new state k, we simply draw a transition probability
vector πk from DP(λ,β) as a row, resulting in constructing a countably infinite number
of the rows of the transition probability matrix.

5.2. Extension of iHMS

From now on we use the notations more clearly for state vairables in the rest of the
paper by introducing the time dimension. Let zt,i represent the state for data item i at
time t, and zt = {zt,i} is a collection of the states at time t. The transition probability
constructed by iHMS may be further extended to the scenario where there is more
than one state at each time. Suppose that there is a countably infinite global state
space S = {1, 2, . . . ,K, . . .} including states in all the state space St at each time t,
where St ⊆ S. Figure 3 shows our extended iHMS model to construct Hierarchical
Transition Matrix (HTM) Πt at each time t. For any state zt,i ∈ St at time t and state
zt−1,i ∈ St−1 at time t − 1, we may adopt πt

j→k to represent p(zt = k|zt−1 = j,Πt) =
∑

i p(zt,i = k|zt−1,i = j) as the transition probability from state j to state k between
times t − 1 and t. This state transistion probability describes the relations between
the states at adjacent times, not on the individual data item. Transition probability
{πt

j→k} connects the states zt−1 and zt at adjacent times, and has a natural tendency

for a state transition to appear more frequently if we have already encountered many
such transitions. Thus, it is reasonable to model a row of transitions as a Dirichlet
process. We will discuss this extension in detail later.

5.3. MAP Estimation of HTM

Let X be an observation sequence, which includes all the observations xt at each time
t, where xt ∈ X. Now, the question is how to represent the countably infinite state
space in a hierarchical state transition matrix (HTM). Note that, at each time, there
is in fact a finite number of observations xt; the state space St at each time t must
be arbitrarily finite even though conceptually the global state space S may be consid-
ered countably infinite. Further, we adopt the stick-breaking representation for the
Dirichlet process [Teh et al. 2007; Ishwaran and James 2001] to iteratively handle an
arbitrary number of the states and accordingly the transition probability matrix up to
time t.

Suppose that up to time t there are K current states and we use K + 1 to index a
potentially new state. Then β may be represented as:

β = {β1, . . . βK , βu} βu =

∞
∑

k=K+1

βk

K
∑

k=1

βk + βu = 1 (11)

Given β, the Dirichlet prior measure of the jth row of the transition probability
matrix πt

j has the dimension K + 1. The last element βu is the prior measure of the
transition probability from state j to an unrepresented state u.

When a new state is instantiated, we sample b from Beta(1, γ), and set the new
proportions for the new state Knew = K+1 and another potentially new state Knew+1
as:

βKnew = bβu βnew
u = (1 − b)βu (12)
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Now, K is updated as Knew, βu as βnew
u , and the number of the states may continue

to increase if yet another new state is instantiated, resulting in a countably infinite
transition probability matrix.

After we have observed data colletions xt−1 and xt at the two adjacent times and the
state transtition correspondence inferred from the state indicators zt−1 and zt, respec-
tively, the MAP (Maximum a posteriori) estimation of the transition matrix {πt

j→k} at

time t is (see Section Appendix):

πt
j→k = p(zt = k|zt−1 = j, zt−1,xt−1,xt)

=







nt
j→k−1+λβk

nt
j
−K−1+λ

k is an exisiting state
λβu

nt
j−K−1+λ

k is a new state

(13)

where nt
j→k is the expected number of the transitions from state j to state k between

the previous and the current times, and nt
j is the expected number of the transitions

out of state j. We run several monte carlo iterations to approximate the state transition
counts.

nt
j→k ≈

1

N

N
∑

n=1

∑

i∈xt−1∩xt

δ(zt−1,i = j, zt,i = k) nt
j =

K
∑

k=1

nt
j→k

Here we use the Kronecker-delta function (δ(a, b) = 1 iff a = b and 0 otherwise) to count
the number of the state transitions for all the common observations.

Intuitively, in Eq. 13 we may consider λβk as the pseudo-observation of the transition
from state j to k (i.e., the strength of the belief for the prior state transition), and λβu as
the probability of a new state transferred from state j. Besides β and λ, the transition
matrices at different times are determined completely ”given” the previous states zt−1,
zt, and the data collections at times t− 1 and t. Since the mean mixture proportion ωt

(discussed in detail in the next section) is not able to provide the complete information
as we cannot obtain nt

j→k only from ωt, ωt is dropped in Eq. 13.

