
M
anufacturing automa-
tion is at least as old as
the industrial revolu-
tion, which brought
about mass produc-
tion and dedicated,
fixed-task machinery.
Flexible automation

and the associated variable-task, programmable tools
date from the 1950s, with the introduction of numeri-
cally controlled (NC) machining and computer-aided
design (CAD).

A modern, high-level view of the automation field
can be summarized as follows: At the center are rep-
resentations, or computer models, of products, such
as an assembly of electromechanical components;
processes, such as a sequence of machining opera-
tions; and resources, such as machine tools or robots.
Around this center are the activities that create and
use the representations.

Creating product representations is usually called
design, or CAD when emphasizing its computational
aspects. In industrial practice, a design for a mechan-
ical part or assembly is specified by its geometry plus
a few nongeometric properties, such as material or
hardness. Geometry is traditionally conveyed through
engineering drawings. CAD helped replace such
drawings, first with wireframe models, or unorga-
nized sets of object edges, and later with solid models.
Only solid models are unambiguous, completely
defining the shape of objects; other models are
ambiguous. Therefore, solid models are suitable
sources of data for programs that automatically

answer such queries as: “What is the volume of this
object?” and “Do these two objects collide?” The evo-
lution of solid modeling has been documented in the
literature [7, 8, 9, 10]. However, the conversion to
solid modeling is far from complete; drawings and
wireframes are still widely used in industry.

Today, human users define a product’s geometry
directly. In the future, mechanical design is likely to
follow in the steps of very large-scale integration
(VLSI) design and specify products at a higher, func-
tional level. Geometry will then be inferred through
the analogs of silicon compilers. We are still far from
this stage; a major barrier is the lack of a computa-
tional characterization of design intent in terms of
mechanical functions, constraints, optimization crite-
ria, and perhaps other important properties. Design
is closely linked to analysis. Computational methods
for analyzing designs have progressed nicely, and
today there are tools for computing mass properties
of objects, detecting interferences, simulating
motion, and so on. Progress on synthesis of product
and process designs has been much slower.

High-level process representations are created
through activities usually called process planning and
scheduling. Planners reason about the geometry (and
other properties) of objects, attempting to match
them to the capabilities of physical processes, such as
drilling or milling, and thereby generating a
sequence of production operations. These opera-
tions involve fabrication, such as machining or cast-
ing; assembly; inspection; and so on. Schedulers
reason about processes and resources, allocate opera-
tions to appropriate machinery, and specify the asso-

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 71

Geometric Reasoning for
Intelligent Manufacturing

Arist ides A. G. Requicha

A blend of artificial intelligence techniques and geometric computation can tackle the difficulties

in automated manufacturing of reasoning about the geometry of products.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F230798.230807&domain=pdf&date_stamp=1996-02-01

ciated timing information. Low-level representations
of operations are typically imperative, taking the
form of instructions to machines, as in an NC lan-
guage or robot-command language. Generation of
low-level instruction sequences, such as cutter paths
for machining, is largely automated. But the synthesis
of high-level plans is much more difficult.

We argue in this article that difficulties arise from
the need to reason about space, or geometry, and
that this can be done through a blend of artificial
intelligence (AI) techniques and computational
geometry algorithms. To support this claim, we dis-
cuss two systems developed recently at USC’s Pro-
grammable Automation Laboratory. One recognizes
machinable features in a product’s model, the other
generates high-level process plans for dimensional
inspection. Work on spatial reasoning for assembly is
covered in [6] and in other sources.

Resource representations for machines, factories,
and so on are mostly created manually but may in

the future be generated
automatically by facility
planners that must reason
about plans, schedules,
timing, size of orders, and
various business and eco-
nomic factors.

All of these design and
manufacturing activities
must be integrated among
themselves and with man-
agement and business sys-
tems, which are also
important but beyond the
scope of this article. Inte-
gration implies standards
and shared ontologies.
According to the tenets of
modern concurrent engi-
neering, many of these
activities should occur
simultaneously, so that, for
example, manufacturing
considerations can influ-
ence product design. Simul-
taneous activity requires
communication and negoti-
ation—the hallmarks of
cooperative work.

