Check for
Updates

Extending Object-Oriented Systems with
Roles

GEORG GOTTLOB

Vienna University of Technology, Austria
and

MICHAEL SCHREFL and BRIGITTE ROCK
University of Linz, Austria

In many class-based object-oriented systems the association between an instance and a class
is exclusive and permanent. Therefore these systems have serious difficulties in representing
objects taking on different roles over time. Such objects must be reclassified any time they
evolve (e.g., if a person becomes a student and later an employee). Class hierarchies must be
planned carefully and may grow exponentially if entities may take on several independent
roles. The problem is even more severe for object-oriented databases than for common
object-oriented programming. Databases store objects over longer periods, during which the
represented entities evolve. This article shows how class-based object-oriented systems can be
extended to handle evolving objects well. Class hierarchies are complemented by role hierar-
chies, whose nodes represent role types an object classified in the root may take on. At any
point in time, an entity is represented by an instance of the root and an instance of every role
type whose role it currently plays. In a natural way, the approach extends traditional
object-oriented concepts, such as classification, object identity, specialization, inheritance, and
polymorphism in a natural way. The practicability of the approach is demonstrated by an
implementation in Smalltalk. Smalltalk was chosen because it is widely known, which is not
true for any particular class-based object-oriented database programming language. Roles can
be provided in Smalltalk by adding a few classes. There is no need to modify the semantics of
Smalltalk itself. Role hierarchies are mapped transparently onto ordinary classes. The
presented implementation can easily be ported to object-oriented database programming
languages based on Smalltalk, such as Gemstone’s OPAL.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.2.10 [Software Engineering]: Design—methodologies; representation; D.3.3
[Programming Languages]: Language Constructs and Features; H.2 [Database Manage-
ment]: General; H.2.1 [Database Management]: Logical Design—data models; H.2.3 [Data-
base Management]|: Languages—database (persistent) programming languages; H.2.8 [Data-
base Management]: Database Applications

General Terms: Design, Languages

Authors’ addresses: G. Gottlob, Department of Information Systems, Christian Doppler
Laboratory of Expert Systems, Vienna University of Technology, Paniglgasse 16, A-1040 Wien,
Austria; email: gottlob@dbai.tuwien.ac.at; M. Schrefl and B. Réck, Department of Information
Systems, Data and Knowledge Engineering, University of Linz, Altenbergerstrasse 69, A-4040
Linz, Austria; email: schrefl@dke.uni-linz.ac.at.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1046-8188/96/0700—-0268 $03.50

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996, Pages 268—-296.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F230538.230540&domain=pdf&date_stamp=1996-07-01

Extending Object-Oriented Systems with Roles . 269

Additional Key Words and Phrases: Delegation, inheritance, object-oriented databases, object
specialization, roles

1. INTRODUCTION

Object-oriented systems allow the real world to be represented more
directly than do conventional ones. Objects model the structure as well as
the behavior of real-world entities by means of a set of variables and a set
of methods, respectively.

The object-oriented approach uses two important abstraction principles
for structuring designs: classification and generalization. Classification is
an abstraction principle according to which similar objects are grouped into
classes defining the structure and behavior of their instances. Generaliza-
tion is an abstraction principle according to which classes are organized
into a class hierarchy such that properties shared by several classes are
abstracted out into a common superclass. Specialization, the inverse of
generalization, is used to refine an existing class into more specific sub-
classes.

Class-based object-oriented systems, such as the object-oriented pro-
gramming language Smalltalk [Goldberg and Robson 1989] and the object-
oriented database programming language OPAL [Butterworth et al. 1991]
represent real-world entities as instances of the most specific class in which
they can be classified. The association between an instance and a class is
exclusive and permanent. Therefore, this approach is appropriate only if
the real-world entities to be modeled can be partitioned into a set of disjoint
classes and never change their class. Classification hierarchies of plants, of
animals, or of technical parts are good examples.

Many applications, however, are dynamic and encompass entities that
evolve over time. Persons are the most illustrative example. A person may
take on different roles, become a student, an employee, a department
manager, and so forth. But not only persons evolve in time; so do office
documents or products in production lines.

Representing and maintaining evolving objects using class hierarchies
that require an object to be classified into a single class is a tedious task.
Entities need to be reclassified whenever they evolve. An instance must be
created of the class to which an entity belongs in the evolved state; relevant
information from the instance representing the old state of the entity must
be copied to the new instance; all references to the old instance must be
reset to the new instance; and finally the obsolete instance must be deleted.

The problem is even more cumbersome if an entity can take on several
roles independently. In order to support an exclusive classification of
objects, a separate class must be defined for every possible combination of
roles. These intersection classes are usually defined by means of multiple
inheritance. Languages that do not support multiple inheritance have

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

270 . Georg Gottlob et al.

serious difficulties in handling evolving objects, as they stick to an exclu-
sive classification hierarchy.

Evolving objects can be handled most naturally by applying specializa-
tion at the instance level rather than at the class level. A real-world entity
is represented by several objects, each representing it in a particular role.
The objects of one entity are organized in an object hierarchy in which more
specialized objects inherit variable values and methods from more general
ones, e.g., somebody being a student and employed will be represented by a
person object, a student object, and an employee object corresponding to the
birth certificate, the enrollment record, and the employment record in the
real world. The student object and the employee object inherit name and
birth date from the person object.

Such an approach is usually followed by classless object-oriented systems
based on prototypes, in which instances inherit from each other. Whereas
class-based systems can take advantage of the uniform structure of the
instances of a class to store and access them efficiently, prototype-based
systems cannot.

In this article, we show how evolving objects can be handled nicely in
class-based systems as well. The key notion is that of a role hierarchy. A
role hierarchy is a tree of special types, called role types. The root of this
tree defines the time-invariant properties of an object. The other nodes
represent properties (types) that the object may acquire and lose during its
lifetime. The hierarchical organization reflects refinement, as will be
explained later. At any point in time, an entity is represented by an
instance of the root type and an instance of every role type whose role it
currently plays. If an entity acquires a new role, a role-specific instance of
the appropriate role type is created; if it abandons a role, the role-specific
instance is destroyed. Role hierarchies extend traditional object-oriented
concepts such as classification, object identity, specialization, inheritance,
and polymorphism in a natural way. We discuss each of these concepts in
detail in this article.

Consolidating the class-based and the prototype-based paradigm using
object specialization (role hierarchies) has been proposed independently by
Schrefl [1988] and Sciore [1989]. The proposed approaches differ in the
degree of freedom in which objects may participate in object hierarchies. In
Sciore’s model an object hierarchy may be cloned from a template hierarchy,
but it is potentially unique in structure and behavior. In Schrefl’s model
possible object hierarchies must be predefined by role specialization classes
at the type level. Thus Sciore’s model is biased toward the prototype-based
approach and Schrefl’s model toward the class-based approach. Whereas
the former is more appropriate for experimental phases of system develop-
ment, the latter is usually followed in database design.

More recently, Stein and Zdonik [1990] and Wieringa and Jonge [1991]
have pointed out that objects may reference a particular role of an object
and not only an object itself. Richardson and Schwarz [1991] have intro-
duced the concept of aspects to support modeling of roles in strongly typed
object-oriented database systems. They use a model in which type imple-

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 271

mentations and type interfaces are defined separately without any explicit
relationship. A particular type implementation belongs to a type interface
if it conforms to it. An aspect is defined by a special type implementation
that extends the abstract data type of the base object. Any object conform-
ing to the abstract data type of the base object may acquire the aspect, i.e.,
take on the role modeled by the aspect. The model proposed by Richardson
and Schwarz [1991] does not consider inheritance and has no explicit
operators for switching between roles.