6. HDP INCORPORATED WITH HTM (HDP-HTM)

To capture the state (cluster) transition correspondence during the evolution at dif-
ferent times, we propose HTM; at the same time, we must capture the state-state
(cluster-cluster) correspondence, which may be handled by a hierarchical model with
the top level corresponding to the global states 1 and the lower level corresponding
to the local states, where it is natural to model the statistical process as HDP [Teh
et al. 2007]. Consequently, we propose to combine HDP and HTM as a new HDP-HTM
model, illustrated in Figure 4. At time 0, there are no state transitions, ωt (explained
later) is simply β, and this model in Figure 4 collapses into HDP.

6.1. HDP-HTM Representation

Let the global state space S denote the global cluster set, which includes all the states
St ⊆ S at all the times t. The global observation set X includes all the observations xt

at each time t, of which each data item i is denoted as xt,i.
We draw the global mixture proportion from the global states β with the stick-

breaking representation using the concentration parameter γ. The global measure G0

may be represented as:

G0 =

∞
∑

k=1

βkδφk

1Each state is represented as a distinct cluster.
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Fig. 4. The HDP-HTM Model

where φk is drawn from the base probability measure H with pdf h, and δφk
is the

concentration measure on φk.
Different from HDP, here we must consider the evolution of the data and the states

(i.e., the clusters). The distribution of the clusters at time t is not only governed by
the global measure G0, but also is controlled by the data and cluster evolution in the
history. Consequently, we make an assumption that the data and the clusters at time
t are generated based on the previous data and cluster information, according to the
mixture proportions of each cluster and the transition probability matrix. The global
prior mixture proportions for the clusters are β, and the state transition matrix Πt

provides the information of the state evolution between times t − 1 and t. Now, the
expected number of the data items generated by cluster k is proportional to the number
of the data items in the clusters in the history multiplied by the transition probabilities
from these clusters to state k; specifically, the mean mixture proportion for cluster k at
time t, ωt, is defined as follows:

ωt,k =

∞
∑

j=1

βjπ
t
j→k

More precisely, ωt is further obtained by:

ωt = β ·Πt (14)
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Clearly, by the transition probability property,
∑

∞

k=1 ωt,k = 1,
∑

∞

k=1 π
t
j→k = 1 and the

stick-breaking property
∑

∞

j=1 βj = 1.

∞
∑

k=1

ωt,k =

∞
∑

k=1

∞
∑

j=1

βjπ
t
j→k =

∞
∑

j=1

βj

∞
∑

k=1

πt
j→k =

∞
∑

j=1

βj = 1

Thus, the mean mixture proportion ωt may be taken as the new probability measure
at time t on the global cluster set. With the concentration parameter α, we draw the
mixture proportion vector θt from DP(α,ωt).

θt|α,ωt ∼ DP(α,ωt)

Now, at time t, the local measure Gt shares the global clusters parameterized by
φ = (φk)

∞

k=1 with the mixture proportion vector θt.

Gt =

∞
∑

k=1

θt,kδφk

At time t, given the mixture proportion of the clusters θt, the previous cluster assign-
ments zt−1 and the transition probability Πt, we draw a cluster indicator zt,i for data
item xt,i. For the simplification of the inference, we assume a multinomial distribution
for zt,i with parameter θt as an approximation. Intuitively, this is a local approxima-
tion assumption: at each time t, once we have a topic mixing proportion, we may simply
draw a topic assignment zt, while the history cluster information and the transition
probability would also have an influence on zt,i through ωt to θt.

Once we have the cluster indicator zt,i, data item xt,i may be drawn from distribution
F with pdf f , parameterized by φ from the base measure H .

xt,i|zt,i,φ ∼ f(x|φzt,i)

Finally, we summarize the data generation process for HDP-HTM as follows.

(1) Sample the cluster parameter vector φ from the base measure H . The number of
the parameters is unknown a priori, but is determined by the data when a new
cluster is needed.