Underlying modern
design and manufacturing
systems is a computational
infrastructure involving
computer hardware, net-
works, databases, collabo-
rat ion software, user
interfaces, graphics, and
more. These areas are not
specific to automation—

they cover much of the computer science disci-
pline—but design and manufacturing disciplines
generate numerous challenging problems.

Recognition of Machinable Features
Process planning for machined parts typically
requires reasoning about machining features, such as
holes, slots, and pockets. Given a part to be fabricat-
ed and the stock or raw material, the set difference
stock – part, usually called the delta volume, is the
material that must be removed by machining opera-
tions. Machining features are volumes, or solids, that
can be removed by individual operations. Feature
recognition amounts to decomposing the delta vol-
ume into smaller volumes that can be associated with
machining operations. Figure 1 shows a simple indus-
trial part to be cut from a parallelepiped of metal that
just encloses the part and the features recognized by
USC’s Integrated Incremental Feature Finder (IF2)
system. One can think of delta-volume decomposi-
tion as a technique for computing differences between
the goal and start states in a means-ends AI problem-
solving procedure.1 The differences may be reduced by
applying the relevant operators, which correspond to
machining operations.

Automatic feature recognition is a challenging
problem; many solutions have been proposed in the
literature [14]. A popular approach consists of defin-
ing features as graph-structured patterns of faces and
edges, then searching for these patterns in the
boundary of an object. The search involves subgraph
isomorphism detection, which is NP-complete. The
graph-search approach has difficulties dealing with
features that interact volumetrically, because interac-
tions may damage the patterns beyond recognition;
see Figure 2 for a simple object with interacting fea-
tures recognized by IF2.

At USC, we built two recognizers: the Object Ori-
ented Feature Finder (OOFF) [14, 15] and its suc-
cessor IF2 [2, 3]—both capable of recognizing
interacting features while having other interesting
characteristics. Here, we focus on IF2, which sub-
sumes much of OOFF and adds to it capabilities for
incremental operation concurrent with CAD and for
exploitation of information sources beyond the nom-
inal geometry of parts.

IF2 collects evidences from various sources:

• Face patterns in a part’s boundary;
• Tolerances (e.g., parallelism between two faces is a

clue for a slot);
• Attributes (e.g., a thread usually implies the exis-

tence of a hole); and
• Functional, or design, features defined by a user,

although design features are not necessarily manu-
facturing features.

72 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Figure 1.
An industrial part
(shown from two
viewpoints) and its
decomposition into
four rounded-end
slots, two holes, and
three open pockets.

1 This computing technique is described in G. Ernst’s and A. Newell’s GPS: A
Case Study in Generality and Problem Solving, Academic Press, New York, 1969.

Such evidences contribute
to hints that specific machin-
ing features may exist in a
part. For example, in Figure
2, two hole hints were gen-
erated from two cylindrical
surfaces, a slot hint was gen-
erated from two opposing
parallel planar faces, and a
pocket hint was generated
from the bottom, or floor,
face of the pocket. Note that
the pocket floor intersects
all the faces present in the
other three hints. (Further
hints were also generated
but did not become valid
features.)

From an implementation-
al point of view, a hint is an
incomplete frame represen-
tation for a feature. The hint
contains a feature type, such
as hole or slot, some easily
extractable parameters, such
as a hole diameter, and links
to faces in the solid’s bound-
ary. Evidences have heuristic
strengths reflecting our pref-
erences for certain features
(e.g., a slot is easier to
machine than a pocket) and our beliefs that hints will
lead to valid features (e.g,. a complete cylindrical face
is more likely to become a valid hole than an incom-
plete cylinder). Evidence strengths are combined
through AI methods involving uncertain reasoning
[4] so as to produce strengths for hints. Much like
vision systems, IF2 reasons with incomplete data.
Incompleteness arises in vision primarily because of
occlusions, whereas in feature recognition, it is due to
feature interactions.