The importance of roles during object-oriented analysis has been pointed
out by Pernici [1990], Papazoglou [1991], and recently by Martin and Odell
[1992]. Martin and Odell propose an implementation of roles using object
slicing, in which a real-world entity is represented by a conceptual object
and several implementation objects. Object slicing is essentially a special
form of object specialization suggested in Schrefl [1988]. It corresponds to
an object specialization hierarchy of height two, with the conceptual object
being the root and the implementation objects its descendants.

The restriction that an object be associated with a single most-specific
type was first levied in Iris [Fishman et al. 1987]. Iris allows an object to
belong to several types and to gain or lose types during its lifetime. But it
misses the possibility of role-specific behavior: real-world entities are
represented by a single object; thus the entire set of types the object
belongs to is visible in every context. Consequently, two roles of an object
may not have different methods of the same name.

Independently, Albano et al. [1993] have developed an object data model
with roles and have implemented this model in a new language called
Fibonacci. At first sight, Albano’s model and our model, which is an
extension of our own previous work [Gottlob et al. 1990; Schrefl and
Neuhold 1988], have several features in common. The most important ones
are: (1) a role hierarchy can be associated to a root class, and an object in
this class can play any role belonging to the hierarchy; (2) messages are
resolved according to roles the object plays. Taking a closer look, the
models exhibit significant differences, which will be explained in detail
within this article. One such difference is the resolution mechanism for
methods. We will argue why we consider our approach semantically more
meaningful. Other major contributions of our model are the possibility of
an object to appear repeatedly in the same type of role and the possibility to
combine object classes and role types orthogonally. Similar features are not
present in Fibonacci.

The major difference of our approaches, however, is in the motivation.
Albano’s important contribution is to show how, using Fibonacci, the role
concept can be supported in a new language built from scratch. Using
Smalltalk, we demonstrate how existing object-oriented languages can be
easily extended with roles. We show that roles can be handled in Smalltalk
by adding a few classes. There is no need to modify the semantics of
Smalltalk itself. Our work also shows that there is no need to give up a
favorite class-based object-oriented language because it does not directly
support roles. We chose Smalltalk as a typical and widely known represen-

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

272 . Georg Gottlob et al.

tative of class-based languages. Our findings, however, also apply to
object-oriented database programming languages based on Smalltalk.

A concept closely related to roles is class migration. It refers to the
change of the class of an object [Li and McLeod 1988]. Class migration is
also important in schema evolution [Banerjee et al. 1987; Nguyen and Rieu
1989; Skarra and Zdonik 1986] if instances of an old version of a class must
be migrated to a newer version.

The remainder of the article is organized as follows. We portray the
characteristic features of the role concept in Section 2. In Section 3, we
show that representing roles by ordinary class hierarchies is difficult. In
Section 4, we introduce role hierarchies. We discuss the representation of
roles in Smalltalk; we show how role hierarchies extend conventional
object-oriented concepts in a natural way, and we demonstrate how role
hierarchies support the characteristic features of the role concept in a very
flexible way. In Section 5, we extend our discussion to roles in which
entities may occur repeatedly. In Section 6, we discuss the combination of
conventional class hierarchies and role hierarchies. We present the overall
idea of the implementation in Section 7. The most important parts of code
for extending Smalltalk with roles are given in Section 8, along with a
conclusion and summarization of the main results.

2. CHARACTERISTIC FEATURES OF ROLES

Analyzing the dynamic nature of entities and their ability to play various
roles leads to the following characteristic features of the role concept:

—Various roles of an entity may share common structure and behavior, e.g.,
the student role and the employee role of a person share his/her name
and birth date.

—Entities can acquire and abandon roles dynamically, e.g., a person being
an employee may be promoted to a department manager and may later
be demoted if the managerial job is not performed satisfactorily.

—Roles can be acquired and abandoned independently of each other, e.g., a
person can become a student independently of being an employee.

—Entities exhibit role-specific behavior, e.g., different phone numbers may
apply to persons in their private, student, and employee roles.

—Roles restrict access to a particular context, e.g., an employee’s salary is
not accessible if the person is viewed in the student role.

—Entities may occur repeatedly in the same type of role, e.g., an employee
may become a project manager of several projects. Each of these projects
may require different skills and give different responsibilities.

3. CLASS HIERARCHIES

Representing entities and their roles using ordinary class hierarchies a la
Smalltalk is difficult. Class hierarchies can only cope efficiently with
sharing structure and behavior, but they have serious difficulties with the
remaining characteristic features of roles:

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 273

- name
Person — birthDate
— privatePhoneNo

|- university -
— major salary
Student - ot Employee L phoneNo
— department [~ skills

DepartmentManager| ProjectManager

— promotionDate — responsibilities

Fig. 1. A class hierarchy.

—Class hierarchies support sharing of structure and behavior among sev-
eral classes due to inheritance . Instance variables and instance methods
defined in some class are inherited by its subclasses. Figure 1 shows a
class hierarchy, in which classes are depicted by rectangles and subclass
relationships by solid arrows pointing from the subclass to the super-
class. For simplicity, only instance variables of classes are depicted.
Instance methods are not shown. The class hierarchy expresses that
students and employees are persons and that department managers and
project managers are employees. The class Person defines the three
instance variables name, birthDate, and privatePhoneNo . These are inher-
ited by the subclass Employee, which defines the two additional instance
variables salary and phoneNo.

In a class hierarchy, every real-world entity is represented as an
instance of the most specific class for which it qualifies. An instance stores
a value for each instance variable defined in or inherited by its class.
Figure 2 shows two instances of the class hierarchy of Figure 1. Mr. Miller
is a person, but neither a student nor an employee. He is represented as an
instance of class Person with instance variables name, birthDate, and
privatePhoneNo . Mrs. Smith is an employee, but neither a department
manager nor a project manager. She is represented as an instance of class
Employee with instance variables name, birthDate, and privatePhoneNo,
which are inherited by the class Employee from its superclass Person, and
with instance variables salary and phoneNo defined at class Employee.

—Tracking evolving objects is a tedious task. If an entity acquires or
abandons a role, it must be reclassified, e.g., promoting Mrs. Smith to a
department manager involves the following steps (cf. Figure 3).

(1) An instance of class DepartmentManager must be created.

(2) The instance variables of the instance of Employee that represents
Mrs. Smith must be copied into the corresponding instance variables
of the new instance of DepartmentManager .

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

274 . Georg Gottlob et al.

Miller, Robert
Oct. 12. 1939
309-7790

Empl Smith, Anne
Student Jan. 3. 1966
312-4534
1500
304-5601
DepartmentManager ProjectManager

Fig. 2. An extension of a class hierarchy.

Person

Miller, Robert
Oct. 12. 1939
309-7790

Employee i ne
' V. 1966

Student

irlvrl]ltfé OAqg% o ProjectManager

DepartmentManager

Apr. 16. 1992

Fig. 3. Evolving an object in a class hierarchy.

(3) All references to the Employee instance of Mrs. Smith must be reset
to the new DepartmentManager instance.

(4) The Employee instance of Mrs. Smith must be deleted.