(2) Sample the global cluster mixture vector β from stick(γ).
(3) Generate hierarchical transition matrix Πt at time t from DP(λ,β).
(4) At time t, compute the mean measure ωt for the global cluster set by β and Πt

according to Eq. 14.
(5) At time t, sample the local mixture proportion θt by DP(α,ωt).
(6) At time t, sample the cluster indicator zt,i approximated from Mult(θt) for data

item xt,i.
(7) At time t, sample data item xt,i from f(x|φzt,i ) given cluster indicator zt,i and pa-

rameter vector φ.

6.2. Inference for HDP-HTM

We denote nt
i→j as the number of the state transitions from states i to j between two

adjacent times t−1 and t. Let nt,k be the number of the data items belonging to cluster

k at time t, n−i
t,k be the number of the data items belonging to cluster k except xt,i at

time t, and nt be the number of all the data items at time t. Similar to HDP [Teh
et al. 2007], let mt,k be the number of the tables (i.e., the local clusters) belonging
to the global cluster k at time t, and mk be the number of the tables (i.e., the local
clusters) belonging to the global cluster k across all the times. Finally, let xt be the
data collection at time t.
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In order to handle an infinite or arbitrary number of the states (i.e., clusters),
we adopt the stick-breaking mechanism similar to what we have done in Section
5.3. Assume that there are K existing clusters. The global mixture proportion β =
{β1, . . . , βK , βu} with βu being the proportion for an unrepresented cluster; when a
new cluster is instantiated, the vector β is updated according to the stick-breaking
construction in Eq. 12 to ensure the summation equal to 1. In addition, the transition
probability matrix is in the dimension of K +1 by K +1, resulting in ωt also in dimen-
sion of 1 by K + 1 with the last element ωt,u as the proportion of the unrepresented
cluster.

The main sampling produre is similar to the direct assignment posterior sampling
in HDP as our HDP-HTM is similar to HDP in the sense that ωt corresponds to π in
Figure 1(b) and the difference is how we generate ωt from the hierarchical transition
matrix and the global mixture proportions β. The idea to sample β is also simliar to
that in HDP; we first introduce an auxiliary variable m with mt,k as the number of the
tables on cluster k at time t as mentioned above; then the global mixture proportion
β is sampled from m. We obtain the posterior of the transition probability matrix by
the counter statistic nt

i→j at time t according to Eq. 13 given the previous and the
current state indicators. In the direct assignment of the posterior sampling scheme,
we no longer need to sample θt because we may just sample the cluster assignment zt

at time t by integrating out θt. Similarly, by the conjugacy of h and f , it is not necessary
to sample parameter φk for cluster k.
Sampling zt

At time t, all data items and their state indicator assignments at this time are ex-
changeable; thus, the conditional probability of the current cluster assignment zt,i for
the current data item xt,i given the other assignments zt,−i = zt \zt,i and the Dirichlet
process parameters ωt and α is:

p(zt,i = k|zt,−i,ωt, α) =

{

n
−i

t,k
+αωt,k

nt−1+α
if k is an existing cluster

αωt,u

nt−1+α
if k is a new cluster

(15)

After we have the observation of the data items, we compute the posterior condi-
tional probability of zt,i given the other cluster assignment zt,−i, the observation xt at
time t, the parameters ωt and α and transition probability Πt.

p(zt,i = k|zt−1,Πt, zt,−i,xt,ωt, α) ∝ p(zt,i = k|xt,i, zt,−i,ωt, α)p(xt,i|x
−i
k , zt,−i)

=

{

n
−i

t,k
+αωt,k

nt−1+α
f−i
k (xt,i) if k is an existing cluster

αωt,u

nt−1+α
f−i
k (xt,i) if k is a new cluster

(16)

where x−i
k = {xt,j , zt,j = k, j 6= i}; f−i

k (xt,i) is the conditional likelihood of xt,i given
the other data items xt,−i under cluster k, which by the conjugacy property of h and f
may be computed by integrating out the cluster parameter φk for cluster k similar to
Eq. 7 or Eq. 8 with φk replaced with φt,k. We may drop zt−1 and Πt in the right hand
side of Eq.16 as zt,i is approximated as a multinomial distribution only dependent on
θt. Consequently, we do posterior Gibbs Sampling [Casella and George 1992] to infer
the state indicator for data item xt,i.
Estimate the Transition Matrix Πt

