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ABSTRACT
Piggybacking on beacons is a forwarding technique in vehic-
ular ad-hoc networks (VANET) as a means to disseminate
data. With this technique data is attached to and transmit-
ted along with scheduled beacons. Nodes are assumed to
beacon asynchronously.

In this paper we present a first version of an analytical
model that is able to accurately capture the performance
of a piggybacking protocol inside a VANET in a number of
closed-form expressions, assuming some simplifications. For
a given forwarding distance, transmission range, node den-
sity, and beacon frequency, the model is able to give the
stochastic distribution of the end-to-end delay. The model
also provides the distribution of the per-hop delay, the hop
length, and the position of the ith forwarder. We have veri-
fied our analytical model using a simulation study.

The most relevant assumptions in our model are a fixed
inter-node distance and a fixed deterministic transmission
range. Having completed this stage of our work, our next
goal is to extend our model so that we can drop these as-
sumptions.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; C.4 [Performance of Sys-
tems]: Modeling techniques

General Terms
Performance, Verification
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Beaconing, Piggybacking, Vehicular Ad-Hoc Network, VANET
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1. INTRODUCTION
Piggybacking is a forwarding technique in which data is

not forwarded independently, but is attached to (and trans-
mitted along with) packets that have already been scheduled
for transmission in the near future. Often these latter pack-
ets will be network- or transport level control packets, i.e.,
packets containing information that must be transmitted for
the proper functioning of the protocol.

The piggybacking protocol that is considered here oper-
ates in the context of a vehicular ad-hoc network (VANET),
and attaches higher-level data to network-level beacons. Bea-
cons have been defined by ETSI as short status messages
that every node in a VANET regularly broadcasts [9]; they
play a critical role both at the network level (for routing)
and the application level (to create mutual awareness). At
the link level beacons are transmitted as IEEE 802.11p [4]
broadcast messages. The IEEE 802.11p amendment to the
IEEE 802.11 standard has been specifically designed to sup-
port wireless access in vehicular environments (WAVE).

Piggybacking is a forwarding technique that is regularly
used in VANETs, see Section 2. Previous research [10] [11]
has shown that the performance of piggybacking depends
on a limited set of network parameters, such as the dissemi-
nation distance, the number of nodes within transmission
range, and the frequency with which beacons are broad-
casted. The main research question of this paper is whether
we can analytically model the performance of a piggybacking
protocol as a function of these network parameters.

The main contribution of this paper is an analytical model
that expresses the performance of a piggybacking protocol
inside a VANET in analytical and often even closed-form ex-
pressions. Verification of the model showed that our model
results are accurate within a few percent. The model takes
the dissemination distance, the node density, the transmis-
sion range, and the beacon frequency into account, and gives
(closed-form) expressions of the following performance met-
rics:

1. the distribution of the end-to-end delay;
2. the distribution of the required number of hops to

reach the sink;
3. the distribution of the per-hop delay, and;
4. the distribution of the position of the ith forwarder.

The model contains some assumptions, mainly regarding the
topology of the network and transmission reception proba-
bilities.

The outline of this document is as follows. We start by
discussing some related work on VANETs, beaconing, and
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piggybacking in Section 2. Then we introduce our model
of a piggybacking system in Section 3. In this section the
considered piggybacking protocol is specified and our as-
sumptions are listed. We consider two types of beaconing:
one in which inter-beacon times are deterministic, and one
in which inter-beacon times are exponentially distributed.
In Section 4 we present a model analysis when inter-beacon
times are distributed exponentially. In Section 5 we present
a model analysis when inter-beacon times are deterministic.
We have performed a simulation study in order to verify the
correctness of our model analysis. The simulation set-up is
described in Section 6, while we discuss the verification re-
sults in Section 7. In Section 7 we also discuss the validity
of the assumptions of our piggybacking model. Finally, in
Section 8, we conclude our work and give a preview on our
next steps.

2. RELATED WORK
In VANET research beaconing refers to the periodical 1-

hop broadcast of network-level status messages. Because
of their function they have been defined by ETSI in [9] as
Cooperative Awareness Messages (CAM). These messages
contain information that is both relevant for application-
level safety applications and network-level routing: almost
all co-operative road safety applications defined by ETSI are
based on beaconing, and received beacons are used to cre-
ate location tables that are used by geo-networking routing
protocols [5].

As the node density in a network increases it becomes a
challenging task to create a scalable beaconing approach[19].
In general the more advanced beaconing solutions propose
to adapt in a distributed fashion the frequency and the used
transmission power with which beacons are sent. Their
goal is to have nodes beacon at the highest possible fre-
quency without congesting the wireless medium, while shar-
ing bandwidth fairly [15] [18] [16].

Using beacons to piggyback data inside a VANET is a
common method that has been applied in a number of dis-
semination schemes [10] [16] [20]. The schemes in [10] and
[16] can be considered pure piggybacking approaches. The
approach in [20] suffers from the scalability problems men-
tioned in [19], causing the network to become congested.
Although all of the works mentioned here have evaluated
the performance of their respective beaconing-based solu-
tions, their main performance metric has been the delivery
ratio, and none has made an attempt at expressing delay as
a function of network parameters.

Although there is a plethora of studies on multi-hop for-
warding protocols in VANETs (see above), practically all of
these studies are simulation based, which is the preferred
method of study in VANET research. Analytical studies are
mainly restricted to single-hop situations in which nodes all
share the same collision domain, and in general focus on the
scalability of beaconing, see e.g. [7]. In the area of sensor
networks analytical models are more often used to evaluate
the performance of an entire network (e.g., [8]), but the con-
text in which these networks work (a static network topology
with low rate data collection), their communication methods
(synchronized beaconing and forwarding), and their perfor-
mance metrics of interest (usually the network lifetime) do
not apply to our application.