Figure 4 shows the corresponding Smalltalk code. It should be self-
explanatory, except for the message become. The message oldinstance
become: newlnstance is system defined. It switches all references point-
ing to the receiver (oldinstance) to the instance supplied as parameter
(newlnstance). Demoting Mrs. Smith to an employee is equally difficult.
The steps necessary to reflect the demotion are similar to those described
above for promoting Mrs. Smith.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 275

“ Create an instance of DepartmentManager representing Mrs. Smith *#

depMgSmith <-

DepartmentManager new.

“ Copy instance variables “

depMgsSmith name: (empsSmith name).

depMgSmith birthDate: (empSmith birthDate).
depMgSmith privatePhoneNo: (empSmith privatePhoneNo).
depMgSmith salary: (empSmith salary).

depMgSmith phoneNo: ({(empSmith phoneNo) .

“ Reset all references to empSmith to depMgSmith “

empSmith become: depMgSmith.

Fig. 4. Evolving an object in Smalltalk.

—~Class hierarchies must be planned carefully and may grow exponentially
if entities can take on several roles . A separate class must be defined
for every possible combination of roles. In our example, a class
Student_Employee must be defined to take into account that students
may also be employees. A person being a student as well as an
employee is represented by an instance of that class. Furthermore, a
class Department_and_ProjectManager must be defined if a department
manager may also be a project manager. Supporting every combina-
tion theoretically possible leads to an exponential number of classes.
In our example, the class Student_ProjectManager must be defined to
represent persons who are students and project managers. Similarly, the
classes Student_DepartmentManager and Student_Department_and_Project-
Manager need to be defined, although such combinations might occur seldom
if ever. Careful planning is necessary to decide which odd cases a system
must be able to handle. If the need for a new class combination is discovered
only at a late stage of the software life cycle, an expensive modification of
both the class hierarchy and the methods using these classes may become

necessary.

Intersection classes, such as Student_Employee, are usually defined by
means of multiple inheritance. The class Student_Employee is made a
subclass of the classes Student and Employee, inheriting instance variables
and instance methods from both. Naming conflicts must be resolved, if
Student and Employee define variables or methods of the same name. In our
example, Student and Employee define an instance variable phoneNo. One
way to resolve the conflict is by renaming phoneNo of Employee to business-
PhoneNo. Languages that do not support multiple inheritance, such as
Smalltalk, can define intersection classes by inheriting only from one class
and by copying instance variable and method definitions from the other.
This solution, however, introduces redundancies that complicate later exten-
sions and modifications.

—Role-specific behavior is not supported by class hierarchies. Role-specific
behavior refers to the capability of an object to respond to a message from
the perspective of its particular role. A person will provide a different

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

276 . Georg Gottlob et al.

- name
Person - birthDate
[~ phoneNo

university
major salary
minor phoneNo

phoneNo

) 3«@%@‘@&
. %%’g"%)
S

department
promotionDate

Department Project

Manager

qualified by Project
skills
Manager, responsibilities

Fig. 5. A role hierarchy.

phone number depending on whether the context is private or business.
Such context-dependent behavior is not supported by class hierarchies in
Smalltalk.

—Context-dependent access restrictions are not supported by class hierar-
chies. As objects cannot be viewed in particular roles, the entire set of
properties of an object is always accessible.

—~Class hierarchies cannot handle multiple occurrences of one entity in the
same type of role. An entity is usually represented only once as an
instance of a class. If the entity is represented by several instances,
however, the information that these instances belong to one real-world
entity gets lost.

4. ROLE HIERARCHIES

Class hierarchies have serious difficulties in modeling evolving objects
because they apply specialization and inheritance at the class level. When
objects change their type dynamically, it is more appropriate to apply
specialization and inheritance at the instance level. This is the case with
role hierarchies. A role hierarchy consists of a tree of role types and defines
how some kind of entity may evolve. At the schema level, a role hierarchy
looks like a class hierarchy. Every role type defines a set of instance
variables and a set of instance methods. The difference with respect to class
hierarchies is that a subtype in a role hierarchy does not inherit the
definitions of instance variables and instance methods from the supertype.
As we will see later, inheritance is defined at the instance level rather than
at the class level. Figure 5 shows a role hierarchy corresponding to the
class hierarchy of Figure 1. Role types are depicted by circles. Every role
type is connected by a shaded arrow to the class or role type whose objects

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 277

Miller, Robert
Oct. 12. 1939
309-7790

Smith, Anne
Jan. 30. 1966
312-4534

Jones, Edward

Apr. 15. 1970
546-22190

Princeton
AGR
FKG

258-5387

1500
304-5601

304-5618

Department ¥ Project

accounting
Apr. 17. 1992

Manager Manager,

Fig. 6. An extension of a role hierarchy.

may take on that role. Double circles represent qualified roles, which are
discussed later.

At the instance level, a real-world entity is represented as an instance of
the root type and as an instance of every role type for which it currently
qualifies. As definitions of instance variables are not inherited between role
types, every instance of a role type stores only values of instance variables
defined for that role. An instance of a subtype and an instance of the
supertype that represents the same real-world entity are related by a roleOf
relationship. Although a subtype in a role hierarchy does not inherit
definitions of instance variables and instance methods from its supertype,
every instance of the subtype inherits from its corresponding instance of
the supertype. Every message not understood by the former is delegated to
the latter. Figure 6 shows an extension of the role hierarchy of Figure 5.
Mr. Miller is a person, but neither a student nor an employee. He is
represented as an instance of Person with instance variables name, birth-
Date, and phoneNo. Mrs. Smith is an employee, but neither department
manager nor a project manager. She is represented by an instance of
Person with instance variables name, birthDate, and phoneNo, as well as by
an instance of Employee with instance variables salary and phoneNo. The

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

278 . Georg Gottlob et al.

class method of RoleType purpose

defRoleType: roleTypeName
instanceVariableNames: stringOflInstVarNames
classvVariableNames: stringOfClassVarNames Define role type roleTypeName.
poolDictionaries: stringOfPoolNames
category: categoryNameString
roleSuperType: nameOfRoleSuperType

newRoleOf: anCbject Create new role of anObject.

Fig. 7. Methods for defining role types and instances.

employee instance is linked by a roleOf relationship to the corresponding
person instance. Mr. Jones is both student and department manager. He is
represented by instances of Person, Student, Employee, and Department-
Manager.

Fibonacci [Albano et al. 1993] uses a different approach to cope with the
many-faceted nature of real-world entities. There, a real-world entity is
represented by a single object which is internally made of two components:
(a) a set of blocks where data and methods are stored and (b) a dispatcher
in charge of directing the messages to the appropriate method that pro-
duces the answer. Each block represents a role of the object; the dispatcher
implements the binding of methods to messages. We will discuss this
binding mechanism later. Fibonacci’s approach is feasible when a new
language is built from scratch. Our approach, which uses several objects to
represent a real-world entity, is more appropriate when an existing lan-
guage is to be extended with roles. It also is the better choice in a
distributed system in which, for example, several roles of an entity may be
stored at different sites, each using a different object identity (one per role).
The latter problem has been addressed in a previous paper [Schrefl and
Neuhold 1988].

4.1 Role Definition in Smalltalk

Role hierarchies can be represented in Smalltalk by two classes: Object-
WithRoles and RoleType.

A particular role hierarchy is represented as follows: the root of the
hierarchy is represented by a subclass of ObjectWithRoles and every role
type by a subclass of RoleType.

The class behavior of RoleType, which is summarized in Figure 7,
provides messages for creating new role types and for defining role in-
stances.