After we have the knowledge of the sequence of the states at adjacent times and the
observations at different times, the state transition statistics nt

i→j at time t is updated;
we may estimate the MAP of transition probability matrix Πt at time t according to
Eq. 13.
Sampling m

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:16 Tianbing Xu et al.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

(a)
−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

(b)

Fig. 5. Clustering results of HDP-HTM (a) and PCQ (b) for the synthetic data

Again similar to HDP, in order to sample m, we must first sample mt, the number
of the tables (i.e., the local clusters) for the global clusters at time t [Teh et al. 2007].
After the sampling of zt, nt,k is updated accordingly. By [Antoniak 1974; Teh et al.
2007], we may sample m as follows:

p(mt,k = m|zt,m
−t,k,β, α) =

Γ(αβk)

Γ(αβk + nt,k)
S(nt,k,m)(αβk)

m (17)

where m−t,k = m \mt,k

Sampling β
Given m, the posterior distribution of β is:

β|m, γ ∼ Dir(m1, . . . ,mK , γ) (18)

where K is the number of the existing clusters up to time t. Consequently, it is trivial
to sample β according to Eq. 18.
Hyperparameter Sampling

In the HDP-HTM model, there are the concentration hyperparameters Θ = {α, γ, λ}.
According to [Teh et al. 2007; Escobar and West 1995], we may sample these param-
eters by the Gamma distribution with the constant Gamma parameters discussed in
detail in Section 7.

Finally, we summarize the sampling framework at time t as follows:

(1) Initialize the transition matrix Πt, as well as β, m, and zt; compute ωt by taking
the product of Πt and β.

(2) Sample the hyperparameters α, γ, and λ from the Γ (Gamma) distribution.
(3) Sample m based on zt, β and α according to Eq. 17.
(4) Sample β based on m and γ according to Eq. 18.
(5) Estimate Πt at time t based on zt−1, zt, β, λ and data collections xt−1 and xt

according to Eq. 13.
(6) Sample zt based on Πt, β, and α according to Eq. 16.
(7) Iterate between 2 and 6 until convergence.

7. EXPERIMENTAL EVALUATIONS

We have evaluated our models DPChain and HDP-HTM extensively against the evolu-
tionary spectral clustering algorithms PCM and PCQ [Chi et al. 2007] and HDP [Teh
et al. 2007] for the synthetic data set and the real data sets in the application of docu-
ment evolutionary clustering; for the experiments in text data evolutionary clustering,
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we have also added LDA [Blei et al. 2003; Heinrich 2004] into the comparison. In par-
ticular, the evaluations are performed in three data sets, a synthetic data set, the 20
Newsgroups data set, and a Google daily news data set we have collected over a period
of five continuous days. We report the evaluations both in performance and in running
time for the real data sets. At the end of this section, we also report a case study of
applying HDP-HTM to solving the dynamic social network community discovery and
tracking problem.

7.1. Synthetic Dataset

We have generated a synthetic data set in a scenario of evolutionary development. The
data set is a collection of mixture models with the number of the clusters unknown a
priori with a smooth transition over the time during the evolution. Specifically, we sim-
ulate the scenario of the evolution over 10 different times with each time’s collection
according to a DPM model with 200 2-dimensional Gaussian distribution points. At
each time, part of the clusters are chosen from the previous collections; other clusters
are sampled from the multinomial distribution with mixture proportion vectors sam-
pled from a symmetric Dirichlet process. 10 Gaussian points in N(0,2I) are set as the
10 global clusters’ mean parameters. Then 200 Gaussian points within a cluster are
sampled with this cluster’s mean parameter and deviation parameter sampled from
N(0,0.2I), where I is an identity matrix. After the generation of such a data set, we
obtain the number of the clusters and the cluster assignments as the ground truth. We
intentionally generate different numbers of the clusters at different times, as shown
in Figure 7.

