Manual labeling strategy for Ground Truth estimation in
MRI Glial Tumor Segmentation.
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ABSTRACT

In this paper we focused our attention on the problem of de-
termining reliable ground truth for validating unsupervised,
fully automatic MRI brain tumor segmentation procedures
in the clinical context of Glial Tumor treatment . The goal
was achieved by proposing an integrated "visual knowledge
elicitation strategy” centered on the use of GliMAn(Glial
Tumor Manual Annotator), a 3D MRI navigator that al-
lows to view and manually labeling MRI volumes. As seen
in our experimental context, the manual labeling process
benefits from the insertion of a software tool taylored on the
experts visual and usability requirements.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms
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1. INTRODUCTION

*Correspond to: valentina.pedoia@uninisubria.it
TCorrespond to: elisabetta.binaghi@Quninisubria.it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VIGTA *12 May 21 2012, Capri, Italy

Copyright 2012 ACM 978-1-4503-1405-3/12/05 ...$10.00.

The use of automated procedures for MRI segmentation
is still limited by several crucial aspects such as optimal
selection of features in multispectral MRI, uncertainty man-
agement and minimize of the computational complexity [3,
2, 1]. Novel solutions are investigated in an attempt to fulfil
stringent accuracy and efficiency requirements imposed by
new fields of application. In this critical context the avail-
ability of reliable quantitative measures of accuracy and re-
producibility for the proposed segmentation method should
plays a key role. Unfortunately, the application of validation
method to automated segmentation poses significant prob-
lems. Several methods have been proposed including the use
of MRI contrast studies, phantom validation, MRI simula-
tion studies, correlation with pathologic findings and repro-
ducibility studies [3]. In recent works the validation prob-
lem has been addressed using experts to manually trace the
boundaries of the different tissue regions (7, 11]. Manual la-
beling has the great potential of mimicking the radiologist’s
decision attitude which realistically is the only truth avail-
able [3]. However, some important drawbacks arise in terms
of the labor intensive and, over all, in terms of the intra-
inter- observer variation which strongly limits the ground
truth determination process [8]. The considerable variation
is related to limitations in the visualization process, MRI
imaging conditions and to the intrinsic subjective character
of the interpretation process with which an expert decides
whether to assign a region under a given category. Sev-
cral solutions have been proposed to address the problem.
Warfield et.al, for example, proposed an automated algo-
rithms based on Expectation-Maximization in in an attempt
to remove the variability introduced by experts [13]. In other
studies a solution based on the development of software tools
for computer-assisted manual labeling was investigated [9].
Proceeding from these considerations, we focused our atten-
tion on the problem of determining reliable ground truth for
validating unsupervised, fully automatic MRI brain tumor



segmentation procedures in the clinical context of Glial Tu-
mor treatment [8]. The goal was achieved by proposing an
integrated "visual knowledge elicitation strategy” centered
on the use of GliMAn(Glial Tumor Manual Annotator), a
3D MRI navigator that allows to view and manually label
MRI volumes. A contextual analysis has been developed
with the aim of describing the clinical domain, the clinical
practice in use and assessing how and how much the physi-
cians perceive the problem. A quantitative analysis has been
developed providing an objective measure of the intra- and
inter- operator variability in manual labeling procedures ac-
complished with standard tools in use in the specific domain
of interest. The results of this analysis created the basis for
deriving solutions and validation procedures.

2. CONTEXTUAL ANALYSIS

A precise volumetric computation of the pathological MRI
signal has several fundamental implications in clinical prac-
tice. In fact, the accurate definition of both the topographi-
cal features and the growing pattern of the tumor is crucial
in order to select the most appropriate treatment, to plan
the best surgical approach and, postoperatively, to correctly
evaluate the extent of resection and monitoring the evolution
over time of any possible residue [5]. However, it is worth
noting that gliomas are characterized by a constant local
growth (4 mm/year) within the brain parenchyma, migra-
tion along white matter pathways, both in ipsilateral and
even contralateral hemisphere and unavoidable anaplastic
transformation [4]. Because of the their infiltrative nature,
the pathological signal revealed in MRI does not correspond
to the exact boundaries of gliomas. On the contrary, es-
pecially in the case of slow-growing lesions, it was demon-
strated, by taking multiple biopsy samples, that tumor cells
are present in a consistent number, but not sufficient to give
an hyperintense signal, at a distance of at least 20 mm from
the tumor landmarks shown by MR imaging [10]. For these
reasons, the main problem in radiological detection and seg-
mentation for gliomas depends from their histopathological
features, especially at the periphery of the hyperintensity
detected by MRI. As a consequence, since it is not easy or
even impossible to objectively establish the limits between
the tumor and the normal brain tissue, a large intra- inter-
personal variability is usually revealed during the manual
segmentation of MRI sequences.