The main performance metric of our model is the end-to-
end delay. In [11] an extensive simulation study shows how

Figure 1: An example of a network where dD = 300
m, dIN = 25 m, and R = 100 m. The lower row of
numbers denotes the positions of the nodes.

the end-to-end delay of a piggybacking protocol depends for
the most part on the average inter-node distance (i.e., the
node density), the transmission range, and the beacon fre-
quency. The paper does not quantify the impact these pa-
rameters have on the delay; it only shows trends for different
simulation scenarios. In this paper we do model these de-
pendencies and give not only the average delay, but also the
end-to-end delay distribution.

3. THE SYSTEM MODEL
In this section our model of a piggybacking system is de-

scribed. We include the considered network topology, the
packet reception probabilities, beacon timing distributions,
and of course the protocol itself. Relevant assumptions con-
tained in the model are listed and discussed at the end.

Nodes are equidistantly spaced every dIN m (‘inter-node
distance’) over a straight line, with the source at 0 m and
the sink at dD m (the ‘dissemination distance’), see Fig. 1.
For ease of explanation we number the nodes in ascending
order from source to sink: node j (denoted nj) is located at
position j ·dIN , j = 0, 1, . . . , dD/dIN . Nodes are static: they
remain at their position. The node that forwards the mes-
sage for the ith time after the source’s original transmission
is referred to as the ith forwarder. Every node has the same
deterministic transmission range R: all nodes within this
range are assumed to successfully receive a transmitted sig-
nal without suffering from fading or from interfering signals.
Finally, all delays related to transmitting and processing a
signal (i.e., transmission delay, switching times, etc.) are set
to zero.

Nodes beacon independently of each other. Every time
a node has beaconed it will draw a new i.i.d. inter-beacon
time from the inter-beacon time distribution T (in s). T
is distributed either deterministically or exponentially, both
with average inter-beacon time Tb. Although congestion-
avoidance mechanisms may regulate beacon frequencies over
time, for a given beaconing rate the inter-beacon times are
generally assumed to be deterministic.

The piggybacking protocol works as follows. All data for-
warding is done by means of piggybacking. At time tstart
the source node piggybacks the application message on top
of a beacon. The message has a geographically defined des-
tination address which is the position of the sink. Nodes are
assumed to know their own position and include it in their
beacons. A receiver of a beacon thus knows the position of
the sender of the beacon. All nodes apply the following for-
warding rule: when a node receives a piggybacked message
at time t, and it has scheduled to beacon at time tb (tb > t),
then it will itself piggyback the message at tb if and only
if by that time it has not received the message from any
node positioned closer to the sink than itself. This effec-
tively makes sure that each new forwarder will be closer to
the sink than the previous forwarder.

In the next two sections we analyse our model when inter-
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beacon times are distributed exponentially and when they
are distributed deterministically. The difference between
both methods lies in the fact that the exponential distri-
bution is memoryless, while the deterministic distribution is
not. With exponentially distributed inter-beacon times the
behaviour of the model only depends on its current state,
whereas with deterministically distributed inter-beacon times
the previous states must also be taken into account.

4. ANALYSING THE SYSTEM USING EX-
PONENTIALLY DISTRIBUTED INTER-
BEACON TIMES

In this section we focus on analysing our piggybacking
model, as presented in Section 3, when inter-beacon times
are distributed exponentially. We calculate the hop time
(H) in Section 4.1 and the hop length (L) in Section 4.2.
Using the latter result we calculate the distribution of the
required number of hops to reach the sink node (N) in Sec-
tion 4.4. Finally we combine the distributions of H and N
to determine the distribution of the delay (D) in Section 4.5.

4.1 Hop Time
Let Hi be the hop-time for hop i : the time between the

moment that the message is forwarded for the (i− 1)th and
the ith time. Let tstart = 0 be the moment that the source
piggybacks the message. H1 is the time between tstart and
the first time it is retransmitted. In this section we will focus
on determining Hi using the residual inter-beacon time Ṫ .

We first define any node that is within R m of the most
recent forwarder and positioned closer to the sink than the
most recent forwarder, to be a candidate forwarder. The set
of candidate forwarders is by definition of size R

dIN
, except if

the distance between the last forwarder and the sink is less
than R. We ignore this effect however, since in that case the
sink has already received the message.

Let the random variable Ṫ then describe the residual inter-
beacon time of a candidate forwarder. For a candidate for-
warder that has its next beacon moment at tb, its residual
inter-beacon time ṫ at time tnow (tnow ≤ tb) is given by

ṫ = tb − tnow. (1)

When the source has transmitted the message at tstart there
are R

dIN
candidate forwarders (in Figure 1 nodes n1, ..., n4

can all act as the first forwarder). The node that acts as
the first forwarder is the node that has the smallest resid-
ual inter-beacon time at tstart. H1 is thus distributed as
the minimum value of the R

dIN
residual inter-beacon times

of the candidate forwarders, which are independent and dis-
tributed as Ṫ . Since T is distributed exponentially, Ṫ is
also exponentially distributed with the same mean Tb, due
to the memoryless property of the exponential distribution.
The minimum of R

dIN
residual inter-beacon times with mean

Tb is also exponentially distributed, with mean Tb
R/dIN

. The

CDF of H1 is thus given by

FH1(t) =

{
1− exp

R
dIN

·−t
Tb t ≥ 0,

0 t < 0.
(2)

To calculate H2 we are again interested in the moment when
one of R

dIN
nodes beacons for the first time. It is impor-

tant to note here that some of the candidate nodes may

have received the message twice (from the source node and
from the first forwarder), while the other nodes have only
received it once (from the first forwarder). A part of the
former group’s residual inter-beacon time has thus already
passed. However, again due to the memorylessness of the
exponential distribution, this does not affect the distribu-
tion of the residual inter-beacon time of nodes in the former
group. The distribution of H2 is therefore equal to the dis-
tribution of H1. Since this argument applies for each hop
we can state that all successive hop times H2, H3, . . . have
the same distribution as H1 and are mutually independent.