Hints are stored in a blackboard structure [1] that
also contains input part models—typically a repre-
sentation of the part’s bounding faces and edges plus
a model in terms of design features, such as bosses,
webs, and holes—as well as representations for the
delta volume and its faces, and for the validated, rec-
ognized features. The rankings of hints according to
their heuristic strengths are stored as a priority
queue, which serves as the blackboard’s agenda and
provides the system’s focus of attention. The control
mechanism selects the strongest hint from the agen-
da and attempts to validate it by invoking the feature
completer [15].

Feature completion is a complicated geometric pro-
cedure involving several calls to a solid modeling system
(e.g., to perform Boolean operations). In essence, it
extends the faces present in a hint and attempts to com-
pute the largest volumetric feature compatible with the

face data while not intruding
into the desired part. Accessi-
ble directions and other infor-
mation needed to ensure
feature machinability are gen-
erated as byproducts of the
completion procedure. Fig-
ure 2 shows that completion
reconstructs the missing por-
tions of faces and edges. If
feature completion succeeds,
a validated feature is added to
the blackboard. A recognized
feature provides evidence
against hints that share faces
with the feature because
those faces already have an
associated feature. Such nega-
tive evidences help update
the agenda dynamically.

Initially, the material to
be removed is the entire
delta volume. After each fea-
ture is recognized, the
removal material is updated

by subtracting the feature from it. If the result is null,
the process terminates because the delta volume is
completely decomposed. The heuristics used to rank
the hints ensure the part interpretation generated by
the feature finder is desirable and is computed effi-
ciently. However, a downstream module, such as a
process planner, may find a feature interpretation
unsuitable, possibly forcing an additional clamping
and request an alternative. Requesting an alternative
can be done easily by deleting the unsuitable feature
and retrieving from the blackboard hints that point
to the feature’s faces.

S
ome design features (e.g.,
holes) may correspond
directly to manufacturing
features, although design sys-
tems usually do not guaran-
tee accessibility and other
machinability conditions.
Other design features, such

as bosses, webs, and ribs, are not directly machinable.
Our feature finder uses design-feature information
by generating strong hints from the design features
directly related to machining features. These hints
gravitate to the top of the agenda and are usually val-
idated easily [3]. Links between recognized machin-
ing features and the design features that contribute

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 73

Figure 2.
A test object with four
interacting features.

to them are stored in a simple justification-based
truth maintenance system (JTMS) [2]. The recogniz-
er works incrementally, as the design evolves
through editing and incremental construction of
part models. The machining-feature model is updat-
ed efficiently with the help of the JTMS.

IF2 is operational, except for its incremental pro-
cessing capabilities, which are still being imple-
mented. It has been interfaced to a process planner
to demonstrate the automatic generation of process
plans from solid modeling data
and is being interfaced to a fea-
ture-based design system.

Planning for Dimensional
Inspection
The manufacturing market

increasingly demands high-quality products. Ensur-
ing the quality of mechanical parts and assemblies
involves measuring them to verify that their dimen-
sions are within designer-specified tolerances.
Dimensional inspection is also crucial in manufactur-
ing process control. Dimensional variations can be
correlated with process parameters, and these para-
meters are adjusted to produce the desired parts.

Coordinate measuring machines (CMMs) are
versatile and well suited for integration in automat-

ed manufacturing systems.
They can provide all necessary
measurement capabilities for
most parts. A CMM is essential-
ly a very accurate Cartesian
robot, equipped with a touch
probe for returning the spatial
coordinates of the points where
the probe contacts a work-
piece. Functionally, it is a
three-dimensional digitizer.
Figure 3 shows a frame of a sim-
ulation of a CMM inspecting a
mechanical part placed on the
CMM table.

For the last few years, we
have been developing a high-

74 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

F

P

S

S´

F ⊕ S´

P

Figure 3.
Output of USC’s planner, show-
ing a coordinate measuring
machines with its probe in con-
tact with a workpiece.

