Incremental Construction of Component-based Systems

Kung-Kiu Lau, Keng-Yap Ng, Tauseef Rana and Cuong M. Tran
School of Computer Science
The University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom

kung-kiu,ngk,trana,tranc@cs.man.ac.uk

ABSTRACT

Building large and complex systems in one step (the ‘big
bang’ approach) is a very challenging task, given that hu-
mans can only deal with a limited measure of complexity
at a time. A more practical approach would be to build
such systems incrementally, i.e. iteratively increment an
incomplete version of the system under construction until
the system is completed. In software engineering, there are
such approaches, but they are generally top-down, and not
component-based. In this paper we present a component-
based approach, which is bottom-up, and demonstrate its
feasibility by applying it to the CoCoME example.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design; D.2.2 [Software
Engineering]: Design Tools and Techniques

Keywords

Software component model, incremental construction, com-
ponent composition

INTRODUCTION

The general context of this paper is incremental devel-
opment, i.e. “feedback-driven refinement with customer in-
volvement and clearly delineated iterations” [21]. However,
we do not address the whole process of incremental devel-
opment. Rather we focus only on growing the system in
increments, i.e. incremental system construction, or just in-
cremental construction, for short.

As the name suggests, incremental construction builds a
system by iteratively incrementing an incomplete version of
the system under construction until the system is completed.
This can be expressed as a sequence of systems S;, starting
from an initial one Sy, i.e. So C S1 C S2 C ... , where
S; C Siy1 means S;41 contains S; plus an increment inc,
ie. S@+1 = S; +inc.

For large and complex systems, this kind of iterative de-
velopment process can provide a practical solution for man-
aging scale and complexity, since it is widely accepted that

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CBSE’12, June 26-28, 2012, Bertinoro, Italy.

Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

41

humans can only deal with a limited measure of complexity
at a time, such as that embodied in one increment.

In software engineering, many approaches to incremen-
tal construction have been proposed, all based on the no-
tion of stepwise refinement [32, 12], i.e. building a complex
program from a simple program by adding features incre-
mentally. Some of these approaches focus on specification
refinement, e.g. [1, 4]. In these approaches, both specifica-
tions and (their) implementations are theories, and a formal
specification S; (starting with an initial specification Sp) of
the program is incrementally refined to a specification S;41.
The refinement relation between S; and S;+1 is defined by
S; C S;+1, which means that S; is (logically) satisfied by
Sit+1. Siy1 can therefore be regarded as an implementation
of S;. The aim of the refinement step is to produce an S;+1
that is increasingly executable in a chosen programming for-
malism.

Some approaches based on stepwise refinement focus on
code refinement. In these approaches, an initial skeleton pro-
gram is constructed, and then one feature is added to it at a
time, until the program contains all the desired features. For
example, in [6, 5], a feature-oriented programming language
is used. Such a language is object-oriented: features are
objects and are added together by means of object-oriented
inheritance mechanisms, e.g. mixin inheritance [8].

However, all these approaches to incremental construction
are not truly component-based. In fact they are all top-
down: they start with either a specification of the whole
program or a top-level (skeleton) program. This is in con-
trast to truly CBD approaches, which are bottom-up, i.e.
starting from pre-built system-independent components [10,
11].

In CBD, system development is based on a component
model [26]. Such a model defines components and their
composition mechanisms; thus it fixes the ways in which
a system can be constructed from components. Therefore it
follows that a component model also defines ways in which
a system can be incremented. More importantly, if compo-
sition is hierarchical, then scalability should be achievable.
In this paper we propose an approach to incremental con-
struction of component-based systems, and demonstrate its
feasibility.

2. COMPONENT AND SYSTEM BEHAVIOUR

In incremental construction, S; C S;+1 means the be-
haviour of S;y1 contains the behaviour of S;. Therefore,
before we discuss incremental construction in CBD, we have

to first define the behaviour of a system and the behaviour
of an individual component.

A system consists of three basic elements: (i) control; (ii)
computation; and (iii) data. Control triggers computations,
which are function or expression evaluations, assignments,
etc. Computations are performed on data in the system.

The behaviour of a system is the result of the system exe-
cuting its set of computations (according to its control flow)
on its data.

We will consider systems made up of generic components.
A generic component is an architectural unit [29, 27] with
ports for inputs and outputs. This is illustrated in Fig. la,
where inl and in2 are input ports, whilst outl and out2

in1 out1 Required service
in2 out2 Provided service
(a) Generic architectural unit. (b) UML2.0 component.

Figure 1: A generic component.

are output ports. A generic component is a unit of (control
and) computation and/or data. Ports provide interaction
points between components: specifically, components can
pass control and/or data to one another via their ports.

A generic component can also be depicted as a UML2.0
component with services (Fig. 1b). Services are either meth-
ods or just data. In Fig. 1b, a socket denotes a required
service, whilst a lollipop denotes a provided service. For
services that are only data, each lollipop and each socket
can be implemented simply as one data port. On the other
hand, for services that are methods, each socket needs to be
implemented as a pair of control/data ports: one for sending
control (to make a method call) and data (associated with
the call, i.e. method name and parameters), and one for
receiving control (after a method call) and data (any return
values for the call). Similarly, each lollipop needs to be im-
plemented as a pair of control/data ports: one for receiving
control (for a method call) and data (associated with the
call), and one for sending control (after a method call) and
data (any return values for the call). (An example of this
can be seen in Fig. 4.)

Architectural units are composed by linking their ports.
The two main styles of connectors' are ‘pipe-and-filter’ and
‘rpc’ (remote procedure call). In ‘pipe-and-filter’ style con-
nections, components act as filters; only data values are
passed between components, and the computation defined
in a component is a mathematical function that maps the
(data values on) input ports to (data values on) the output
ports. This is illustrated in Fig. 2a.2

—>data

(a) A filter component. (b) A composite filter component.

Figure 2: Pipe-and-filter connection style.