4.2 Hop Length
Let Xi be the position of the ith forwarder. Let Li be the

length of a hop, defined as

Li = Xi −Xi−1. (3)

The source is positioned at X0 = 0 m, so L1 = X1. When
the source transmits the message at tstart there are R

dIN
first

hop candidate forwarders, positioned every dIN m:

X1 ∈ {dIN , 2dIN , ..., R}. (4)

The node that acts as the first forwarder is the candidate
node that has the smallest residual inter-beacon time Ṫ .
Since all candidate forwarders have the same exponential
rate 1

Tb
for Ṫ1, each candidate forwarder has equal probabil-

ity of becoming the next forwarder. This holds for all hops
(see Section 4.1), so Li is given by

Li ∼ U(dIN , 2dIN , . . . , R) ∀ i > 0, (5)

where U(·) is a discrete uniform distribution.

4.3 Position of the Forwarder
Because the distribution of the hop length is i.i.d. (see Eq.

(5)), the distribution of the position of the ith forwarder is
equal to the ith convolution of Li, i.e.,

Xi =

i∑
j=1

Lj , ∀ i > 0. (6)

In [12] the following explicit expression has been given for
the ith convolution of a discrete, uniformly distributed ran-
dom variable

P (Xi = xi) =
1

li

bk/lc∑
j=0

(−1)j
(
i

j

)(
i+ k − lj − 1

i− 1

)
, (7)

with l = R/dIN , k = xi/dIN .

4.4 Required Number of Hops
Let Nx be the distribution of the number of hops required

to have the message piggybacked by a node at position x or
beyond. To have the sink at position dD receive the message,
a node that is positioned on or beyond dD−R must transmit
the message. We are therefore actually interested in the
distribution of NdD−R. In our discussion we use the more
general term Nx however.

The position of the ith forwarder is a convolution of i hop
lengths, see Eq. (6). For arbitrary values of x > 0 we can
thus state

P (Nx ≥ i) = P (Xi ≤ xi) = P (L1 + · · ·+ Li ≤ x). (8)
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To calculate the latter term we can again use Eq. (7):

P (Xi ≤ xi) =

x=xi∑
x=0

P (Xi = x) (9)

For large values of x we can also use the following method.
We know that Nx is distributed as the largest integer i > 0
for which holds that Xi ≤ x for x > 0, and that Xi is a
convolution of i.i.d. hop lengths, see Eq. (6). According to
[17] (page 5), as x goes to infinity, Nx then has the following
asymptotically normal distribution:

Nx∼N(
x

µLi

, σ2
Li

x

(µLi)
3

), (10)

where Li ∼ L1, and µLi and σ2
Li

are the mean and variance
of Li, which can easily be calculated.

When we calculate Nx in our discussion in Section 7 we
use Eq. (9) when x ≤ 2R, else we use Eq. (10).

4.5 Delay
Let D be the delay to piggyback the message from source

to sink. It is a function of the number of hops required
to bridge the source-to-sink distance (Nx), and the delay
per hop (Hi). Since the delay per hop is exponentially dis-

tributed with mean Tb
R/dIN

, the total delay for k hops, de-

noted Dk, is given by the Erlang-k distribution, the PDF of
which is given by

fDk (t) = λk tk−1

(k − 1)!
exp(−λt), t ≥ 0. (11)

The minimum number of hops required to deliver the mes-
sage at the sink is b dD−R

R
c, the maximum is dD−R

dIN
. If

dD ≤ R then the delay is obviously zero. Summing over
all possible hop counts n and hop times t, the PDF of D is
given by

fD(t) =

dD
dIN∑

n=b dD−R
R
c

P (NdD−R = n) · fDn(t), t ≥ 0 ∧ dD > R.

(12)

5. ANALYSING THE SYSTEM USING DE-
TERMINISTICALLY DISTRIBUTED
INTER-BEACON TIMES

In this section we focus on analysing our model, as pre-
sented in Section 3, when inter-beacon times are distributed
deterministically. We first introduce our general approach,
and then calculate the different performance metrics.

We saw in the previous section that when inter-beacon
times are distributed exponentially, the hop length has an
identical, discrete uniform distribution for each hop, which
allows us to express the required number of hops as a simple
convolution of these i.i.d. hop lengths. Similarly, the hop
time for each hop has an identical exponential distribution,
which allows us to use the Erlang-k distribution to calculate
the delay for a given number of hops.

When inter-beacon times are distributed deterministically
however, neither the hop length nor the hop time is i.i.d., so
we cannot take the same approach. Both distributions de-
pend on the hop time and the hop length of all the preceding
hops, and the distributions must be calculated separately for
each hop. As we will show however the distribution of the

hop length and of the hop time converge after the first three
hops. For the hop length and the hop time of the fourth
hop (and following hops) we can therefore assume that they
are i.i.d., allowing us to express the number of hops required
beyond the third hop as a convolution of i.i.d. hop lengths,
and the delay for a given number of hops beyond the third
hop as a convolution of i.i.d. hop times.