—Defining new role types: A particular role type can be defined by sending
message defRoleType:instanceVariableNames:classVariableNames:poolDictionar-
ies:category:roleSuperType: to class RoleType, where the class representing the
supertype in the role hierarchy is provided as parameter in addition to the
role-specific instance variables. The supertype must be a subclass of either a

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 279

ObjectWithRoles
subclass: #Person
instancevVariableNames: ‘name birthDate phoneNo’
classvVariableNames: ‘'
poolDictionaries: ‘’
category: ‘Example’,

RoleType
defRoleType: #Employee
instanceVariableNames: ‘salary phoneNo’
classVariableNames: ‘°*
poolDictionaries: *’
category: ‘Example’
roleSuperType: #Person.

RoleT{Fe
efRoleType: #Student
instancevVariableNames: ‘university major minor phoneNo’
classvVariableNames: ‘°*
poolDictionaries: **
category: ‘Example’
roleSuperType: #Person.

Fig. 8. Role type definition in extended Smalltalk.

RoleType or ObjectWithRoles. Figure 8 shows the definition of entity type
Person and role types Employee and Student.

Creating role instances: An instance of a role type can be created using a
message of type aRoleType newRoleOf:anObject, where anObject becomes the
ancestor of the new role type instance. Figure 9 illustrates how the employee
and student roles of Mrs. Smith can be defined.

The behavior for handling objects with roles and role instances, which is
summarized in Figure 10, provides messages for deleting a role, for
switching roles, and for checking whether some role instance is currently
playing some other role.

—Deleting a role: Message aRoleObject abandon deletes the addressed
role object. If an inner node in a role hierarchy of instances is abandoned,
the subhierarchy having that node as root is abandoned, too.! Figure 9
gives an example.

—Switching roles: Three message signatures are provided in our Small-
talk extension for switching the behavioral context of an entity: Message
anObject roleOf returns the ancestor of the receiver in the role hierar-
chy—e.g., message studentSmith roleOf retrieves Mrs. Smith as an in-
stance of Person. Message anObject root returns the root of the receiver’s
role hierarchy—e.g., message employeeSmith root retrieves Mrs. Smith
as Person. Message anObject as: aRoleType retrieves that instance of
aRoleType that represents the same real-world entity as anObject. An

! Smalltalk has no explicit function to remove an object no longer being used. An object is
reclaimed automatically when there are no references to it from other objects. The purpose of
the message abandon is to remove all internal references to the receiver. Various internal
references are established between objects in a role hierarchy to speed up switching between
roles and testing for entity equivalence. This will be discussed later.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

280 . Georg Gottlob et al.

” Define root instance “

personSmith <- Person new.

personSmith name: ’Smith, Anne’.

personSmith phoneNo: ‘312-4534°‘.

personSmith birthDate: (Date newDay: 30 month: #jan year: 66).
“ Define employee role *

empSmith <- Employee newRoleOf: personSmith.

empSmith salary: 1500.

empSmith phoneNo: ‘304-5601".

» Define student role ”

studentSmith <- Student newRoleOf: personSmith.

“ Smith graduates *“
studentSmith abandon.

Fig. 9. Role instance definition in extended Smalltalk.

instance method of ObjectWithRoles and RoleType purpose

root

Retrieve root of role hierarchy.

roleof

Retrieve ancestor in role hierarchy.

as: aRoleType

Switch to role aRoleType.

existsAs: aRoleType

Does receiver have role aRoleType?

entityEquiv: anObject

Does receiver represent the same real-
world entity as anObject?

instance method of RoleType

purpose

abandon

Quit this role.

Fig. 10. Methods for handling roles and objects with roles.

error is raised if no such instance exists—e.g., message studentSmith as:
Employee retrieves that instance of Employee representing Mrs. Smith.

—Checking on role existence:

Message anObject existsAs:

aRoleType

checks whether an instance of aRoleType exists that represents the same
real-world entity as anObject—e.g., message aStudent existsAs: Employee
can be used for checking whether a given student is also an employee.
Message anObiject1 entityEquiv: anObject2 can be used for checking
whether anObject1 and anObject2 represent the same real-world entity—
e.g., message aStudent entityEquiv: anEmployee checks whether aStudent
and anEmployee represent the same person.

The instance behavior of class ObjectWithRoles provides the same mes-
sages for switching roles and for checking on role existence as class
RoleType. Thus, despite being represented by instances of different classes,
the objects at the root and at the inner nodes of a role hierarchy conform to

a common protocol.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 281

Our inheritance mechanism is different from that of Fibonacci. We
propose to delegate a message which cannot be handled by some role
instance to the more general instance in the role hierarchy. Fibonacci’s
alternative resolution mechanism for methods first goes down the role
hierarchy. The most specialized behaviors prevail; the dispatch table of an
object is updated each time a new role is acquired. When among the
methods to choose there is not a most specialized one, the most recently
acquired one is chosen. For example, if the Person instance Edward Jones
receives the messages phoneNo (cf. Figure 6), the phone number of his
student role or the phone number of his employee role is returned,
depending which role was acquired more recently.

We have deliberately avoided a simple priority-based upward inheritance
mechanism from more special roles to more general roles. As pointed out in
a previous paper by Schrefl and Neuhold [1988], selecting one subrole from
several possible ones often gives undesired semantics. Consider, for exam-
ple, two roles Entrepreneur and Employee of Person, each defining a method
income. Now, a person’s income might not be fully reflected in self-
employment income or in employee income alone, nor in the latest acquired
role. Rather, a person’s income is an aggregate of the incomes of all roles.
Aggregation is one choice, but not always the most meaningful one.
Therefore this article identifies several frequently occurring semantic rela-
tionships between methods of corresponding objects (sibling roles), each
giving rise to a different strategy for upward inheritance. A particular
upward-inheritance strategy is chosen by specifying one of these predefined
semantic relationships for each pair of corresponding methods in the
database schema. Each of these inheritance strategies can be programmed
using our methods for role switching and for checking role existence.

It should be noted that Fibonacci provides an alternative binding mech-
anism, called strict binding, which must be explicitly requested by a special
operator when a message is passed to a role. If strict binding is requested,
method lookup proceeds only upward in the role hierarchy. This avoids
undesired upward inheritance.

4.2 Object-Oriented Concepts and Role Hierarchies

Classification, object identity, specialization, and polymorphism are the
most prominent concepts of object-oriented systems. In the following, we
show how role hierarchies extend them in a natural way.

—~Classification: Classification is supported in two ways:

(1) Entities are classified into a set of disjoint entity types represented by
object classes. Every entity type may be the root of a role hierarchy
and defines the structure and behavior common to all roles of any
entity of that type.

(2) Entities are classified into a set of overlapping role types. Every
entity is represented by an instance of every role type it belongs to. A

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

282 . Georg Gottlob et al.

anEmployee <- empSmith.
aStudent <- studentSmith.

Checking for role identity “

aStudent == studentSmith.
true

asStudent == anEmployee.
false

Checking for entity equivalence “

aStudent entityEquiv: studentSmith.
true

aStudent entityEquiv: anEmployee.
true

Fig. 11. Checking for role identity and entity equivalence.

role type defines the structure and behavior of an entity that is
specific to the particular role.

—Object identity: The notion of object identity has to be revised in the
realm of roles, because real-world entities are represented by several
objects. More specific notions are needed:

(1) Entity identity: Every real-world entity is identified by a unique
system-defined identifier. Entity identity is provided by the object
identity of the root instance of a role hierarchy.