The behaviour of a filter component is fixed, with respect
to control and computation; it is simply a function (£ in
Fig. 2a) of the component’s input data (x in Fig. 2a).

!Others are ‘event broadcast’, etc., see [29].
2For simplicity, here we assume each component has only
one input and one output port.

Furthermore, the behaviour of a composite filter compo-
nent is also fixed (with respect to control and computation).
This is illustrated in Fig. 2b, where the behaviour of the
composite is the function g(f (x)).

Modelica [14] components are examples of filter compo-
nents. Fig. 3 shows a Modelica component, together with
its code. The behaviour of the component is defined by an

equation (y=2+*x) that expresses the data value on the out-

A block A

extends Modelica.Blocks.
Interfaces.IntegerBlockIcon;
equation
y=2 * x;

end A;

Figure 3: A Modelica component.

put port y as a function of the data value on the input port
x, as in Fig. 2a.

In Modelica, composite components are produced by ‘pipe-
and-filter’ connection, as in Fig. 2b. The behaviour of a
composite containing a component A is defined by a set of
equations containing the equation for A, i.e. it contains the
behaviour of A, as in Fig. 2b.

In ‘rpc’ style connections, the computation defined in a
component can be called remotely by another component,
and therefore messages containing rpc’s and their results, if
any, are passed between components. These messages pass
control (for method calls) as well as data (for parameters
and return values of method calls) between components.

This is illustrated in Fig. 4. The method m1 of A calls
the method m2 provided by B. The method m3 of B calls a

— control/data

(a) Using ports

(b) Using services
Figure 4: RPC connection style.

method m4 provided by some other component.

Clearly in ‘rpc’ connection style, the control and computa-
tion in a component is not fixed; they depend on control and
computation defined in other components. Consequently, in
contrast to filter components, the behaviour of an ‘rpc’ com-
ponent is not fixed, as a far as control and computation are
concerned; it is not simply a function of the component’s
input data (which now can include data for parameters of
in-coming method calls as well as return values for out-going
method calls), but it is a function also of computation de-
fined externally in other components. For example, in Fig. 4,
the behaviour of A depends on (how m2 is defined in) B; while
the behaviour of B depends on (how m3 gets defined by the
method m4 it calls in) whatever component B calls in order
to provide m3.

It follows that any composite built by a ‘rpc’ connection
also does not have fixed behaviour, with respect to control
and computation. Indeed, in general, the behaviour of any
component (composite) in a system is potentially only fixed
when the whole system has been completely constructed.

ArchJava [2] components are examples of ‘rpc’ compo-

nents. Fig. 5 shows ArchJava components that correspond
to those in Fig. 4 and their composition.

component class A{
public port al{provides void ml();}

lcomponent class B{
public port
. public
az.m2(); .

}
}) public void m3 () {

p3.ma () ;
S

component class AB{

i)iivate final cA=new A(); }

bl{provides void m2();}

{
public port a2{requires void m2();}||public port b2{provides void m3();}
public void ml () { public port b3{requires void mé();}
void m2 () {

private final cB=new B();
connect cA.a2, cB.bl;

3

Figure 5: ArchJava components.

3.

Having defined the behaviour of generic components and
systems of such components, we are now in a position to
discuss incremental construction in the context of CBD.

A component-based approach to software development is
based on a component model [26]. The component model
defines what components are as well as composition mecha-
nisms for composing components. How a component-based
approach builds systems is thus determined by its compo-
nent model. Clearly if the composition mechanisms defined
in the component model are incremental, then so is the ap-
proach.

For example, in a component model in which components
are filters, and the composition mechanism is ‘pipe-and-
filter’ style connection, composition is incremental. This can
be seen in Fig. 2b, where the behaviour of the composite is
g(£(x)). This clearly contains the behaviour f£(x) of the
first component. Thus we can regard the second component
as the current system and the composition of the two com-
ponents as the new system, after incremental composition.

An example of a pipe-and-filter system is one that filters
out letters ‘a’, ‘b’, ‘¢’ ..., from a piece of input text. Such
a system can be built incrementally as follows. Start with a
(current) system Sy consisting of only a component A that
filters out ‘a’. Compose Sy with a component B that filters
out ‘b’. This gives a new system Si; clearly S; filters out
both ‘a’ and ‘b’, and thus the behaviour of S1 contains the
behaviour of Sy, and so on.

A counter-example of incremental composition is invasive
composition [3] when it is used to destroy component be-
haviour. In the component model underlying invasive com-
position, components are architectural units with hooks that
provide write access to component code during composition.
Thus as the name ‘invasive composition’ suggests, the be-
haviour of the components in the current system S; can be
altered by the composition. When invasive composition de-
stroys component behaviour in S;, the behaviour of S;y1
may not contain that of S;. Of course, invasive composition
could also achieve incremental composition by adding new
behaviour to S;y1 without destroying the behaviour in S;.

The most widely used component models in CBD are
ADLs (architecture description languages) [29, 27]. In these
models, components are generic architectural units and the
composition mechanism is ‘rpc’ style connection. In such
a model, composition is incremental in general, since ‘rpc’
style connection does not destroy any existing behaviour, un-
like destructive invasive composition. However, incremental

INCREMENTAL CONSTRUCTION IN CBD

43

construction is difficult to achieve in practice. This is be-
cause the behaviour of any architectural unit, and therefore
the behaviour of any current system S;, may not be fixed
(as shown in Fig. 4). As a result, it may be very difficult,
if not downright impossible, to reason about behaviour con-
tainment by the next system S;;1.

So which component model should we choose? We could
choose a component model in which components are fil-
ters and composition is by ‘pipe-and-filter’ style connection.
However, in such systems, components only generate and
pass data among themselves, whilst control for the whole
system is implicitly fixed, as a pipe, i.e. control flow be-
tween connected components is simply sequencing. In other
words, two connected components are executed in sequence,
with the data produced by the first component sent as in-
put to the second component, which then executes. Such a
component model obviously has limited expressiveness.