Our approach in this section is as follows. In Section 5.1
we calculate the distribution of the hop time for the first
two hops; we assume that the hop time of following hops is
distributed identical to the hop time of the second hop. In
Section 5.2 we calculate the distribution of the position of
the forwarder for the first three hops. Using this, we calcu-
late the distribution of the hop length for the first three hops
in Section 5.3; we assume that the hop length of following
hops is distributed identical to the hop length of the third
hop. Using this latter assumption we then calculate the dis-
tribution of the position of the forwarder for the fourth hop
and following in Section 5.4. In Section 5.5 we calculate the
required number of hops: for the first three hops we use
the distribution of the forwarder that was calculated in Sec-
tion 5.2, the following hops are expressed as a convolution
of i.i.d. hop lengths. Finally in Section 5.6 we calculate the
distribution of the delay: for the first hop we use the dis-
tribution of the hop time of the first hop, all following hops
are expressed as a convolution of i.i.d. hop times.

5.1 Hop Time
The concept of hop time was already explained in Section

4.1. We will again use the residual inter-beacon time as
given by Eq. (1). For each hop the hop time is distributed
as the minimum value of the residual inter-beacon times of
the candidate forwarders. As we will show the residual inter-
beacon times for the first hop is i.i.d. for each node. For the
following hops however this does no longer hold, and the hop
times of the previous hop(s) must be taken into account.

Let the source again transmit the message at tstart = 0.
Since nodes beacon deterministically and tstart is chosen
randomly, the per-node residual inter-beacon time for all
candidate forwarders for the first retransmission, Ṫ1, is uni-
formly distributed in 〈0, Tb]. The CDF is given by

FṪ1
(t, Ṫmax) =

t

Ṫmax

, 0 < t ≤ Tmax, (13)

with the maximum residual inter-beacon time Ṫmax = Tb,
FṪ1

(t, Ṫmax) = 0 for t ≤ 0 and FṪ1
(t, Ṫmax) = 1 for t >

Ṫmax. Just as with exponential inter-beacon times, H1 is dis-
tributed as the minimum value of the residual inter-beacon
times of the candidate forwarders. The CDF of such a dis-
tribution is well known [14], and for k candidate forwarders

and a maximum residual inter-beacon time of Ṫmax is given
by

FH1(t, Ṫmax, k) = 1−
(

1− t

Ṫmax

)k
, 0 ≤ t ≤ Ṫmax, (14)

with k = R
dIN

and Ṫmax = Tb, FH1(t, Ṫmax, k) = 0 for t < 0

and FH1(t, Ṫmax, k) = 1 for t > Ṫmax. FH1(t, Ṫmax, k) gives
the probability that one of k nodes will have beaconed in
the period 〈0, t]. Because we will have need of it later on

we define F̄H1(t, Ṫmax, k) as the probability that none of k
nodes will have beaconed in this period, given by

F̄H1(t, Ṫmax, k) = 1− FH1(t, Ṫmax, k) (15)
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When we want to determine the distribution of H2 we can
no longer assume that the per-node residual inter-beacon
time distributions of all the candidate nodes are identical.
The distribution of a candidate forwarder’s residual inter-
beacon time depends on whether the forwarder already re-
ceived the message for the first time in hop 0 (i.e., from the
source) or in hop 1. If it received the message first in hop
1 then its distribution is equal to Eq. (13). If it received
the message already in hop 0 then the hop time of the first
hop must be taken into account: let t1 be the hop time of
hop 1, then the remaining residual inter-beacon time of the
candidate forwarder is uniformly distributed in 〈0, Tb − t1].
We denote the set of candidate forwarders for hop 2 that re-
ceived the message in hop 0 as x2,0 and the set of candidate
forwarders for hop 2 that received the message in hop 1 as
x2,1. The size of both of these sets is defined by the posi-
tion of the first forwarder. Taking into account all possible
positions of the first forwarder and all possible hop-times of
the first hop, the CDF of H2 for 0 ≤ t ≤ Tb can be obtained
by the convolution

FH2(t) =

R∑
x1=dIN

P (X1 = x1)

Tb∫
t1=0

fH1(t1, Tb, R/dIN ) ·

(
1− F̄H1(t, Tb − t1, |x2,0|) · F̄H1(t, Tb, |x2,1|)

)
dt1, (16)

with FH2(t) = 0 for t < 0 and FH2(t) = 1 for t > Tb. Here
P (X1 = x1) is the probability that the node positioned at x1

becomes the first forwarder. How to calculate this is tackled
in the next section.

To calculate the distribution of H3, H4, etc., it is again
necessary to take the distributions of the previous hop times
into account, as well as the positions of the previous for-
warders. Calculating these distributions becomes resource-
intensive for hop 3 and beyond. As we will show in Section
7 however the distribution of H converges and, for the pur-
pose of our model, does not change significantly beyond hop
2. For the remainder of our analysis we therefore state

FHi
∼ FH2 ∀ i > 2. (17)

5.2 Position of the Forwarder
Let Xi be the position of the ith forwarder. In this section

a method is presented to calculate Xi for i ≤ 3. We first
explain the approach of our method and then show the re-
quired calculations. Calculating X4, X5, . . . in this manner
becomes relatively complex and resource intensive; for this
reason an approximate method to calculate Xi for i > 3 is
given in Section 5.4.