(2) Role identity: Every particular role of a real-world entity is identi-
fied by a unique system-defined identifier. Role identity is provided
by the object identity of the instance representing the entity in that
role. Figure 11 shows an example of checking for role identity.

(3) Entity equivalence: Two instances are entity equivalent if they corre-
spond to the same real-world entity. This is the case if they have a
common root instance. Message anObject1 entityEquiv: anObject2,
introduced above, can be used to check for entity equivalence (cf.
Figure 11).

—Specialization and inheritance: Specialization and inheritance apply at
the instance level rather than at the class level—e.g., the instance
representing Mrs. Smith as an Employee inherits from its corresponding
instance of Person. Every message not understood by the former is
delegated to the latter. Thus the instance representing Mrs. Smith as an
Employee inherits the value of the property name from the instance
representing Mrs. Smith as a Person (cf. Figure 12).

—Polymorphism and behavioral contexts: Polymorphism means that a
single message selector may refer to different method code. Polymor-
phism has traditionally been used to handle a message differently for
different kinds of entities. But messages sent to entities of the same kind
are always handled the same way. This is different with roles. The same
message sent to different yet entity-equivalent instances may yield
different results. Every role type defines a separate behavioral context—

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 283

“ empSmith inherits name from personSmith #

empSmith name.
Smith, Anne

Fig. 12. Instance-level inheritance.

e.g., message phoneNo sent to the instance representing Mrs. Smith as
Person will yield her private phone number. The same message sent to
the instance representing Mrs. Smith as Employee will yield her business
phone number (cf. Figure 13).

4.3 Flexibility of Role Hierarchies

We have seen that representing roles using ordinary class hierarchies is
difficult. In the following, we show how role hierarchies support the
characteristic features of the role concept in a very flexible way:

—Role hierarchies support sharing of information between different roles:
Properties shared by several roles are represented in a common ancestor
in the role hierarchy. In contrast to class hierarchies, sharing is utilized
at the instance level rather than at the class level. This facilitates
modeling the remaining features of roles.

—Tracking evolving objects is easy with role hierarchies: If an entity
acquires a new role, a new instance of the respective role type is created.
If an entity abandons a role, its instance of the respective role type is
deleted—e.g., promoting employee Mrs. Smith to a department manager
involves a single step. An instance of DepartmentManager is created and
linked by a roleOf relationship to its corresponding instance of Employee
(cf. Figure 14). Similarly, demoting Mrs. Smith thereafter involves a
single step. Figure 15 shows the Smalltalk code for promoting Mrs. Smith
to department manager and the code for demoting Mrs. Smith thereafter.

—Several independent roles of an entity can be modeled without using
multiple inheritance: Class hierarchies require every entity to be repre-
sented as an instance of a single class. If an entity takes on several roles,
each of which is represented by a separate class, they must be combined
into a single class using multiple inheritance. Role hierarchies represent
an entity by an instance of every role type for which it qualifies. Several
roles are combined at the instance level rather than at the class level.
Hence, multiple inheritance can be avoided—e.g., if Mr. Jones is a
student and an employee, he will be represented by an instance of
Person, by an instance of Student, and by an instance of Employee (cf.
Figure 6).

—Role hierarchies support modeling role-specific behavior: Every instance
in a role hierarchy represents a separate behavioral context of an entity.
Figure 16 demonstrates the effect of the messages for switching roles
introduced earlier.

—Accessing an entity is restricted to the role in which it is currently
viewed: An instance of a role type can answer every message defined at
this type or defined at any ancestor in the role hierarchy. But it does not

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

284 . Georg Gottlob et al.

“ Smith as person returns her private phone number *
personSmith phoneNo.

312-4534
“ Smith as an employee returns her business phone number “

empSmith phoneNo.
304-5601

Fig. 13. Behavioral contexts.

Person

Miller, Robert
Oct. 12. 1939
309-7790

Smith, Anne
Jan. 30. 1966
;312-4534

“, N
%, roleOf Y
L

Department

Project

accounting

Manager
Apr. 21. 1992

Manager,

Fig. 14. Evolving an object in a role hierarchy.

“ promoting Mrs. Smith #
depMgSmith <- DepartmentManager newRoleOf: empSmith.

depMgSmith promotionDate: today.
depMgSmith department: accounting.

“ Demoting Mrs. Smith *
depMgSmith abandon.

Fig. 15. Evolving an object in extended Smalltalk.

understand messages defined at sibling nodes in the role hierarchy—e.g.,
the message studentSmith salary will fail, whereas the message (stu-
dentSmith as: Employee) salary will return the salary of Mrs. Smith as an

employee.
—An entity may have multiple occurrences of the same type of role:

role is called a qualified role. Qualified roles are discussed in detail

below.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 285

Selecting phone number of employee Smith

empSmith phoneNo.
304-5601

The roleOf-message returns the ancestor in a role hierarchy.
Thus the following message returns the private phone number
of employee Smith ~

empSmith roleOf phoneNo.
312-4534

“ The root-message returns the root instance in a role hierarchy *“

personSmith <- studentSmith root.
depMgSmith root phoneNo.
312-4534

“ Checking whether Mrs. Smith exists as an employee and, if so,
selecting her phone number *#

(personSmith existsAs: Employee)
ifTrue: [(personSmith as: Employee) phoneNo].
304-5601

Fig. 16. Switching behavioral contexts.

Fibonacci, in which a real-world entity is represented by a single yet
multifaceted object, does not support qualified roles. In the following
section we show that this kind of multiple instantiation is easy to imple-
ment if a real-world entity is represented by several model-world objects.

5. QUALIFIED ROLES

A role type defines a qualified role if a real-world entity may have several
occurrences of that role. Occurrences of the same entity are distinguished
by the value of a special instance variable named qualifier. Note that one
could also allow a nonqualified role to be instantiated multiple times by the
same entity. However, this would make it more difficult to identify a
specific occurrence of that role and to apply a general operator for role
switching, as no common discriminating attribute is known.

In our example, ProjectManager is a qualified role. The qualifier takes on
the Project supervised.

Figure 17 depicts an extension of the qualified role ProjectManager. Mrs.
Smith, who manages two projects, “CAD/CAM” and “0oDB,” is represented
by two instances of ProjectManager. Each instance models Mrs. Smith as
project manager of one of these two projects. Mrs. Smith has different
responsibilities in each of them. She is responsible for “reuse management”
in the former and for “quality assurance” in the latter.

Qualified role types can be made available in Smalltalk by a predefined
subclass of RoleType, QualifiedRoleType. The class behavior of Qualified
RoleType, which is summarized in Figure 18, provides messages for defin-
ing new qualified role types and for creating instances of qualified role

types.

—Defining new qualified role types: A particular qualified role type can be
defined by sending message defQualifiedRoleType:instanceVariableNames:

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

286

Georg Gottlob et al.

Person

Smith, Anne
Jan. 30. 1966

Project

accounting
Apr. 21. 1992

Manager

reuse management

ooDB
(1,2
quality assurance

Fig. 17. An extension of a qualified role type.

class method of QualifiedRoleType purpose

defQualifiedRoleType: roleTypeName
instancevVariableNames: stringOfInstVarNames
classVariableNames: stringOfClassVarNames

category: categoryNameString
roleSuperType: nameOfRoleSuperType
classOfQualifyingObj: aClass

poolDictionaries: stringOfPoolNames Define qualified role type roleTypeName.

newRoleOf: anObject gualifiedBy: qualifyingObj Create new qualified role of anObject.