In the inference process, we tune the hyperparameters as follows. In each iteration,
we use the vague Gamma priors [Escobar and West 1995] to update α, λ, and γ from
Γ(1, 1). Figure 5 shows an example of the clustering results between HDP-HTM and
PCQ at time 8 for the synthetic data. Clearly, HDP-HTM has a much better perfor-
mance than PCQ for this synthetic data set.

For a more systematic evaluation on this synthetic data set, we use the Normalized
Mutual Information (NMI) [Strehl and Ghosh 2002] to quantitatively compare the
clustering performances among all the five algorithms (DPChain, HDP-HTM, HDP,
PCM, and PCQ). The reason why NMI is elected to use is that it is considered as one of
the commonly used quantitative metrics for clustering in the literature. NMI measures
how much information two random distribution variables (the computed clustering as-
signment and the groundtruth clustering assignment) share; the larger the better with
1 as the maximum normalized value. Figure 6 documents the performance comparison.
From this figure, the average NMI values across the 10 times for HDP-HTM, HDP, and
DPChain are 0.86, 0.78, and 0.74, respectively, while those for PCQ and PCM are 0.70
and 0.71, respectively. DPChain works worse than HDP-HTM for the synthetic data.
The reason is that the DPChain model is unable to capture the cluster correspondence
during the evolution among the data collections across the time while HDP-HTM is
able to explicitly solve the correspondence problem; on the other hand, DPChain still
performs better than PCQ and PCM in avearage.

Since one of the advantages of the HDP-HTM and DPChain models is the capability
to learn the number of the clusters during the evolution, we report this performance
for HDP-HTM and DPChain compared with HDP on this synthetic data set in Figure
7. Here, we define the expected number of the clusters at each time as the average
number of the clusters in all the posterior sampling iterations after the burn-in period.
Thus, these numbers are not necessarily integers. Clearly, all the three models are able
to learn the cluster numbers, with HDP-HTM having a better performance than HDP
since it is able to learn more accurate state transition information while DPChain is
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Fig. 6. The NMI performance comparison of the five algorithms on the synthetic data set
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Fig. 7. The cluster number learning performance comparison on the synthetic data set

the worst as DPChain is unable to learn any cluster correspondence information. Since
PCQ and PCM do not have this capability, they are not included in this evaluation.

7.2. Real Dataset

In order to showcase the performance of the DPChain and HDP-HTM models on real
data applications, we apply them to a subset of the 20 Newsgroups data 2. We in-
tentionally set the number of the clusters at each time as the same number to ac-
commodate the comparing algorithms PCQ and PCM which have this assumption of
the same cluster number over the evolution. Also we select 10 clusters from the data
set (alt.atheism, comp.graphics, rec.autos, rec.sport.baseball, sci.crypt, sci.electronics,
sci.med, sci.space, soc.religion.christian, talk.politics.mideast), with each having 100
documents. To ”simulate” the corresponding 5 different times, we then split the data
set into 5 different collections, each of which has 20 documents randomly selected from
each cluster. Thus, each collection at a time has 10 clusters to generate words. We have
preprocessed all the documents with the standard text processing for removing the
stop words and stemming the remaining words.

2http://kdd.ics.uci.edu/databases/20newsgroups/mini newsgroups.tar.gz
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Fig. 8. The NMI performance comparison among the six algorithms on the 20 Newsgroups data set
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Fig. 9. Cluster number learning performance comparison on the 20 Newsgroups data set

To apply the HDP-HTM and DPChain models, a symmetric Dirichlet distribution is
used with the parameter 0.5 for the prior base distribution H . In each iteration, we
update α, γ, and λ in HDP-HTM, from the Gamma priors Γ(0.1, 0.1). For LDA, α is set
0.1 and the prior distribution of the topics on the words is a symmetric Dirichlet distri-
bution with concentration parameter 1. Since LDA only works for one data collection
and requires a known cluster number in advance, we explicitly apply LDA to the data
collection with the ground truth cluster number as input at each time.