2.1 Assessment of Inter- and Intra- Personal
Variability In Glial Tumor Segmentation

A team of medical experts has segmented axial, sagittal
and coronal slices of several cases of Low Grade Glioma in
MRI. The manual segmentation was performed using a sim-
ple image manual annotator, already in use, that includes
the standard tools of an image viewer. MRI segmentation
is performed with the purpose of determining the volume
of tissues and their 3D spatial distribution. We proceed by
measuring the reliability of the ground truth determination
with respect to both the above purposes.

Volume Estimation Error:

Let be Vi V4 V4 the volume estimation from the axial, sagit-
tal and coronal plane segmentation respectively, performed
by the the ¢ — th expert. The Intra- and Inter- volume esti-
mation errors for the plane p with p € [1 — 3] and the ¢ — th

expert are computed as follows:
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where Ngeg is the number of segmentations performed by
the same expert on the same volume and Ne,), is the total
number of experts.

Spatial Distribution Variability:

Let be M} M3 M the volumetric masks obtained from the
axial sagittal and coronal plane segmentation respectively,
performed by the i —th expert. The Intra- and Inter- spatial
distribution variability, based on the Jaccard Index [6], are
computed as follows:
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where 7 and j are indexes related to the experts and p and
t to the segmentation planes.

A strong Disagreement was found, with maximum volume
estimation error equal to 10% and 20% for the intra- and
inter- personal variability respectively. For that concerns
the spatial distribution, the minimum percentage of overlap
for the intra- and inter- variability are equal to 73% and 71%
respectively.

3. MANUAL LABELING STRATEGY FOR
GROUND THROUGH ESTIMATION IN
MRI GLIAL TUMOR SEGMENTATION

The proposed strategy contemplates, as preliminary phase,
the organization of tuning sessions aimed at establishing a
consensus among experts trough discussion of the most con-
troversial cases. In addition to this preliminary phase, ex-
perts were invited to monitor the design and development
phases of the manual labeling tool GliMAn for giving inter-
mediate feedbacks and suggestions.
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Figure 1: GliMAn central zone



3.1 GIliMAnR Design

GliMAn is a MATLAB application that allows to view and
manipulate MRI volumes with the aim of supporting reliable
collection of ground truth in Glial brain tumor segmentation
process. Input data of the application are DICOM images.
GliMAn has been designed according to Interaction Design
framework that structures the phases design within an iter-
ative process [12] in which partial evaluations supported by
experts and refinements take place. The design of GliMAn
started with the collection and analysis of requirements in
which the user model and operational conditions are out-
lined. Cognitive and/or perceptual processes, attitudes and
limitations involved in visual inspection and manual segmen-
tation tasks have been assessed. Operation requirements
concerning hardware facilities, input and output devices are
inherited form protocols in use in biomedical radiology do-
main. Conceptual design phase was focused on the analysis
of factors involved in the operator variability phenomenon
and in the formulation of solutions conceived as GliMAn
main functional requirement. The analysis was conducted
through a close dialogue between physicians and computer
scientists and joint meetings in which working sessions were
held. The main cause of variability has been attributed to
the loss of the spatial continuity constraint in the orthog-
onal direction with respect to the segmentation plane. It
was concluded that the simultaneous viewing from different
points is needed to resolve uncertainties and for making reli-
able decisions on detecting boundaries and labeling regions
of interest. The physician should explore a resonance vol-
ume for subsequent axial coronal and sagittal slices. The
decision on the single slice must be contextually related to
the inspection of previous and subsequent slices. Proceeding
from these considerations, we conceived, as main feature of
the GUiMAn tool, the preservation of the volumetric nature
of the data through the simultaneous display of the three
orthogonal planes (axial,sagittal and coronal) and the syn-
chronized visualization of the manual annotation activity.
Human-computer interaction principles and usability guide-
lines have been strictly observed in the GliMAn physical
design, in order to limit in the GUI interaction, eyestrain
and ambiguities the would interfere in the effectiveness of
conceptual solutions. The GUI is composed of 3 principal
areas: upper, central and lateral. The first includes stan-
dard image viewer I/O and management tools, the central
zone shows the orthogonal planes and the lateral zone al-
lows to change the execution mode. Plan layout has been
designed in accordance with solutions adopted in standard
image processing and viewer environments for medical appli-
cations (Figure 1). Moreover the method of the orthogonal
projections is universally used to represent in a simple, ob-
jective and dimensionally accurate way the volumetric ob-
ject. The essential feature of this visualization method is
to preserve the correct proportions between the elements
of the volume. The visualization in three planes is syn-
chronized: choosing a point of coordinates (z',y’,2’), the
three images represented are the intersection of the MRI vol-
ume with the sagittal coronal and axial planes respectively
passing through the point. The manual labeling is obtained
through the identification of a series of points on one of the
three planes. The remaining planes are used for control pur-
poses. The boundary detection task is accomplished element
by element and is organized as follows: 1. the user points
and selects a candidate point in a given plane; 2. the same