What about a component model in which components are
‘rpc’ components and composition is by ‘rpc’ style connec-
tion? Such a component model would have more expres-
siveness than a ‘pipe-and-filter’ model. However, as we ex-
plained above, it would be difficult to achieve incremental
construction in practice with such a component model.

We will use a component model that is Turing complete
in terms of expressiveness for defining systems. The model
is called X-MAN, and its composition mechanisms are in-
cremental. Furthermore, X-MAN also defines other kinds of
increments, apart from components, that can be added to
a system. Next we will briefly describe X-MAN and show
how it can be used for incremental construction.

4. THE X-MAN COMPONENT MODEL

X-MAN has been described in other papers, e.g. [25, 22,
30, 18]. Here we give a brief summary, and show that com-
position in X-MAN is incremental.

In X-MAN there are two kinds of basic entities: compu-
tation units and connectors; computation units encapsulate
computation whereas connectors encapsulate control.

Components are built from these basic entities. There are
two kinds of components: atomic and composite (Fig. 6).
An atomic component contains a computation unit and an
invocation connector (Fig. 6a). The computation unit de-

Invocation

connector
Computatiol [N W) ®
b 5]
(a) Atomic (b) Composition (c) Composite
component connector component

Figure 6: X-MAN component model.

fines computation in the form of methods or functions which
can be invoked via the invocation connector. The compu-
tation defined by a computation unit U (when invoked) is
performed entirely within the scope of U, i.e. U does not call
other computation units. Thus an atomic component en-
capsulates® computation and has only provided services but
no required services. In other words, the behaviour of an
atomic component is fixed, with respect to control (coming
from the invocation connector) and computation (defined in
the computation unit).

3In the sense of ‘enclosure in a capsule’.

A composite component (Fig. 6¢) is built from atomic
components by composition connectors (Fig. 6b). Fig. 6¢
shows a composite built from two atomic components. A
composition connector defines control for coordinating com-
ponents (as well as data flow between them). A composite
component is also encapsulated, and it also has only pro-
vided services; this is a direct consequence of the encapsula-
tion of an atomic component. The behaviour of a composite
is also fixed with respect to control defined by the composi-
tion connector, and control and computation defined in the
sub-components. Furthermore, the behaviour of a compos-
ite clearly contains the behaviour of the sub-components.
Therefore composition in X-MAN is incremental.

Apart from the invocation connector in an atomic compo-
nent, X-MAN connectors [30] include the Turing-complete
set of control structures: sequencing, branching and loop-
ing. Sequencing and branching are composition connectors
for multiple components, whilst looping is an adaptor for a
single component. For sequencing, we have the sequencer
and pipe composition connectors; for branching, we have
the selector composition connector (Fig. 7a). A sequencer

SEQ %

O
Sequencer Selector Pipe
(a) Composition connectors 0

= X
Guard

(c) Bank system

SEL

ATM

Loop
(b) Adaptors

Figure 7: X-MAN connectors.

passes only control to the next component, whereas a pipe
passes control and results from the first component to the
next component, as shown in the bank system example in
Fig. 7c, where customer details and requests are entered into
an ATM and then passed, along with control, on to the bank.

For looping, X-MAN has a loop connector (Fig. 7b). The
loop connector is an adaptor for a single component, adding
a loop to the control defined by the top-level connector of
the component. A loop connector must define a finite loop if
used inside a composite; otherwise the composite will not be
well defined. However, if used at the top level of a system,
a loop connector can define an infinite loop, as in the Bank
example (Fig. 7c).

Another adaptor in X-MAN is the guard connector (Fig. 7b).

This defines a condition, and when applied to component,
will only let control reach the component if the condition
evaluates to true. For example, in the Bank example (Fig. 7c),
a guard is applied to the bank to allow access only if the cus-
tomer details entered into the ATM are valid.

S.
X-MAN

We have shown that composition in X-MAN is incremen-
tal. This makes it possible to use X-MAN for incremental
construction. X-MAN’s composition mechanisms can incre-
ment a system with additional behaviour: control (by adding
composition connectors) and computation (by adding com-
ponents). Furthermore, X-MAN’s adaptors can also incre-
ment a system’s behaviour: a loop adds repeated behaviour,
whilst a guard adds alternative behaviour.

INCREMENTAL CONSTRUCTION USING

44

5.1 Adding Increments

Now we identify all the possible increments in X-MAN
and explain how they can be added.

5.1.1 By Composition

We can add increments in control and computation to the
current system by using the composition mechanisms, i.e.
we can add a composition connector K; and a (composite)
component C; to the current system S;, and thus increment
the behaviour of S; by adding extra control (K; plus com-
position connectors in C;) and computation (computation
units in C;). This can be done in two ways:

(i) Adding the increments K; and C; to S; itself, i.e. com-
posing S; with C; using K.

This is illustrated in Fig. 8a, which is part of the bank sys-
tem in Fig. 7c. It consists of an increment added to the ATM
component by composing ATM with the Bank component.
Here S; is the ATM component, K; is the pipe connector
and C; is the Bank component. The total increment added
to S; is circled in dotted line.

(ii) Adding the incre-

ments K; and C; to a sub- (PIPE)

component of S;. 5
This is illustrated in) Py

Fig. 8b, which shows a , '&D-

system constructed from
the system in Fig. 8a by
adding an increment to
the sub-component Bank
by composing Bank with the Bank2 component (to add an-
other bank also linked to ATM). Here S; is the system in
Fig. 8a, K, is the selector connector and C; is the Bank2
component. The total increment added to Bank is circled in
dotted line.

These two alternatives allow incremental construction to
be carried out on both atomic components and composite
components alike, and therefore can be applied to an initial
system Sy that is just an atomic component, and to any
subsequent S; that is a composite component. Thus they
define incremental construction in a recursive manner for
any S;. This is possible because of the hierarchical nature
of composition in X-MAN.