Figure 8 reports the overall performance comparison among all the six methods
using NMI metric again. Clearly HDP-HTM outperforms PCQ, PCM, DPChain, HDP,
and LDA at almost all the times; DPChain is better than LDA, PCQ, and PCM; in
particular, the difference is substantial for PCQ and PCM. Figure 9 further reports
the performance on learning the cluster numbers at different times for HDP-HTM
and DPChain in comparison with HDP. All the models have a reasonable performance
in automatically learning the cluster number at each time in comparison with the
ground truth, with HDP-HTM having the best performance in average and DPChain
the worst, which is consistent with the cluster number learning result in the synthetic
data set.
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In order to truly demonstrate the performance of HDP-HTM in comparison with the
state-of-the-art literature on a real evolutionary clustering scenario, we have manually
collected Google News articles for a period of five continuous days with both the data
items and the clusters evolving over the time. All the documents are selected from
six categories of Google News including Business, Sci/Tech, Sports, Entertainment,
Health and World3. The evolutionary ground truth for this data set is as follows. For
each of the five continuous days, we have the number of the words, the number of the
clusters, the number of the documents as (6113, 5, 50), (6356, 6, 60), (7063, 5, 50),
(7762, 6, 60), and (8035, 6, 60), respectively. In order to accommodate the assumption
of PCM and PCQ that the cluster number stays the same during the evolution, but at
the same time in order to demonstrate the capability of HDP-HTM and DPChain to
automatically learn the cluster number at each evolutionary time, we intentionally set
the news cluster number at each day’s collection to have a small variation deviation
during the evolution. Again, in order to compare the text clustering capability of LDA
[Blei et al. 2003; Heinrich 2004] with a known topic number in advance, we use the
ground truth cluster number at each time as the input to LDA. The parameter tuning
process is similar to that in the experiment using the 20 Newsgroups data set.

Figure 10 reports the NMI based performance evaluations among the six algorithms.
Again, HDP-HTM outperforms PCQ, PCM, DPChain, HDP, and LDA at all the times,
especially being substantially better than PCQ, PCM, and LDA. DPChain is better
than PCQ and PCM. PCQ and PCM fail completely in most of the cases as they assume
that the number of the clusters remains the same during the evolution, which is not
true in this scenario.

Figure 11 further reports the performance on learning the cluster numbers for differ-
ent times for HDP-HTM and DPChain compared with HDP model. Again HDP-HTM
has the best performance to learn the cluster numbers automatically at all the times
while DPChain is the worst, consistent with the previous experiments.

In Figure 12, we report the running time comparision for the three models (LDA,
DPChain, and HDP-HTM) on the Google news and the 20 Newsgroups data sets. The
two real data sets have different scales with a smaller scale for the Google news data
set having about 300 documents and a larger scale for the 20 Newsgroups data set
having about 1000 documents. The running times for the three models in the smaller
Google news data set are comparable, with DPChain running slightly the fastest and
HDP-HTM slightly the slowest. When the data set scales up to the 20 Newsgroups data
set, the difference of the running times among the three models becomes clearly more
obvious, with LDA the fastest and HDP-HTM the slowest. Furthermore, when the data
set scales up from the Google news data set to the 20 Newsgroups data set, LDA has
the smallest increase of the running time while HDP-HTM has the largest increase of
the running time. This shows that from the scalability consideration, LDA is the best
while HDP-HTM is the worst. This observation is consistent with the intuition. In
consideration of the spectrum of the model complexity, LDA is the simplest resulting
in the best scalability while HDP-HTM is the most complicated resulting in the worst
scalability.

We have also conducted sensitivity analysis for DPChain and HDP-HTM models. In
all the above experiments, in each iteration when we run the models, we sample the
hyperparameters (i.e., α, γ, and λ) from the Gamma distribution with different values.
We have observed that the experimental results are not sensitive to these hyperpa-
rameters.

3http://news.google.com/
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7.3. A Case Study on Dynamic Social Network Analysis

From the statistical perspective, a cluster (community) is a collection of samples as-
sociated with a certain distribution with distinctive parameters. As an example of the
wide spectrum of the applications of the two solutions, both DPChain and HDP-HTM
are able to model the dynamic social network evolution for community discovery and
tracking. In this section, we show a case study of applying HDP-HTM to solve for this
problem.