point is highlighted in the other two planes and analyzed;
3. the expert confirms the decision by re-selecting the same
point or decides to examine another point. Figure 2 shows
a crop of a brain MRI axial section of a low grade glioma,
the high degree of infiltration makes the identification of the
pathology’s boundary a very complex task. The analysis of
the axial section alone is not sufficient to make a reliable
decision about the point identified with the red circle to the
edge of the tumor. As illustrated in Figure 3, the visuali-
sation of the orthogonal control planes in GliMAn interface
reduces the uncertainty in the assignment of the point to the
boundary. The selected points are then joined by a broken
line Clicking on the first point the broken line becomes a
polygon that encloses the area of interest and the segmenta-
tion performed is shown superimposed on the original MRI.
During the segmentation of the N — th slice, the segmenta-
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Figure 3: Example of critical case solved using the
control orthogonal planes

tion performed on the slice N — (th — 1) can be viewed as a
guide. Report mode allows to obtain information concerning
the number of slices segmented during the work session, the
volume of the pathological area segmented and the surface
of the last slice segmented. Moreover, the trend of the areas
of tumor’s sections along the slices can be viewed; the ob-
jective is to control the consistency, in terms of smoothness,
of the detected area, in the direction perpendicular to the
segmentation plane.

4. EXPERIMENTAL RESULTS

GliMAn was evaluated in terms of inter- personal variabil-
ity. Moreover, the GUI usability has been evaluated through
an evaluation test of the experience of use. The dataset used
for the evaluation process is composed of 2 brain MRI, gray
scale, 12 bit depth, volumes of patients with Low Grade
Glioma. All the MRI in the dataset are volumetric acquisi-
tion (contiguous slices are acquired, there are no jumps) with
isotropic voxel (0.57 mm). 4 axial sections, identified by the
experts as critical cases, were manually segmented, perform-
ing the segmentation slice by slice independently and using
GliMAn. This evaluation phase reflects the method used in
the Section 2 However we had available 4 slices processed by



Table 1: Comparison between Slice by Slice and Gli-
MAn manual segmentation method a) Mean of the
surface estimation errors interS’urErr}i, for each seg-
mented plane p in the first and second case b) Mean
of the spatial distribution agreements Jp for each
segmented plane p and for each couple of experts i, ]

(a)
Expert Case 1 Case 2
Slice by Slice GliMaAn | Slice by Slice GliMaAn
1 14,31% 8,05% 15,87% 8,25%
2 10,90% 11,89% 16,76% 6,02%
3 20,90% 6,62% 9,69% 9,76%
4 26,14% 20,09% 15,73% 9,64%
5 17,85% 8,48% 19,34% 6,17%
(b)
Expert Case 1 Case 2
Slice by Slice GliMaAn | Slice by Slice GliMaAn
1 78,26% 84,57% 75,79% 78,41%
2 77,48% 86,60% 74,92% 80,05%
3 75,76% 85,55% 74,33% 80,89%
4 75,76% 85,55% 75,31% 79,53%
5 77,42% 87,68% 77,00% 80,93%

experts and then we assessed the error in the area estima-
tion instead of in the volume estimation; for what concern
the spatial distribution similarity the evaluation process is
the same.

As regards the interpersonal variability in the surface esti-
mation, the error made for each expert is computed for both
the slice by slice and GliMAn segmentation as follows:
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where S’ is the surface estimation from segmentation per-
formed by the the i — th expert. In Table 1(a) the average
for each segmented plane p of surface estimation errors com-
puted using the slice by slice and GliMAn tools are collected.
The segmentation with GliMAn prevails in average in both
the MRI cases. For the first case the average surface error
is 11.02% and 18.02% for slice by slice and GliMAn respec-
tively. For the second case the same indexes are 7.97% and
15.48%. The comparison in terms of spatial distribution
is highly in favor of GliMAn with maximum increasing of
agreements percentages 26.79%, passing from 62% to 89%.
In two cases the level of agreement slightly decreases (-1.93%
and -0.30%). In Table 1(a) the mean of the spatial distri-
bution agreements J? ;.; for each segmented plane p and for
each couple of experts i, j are reported.

5. CONCLUSION

In this paper we have addressed the problem of defining
a reliable validation of MRI brain tumor segmentation. In
the literature there are several works that emphasize the
unreliability of the current ground truth collection meth-
ods, however relatively few works have proposed operative
solutions. We conducted a study with the purpose of analyz-
ing and assessing factors involved in the observer variation
during manual labeling process and proposing a computer
assisted labeling strategy. As seen in our experimental con-

text, the manual labeling process benefits from the insertion
of a software tool taylored on the experts visual and usability
requirements. All the phases contemplated in the elicitation
strategy have made a significant contribution; preliminary
discussions, structured and unstructured interviews created
the premise for a successful subsequent design phase. As
side effects, experts improved their knowledge through dis-
cussions and comparison of their decision attitudes.
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