.
.
.
o'
N \
'\ [BANKz]|
! !

7
/4\
BANK

Figure 8: Composition.

5.1.2 By Increasing Composition Connector Arity

We can add increments in con-
trol and computation in the current
system S; by simply increasing the
arity of any composition connector o) SO\
within S; . Our composition con- ATM l\‘x\
nectors have variable arities (as can O OV O
be seen in Figs. 6 and 7), and so it \"
is possible to add components to an e
existing composite. In other words, Figure 9: Increas-
we can add a (composite) compo- ing arity.
nent C; to the current system S;
by increasing the arity of any composition connector in S;
by 1.

This is illustrated in Fig. 9, where an increment is added to
the {Bank,Bank2} sub-component in the system in Fig. 8b,
by increasing the arity of the selector connector by 1, and
adding the Bank3 component (to add yet another bank to
the network).

5.1.3 By Adding Adaptors

We can add increments in control and computation to the
current system by adding adaptors to individual components
within the system. We can adapt any sub-component C; of
the current system S; with a finite loop; this will add a
finite repetition of the behaviour of C;. We can adapt S;
itself with an infinite loop to add an infinite repetition of
the behaviour of S;.

An example of an infinite loop can be seen in the Bank
system in Fig. 7c, where the loop connector adds an incre-
ment to the system, which is the composition of ATM and
Bank by a pipe connector.

We can also adapt any sub-component C; of the current
system S; with a guard; this will add a piece of alternative
behaviour: if the condition in the guard is true, then the
behaviour of C; is invoked in S;; otherwise, it is not.

An example of a guard can be seen in the Bank system
in Fig. 7c, where the guard connector adds an increment to
the sub-component Bank.

5.2 The Construction Process

Having a component model that can be used for incre-
mental construction is only half the story. The other ‘half’
concerns the iterative construction process itself. Clearly
this process is guided by the system designer. Human guid-
ance is needed since the initial system Sy has to be chosen,
as has every increment inc; to be added at every i-th iter-
ation. Whether the target system will be achieved depends
crucially on these choices at each step.

Our basic tactic in each iteration of the construction pro-
cess is to identify a piece of behaviour specified in the func-
tional requirements, and then identify an increment that de-
fines that behaviour, and add this increment to the current
system. By repeating this, we hope to eventually arrive at
a final system that satisfies all the requirements, i.e. it has
all the behaviour specified by the requirements.

We assume that functional requirements for the system
under construction are defined by use cases. For each use
case, we apply our aforementioned tactic and incrementally
construct a system that satisfies that use case.

We also assume that all the necessary components can be
either (identified and) constructed from scratch or retrieved
from an existing repository. That is, of the standard CBD
life cycle [10, 11, 24] (which contains a component develop-
ment process and a system development process) we focus
only on the system development process.

The iterative construction process that we adopt is defined
in pseudo code as follows:

1. Start with use case 1:
from the use case, identify the initial system So;
from the use case, identify an increment inco;
) construct S1 by adding the increment inco to So;
) =1
from the use case, identify an increment inc;;
construct S;y1 by adding the increment inc; to Si;
vii) i=i+1;
viii) repeat steps (v-vii) until all the requirements in the
use case have been met.
2. Repeat step (viii) in 1 for each remaining use case.

Now we illustrate our incremental construction process
using X-MAN on an example, the CoCoME example [28],
which is a benchmark in CBD.

45

6. THE COCOME EXAMPLE

The CoCoME system is a trading system or point of sale
(POS) system used in retail business.

6.1 System Overview

The CoCoME system comprises four sub-systems (Fig. 10):
(a) cash desks (used
by cashiers at the
checkout), (b) store
servers (used by the
store manager), (c)
enterprise server (used
by the enterprise man-
ager) and (d) stock ex-
changer (triggered by
the enterprise server
to re-allocate stocks
between stores). In
each store, there are many cash desks with a PC each.
Each PC is connected to a store server. A store server
contains a centralised repository that shares an inventory
system among PCs in the store. All products are registered
in the inventory on the store server serving queries from the
PCs, as well as keeping transaction records from them.

Each store server is connected to the enterprise server at
the headquarters. There are many stores under an enterprise
and each store hosts a store server reporting its transactions
and inventory status to the enterprise server. The enterprise
server consolidates reports from the stores, and facilitates
coordination of re-stocking in each store.

The cash desks sub-
system to be deployed
on PCs at the cash
desks is the key part of
the CoCoME system.
Each cash desk con-
sists of a cashbox, a
barcode reader, a card
reader, a display light
(Fig. 11). The PC for ‘

Cash Desk Enterprise

Client

Store
Server

Enterprise
Server

Figure 10: CoCoME system ar-
chitecture.

4
O

<

cashbox

£ \ / printer
card lcuder\
_

‘ /mhdesk PC

barcode reader

light display

BANK

the cash desk controls
these peripherals. Be-
sides keeping cash in

‘ ‘ STORE SERVER

Figure 11: Cash desk compo-
nents.

the drawer, the cash-

box also acts as a keyboard to receive input from cashiers
as well as displaying output. The barcode reader is used
to scan product IDs, the card reader is used to read cred-
it/debit cards during payment, whereas the display light is
used to indicate the operating mode of the cash desk (nor-
mal/express checkout).

6.2 Use Cases

The functional requirements for CoCoME contain 8 use
cases.

In Use Case 1 and 2, the actor is a cashier, and the sub-
system is a cash desk. The use cases describe how a cashier
uses a cash desk to execute the sale process in normal and
express checkout modes respectively. In Use Cases 3, 4, 5
and 7, the actor is the store/stock manager, and the sub-
system is a store server. The use cases describe how the store
manager uses the store servers to order products, check-in
products, retrieve stock reports and change product prices
respectively. In Use Case 6, the actor is the enterprise man-

ager, and the sub-system is the enterprise server. The use
case describes how the enterprise manager uses the enter-
prise server to generate reports of ‘mean time to delivery’
for suppliers. Use Case 8 is an automated mechanism to re-
allocate stocks between stores. The sub-system is the stock
exchanger.