The distribution of Xi depends on two factors. The first
factor is the set of positions of all previous forwarders. The
general form of this dependency is given by

P (Xi = xi) =

R∑
x1=dIN

P (X1 = x1) ·
2R∑

x2=2dIN

P (X2 = x2 | X1 = x1) · · ·

(i−1)R∑
xi−1=(i−1)dIN

P (Xi−1 = xi−1 | X1 = x1, . . . , Xi−1 = xi−1) ·

P (Xi = xi | Xi−1 = xi−1, . . . , X1 = x1) (18)

The second factor is the distribution of the residual inter-

beacon times of the candidate forwarders. The last term
of Eq. (18) is equal to the probability that the candidate
forwarder at position xi has a smaller residual inter-beacon
time than all the other candidate forwarders. We denote
the set of remaining candidate forwarders (i.e., excluding

the node at position xi) as x̄i. Let Ṫxi be the distribution
of the residual inter-beacon time of the node at position
xi, and Ṫx̄i the distribution of the minimum value of the
residual inter-beacon times of the nodes in set x̄i. The last
term in Eq. (18) can thus be expressed as

P (Xi = xi | Xi−1 = xi−1, . . . , X1 = x1) =

P (Ṫxi < Ṫx̄i | Xi−1 = xi−1, . . . , X1 = x1) (19)

To calculate Eq. (19) we integrate over all possible values of

Ṫxi multiplied by the probability that Ṫx̄i has a larger value.
Since again the positions of the previous forwarder must be
taken into account this is given by

P (Ṫxi < Ṫx̄i | Xi−1 = xi−1, . . . , X1 = x1)

=

Tb∫
0

fṪxi
(ti, x1, . . . , xi−1)

·
(

1− FṪx̄i
(ti, x1, . . . , xi−1)

)
dti (20)

The distribution of the residual inter-beacon time of a
candidate forwarder depends on two factors as well: the hop
in which the node first received the message, and the hop
times of the hops that have passed since then. Let Ṫx3 be the
residual inter-beacon time of a candidate forwarder for hop
3 that first received the message in hop 0, and let t1 and t2
be the respective hop times of the first two hops. Ṫx3 is then
uniformly distributed in 〈0, Tb − t1 − t2]. Ṫx̄3 is distributed
as the minimum value of the residual inter-beacon times of
all the nodes in the set x̄3, similar to how H2 was calculated
in Eq. (16). For ease of notation we subdivide the set of
remaining candidate forwarders x̄i into different subsets of
nodes that received the message in the same hop. We denote
the set of remaining candidate forwarders that received the
message in hop i−1 as x̄i,i−1, the set of remaining candidate
forwarders that received the message in hop i− 2 as x̄i,i−2,
etc.

In the remainder of this section we focus on solving Eq.
(20) for i ≤ 3. For the first hop this is trivial, for the second

and third hop we need to calculate the distribution of Ṫxi

and Ṫx̄i .
After the source has forwarded the message for the first

time, all candidate forwarders for the first hop have an iden-
tical residual inter-beacon time distribution. The proba-
bility that one node beacons first is therefore equal for all
nodes, so we can state

P (X1 = x1) =
dIN
R

, x1 ∈ {dIN , 2dIN , ..., R}. (21)

The candidate forwarders for the second hop do not have
identical residual inter-beacon time distributions, since some
nodes will have received the message in hop 0, while other
received it in hop 1. The CDF of Ṫx2 for 0 ≤ t ≤ Tb is given
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by

FṪx2
(t) =



FṪ1
(t, Tb) x2 > R

Tb∫
0

fH1(t1, Tb, R/dIN ) ·

FṪ1
(t, Tb − t1) dt1 0 < x2 ≤ R,

(22)

with FṪx2
(t) = 0 for t < 0, and FṪx2

(t) = 1 for t > Tb. The

CDF of Ṫx̄2 for 0 ≤ t ≤ Tb is given by

FṪx̄2
(t, x1) =

Tb∫
0

fH1(t1, Tb, R/dIN ) ·
(

1−

F̄H1(t, Tb, |x̄2,1|) · F̄H1(t, Tb − t1, |x̄2,0|)
)
dt1, (23)

where |x̄2,j | is the amount of candidate forwarders in the set
x̄2 that first received the message in hop j, FṪx̄2

(t, x1) = 0

for t < 0, and FṪx̄2
(t, x1) = 1 for t > Tb.

Each candidate forwarders for hop 3 can have received the
message in hop 0, hop 1, or hop 2. This is determined by
the positions of the previous forwarders. The distributions
of Ṫx3 and Ṫx̄3 must therefore take all possible combinations
of previous forwarder into account, as well as all possible hop
times of hop 1 and 2. The CDF of Ṫx3 is given by

FṪx3
(t, x1) =

FṪ1
(t, Tb) x1 +R < x3

Tb∫
0

fH2(t2) · FṪ1
(t, Tb − t2) dt2 R < x3 ≤ x1 +R

Tb∫
0

Tb∫
0

fH1(t1, Tb, R/dIN ) · fH2(t2)

· FṪ1
(t, Tb − t1 − t2) dt2 dt1 x3 ≤ R,

(24)

with FṪx3
(t, x1) = 0 for t < 0 and FṪx3

(t, x1) = 1 for

t ≥ Tb. The CDF of Ṫx̄3 is given by

FṪx̄3
(t, x1, x2)

=

Tb∫
0

Tb∫
0

fH1(t1, Tb, R/dIN ) · fH2(t2)

·
(

1− F̄H1(t, Tb, |x̄3,2|) · F̄H1(t, Tb − t2, |x̄3,1|)

· F̄H1(t, Tb − t1 − t2, |x̄3,0|)
)
dt2 dt1, (25)

with FṪx̄3
(t, x1, x2) = 0 for t ≤ 0 and FṪx̄3

(t, x1, x2) = 1

for t ≥ Tb.