Figure 4.
(Bottom) Steps in the computa-
tion of a global accessibility
cone: reflecting the feature S
about point P, adding S’ to a face
F, and computing a cone with
apex P and cross section F + S’.

level dimensional inspection planner, dubbed DIP
[11, 12, 13]. The planner computes orientations for
setting up the workpiece and determines for each
setup the features—typically part faces—to be
inspected, as well as the associated probes and
probe directions. DIP reasons in a space of evolving
plans through operators that map plans to other
more refined plans. The state of the planner is rep-
resented by 4-tuples of the form (SU, SF, PG, PD),
where SU is the setup orientation, SF is the surface
feature to be inspected, PG is the probe geometry
(selected from a set of available probes), and PD is
a set of probe directions, or a direction cone.

The initial state includes every direction, fea-
ture, and probe geometry and is represented by
the 4-tuple (all, all, all, all). This set of plans con-
tains many infeasible and unduly expensive plans.
It must be successively constrained by operators
that prune out poor plans and seek to reduce the
cost of plan execution by avoiding multiple setups,
multiple probes, and multiple probe directions.
Reorienting a part or probe or changing a probe is
a time-consuming operation adversely affecting
the accuracy of the results and therefore must be
used sparingly.

The most interesting planning operators are
those that restrict probe directions to ensure acces-
sibility, and that cluster directions to reduce the
number of reorienting maneuvers. Here, we discuss
briefly the accessibility operators. Consider the
example in Figure 4. The Global Accessibility Cone
(GAC) for face S is the set of all directions d that sat-
isfy the following condition: sweeping a half line l of
direction d over S with the endpoint of l in contact
with every point of S does not cause any intersec-
tions of the workpiece with the interior of the line.
This definition is the equivalent of saying that a
semi-infinite probe of direction d can inspect, or
touch, every point of S without colliding with the
workpiece. The algorithm for computing GACs may
be outlined as follows [12]:

• Reflect the surface feature S to be inspected about
point P, yielding S ´.

• Compute the Minkowski sum of S ´ with each face,
edge, and vertex of the workpiece.

• For each of these Minkowski sums, compute the
cone with apex P and cross-section equal to the
Minkowski sum.

• Union all the cones.
• Complement the result.

The second step needs explanation. The Minkows-
ki sum of faces F and S ´ is shown at the bottom of Fig-
ure 4. Note that this sum is simply the result of
sweeping one face over the other. It can be shown
that only certain easy-to-compute faces, edges, and
vertices of the solid contribute to the result; there-
fore, we need not consider all the boundary elements

of the solid in the second step. The algorithm is rela-
tively simple because it turns out that we need only
compute two-dimensional Minkowski sums and that
the Boolean operations on cones are essentially two-
dimensional because the cones can be represented as
subsets of the unit sphere.

DIP is currently being reimplemented in SOAR
[5] to provide us with a flexible environment for
experimenting with several planning strategies. It is
also being extended to compute probe paths by using
new path-planning algorithms that exploit the results
of accessibility analysis. The ultimate goal is the auto-
matic generation of complete CMM programs.

Conclusions
Manufacturing automation is an interdisciplinary
field. Domain knowledge comes primarily from
mechanical and industrial engineering, but the tools
required to solve the problems are mainly from com-
puter science. Our experience indicates that comput-
er scientists must be willing to get their hands dirty
and delve into the domain to work effectively in
automation. They must be able to extract and formu-
late the problems to be solved and understand the
domain constraints.

W
e showed here that
AI coupled with
geometric compu-
tation can tackle
difficult planning
problems in man-
ufacturing and
inspection. These

results contribute to the field of intelligent manufac-
turing, but they are also interesting from the computer
science point of view, because AI per se has not had
much success in the past dealing with spatial problems.

Major issues requiring further study include effi-
ciency issues (scaling up); more complex geometric
domains, such as sculptured or doubly curved
objects; additional manufacturing processes, such as
casting or stereolithography; and other lifecycle activ-
ities, such as maintenance.