For lack of space, we will only discuss the cash desks sub-
system described in Use Cases 1 and 2. In fact, we have
implemented all 8 use cases.

Before we show our incremental construction for Use Cases
1 and 2, we summarise the use case here (for details see [28]).
Use Case 1 is about the sale process conducted at the cash
desk to checkout products in the customer shopping cart.
The cashier initiates the new sale process by hitting the
‘New Sale’ button upon customer arrival at the cash desk
with the products, and then starts entering product IDs to
the system by using either a barcode reader or the keyboard
on the cashbox. Information on each product will be re-
trieved from the store server and displayed on the display
panel of the cashbox. Once all products are entered, the
cashier will hit the ‘Sale finished’ button to calculate the
amount due. Then, the cashier will need to select either
cash or card payment mode. In cash mode, the cashier will
enter the amount received and the system will display the
change due as well as pop open the cashbox drawer. The
cashier then keeps the money in the drawer and returns the
change due if any. The transaction will be recorded and a
receipt will be printed when the cashbox is closed by the
cashier. Whilst in card payment mode, the customer will be
required to insert a credit card into the card reader, and en-
ter the pin to allow transaction to happen. The card ID and
PIN are sent to the bank for validation. This repeats until a
valid PIN is entered unless the cashier switches the system
to cash payment mode. The transaction is complete upon
successful PIN validation. The transaction will be recorded
and a receipt will be printed for the customer.

Use Case 2 extends the normal checkout mode specified in
Use Case 1 with ezxpress checkout mode. The system checks
for the transaction history and evaluates if the cash desk
shall switch to express checkout mode automatically. In ex-
press checkout mode, the display light will be switched on
(from black to green), customers are restricted to checking
out at most 8 products, and credit card payment is prohib-
ited.

6.3 Construction of Cash Desks Sub-system

Now we outline our incremental construction for the cash
desks sub-system specified in Use Cases 1 and 2, highlighting
the kinds of increments that are added in various steps of
the process. 2

When a customer arrives
at the cash desk, the cashier !
presses the ‘New Sale’ but- N AN ~ .
ton to create a new session. 4\ﬁewsale() / rdltem()\/

[;
A new session resets the sys- ! L
tem and clears all the buffers f
from the previous transac-
tion. The software compo-
nent that has this behaviour
is the session component (SS in Fig. 12) that provides the
newSale() service. This component is therefore chosen as
the initial system So.

Next, the cashier is required to capture all the product

Figure 12: Sy

46

IDs one by one using either the barcode reader or the key-
board on the cashbox. The behaviour of capturing a single
product ID is provided by the rdItem() service that can be
provided by two alternative software components, namely
the barcode reader (BCR) and the keyboard (KB). We
choose the BCR component first, which, together with a se-
quencer (SEQ) we identify as the increment Inco. Inco is
then added to Sp to yield Si (Fig.12). This is an example of
adding an increment to the current system by composition,
as described in Section 5.1.1(1).
the rdItem() service

To add the alterna-
newSale() [
of the KB component, o o

tive behaviour of cap-
next we compose KB /

turing product IDs by

with the BCR sub- Yot ety

. rdItem() ! -
component using a i ‘/
selector (SEL) to == Ine
yield S, (Fig. 13).

This increment, Inci, Figure 13: 53

consists of the selec-
tor SEL and the KB component. This is an example of
adding increments to a sub-component of the current sys-
tem by composition, as described in Section 5.1.1(ii).
Then, the product ID captured is used to retrieve product
price and description from the store server. This behaviour
is provided by the getDetails() service of the server com-
ponent (SVR), which is incorporated together with a pipe
(PIPE) as the next increment Inc to yield Ss3 (Fig. 14).
This is another example of adding increments to a sub-
component of the current system by composition.

O
newSale() ey
AR
:
I

ifinished

Inc,

/
(1) P -
SO rdltem() getDetails())

I3 o~ =
SEL g
cbr Cb | [SVR lJ Inc,

@d tem() @d tem()

Figure 14: S3 and Si

The same behaviour has to be repeated for all products
until all product IDs are captured, with the price and de-
scription of each product retrieved from the store server.
The behaviour that requires repetition already exists in Ss,
namely the sub-component of Ss that is composed by PIPE.
A finite loop (Incs) is therefore added atop PIPE to iterate
this sub-component. S; shown in Fig. 14 is produced after
Incs is added. This is an example of adding an adaptor as
an increment, as described in Section 5.1.3.

After all product IDs are captured, the customer can pay
by either cash or card. These two alternative behaviours are
addressed one by one incrementally. The cash payment is
chosen first. In cash payment mode, the total amount due
will be calculated by a calculator (or accumulator). The
component that provides this behaviour is the calculator

(CAL) component that provides the getPayment () service.
Since reading all the product IDs and calculating the amount
due should happen sequentially, the CAL component can be
added as teh incremetn Incs to Ss as the last component of

the sequencer SEQ by increasing its arity, as described in
Section 5.1.2. S5 shown in Fig. 15 is produced as the result.
% !finished ‘
/\rd tem() dItem()
acr
Figure 15: S5

getPayment()/

- Inc

PAGAN
/ (
i newSale()
PIPE
Q rdItem() getDetails()
SEL
cbr - cb SVR

Next, a guard is added to ensure that the getPayment ()
service will only be invoked in cash payment mode. The
guard is thus the increment Incs and the system shown in
Fig. 16 is the resulting system Sg. This is another example
of adding adaptors as increments, as described in Section
5.1.3. The adapted sub-component is the CAL component.