5.3 Hop Length
The concept of hop lengths was already explained in Sec-

tion 4.2. Note that Eq. (3) also holds when inter-beacon
times are distributed deterministically. We specify the dis-
tribution of the first three hop lengths in an exact manner.
The hop lengths for beyond hop 3 are approximated.

The general expression for Li is given by

P (Li = l) =

(i−1)R∑
xi−1=(i−1)dIN

P (Xi−1 = xi−1) ·

P (Xi = xi−1 + l | Xi−1 = xi−1). (26)

The distributions of the positions of the first three for-
warders have been given in the previous section. Using these
we have an exact expression for the distribution of Li for
i ≤ 3.

As we will show in Section 7 the distribution of L con-
verges and, for the purpose of our model, does not change
significantly beyond hop 3. For the remainder of our analysis
we therefore state

FLi
∼ FL3 ∀ i ≥ 3. (27)

We thus assume that Li for i > 3 is distributed iden-
tically and independently of the positions of the previous
forwarders and the previous hop times.

5.4 Approximated Position of the Forwarder
In this section we approximate the distribution of Xi for

i > 3. In Section 5.2 an exact expression was given for Xi

for i ≤ 3 and by means of Eq. (27) we assumed that the
length of each following hop is i.i.d. – combining these the
distribution of the position of every next forwarder is given
by

P (Xi = xi) =

(i−1)R∑
xi−1=(i−1)dIN

P (Xi−1 = xi−1) ·

P (Li = xi − xi−1), ∀ i > 3, (28)

We thus have a recursive approximation of the position of
the forwarder for the fourth hop and beyond.

5.5 Required Number of Hops
Let Nx be the number of hops required to have a node

at position x or beyond become forwarder. In this section
we give two methods to determine Nx. The first method
uses the distribution of Xi and can be used regardless of the
expected required number of hops. In the second method
Nx is modelled as a renewal process; this method should be
used if the expected required number of hops is high. Note
that to have the sink at position dD receive the message, a
node that is positioned on or beyond dD −R must transmit
the message. We are therefore generally interested in the
distribution of NdD−R. In our discussion we use the more
general term Nx however.

The first method makes use of the fact that the probability
that at most i hops are needed to reach position x is equal
to the probability that the ith forwarder is at or beyond
position x, i.e.,

P (Nx ≤ i) = 1− P (Xi < x), (29)

where P (Xi < x) is equal to the summed up probabilities
that the forwarder is at position 0 ≤ y ≤ x − dIN as was
given by Eq. (28),

P (Xn < x) =

x−dIN∑
y=0

P (Xn = y). (30)

In the second method we use the fact that Nx is dis-
tributed as the largest integer i > 0 for which holds that
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Xi ≤ x for x > 0, and that Xi for i > 3 is a convolution
of hop i.i.d. hop lengths, see Eq. (28). Let Nx−x3 be the
number of hops required beyond hop 3. According to [17]
(page 5), as x goes to infinity, Nx−x3 then has the following
asymptotically normal distribution:

Nx−x3
∼N (

x− x3

µL3

, σ2
L3

x− x3

(µL3)3
), x ≥ x3, (31)

where µL3 and σ2
L3

are the mean and variance of the discrete
uniform distribution of the hop length L3, which can easily
be calculated. Including the distribution of X3, Nx is then
distributed as

P (Nx = n) =

3R∑
x3=3·dIN

P (X3 = x3) · P (Nx−x3 = n− 3).

(32)

5.6 Delay
Let D be the delay to piggyback the message from source

to sink. It is a function of the number of hops required to
bridge the dissemination distance (NdD−R), and the delay
per hop (Hi). The distribution of the hop time of the first
hop is given by Eq. (14), the hop time of subsequent hops
is given by Eq. (17). The distribution of D is given by

D =

x/dIN∑
n=x/R

P (NdD−R = n)

n∑
i=1

Hi (33)

Calculating such a convolution quickly becomes too resource-
intensive for practical purposes. We therefore use the central
limit theorem, which states that for n i.i.d. variablesH2 with

mean µH2 and variance σH2 , and with Sn =
n∑

i=1

H2, Sn can

be approximated as Sn ∼ N (n ·µH2 , n ·σH2). Taking the dis-
tribution of the first hop time into account the distribution
of the delay is then given by

P (D = d) =

Tb∫
t=0

fH1(t) · P (Sn−1 = d− t). (34)

6. THE SIMULATION SET-UP
In this section two simulation experiments are described.

The first experiment has been set up in such a way as to re-
semble the piggybacking model in Section 3, i.e., including
all model assumptions. This simulation study is referred to
as the model simulation. The results of the model simula-
tion are used in Section 7.1 to verify the correctness of our
analysis made in Section 4 and Section 5. If our analysis is
correct, its results should resemble the results of the model
simulation as close as possible.

The second experiment has been set-up in a more realis-
tic manner; it is referred to as the realistic simulation. In
Section 7.2 we use the results of this simulation study to
discuss how the behaviour of the piggybacking system is af-
fected when our model assumptions are dropped.

The specific details of each experimental set-up are ad-
dressed in the relevant subsections. The general set-up is
as follows. For both set-ups two inter-beacon time distri-
butions were used: the deterministic and the exponential
distribution. Both experiments have been performed using
the OMNET++ network simulator v4.1 [2] and using a self-
modified version of the MiXiM framework v2.1 [1] to model

the communication architecture. To model the behaviour
of the 802.11p protocol as accurately as possible we have
altered the IEEE 802.11 medium access module in such a
way that all parameters follow the 802.11p specification [4].
The available 802.11 MiXiM physical layer was adapted to
include bit error rates (BER) and packet error rates (PER)
for all transmission bit rates used in our experiments. The
centre frequency was set to 5.9 MHz and access category
(AC) 0 was used.