Fig. 18. Methods for defining qualified role types and instances.

classVariableNames:poolDictionaries:category:roleSuperType:classOfQuali-
fyingObj: to class QualifiedRoleType, where the class representing the
supertype in the role hierarchy, nameOfRoleSuperType, and the class
whose instances are used as qualifiers, classOfQualifyingObj, must be
provided as parameters in addition to the role-specific instance variables
and instance methods. Figure 19 illustrates the definition of the qualified
role type ProjectManager.

—Creating qualified role type instances: The method newRoleOf: anObject
qualifiedBy: qualifyingObj is predefined for creating new qualified role

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 287

QualifiedRoleType
defQualifiedRoleType: #ProjectManager
instanceVariableNames: ‘skills responsibilities’
classVariableNames: ‘'’
poolDictionaries: ‘‘
category: ‘'
roleSuperType: #Employee
classOfQualifyingObj: #Project.

Fig. 19. Defining a qualified role type.

instances. Figure 20 illustrates the use of this message. Employee Smith
is made manager of two projects.

For handling qualified roles uniformly, the instance behavior of Object-
WithRoles and the instance behavior of RoleType are extended by methods
for checking role existence and for switching roles in the realm of qualified
roles. The semantics of the messages existsAs: and as: are redefined (cf.
Figure 10), and two new messages, existsAs:of: and as:of:, are introduced
(cf. Figure 21).

(1) Message anObject existsAs: aQualifiedRoleType returns true if at least
one occurrence of aQualifiedRoleType exists for anObject.

(2) Similarly, the message anObject as: aQualifiedRoleType retrieves a set
of instances that model the occurrences of aQualifiedRoleType for anOb-
ject.

(3) Message anObject existsAs: aQualifiedRoleType of: qualifyingObj checks
whether anObject exists as instance of aQualifiedRoleType that is qual-
ified by qualifyingObj.

(4) Message anObject as: aQualifiedRoleType of: qualifyingObj switches to
the instance of aQualifiedRoleType that is entity equivalent to anObject
and qualified by qualifyingObj.

QualifiedRoleType inherits methods to handle these messages from Role-
Type and defines an additional method qualifier returning the qualifier of
the role.

6. COMBINING CLASS AND ROLE HIERARCHIES

Class hierarchies and role hierarchies serve different purposes. Class
hierarchies provide a classification of entities into a set of disjoint entity
types. Role hierarchies define different behavioral contexts for entities of
the same type.

A class hierarchy can coexist with several role hierarchies. Every class in
the class hierarchy may function as the root of a role hierarchy. Roles
defined at a nonleaf node of the class hierarchy are inherited by this node’s
subclasses.

The possibility to combine class hierarchies and role hierarchies orthog-
onally is a feature unique to our model. Every class in a class hierarchy
may be the root of a role hierarchy and every role type the root of a class
hierarchy, i.e., roles may be subclassed. Furthermore, the ability to inherit
role hierarchies along a class hierarchy like methods and instance vari-

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

288 . Georg Gottlob et al.

ocodbProj <- Project new name: ‘0ODB’.

oodbProjMgSmith <- ProjectManager newRoleOf: empSmith gualifiedBy: oodbProj.

cadcamProj <- Project new name: ‘CAD/CAM’.

cadcamProjMgSmith <- ProjectManager newRoleOf: empSmith qualifiedBy: cadcamProj

Fig. 20. Defining a qualified instance type.

instance method of ObjectWithRoles and RoleType purpose
as: aQualifiedRoleType of: qualifyingObj Switch to role aQualifiedRoleType qualified by
qualifyingObj.
existsAs: aQualifiedRoleType of: qualifyingObj Does receiver have role aQualifiedRoleType

qualified by qualifyingObj?

instance method of QualifiedRole Type purpose

qualifier Return qualifier of a qualified role.

Fig. 21. Additional methods for handling qualified roles.

ables is an important contribution of our approach. Again, as we will see,
this feature is very useful and easy to implement.

Figure 22 shows one class and two role hierarchies. The class hierarchy
consists of three object classes: LegalEntity, Person, and Company. The
classes LegalEntity and Person are roots of role hierarchies. The first
consists of a single role, the qualified role Customer. The second corre-
sponds to the role hierarchy of Figure 5. The role Customer defined in the
class LegalEntity is inherited by the subclasses of LegalEntity, Person, and
Company. This means that every instance of Person may take on the role
Customer as well as every role defined in the role hierarchy of Person (cf.
Figure 23).

Classes and roles can be combined orthogonally. Classes may have
subclasses and may function as the root of role hierarchies, e.g., the class
LegalEntity has subclasses Person and Company and is role supertype of
role type Customer. Roles may have subroles and subclasses. We have seen
an example of the former. Role type Employee has subroles Department-
Manager and ProjectManager. We get an example of the latter by subclass-
ing role type Student to ForeignStudent (cf. Figure 22). This means that the
student role of a person is classified into either Student or ForeignStudent.
For foreign students, the country is recorded next to the university, major,
minor, and phone number (cf. Figure 23). The latter instance variables are
inherited by role type ForeignStudent at the class level from role type
Student.

To distinguish subclasses of role types from role types and ordinary
object classes, they are depicted by ovals (cf. ForeignStudent in Figure 22).

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 289

LegalEntity

qualified by Company

debits
- P |- birthDate
Company owner erson . ohoneNo
y &yyﬂ’ W %
eﬁ*”w %
university
major salary
minor Employee 1 phoneNo
phoneNo
el
& &

ForeignStudent

SR

&

&

Project
Managey

Fig. 22. A class and role hierarchy.

department
promotionDate

qualified by Project
skills

Manager responsibilities

7. THE IMPLEMENTATION

Roles can be made available in Smalltalk by adding three classes: Object-
WithRoles, RoleType, and QualifiedRoleType. The public interfaces of these
classes have already been introduced above. In this section we present the
overall idea of their implementation. The reader interested in details is
referred to the Figures 24-26, which show the instance protocol of the
above classes in Smalltalk. The entire code is available per email/ftp from
the authors.

(1) Class ObjectWithRoles defines the behavior and structure of objects
that may take on roles, i.e., that may be roots of role hierarchies. For
selecting a particular role of an object efficiently, the root object keeps a
dictionary of role occurrences, roleDictionary, indexed by role type. In
case of a qualified role, the dictionary entry contains not a single object,
but a set of objects representing all occurrences of the root object in that
particular role. If some role is currently not played by an object, no
entry will appear for that role in the role dictionary. Internal meth-
ods—which are not supposed to be called by user-defined methods—
initRoleDictionary, recordNewRole:, and recordNewQualifiedRole: are
used by the external methods newRoleOf: and newRoleOf:qualifiedBy:

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

290 . Georg Gottlob et al.

LegalEntity

company 1
1230

Company Person
Miller, Robert

Oct. 12, 1939
309-7790

300 o
De Campo, Giorgio
Apr. 15. 1970
040472/770506

leOf

£
g
H
H
¢
i
H
H

Wasrjngton ;
9
58801/145
i

£

500
304-5618

roleOf

ForeignStudent Wisconsin
GKA
FKG

798-2245

Project
Manager

Department \

accounting
Apr. 17. 1992

Manager

Fig. 23. An extension of a class and role hierarchy.

for initializing the role dictionary and for recording new roles or
qualified roles, respectively. Similarly, internal methods cancelRole-
AndSubroles: and cancelQualifiedRoleAndSubroles: are used by the ex-
ternal methods abandon of RoleType and abandon of QualifiedRoleType
for removing an entire subtree in the role hierarchy. These methods
again make use of internal methods cancelRole: and cancelQualified-

Role:, which remove a single entry from the role dictionary.