O
SEQ

e
Ifinished /< ~_ Incs
! pmode=cash
O \\ A P
@ O getPayment()
CAL
rdl‘em() getDelails()
idhem() irdltem()

Figure 16: Sg

The above-mentioned process recurs until all behaviours
specified in Use Case 1 are incremented to the system under
construction. Since Use Case 2 extends Use Case 1, the same
process also recurs to Use Case 2 to increment the system
constructed from Use Case 1.

By carrying out the construction process for all other
behaviours specified in Use Cases 1 and 2, we produced
the cash desks sub-system in 23 incremental steps, and the
mechanisms of adding increments used in each step is sum-
marised in Table 1.

newSale()

S8

319

6.4 Refactoring

An important element of our incremental construction
process, which for lack of space we can only discuss very
briefly here, is refactoring. Refactoring [31, 13] changes a
system’s architecture without changing its behaviour. Refac-
toring is necessary for our incremental construction process
because sometimes it is only possible to achieve the desired
increment by first refactoring the current system architec-
ture.

47

Table 1: Mechanisms used in cash desks sub-system
Mechanism Step
Adding increments to current sys- | 1
tem by composition

Adding increments to a sub- |2, 3,7, 9, 11, 12,
component by composition 14, 18, 20, 23
Adding increments by increasing | 5, 8, 15, 16, 17, 19,
composition connector arity 22

Adding guards as increments 6, 10, 21

Adding loops as increments 4,13

© S
-7 G .
7
\e\ASnle() ,/ g
- 'finished
O
. (PrPE)
, /\ N A
| |
()
B
! % tfinished
L7 O
o G@DB)
)))
|
|

Figure 17: Refactoring sequencer: (a) before and (b) after

For instance, in the cash desks (@ O
sub-system (Use Case 2) shown
in Fig.17(a), the sub-component
enclosed by the dotted line will
only be invoked in normal check-
out mode, hence a guard expressing
mode=norm should be added atop
the sub-component. Refactoring al-
lows us to replace the top sequencer
by two sequencers, thus creating
two hierarchy levels so that a guard
can be added between the two lev-
els (Fig.17(b)). Obviously, without
refactoring, incremental construc-
tion is unable to achieve this in-
tended system behaviour.

Refactoring also allows a set of connectors to be replaced
with a single connector. For example, as shown in Fig.
18, a sequencer that composes two guards which are logi-
cal complements can be replaced with a selector. This hap-
pens in the cash desks sub-system too (Use Case 1): the
guard for cash and card payment modes (pmode==cash OR
pmode==card) can be replaced with a selector. This simpli-
fies the system architecture.

Figure 18: Refac-
toring connectors.

Conversely, some basic connectors can be replaced with
composite connectors which correspond to design patterns
[23].

6.5 The Complete Implementation

The complete CoCoME system has been implemented in
the X-MAN Tool. The X-MAN Tool is developed using
Model-driven Engineering in GME [15], a generic modelling
environment that generates a graphical editor tool from a
metamodel of the elements of a system (in this case the el-
ements of the X-MAN component model). In the X-MAN
Tool, components are designed and developed in the C pro-
gramming language [20] and stored in a repository. During
the incremental construction process, these components are
selected, deployed and composed with other components.

The complete CoCoME system is constructed by imple-
menting its four sub-systems, each one constructed incre-
mentally.

While constructing each sub-system, in every step of the
construction process, it is essential to produce the correct be-
haviour for the newly incremented system. To ensure this,
each newly incremented system was tested dynamically. The
X-MAN Tool supports this kind of dynamic testing, since ev-
ery sub-system in X-MAN is executable, and X-MAN pro-
vides a simulator for execution results. So we used X-MAN
Tool to automate system simulation with test cases defined
in XML [17].

Every test case defines inputs and asserts simulation out-
puts based on boundary value analysis. A test case passes
simulation if the real simulation outputs match the asserted
outputs. The X-MAN Tool will show the simulation result
summary with Pass-Fail ratios and a detailed result show-
ing the simulation traces (as shown in the super-imposed
dialogue boxes in Figs. 19 and 21 respectively.

" XMAN_Deployment - 51 - /RootFolder/ J [=] 3

i Fle Edt View Tools Window Help

2 0B X908 B[@5 A R Al sad b b pS ST DY

Ef S5 x| Systemsenice |
=[5 | SystenDataRouing | T Nome:[s1 [Sytem Aspect [Contior
P
s Comment
RS
&)
<
Component Instance
a
9
&
x
P,
R
X CR -
= i BCR
o 14 BCAidien
=i s
& I Sr At BCR. rdIten
u Outputs: flagel,pideiiis
ﬁ Sequencer -
@ 14 Sysensenice =
ER 2=l 0f
Pl I 31| consote | Panning window

Ready [1| I

Figure 19: S1 in X-MAN Tool

Increments that did not behave correctly were duly re-
placed. We also built extra components if the required be-
haviours could not be fulfilled by components in the reposi-
tory.

Figs. 19 and 20 show the implementations of S1 and S2
described in Figs. 12 and 13 respectively. The dialogue box
super-imposed on the screen-shot in Fig. 19 (top right-hand
corner) shows its simulation results summary.

Fig. 21 shows the implemented cash desks sub-system and
its simulation results.

The top left-hand panel is the X-MAN Part Browser show-
ing the X-MAN architecture elements. The GME Browser is
on the bottom left, showing all deployed components. The

v x |9 BB @i ¢ R A3 borgi@ S01 P/ L X sim R BE WAL
F 52 x| Systemsenice ~
e ([0 | SystemDetafiouting| T Name:[2 [System Aspect [ContokbasedV 7] Base: [NZE| [:2 I
P - 2]\ Awbutes | Preferences | Propeties |
® £ Ves
A
&)

At KB.rdlten
Outputs: flag=l,pid=1lll

| Similator completed at Tue Feb _|
21 13:25:21 2012 .