6.1 The Model Simulation Set-up
Nodes are equidistantly spaced every dIN m from source

to sink over a straight line of length dD. Beaconing and
forwarding by means of piggybacking is done as specified in
Section 3.

To emulate a deterministic, fixed transmission range, the
physical layer was adapted in such a way that any node
withinRmeters of a transmitting node will receive the trans-
mitted signal at a fixed (and relatively high) power level.
Outside this range a receiving node receives the signal at
zero power. This effectively gives a unit-disc propagation
model with reception probabilities one and zero (in case of
an isolated transmission). Nodes use the 802.11p MAC as
described above. To keep the influence of packet collisions
as low as possible however beacon sizes are kept small: 160
bits, regardless whether the beacon has the application mes-
sage attached to it or not.

6.2 The Realistic Simulation Set-up
Nodes are positioned from source to sink over a straight

line of length dD. The inter-node spacing is exponentially
distributed with mean dIN . Work such as [6] suggests that
the exponential distribution gives a good description of the
inter-vehicle distance in case of free flowing traffic. Bea-
coning and forwarding by means of piggybacking is done as
specified in Section 3.

Due to its ability to model both long-term and short-term
fading we use the log-normal shadowing model [13] for signal
propagation. The path loss exponent is set to 3.5 and the
standard deviation to 6. The transmission power was chosen
such that two nodes that are R meters apart, have a packet
reception probability of 0.4 if there are no other users on the
wireless medium. Beacon sizes are set to 400 bytes, including
all headers. An attached application message increases the
beacon size with an additional 100 bytes. There is a non-
zero probability that the message does not reach the sink
due to transmission errors.

7. VERIFICATION & VALIDATION
In this section we verify the correctness of the model anal-

ysis in Section 7.1. We also show how the behaviour of the
piggybacking system is affected when we drop our model
assumptions in Section 7.2. Our main performance metric
is the distribution of the end-to-end delay, but we also dis-
cuss the hop time and the hop length, as together these two
metrics determine the delay. Before we start our discussion
however we present our method to compare two distribu-
tions.

We use the Kolmogorov-Smirnov (K-S) statistic to express
the difference between two distributions. The K-S statistic
K for two distributions F1(x), F2(x) is equal to the largest
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Figure 2: Position of the fourth forwarder when
dIN = 10 and R = 100.

distance between the CDFs, given by

K = max{|F1(x)− F2(x)|} ∀ x. (35)

7.1 Verification of the Analysis
In this section we verify the model analysis by comparing

its results with the results of the model simulation. We first
discuss the results when inter-beacon times are distributed
exponentially, then when inter-beacon times are distributed
deterministically.

7.1.1 Exponentially distributed inter-beacon times
Although we do not show it here, the distribution of the

hop time of the model simulation closely resembles the dis-
tribution of the hop time of the model analysis, and the dis-
tribution of the hop length of the model simulation closely
resembles the distribution of the hop length of the model
analysis. The distribution of the position of the forwarder
and the distribution of the required number of hops to reach
the sink – both of which are a function of the hop length –
also closely resemble their respective model analysis distri-
butions. Fig. 2 shows how the distribution of the position
of the fourth forwarder of the model analysis closely follows
the distribution of the position of the forwarder of the model
simulation when dIN = 10 and R = 100.

The second block of Table 2 shows the K-S statistics of
the end-to-end delay distribution of the model analysis and
the model simulation, for different dissemination distances
and inter-node distances. It can be seen that the two distri-
butions closely follow each other: for all cases the maximum
deviation of the two distributions stays within 5%, and it is
less than 1% in half of the cases. Fig. 3 shows the CDF of
the end-to-end delay for a specific combination of parame-
ters.

7.1.2 Deterministically distributed inter-beacon times
We first discuss the intermediate performance metrics hop

time, hop length, and the position of the forwarder, and end
with our main performance metric, the end-to-end delay.

As we have discussed in Section 5.1, the distribution of
the hop time depends on the hop times and the hop lengths
of all the preceding hops. This is most notable when com-

Figure 3: CDF of the end-to-end delay when dD =
500, dIN = 25, and R = 100.

paring the distribution of the hop time of the first hop with
that of the second hop, as can be seen in Fig. 4. In our
model however we have assumed that the distribution of the
hop time for the third hop and following is identical to the
distribution of the hop time of the second hop, see Eq. (17).
To test this assumption we have calculated the K-S statistic
for a number of hop times, see Table 1. The table shows the
K-S statistics when comparing the distributions of the hop
times of the model simulation with the distributions of the
hop times of the model analysis, for different node densities.
It can be seen that our assumption is valid: the difference
between the distributions is in almost all cases less than 2%.

Similar to the distribution of the hop time, the distribu-
tion of the hop length of a hop also depends on the hop times
and the hop lengths of all the preceding hops. The distri-
bution of the hop length differs therefore per hop. This has
been visualised in Fig. 3, where the distributions of the hop
lengths of hop 1, 2, 3, and 10 are shown when dIN = 25 and
R = 100. The figure also confirms our assumption that after
the third hop the distribution of the hop length converges
however (see Eq. (27)), since the distribution of the hop
length of hop 10 closely resembles that of hop 3.