At each time t, we have a vector ωt representing the mean mixture proportions for
each cluster (community) which is generated based on the historical community tran-
sition probability matrix and the top level prior mixture proportion β. Based on ωt,
we are able to sample mixture proportions θt for each community and consequently
the hidden community indicator zt can be generated. Each data item may not neces-
sarily belong to only one community; it may join different communities according to
the communities’ distributions and the evolution. Thus, θt is a probability vector and
indicates the likelihood that the data items would belong to the corresponding com-
munities. Furthermore, θt also changes according to different historical community
transition information under the evolution.
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Fig. 12. Runing time comparison for LDA, DPChain, and HDP-HTM on the two real data sets

To illustrate a general scenario for the community discovery and tracking in dynamic
social networks, we generate a synthetic data set similar to that reported in Section
7.1. Here, we have 4 time stamps; at each time there is a collection of a different num-
ber of the communities (represented as either ellipses if there are more than two points
or lines if there are only two points in Figure 13) with different numbers of the social
actors (points). The true numbers of the communities for all the four times are 6, 6, 7,
and 7, respectively. HDP-HTM is able to learn correctly almost all the actual commu-
nity numbers (5,6,6,7). Clearly, the community structures and the numbers evolve over
the time. For example, it is interesting to note that the largest community at time 1
(Figure 13(a)) splits into two communities at time 2 (Figure 13(b)). From time 2 (Figure
13(b)) to time 3 (Figure 13(c)), the community above those two communities grows with
the nearby social actors according to the new distribution. From time 3 (Figure 13(c)) to
time 4 (Figure 13(d)), the number of social actors belonging to those two communities
decreases as those two communities are becoming unpopular. This experiment further
demonstrates that HDP-HTM is capable of discovering communities in dynamic social
networks and at the same time of learning and tracking the community development
during the evolution.
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Fig. 13. Community Discovery by HDP-HTM (a) time 1 (b) time 2 (c) time 3 (d) time 4

8. CONCLUSIONS

In this paper, we have addressed the evolutionary clustering problem. Based on the
recent literature on the Dirichlet process based models and HMM, we have developed
the DPChain and HDP-HTM models as two effective nonparametric Bayesian learning
solutions to this problem. Different from the traditional matrix decomposition based
clustering solutions, both models substantially advance the evolutionary clustering
literature in the sense that they not only perform better than the existing evolution-
ary clustering algorithms, but more importantly they are able to automatically learn
the dynamic cluster numbers and the dynamic clustering structures during the evo-
lution, which are typically expected in many real evolutionary clustering applications
but are not available in the existing literature. In addition, HDP-HTM also explicitly
addresses the correspondence issues whereas all the existing solutions do not. Exten-
sive evaluations against the state-of-the-art literature demonstrate the effectiveness
and the promise of the models. Furthermore, the HDP-HTM model is promising in the
application on community discovery of dynamic social networks.

APPENDIX

Here, we derive the MAP (Maximum a posteriori) estimation of the transition proba-
bilities Πt at time t for Eq.13. For each time t, we only consider the state transition
correspondence for two consecutive time stamps; the likelihood we are interested in
are data items xt−1 and xt at the two adjacent times. The topic assignments zt−1 and
zt at these two times are hidden variables coupled with the data. The posterior of the
transition probability Πt is the product of the likelihood of the complete data (including
the data items and the hidden topic assignments) and the prior of Πt. As the number
of the topics changes, it is assumed that we currently have K topics and the K + 1st
topic is unseen yet. This analysis is able to handle a countable number of the topics as
we did for the transition probability by the stick-breaking process in Section 5.3. The
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joint distribution of the data and the topics are:

P (xt−1,xt, zt−1, zt|Πt) = p(xt|zt)p(zt|zt−1,Πt)p(xt−1|zt−1)p(zt−1) (19)

The posterior of Πt is,

P (Πt|xt,xt−1, zt, zt−1) = P (xt−1,xt, zt−1, zt|Πt)p(Πt) (20)

The objective here is to maximize the posterior of Πt given the obversation xt and xt−1

and the missing (hidden) variables zt and zt−1; consequently, the EM [Dempster et al.
1977], [Bishop 2007], [MacKay 1997] is the natural choice.