Bl =00

Console | Panning Wind

Figure 20: S2 in X-MAN Tool

super-imposed dialogue box on the top right shows the sim-
ulation results of the system, and on the bottom right is the
console, showing the simulation inputs and real outputs for
each component. The super-imposed dialogue box on the
bottom shows 15 completed simulation cases and the exe-
cution traces of the cash desks sub-system for Test Case 1
(normal checkout mode, keyboard input and cash payment
mode). The test case passed because the real simulation
outputs matched the asserted outputs (change==121.38, to-
tal=="78.62). The middle pane shows the X-MAN architec-
ture of the cash desk sub-system.

Database connections, e.g. between the cash desks and
the store server (database), are not visible because they are
internal to components.

7. DISCUSSION AND CONCLUSION

In this paper we have proposed a component-based ap-
proach to incremental construction. In contrast to existing
approaches in software engineering, which are top-down and
not component-based, our approach is bottom-up and truly
component-based. Our approach has a well-defined compo-
nent model, X-MAN;, and a tool for component and system
development. We have also demonstrated the feasibility of
our approach by applying it to the CoCoME example, which
is a kind of benchmark in CBD.

One advantage of incremental construction is that it tack-
les complexity, in the sense that it is easier to build a system
bit by bit, rather than building the whole system in one ‘big
bang’. Our implementation of CoCoME has demonstrated
this. Similar work in incremental construction using web
services [16] shares this motivation. However, the composi-
tion mechanism used there, namely orchestration, is strictly
speaking, not hierarchical (unlike composition in X-MAN).
This is because orchestration results in a workflow rather
than a web service. Therefore it is not clear precisely how
incremental composition of web services is defined.

We believe that the ability to construct a system bit by
bit has an interesting implication for software engineering;:
by using incremental construction, it is possible to develop
a system use case by use case. As far as we are aware, this is
not possible in current software engineering practice. In the
Unified Process [19], for instance, UML models for system
design may be defined use case by use case, but it is not
possible to build the system use case by use case.

Our tool for incremental construction also allows us to
do incremental testing. We can check that each increment
we add does indeed result in a new sub-system with the

" ¥MAN_Deployment - cocome-cashdesk - /RootFolder/

: File

o HG@EX (9

Edit View Tools Window Help

83| @55 n) ag

bobgic | S0 P 2 X [um gerom

hdesk x | Selector | SystemService |

L S v
Main |5MSIEWDH‘3F‘UU“"D| T Mame: [cocome-cashdesk [Spstem #spect; | Contrabbased v 7 | Base: [N Zoom: [43% 7] Sequencen kP ppeSeauens [for Kind
= - o #rbutes | Preferences | Fropertes |
el FrnnEe %
B Comment Simulation Result Summary %]
Simulation Result
&
Ma. of completed kests: 2 Details
4
Passed: 2
o Component Instance
&5 d Failed: 0
& =
- DataElement
x
9 oK
x
®
s
4 Guard
T - =y
At FRT.print -
| GMEDrowser v x| Inputs: content=
Inheitance | Meta | [Producta 11.230000 ProductB
Aggregate I: = ‘ [12.330000 ProductC
[22.430000 ProductD
2 = | N [32.630000 Producth
{4 CNT.count ~ l11.230000, total=39.85
R ‘E‘E\ _I Test Cases and Execution Traces Review E
] At PRT.print
-1 DL ~Test Cases:
=L P
- m DRwW ED]I\.pDnE.nt instance in
5 ER lexecution is LOG
- Guand 2 card and barcode reader Passed Executing service
@] mode ILOG. writelog
-3l KB At LOG.writeleg
(- [af KP Inputs: log= Froductd
- LOG 11.230000 ProductB
o B P O — etrkoserton: 13530000 Broducet
m F\pe cond=0,paid=, |, prnode= SESSI0NId==1 53.430000 DroductD
£ ss [32. 630000 Productd
l11.230000
(-4 5TATS
= SVR ~Simulation Traces: At 10G.writelog
=] Selector =
L cond [inputs [outputs [= | 4| | »
= Selectar System3ervice cond=0, paid=200,pmode=0 =l)
o I'Q mode STATS.chkesp =1 L'il 4
Kl 4 K| cotats mode=1 1| consle | Panning Window
— STATS.chkexp mode=1 = —J =
Ready DL lighten g um[scru][Epm][a3%|[xmaN_Deployment]o7:35 Pm] .

Figure 21: The cash desks sub-system in X-MAN Tool

required behaviour identified in the current iteration. This
is important since any wrong increment will propagate to all
subsequent iterations. Incremental testing is possible in X-
MAN because every X-MAN architecture is executable, and
the X-MAN Tool provides a simulator for execution results.

In CBD, the most widely used component models are
ADLs (architecture description languages), e.g. UML2.0.
As descriptions of software architectures, ADLs are meant
to describe the whole system, and are therefore not intended
for incremental system construction. In particular, ADL de-
scriptions are usually used to identify components in the
system, rather than to define the system in terms of pre-
existing components (in a repository for a domain) which
are not system-specific. In other words, an ADL description
contains system-specific components, rather than domain-
specific but non-system-specific components from a reposi-
tory.

However, newer ADLs, e.g. SOFA [9], do have component
repositories, so they should be more suitable for incremen-
tal construction. Although, as we said earlier, architectural
units tend not to have fixed behaviour (until the whole sys-
tem has been constructed), we believe it is possible to cus-
tomise newer ADLs such as SOFA for the purpose of incre-
mental construction. This is future work that we intend to
explore.

We have briefly touched on refactoring and its signifi-

49

cance for incremental construction. This is another impor-
tant topic for future research. Our experience so far tells
us clearly that without suitable refactoring techniques, it is
inevitable that sooner or later our incremental construction
process comes unstuck.

Another benefit of refactoring is that it can be used to
simplify architectures. Our use of composition connectors
for constructing systems inevitably leads to big hierarchies
of connectors. It is very useful to be able to reduce the com-
plexity in such hierarchies wherever possible. Refactoring
techniques for connectors can provide just such a facility.
This is a topic that we are currently actively investigating.