(2) The instance protocol of class RoleType defines the structure and
behavior of objects at inner nodes of a role hierarchy. Two references
are kept, one to the ancestor in the role hierarchy and one to the root.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles .

Object subclass: #ObjectWithRoles
instanceVariableNames: 'roleDictionary'
classvVariableNames: '!'
poolDictionaries: '
category: 'Roles'

ObjectWithRoles methodsFor: 'accessing'

root
"return the root of the role hierarchy"
Aself

ObjectwithRoles methodsFor: 'switching roles'

as: aRoleType
"retrieve the receiver’s entity-equivalent instance of aRoleTye"
AroleDictionary at: (aRoleType roleTypeName)

ifabsent: [self error: 'role does not exist']

as: aQualifiedRoleType of: qualifyingObj
"retrieve the receiver’s entity-equivalent instance of aQualifiedRoleType qualified
by qualifyingObij"
A{{self as: aQualifiedRoleType)
detect: [:0 | o qualifier == qualifyingObj]
ifNone: [self error: 'qualified role does not exist'l)

ObjectWithRoles methodsFor: 'testing for role existence'

existsAs: aRoleType
"test whether an instance of aRoleType exists that is entity-equivalent to the receiver"
AroleDictionary includesKey: ({aRoleType roleTypeName)

existsAs: aQualifiedReleType of: qualifyingObj
“test whether an entity-equivalent instance of aQualifiedRoleType, qualified by
qualifyingObj, exists"
A(roleDictionary includesKey: (aQualifiedRoleType roleTypeName)) and:
(((roleDictionary at: {(aQualifiedRoleType roleTypeName))
detect: [:0 | o gualifier == qualifyingObj] ifNone: []) notNil

ObjectWithRoles methodsFor: 'testing for entity eguivalence'

entityEquiv: anCbject
"test if the receiver and anObject represent the same real-world entity"

Agself root == (anObject root

ObjectWithRoles methodsFor: 'internal!
"no implementation is shown for internal methods"

cancelQualifiedRole: aQualifiedRoleObject
"remove a qualified role object from the set of roles in the receiver’s roleDictionary"

cancelQualifiedRoleAndSubroles: aQualifiedRoleCbject
"remove a gualified role object and its sub-objects from the receiver’s roleDictionary"

cancelRole: aRoleObject
"remove a role object from the receiver’s roleDicticnary”

cancelRoleAndSubroles: aRoleObject
*remove a role object and its sub-objects from the receiver’s roleDictionary"

initRoleDicticnary
vinitialization of instance variable roleDictionary"

recordNewQualifiedrole: aQualifiedRoleObject
"ingsert a new qualified role object into the receiver’s roleDictionary"

recordNewRole: aRoleObject
"ingert a new role object into the receiver’s roleDictionary"

Fig. 24. Instance protocol of class ObjectWithRoles.

291

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

292

. Georg Gottlob et al.

Object subclass: #RoleType
instancevVariableNames: ’'role0f root'
classvariableNames: '’
poolDictionaries: '
category: 'Roles’

RoleType methodsFor: 'accessing'

roleOf
"get ancestor"
AroleOf

root
"get root"
Aroot

RoleType methodsFor: 'abandoning roles'

abandon
"quit this role"
root cancelRoleAndSubroles: self

RoleType methodsFor: 'switching roles'

as: aRoleType
"retrieve entity-equivalent instance of aRoleType"
Aroot as: aRoleType

as: aQualifiedRoleType of: gualifyingObj
"retrieve entity-equivalent instance, qualified by qualifyingObj, of aQualifiedRoleType
Aroot as: aQualifiedRoleType of: qualifyingObj

RoleType methodsFor: ‘'testing for entity equivalence'

entityEquiv: anCbject
"check if the receiver and anObject represent the same real-world entity"
Aroot == {anObject root)

RoleType methodsFor: 'testing for role existence'

existsAs: aRoleType
*check whether an entity-equivalent instance of aRoleType exists"
Aroot existsAs: aRoleType

existsAs: aQualifiedRoleType of: qualifyingObj
“"check whether an entity-equivalent instance of aQualifiedRoleType qualified by
qualifyingObj exists"
Aroot existsAs: aQualifiedRoleType of: qualifyingObj

RoleType methodsFor: 'inheritance’

doesNotUnderstand: aMessage
"delegate every message not understood to the ancestor"
AroleOf perform: (aMessage selector) withArguments: (aMessage arguments

RoleType methodsFor: ‘'internal'

init: ancestor
"initialize references"
roleOf <- ancestor.
root <- ancestor root.
root recordNewRole: self

nullify
*set all references to nil"
roleQf <- nil.
root <- nil

Fig. 25. Instance protocol of class RoleType.

— The reference to the ancestor roleOf is mainly used for inheritance.

If a message is not understood by a particular role object, it is
delegated to its ancestor in the role hierarchy: in Smalltalk, every

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 293

RoleType subclass: #QualifiedRoleType
instancevariableNames: 'qualifier®
classVariableNames: ''
poolDictionaries: '!'
category: 'Roles!

QualifiedRoleType methodsFor: 'accessing'

qualifier
"return the value of the instance variable qualifier"
Aqualifier

QualifiedRoleType methodsFor: 'role abandoning'

abandon
"quit this role"
root cancelQualifiedRoleAndSubroles: self

QualifiedRoleType methodsFor: ‘'internal‘

init: ancestor
"not applicable to instances of QualifiedRoleType"
self shouldNotImplement

init: ancestor qualifiedBy: qualifyingObj
"initialize the receiver’'s references in the role hierarchy"
roleOf <- ancestor.
root <- ancestor root.
qualifier <- gqualifyingObj.
root recordNewQualifiedRole: self

Fig. 26. Instance protocol of class QualifiedRoleType.

message not understood by the receiver is taken care of by the
predefined method doesNotUnderstand:. This method is overridden
at RoleType such that every message not understood by a role object
is re-sent to its ancestor in the role hierarchy.

— The root reference is kept to speed up testing on entity equivalence
and switching between roles. Testing on entity equivalence of two
role objects is done efficiently by comparing their root references.
Switching between roles is done efficiently using the role dictionary
of the root object.

Internal methods init: and nullify are used for initializing and removing

these references.

(38) The class protocol of RoleType provides method newRoleOf: for creating
a new role object and method defRoleType:instanceVariableNames:class-
VariableNames: poolDictionaries:category:roleSuperType: for creating a
subclass representing a particular role type. The subclass is created
with two initialized class variables, RoleTypeName and RoleSuperType,
holding the name of the class and the name of the ancestor class in

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

294 . Georg Gottlob et al.

the role hierarchy and with the access methods for these class vari-
ables, roleTypeName and roleSuperType.?

(4) Class QualifiedRoleType, which is a subclass of RoleType, defines the
additional structure and behavior of qualified roles. The instance
variable, qualifier, stores a reference to the qualifying object. Qualified
roles are initialized by internal method init:qualifiedBy: rather than by
method init: inherited from RoleType.

(5) The class protocol of QualifiedRoleType replaces methods newRoleOf:
and defRoleType:instanceVariableNames:classVariableNames:poolDic-
tionaries:category:roleSuperType: inherited from RoleType class by
methods newRoleOf:qualifiedBy: and defQualifiedRoleType:instanceVari-
ableNames:classVariableNames:poolDictionaries:category:roleSuperType:
classOfQualifyingObj:, which also take the qualifier and the class of the
qualifying object into account.