Here, the distribution of the data items given the topics at time t is,

p(xt|zt) =
∏

i

f(xt,i|φzt,i)

Similarly for p(xt−1|zt−1).
The transition probability has the prior Dirichlet distribution (in finite case of DP)

p(Πt) =
K+1
∏

j=1

K+1
∏

k=1

(πt
j→k)

λβk−1

The state transitions between times t− 1 and t is multinomially distributed as

p(zt|zt−1,Πt) =

K+1
∏

j=1

K+1
∏

k=1

(πt
j→k)

∑
i δ(zt−1,i=j,zt,i=k)

Here δ(a, b) = 1 iff a = b and 0 otherwise, considering the transition of the states at the
adjacent times only.

Finally, p(zt−1) is not dependent upon parameter Πt. Therefore, we may rewrite the
posterior of Πt with the parts dependent upon Πt as

P (Πt|xt−1,xt, zt−1, zt) = const(Πt)
K+1
∏

j=1

K+1
∏

k=1

(πt
j→k)

λβk−1+
∑

i
δ(zt−1,i=j,zt,i=k) (21)

where const(Πt) means that this term is independent of Πt.
To maximize the penalized likelihood Eq. 21, we need to sum over the exponential

state configurations for zt−1 and zt; therefore, we turn to EM [Dempster et al. 1977],
[Bishop 2007], [MacKay 1997] to obtain the MAP estimation for Πt. In the E step, we
compute the posterior distribution of the latent variables zt and zt−1 given the old
parameters Πold

t in the previous iteration. In the M step, we evaluate the expecation of
the posterior of Πt given the complete-data (including the latent variables) under the
posterior distribution of the latent variables we have already obtained and to maximize
this expectation defined as Q(Πt,Π

old
t ).

Q(Πt,Π
old
t ) =

∑

zt−1,zt

p(zt−1, zt|xt−1,xt,Π
old
t ) logP (Πt|xt−1,xt, zt−1, zt) (22)

Now we denote ε(zt−1, zt|Π
old
t ) = p(zt−1, zt|xt−1,xt,Π

old
t ) as the joint posterior dis-

tribution of the states between times t − 1 and t under the old parameters Πold
t . The

expection number of the state transitions from states j to k for all the state configura-
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tions zt−1 and zt is

nt
j→k =

∑

zt−1,zt

p(zt−1, zt|xt−1,xt,Π
old
t )

∑

i

δ(zt−1,i = j, zt,i = k)

= E(
∑

i

δ(zt−1,i = j, zt,i = k)) ≈
1

N

N
∑

n=1

∑

i

δ(zt−1,i = j, zt,i = k)

To compute the expectation under the posterior state configurations with the monte
carlo approximation, we run N iterations to average the transition counts. We use this
sufficient statistic to derive the MAP estimation of πt

j→k in the M-Step from Q(Πt,Π
old
t )

Eq. 22.

Q(Πt,Π
old
t ) =

∑

zt−1,zt

ε(zt−1, zt|Π
old
t ) log(const(Πt)))

+
∑

zt−1,zt

ε(zt−1, zt|Π
old
t )

∑

j

∑

k

(λβk − 1 +
∑

i

δ(zt−1,i = j, zt,i = k)) log πt
j→k (23)

The first term in Eq. 23 is a constant w.r.t. Πt under the distribution function with
parameters Πold

t ; we simply denote it as const; the second term can be further derived
as

∑

j

∑

k

(λβk − 1 + nt
j→k) log(π

t
j→k)

With a Lagrange multiplier for the constraint
∑

k π
t
j→k = 1, the maximization of

Q(Πt,Π
old
t ) can be represented as

max
πt
j→k

,ζj

∑

j

∑

k

(λβk − 1 + nt
j→k)log(π

t
j→k) +

∑

j

ζj(
∑

k

πt
j→k − 1)

s.t. ζj > 0 ∀j (24)

From the maximization Eq. 24, the solution of πt
j→k for topic k already existing is

πt
j→k =

nt
j→k − 1 + λβk

nt
j −K − 1 + λ

(25)

For the new (K + 1)st topic, The transition probability mass is

πt
j→K+1 =

λβu

nt
j −K − 1 + λ

(26)
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