One issue that also needs further investigation is the gran-
ularity of components. Our experience suggests that the
smaller the components, i.e. the smaller the pieces of be-
haviour encapsulated in components, the easier the incre-
mental construction process is. However, although this seems
to be obviously the case, we have yet to gain sufficient em-
pirical evidence for it. The crucial issue is whether it is
possible in general to decide what level of granularity would
be optimal, if any. This is an open question at present.

Finally, we are encouraged by our experience of applying
our incremental approach to the CoCoME example. This ex-
ample is non-trivial, and we have successfully implemented
and tested the whole system, using incremental construc-

tion. So we have some confidence that our approach at least
shows the promise of scaling up.

8.

ACKNOWLEDGEMENTS

Keng-Yap Ng would like to thank the Ministry of Higher
Education Malaysia and Universiti Putra Malaysia for spon-
soring his PhD study at the University of Manchester. So

too,

Tauseef Rana would like to thank the National Univer-

sity of Sciences and Technology (NUST), Pakistan.

9.
1]

[12]

[13]

[14]

[15]

REFERENCES

J.R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
Connecting software architecture to implementation.
In Proc. ICSE 2002, pages 187-197. IEEE, 2002.

U. Assman. Invasive Software Composition. Springer
Verlag, 2003.

R.-J. Back. Incremental software construction with
refinement diagrams. Technical Report 660, TUCS -
Turku Centre for Computer Science, Turku, Finland,
Jan 2005.

D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Trans. Soft. Eng.,
30(6):355-371, 2004.

D. Batory, V. Singhal, J. Thomas, S. Dasari,

B. Geraci, and M. Sirkin. The GenVoca model of
software-system generators. IEEE Software,
11(5):89-94, 1994.

C. Bohm and G. Jacopini. Flow diagrams, Turing
machines and languages with only two formation
rules. Comm. ACM, 9(5):366-371, 1966.

G. Bracha and W. Cook. Mixin-based inheritance. In
N. Meyrowitz, editor, Proc. OOPSLA 90/Proc.
ECOOP 90, pages 303-311. ACM Press, 1990.

T. Bures, P. Hnetynka, and F. Pl4sil. SOFA 2.0:
Balancing Advanced Features in a Hierarchical
Component Model. Fourth Int. Conf. on Soft. Eng.
Research, Management and Applications 2006, pages
40-48, 2006.

B. Christiansson, L. Jakobsson, and I. Crnkovic. CBD
process. In I. Crnkovic and M. Larsson, editors,
Building Reliable Component-Based Soft. Syst., pages
89-113. Artech House, 2002.

I. Crnkovic, M. Chaudron, and S. Larsson.
Component-based development process and
component lifecycle. In Proc. Int. Conf. on Soft. Eng.
Advances, pages 44-53, 2006.

E.W. Dijkstra. Stepwise program construction. In
Selected Writings on Computing: A Personal
Perspective, pages 1-14. Springer-Verlag, 1982.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 1 edition,
July 1999.

P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE
Computer Society, 2003.

GME: The Generic Modeling Environment.
http://w3.isis.vanderbilt.edu/projects/gme/.

50

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

(24]

[25]

(26]

27]

(28]

29]

(30]

(31]

(32]

C. Granell, J. Poveda, and M. Gould. Incremental
composition of geographic web services: an emergency
management context. University of Crete, pages
343—348, 2004.

E. R. Harold and W. S. Means. XML in a Nutshell: A
Desktop Quick Reference (In a Nutshell), 3rd ed.
O’Reilly Media, 2004.

N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel,
C. Tran, P. Riimmer, and S. Sharma.
Component-based design and verification in X-MAN.
In Proc. of Embedded Realtime Soft. and Syst., 2012.
I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.
B. W. Kernighan and D. Ritchie. The C' Programming
Language, 2nd ed.. Prentice Hall, 1988.

C. Larman and V.R. Basili. Iterative and incremental
development: A brief history. Computer, 36:47-56,
June 2003.

K.-K. Lau, M. Ornaghi, and Z. Wang. A software
component model and its preliminary formalisation. In
F.S. de Boer et al., editor, Proc. 4th Int. Symp. on
Formal Methods for Components and Objects, LNCS
4111, pages 1-21. Springer-Verlag, 2006.

K.-K. Lau, I. Ntalamagkas, C. Tran and T. Rana.
Design Patterns as Composition Operators. In

L. Grunske, R. Reussner and F. Pl4sil, editors, Proc.
18th Int. Symp. on Component-based Software
Engineering, LCNS 6092, pages 232-251.
Springer-Verlag, 2010.

K.-K. Lau, F. Taweel, and C. Tran. The W Model for
component-based software development. In Proc. 87th
EUROMICRO Conf. on Soft. Eng. and Advanced
App., pages 47-50. IEEE, 2011.

K.-K. Lau, P. Velasco Elizondo, and Z. Wang.
Exogenous connectors for software components. In
G.T. Heineman et al., editor, Proc. 8th Int. Symp. on
Component-based Software Engineering, LNCS 3489,
pages 90—-106. Springer-Verlag, 2005.

K.-K. Lau and Z. Wang. Software component models.
IEEE Trans. on Soft. Eng., 33(10):709-724, 2007.

N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. on Soft. Eng.,
26(1):70-93, January 2000.

A. Rausch, R. Reussner, R. Mirandola, and F. P14sil,
editors. The Common Component Modeling Example:
Comparing Software Component Models. LNCS, 5153.
Springer Berlin Heidelberg, 2008.

M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

P. Velasco Elizondo and K.-K. Lau. A catalogue of
component connectors to support development with
reuse. The Journal of Syst. and Soft., 83:1165-1178,
2010.

W. Opdyke Refactoring Object-Oriented frameworks.
University of Illinois, Urbana-Champaign, 1992.

N. Wirth. Program development by stepwise
refinement. Commun. ACM, 14(4):221-227, 1971.