An interesting observation is that for high node densities
the distribution of the hop length can be assumed to have a
discrete uniform distribution, similar to how hop lengths are
distributed when inter-beacon times are distributed expo-
nentially. Fig. 2 shows for example how the distribution of
the position of the forwarder when inter-beacon times are de-
terministically distributed closely resembles the distribution
of the position of the forwarder when inter-beacon times are
exponentially distributed, when there are ten nodes inside
the transmission range. For high node densities we can thus
calculate the distribution of the hop length, the distribution
of the position of the forwarder, and the distribution of the

dIN� Hop 1 2 3 4 5 10
10 0.010 0.006 0.010 0.008 0.013 0.013
25 0.005 0.010 0.007 0.025 0.009 0.011
50 0.012 0.007 0.011 0.013 0.012 0.008

Table 1: K-S statistics of the hop time when R = 100
and Tb = 1.
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Figure 4: CDFs of the hop times of the model sim-
ulation and the realistic simulation when dIN = 25,
R = 100, and Tb = 1.

required number of hops to reach the source, as a convolu-
tion of discrete uniform hop lengths, similar to how this is
done when inter-beacon times are distributed exponentially.
This considerably simplifies our model, as we no longer need
to calculate the first three hop lengths separately.

The first block of Table 2 shows the K-S statistics of the
end-to-end delay distribution of the model analysis and the
model simulation, for different dissemination distances and
inter-node distances. It can be seen that the two distribu-
tions closely follow each other: for most cases the maximum
deviation of the two distributions stays within 5%, and the
maximum deviation is 8%. Fig. 3 shows the CDF of the
end-to-end delay for a specific combination of parameters.

7.2 Validation of the Model
In this section we compare the results of the model sim-

ulation with the results of the realistic simulation, in order
to validate how well our model compares to a more realistic
situation. Based on this comparison we also judge the fea-
sibility of dropping these assumptions in a next version of
our model, in order to improve the model’s realism.

A fundamental problem when comparing the results of the
two simulations is that the fixed transmission range of the
model simulation cannot be directly to any realistic propa-
gation model. We will therefore refrain from directly com-
paring the results in terms of quantity but instead focus on
observed trends. The two main differences between the two

dD 200 300 400 500 1000 2500

dIN det. simulation vs. det. analysis
10 0.061 0.068 0.041 0.038 0.053 0.083
25 0.051 0.050 0.050 0.042 0.048 0.053
50 0.060 0.040 0.054 0.049 0.033 0.066

dIN exp. simulation vs. exp. analysis
10 0.007 0.006 0.010 0.011 0.009 0.000
25 0.008 0.032 0.030 0.026 0.013 0.009
50 0.009 0.004 0.012 0.007 0.040 0.047

Table 2: K-S statistics of the delay when R = 100.

Figure 5: Hop lengths of the model simulation when
dIN = 25 and R = 100.

simulations are that in the realistic simulation (i) inter-node
distances are exponentially distributed (instead of fixed),
and (ii) a log-normal shadowing distribution was used to
calculate the received signal power (instead of a fixed trans-
mission range). We discuss the distribution of the hop time
and the distribution of the hop length.

Fig. 4 shows the CDF of the hop time for the first two
hops, both for the realistic simulation and the model simu-
lation. Similar to the model simulation it can be seen in the
realistic simulation that the hop time of the second hop has
a larger probability of being shorter than the first hop. Al-
though not shown here, the third hop (and any hop beyond
the third hop) has a hop time distribution that is almost
identical to that of the second hop. We thus need to find an
expression for the hop time distribution of the first two hops
only, and can assume the distribution of following hops to
be equal to the distribution of the second hop, as we have
done in this work.

Although we do not show it here the distribution of the
hop length of the realistic simulation is distinctly dissimilar
for the first two hops, while the hop length distribution of
following hops is similar to that of the second hop. We thus
need to find an expression for the hop length distribution of
the first two hops only, and can assume the distribution of
following hops to be equal to the distribution of the second
hop.

8. CONCLUSION
In this paper we have presented an analytical model that

is able to express the performance of a piggybacking pro-
tocol in analytical and often even closed-form expressions.
The model takes the dissemination distance, the node den-
sity, the transmission range, and the beacon frequency into
account, and gives expressions for (i) the distribution of the
end-to-end delay, (ii) the distribution of the required num-
ber of hops to reach the sink, (iii) the distribution of the
per-hop delay, (iv) the distribution of the length of a hop,
and (v) the distribution of the positions of the intermediate
forwarders.

Our main performance metric is the end-to-end delay.
Verification of our analytical model by means of a simulation
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study shows that for most cases the delay distribution of the
model stays within 6% of the simulated delay distribution.

When inter-beacon times are distributed exponentially the
performance of the piggybacking protocol can be captured
in a number of simple, closed-form expressions. When inter-
beacon times are distributed deterministically and inter-
node distances are large, the performance of the first three
hops of the piggybacking protocol are given by a number of
analytical expressions. The performance of following hops
is given in closed form. When inter-beacon times are dis-
tributed deterministically and inter-node distances are small,
the distribution of the length of a hop is similar to when
inter-beacon times are distributed exponentially. For high
node densities we can therefore express the distribution of
the length of a hop, the distribution of the required number
of hops to reach the sink, and the distribution of the posi-
tions of the intermediate forwarders using the same closed-
form expressions.

The model contains some assumptions, mainly regarding
the topology of the network and the transmission reception
probabilities. It is our goal to drop these assumptions in
future work. To analyse the effect this will have on perfor-
mance we have also performed a simulation study without
these assumptions. Our results suggest that performance
(in terms of hop length and per-hop delay) is dissimilar for
the first two hops, but that any hop beyond the second hop
performs similar to the second hop. We therefore only need
to find expressions for the hop length and per-hop delay for
the first two hops to be able to model the whole system.
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