Acknowledgments
The research reported in this article was supported
in part by the National Science Foundation under
grants DMC-87-96192, DDM-87-15404, CDR-87-
17322, and DMI-92-14996, by the industrial mem-
bers of the Institute for Manufacturing and
Automation Research (IMAR), and by the Industri-
al Associates of the Programmable Automation Lab-
oratory, Institute for Robotics and Intelligent
Systems (IRIS) of the University of Southern Cali-
fornia. Work on the integration of feature recogni-
tion and design by features is collaborative with the
Fraunhofer Institute for Computer Graphics, Darm-
stadt, Germany. C

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 75

References
1. Englemore, R., and Morgan, T. Blackboard Systems. Addison-

Wesley, Reading, Mass., 1989.
2. Han, J.-H., and Requicha, A.A.G. Incremental recognition of

machining features, In Proc. of the ASME International Conference
on Computers in Engineering, vol. 1 (Minneapolis, Sept. 11–14),
1994, pp. 143–149.

3. Han, J.-H., and Requicha, A.A.G. Integration of feature based
design and feature recognition. In Proc. of the ASME Interna-
tional Conference on Computers in Engineering (Boston, Sept.
17–21), 1995, pp. 569–578.

4. Kanal, L.N. and Lemmer, J.F. Uncertainty in Artificial Intelligence.
North-Holland, Amsterdam, 1986.

5. Laird, J.E., Newell, A., and Rosenbloom, P. S. Soar: An archi-
tecture for general intelligence. Artif. Intell. 33, 1 (1987), 1–64.

6. Latombe, J.C. Robot Motion Planning. Kluwer, Boston, 1991.
7. Requicha, A.A.G. Solid modeling: A 1988 update. In CAD Based

Programming for Sensory Robots, B. Ravani, Ed. Springer-Verlag,
New York, 1988, pp. 3–22.

8. Requicha, A.A.G., and Rossignac, J.R. Solid modeling and
beyond. IEEE Comput. Gr. Appl. 12, 5 (1992), 31–44.

9. Requicha, A.A.G., and Voelcker, H.B. Solid modeling: A his-
torical summary and contemporary assessment. IEEE Comput.
Gr. Appl. 2, 2 (Mar. 1982) 9–24.

10. Requicha, A.A.G., and Voelcker, H.B. Solid modeling: Current
status and research directions, IEEE Comp. Gr. Appl. 3, 7 (Oct.
1983) 25–37.

11. Spyridi, A.J., and Requicha, A.A.G. Accessibility analysis for the
automatic inspection of mechanical parts by coordinate mea-
suring machines. In Proc. of the IEEE International Conference on
Robotics & Automation (Cincinnati, Ohio, May 13–18), 1990, pp.
1284–1289.

12. Spyridi, A.J., and Requicha, A.A.G. Accessibility analysis for
polyhedral objects. In Engineering Systems with Intelligence: Con-
cepts, Tools and Applications, S.G. Tzafestas, Ed. Kluwer, Dor-
drecht, Holland, 1991, pp. 317–324.

13. Spyridi, A.J., and Requicha, A.A.G. Automatic programming of
coordinate measuring machines. In Proc. of the IEEE Interna-
tional Conference on Robotics & Automation (San Diego, Calif.,
May 8–13), 1994, pp. 1107–1112.

14. Vandenbrande, J.H., and Requicha, A.A.G. Spatial reasoning
for the automatic recognition of machinable features in solid
models. IEEE Trans. Pattern Anal. Mach. Intell. 15, 10 (Dec.
1993) 1269–1285.

15. Vandenbrande, J.H., and Requicha, A.A.G. Geometric compu-
tation for the recognition of spatially interacting machining
features. In Advances in Feature-Based Manufacturing, J.J. Shah,
D. Nau, and M. Mantyla, Eds. Elsevier/North Holland, Amster-
dam, 1994, pp. 83–106.

About the Author:
ARISTIDES A.G. REQUICHA is a professor of computer science
and electrical engineering at the University of Southern California
where he directs the Programmable Automation Laboratory and
the Laboratory for Molecular Robotics. Author’s Present Address:
Computer Science Department, University of Southern California,
941 West 37th Place, Los Angeles, CA 90089-0781; email:
requicha@lipari.usc.edu

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0200 $3.50

76 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