The current implementation has the following restrictions:

(1) Every subrole of a qualified role must be a qualified role, too.

(2) The qualifier of a qualified role must be unique for a given role type and
a given entity.

(38) Only names of role types and not subclasses of role types can be used as
the names of behavioral contexts in the messages as, existsAs:, as:of:,
and existsAs:of:. Note that this is no severe restriction, as the role type
always provides a unique name for the behavioral context of an entity,
regardless whether the entity-equivalent role instance is a direct in-
stance of the role type or any one of its subclasses—e.g., the message
aPerson as: Student will retrieve a foreign student, if the person is a
foreign student.

8. SUMMARY AND CONCLUSION

We have shown how class-based object-oriented systems can be extended
with roles. In particular, we have shown how roles can easily be imple-
mented as an additional feature in Smalltalk. No changes to the Smalltalk
system itself are necessary. Only a few classes need to be added to the
predefined Smalltalk class hierarchy.

Our work complements the excellent work of Albano et al. [1993], who
have independently worked on the role concept and shown how a role
mechanism can be included in a new strongly typed object-oriented data-
base language called Fibonacci. We have pointed out that our approach
goes beyond their work in important aspects. Furthermore, in relating our
approaches, we have discovered that important features which are not
present in Fibonacci, such as multiple instantiation of roles or combining
class and role hierarchies, can easily be provided in our approach, which

2The access methods cannot be defined once at class RoleType and be inherited to its
subclasses, as in Smalltalk class variables accessed by a class method are bound statically to
the class implementing the method.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

Extending Object-Oriented Systems with Roles . 295

represents a real-world entity by several model-world objects. This differ-
ence did not seem to be very significant at first.

Roles in class-based object-oriented systems alleviate the user from the
tedious task of modeling multiple, independent roles of an entity using
ordinary class hierarchies. Role hierarchies in class-based systems support
the concept of roles in a very flexible way:

(1) Different roles of an entity may share common information.
(2) Evolving entities can be tracked easily.

(38) Several independent roles of an entity can be represented without
multiple inheritance.

(4) Entities may exhibit role-specific behavior.

(5) Access to an entity is restricted to the role in which it is currently
viewed.

(6) An entity may occur several times in the same type of role.

Furthermore, we have shown how role hierarchies extend traditional
object-oriented concepts, such as classification, object identity, specializa-
tion and inheritance, polymorphism, and behavioral contexts, in a natural
way.

While the concept of roles is suitable for common object-oriented pro-
gramming, it is even more important when data are persistent. In practice,
our concepts are already part of a design environment for object-oriented
databases [Kappel and Schrefl 1991].

A formal description of the concept of roles using evolving algebras is
given in Gottlob et al. [1990].

Future work concerns the specification of allowed sequences of role
acquisitions by real-world entities. A good starting point for such an
extension is the work of Su [1991].

ACKNOWLEDGMENTS

We like to thank Joachim Hans Frohlich, Markus Stumptner, and Stefan
Vieweg for their valuable comments. We are grateful to Bob Bach for
patiently polishing our English.

REFERENCES

ALBANO, A., BERGAMINI, R., GHELLI, G., AND ORSINI, R. 1993. An object data model with
roles. In Proceedings of the International Conference on Very Large Data Bases. VLDB
Endowment Press, Saratoga, Calif., 39-51.

BANERJEE, J., KiM, W., Kim, K. J., AND KORTH, H. 1987. Semantics and implementation of
schema evolution in object-oriented databases. In Proceedings of the ACM SIGMOD Confer-
ence. ACM, New York, 311-322.

BUTTERWORTH, P., OTIs, A., AND STEIN, J. 1991. The Gemstone object database management
system. Commun. ACM 34, 10 (Oct.), 65-77.

Fisaman, D. H., BEEcH, D., CATE, H. P., CHow, E. C., CONNORS, T., MAHBOD, B., NEIMAT, M.-A.,
Ryan, T. A., SHAN, M.-C., Davis, D. W., DERRETT, N., HocH, C. G., KEprT, W., AND LYNGBZK,
P. 1987. Iris: An object-oriented database management system. ACM Trans. Off. Inf.
Syst. 5, 1, 48—69.

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

296 . Georg Gottlob et al.

GOLDBERG, A. AND ROBsON, D. 1989. Smalltalk—80 The Language. Addison-Wesley, Read-
ing, Mass.

GOTTLOB, G., KAPPEL, G., AND SCHREFL, M. 1990. Semantics of object-oriented data models—
The evolving algebra approach. In Next Generation System Technology, J. W. Schmidt and
A. A. Stogny, Eds. Lecture Notes in Computer Science, vol. 504. Springer-Verlag, Berlin,
144-160.

KaPPEL, G. AND SCHREFL, M. 1991. Object/behavior diagrams. In Proceedings of the 7th
International Conference on Data Engineering. IEEE Computer Society Press, Los Alamitos,
Calif., 530-539.

Kras, W., NEUHOLD, E. J., AND SCHREFL, M. 1988. On an object-oriented data model for a
knowledge base. In Research into Network and Distributed Applications. North Holland,
Amsterdam.

L1, Q. AND McLeoD, D. 1988. Object flavor evolution in an object-oriented database system.
In Proceedings of the ACM Conference on Office Information Systems. ACM, New York,
265-275.

MARTIN, J. AND ODELL, J.d. 1992. Object-Oriented Analysis and Design. Prentice-Hall,
Englewood Cliffs, N.J.

NGUYEN, G.T. aND Rieu, D. 1989. Schema evolution in object-oriented database systems.
Data Knowl. Eng. 4, 43—67.

PaprazocLou, M. P. 1991. A methodology for representing multifaced objects. In Proceedings
of the International Conference on Database and Expert Systems Application. 7-12.

Pernici, B. 1990. Objects with roles. In Proceedings of the ACM Conference on Office
Information Systems. ACM, New York, 205-215.

RICHARDSON, J. AND ScHWARZ, P. 1991. Aspects: Extending objects to support multiple,
independent roles. In Proceedings of the ACM SIGMOD Conference. ACM, New York,
298-307.

ScHREFL, M. 1988. Object-oriented database integration. Ph.D. thesis, Technische Univ.
Wien, Austria.

ScHREFL, M. AND NEUHOLD, E.dJ. 1988. Object class definition by generalization using
upward inheritance. In Proceedings of the IEEE 4th International Conference on Data
Engineering. IEEE, New York, 4-13.

SCIORE, E. 1989. Object specialization. ACM Trans. Inf. Syst. 7, 2, 103-122.

SKARRA, A. H. AND ZDONIK, S. B. 1986. The management of changing types in an object-
oriented database. In Proceedings of the International Conference on OOPSLA. ACM, New
York, 483—-495.

STEIN, L. A. AND ZDONIK, S. B. 1990. Clovers: The dynamic behavior of types and instances.
Tech. Rep., Brown Univ., Providence, R.I.

Su, J. 1991. Dynamic constraints and object migration. In Proceedings of the 17th Interna-
tional Conference on Very Large Data Bases. VLDB Endowment Press, Saratoga, Calif.,
233-242.

WIERINGA, R. AND JONGE, W. D. 1991. The identification of objects and roles. Tech. Rep.,
Faculty of Mathematics and Computer Science, Vrije Univ., Amsterdam.

Received February 1993; accepted May 1995

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

