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ABSTRACT 

Continuous display is an important issue in the domain of multimedia applications. 
Especially, to ensure this continuity in the presence of multiusers, a feasible scheduling algorithm 
is prerequisite for real time data retrieval from the I/O subsystem. I/O scheduling techniques can be 
classified into two types: meta-I/O scheduling which.arranges the sequence of data retrieval before 
issuing physical I/O requests, and disk scheduling which determines the order of processing I/O 
requests that have been issfled. In disk scheduling, there are several elegant algorithms that had 
been discussed such as Scan, C-Scan, shortest seek time first and Scan-EDF. All of them focused 
on improving I/O throughput by serving requests closer to disk head first [7][8]. We focus this 
paper, however, on solving the real time meta-I/O scheduling. 

For real-time scheduling, several algorithms had been addressed such as earliest- 
deadline-first (EDF) [4], least-laxity-first (LLF) [9], earliest-ready-time first (LRF) [6], and so on, 
which had shown to be elegant for task scheduling to promote system throughput. When applying 
to meta-I/O scheduling, however, these algorithms would result in large amount of buffer 
requirement for accommodating the retrieved data. In this paper, we proposed two real-time 
algorithms and a technique, called object migration, to minimize buffer requirement for meta-I/O 
scheduling. A buffer measurement approach was also proposed in this paper to estimate the 
performance of a real-time scheduling algorithm, which is based upon the well-known graph 
coloring technique. Simulation experiments were conducted to analyze the performance of 
algorithms. The results indicate that our approaches perform much better than existing real-time 
algorithms in terms of reducing buffer requirement. 

Keywords: Real time, Scheduling, Data retrieval, Buffer management. 

1. Introduction 

Advances in information technology have made it feasible to develop multimedia 
computing systems capable of offering various services. In the domain of multimedia applications, 
continuous display is an important issue. In designing a multimedia server, to ensure continuous 
display for multiusers, a feasible scheduling mechanism is prerequisite to retrieve data in real time 
from storage subsystem. I/O scheduling techniques can be classified into two types: meta-1/O 
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scheduling which arranges the sequence of data retrieval before issuing physical I/O requests, and 
disk scheduling which determines the order of processing I/O requests that have been issued. 

For disk scheduling, there are several elegant algorithms that had been discussed. 
Traditional disk scheduling algorithms such as Scan, C-Scan and shortest seek time first (SSTF) 
focused on improving I/O throughput by serving requests closer to disk head [8]. Current studies 
such as Scan-EDF [7] tends to take advantages of real-time technique in disk scheduling to meet the 
real-time requirement. For meta-I/O scheduling, several real-time algorithms have been addressed, 
such as earliest-deadline-first (EDF) [4], least-laxity-first (LLF) [9], earliest-ready-time first (ERF) 
[6] and so on, which had shown to be elegant for task scheduling tO promote system throughput [5]. 
When applying to meta-I/O scheduling, however, these algorithms would result in large amount of 
buffer requirement for accommodating the retrieved data. In this paper, two real-time algorithms 
and a technique, called object migration, were proposed for real-time meta-I/O scheduling to 
reduce buffer requirement. 

The rest of the paper is organized as follows. In Section 2, we first address the problems 
of buffer requirement occurred in traditional real-time algorithms.i A buffer measurement approach 
was then proposed in Section 3 for estimating the performance of scheduling algorithms, which is 
based upon the well-known graph coloring technique. Section 4 describes the approaches for 
reducing buffer requirement in meta-I/O scheduling. In this section, we proposed two real-time 
algorithms and a strategy called migration to achieve our goal. Details of the performance tests are 
presented in Section 5. The simulation results ate also discussed in this section. Section 6 concludes 
the paper with a summary of this work. 

2. B a c k g r o u n d  a n d  P r o b l e m  

In real-time scheduling, a request R consists of a triple [r, d, c], where r is the ready time 
before which it cannot be start, and d the deadline by which it must be completed, and the c is the 
processing time of this request. The time interval [r, at] is termed the time window of the request. 
The scheduling algorithm is to find the start time s and thefinish time f o r  each request such that it 
can run without interference within time interval [s, 3'] where f =  s + c. A schedule is called feasible 
if all requests are scheduled within their time windows, i.e., r _< s and f <  d. Several studies had 
shown the elegance of real-time algorithms, such as EDF and LLF, for easily finding a feasible 
schedule. When applying to meta-I/O scheduling, however, these algorithms suffer from needing a 
large amount of buffer space for holding the prefetched data. As an example consider four requests 
given below: 

R, : [r~, d a, Ca] = 
R 2 : [rb, rib, Cb] = 
R3 : [re, do, col = 
R, : = 

[0, 7, 41 
[0,9, 1] 
[0, 10, 3] 
[0, 14, 2] 

Figure 1 exhibits the schedule resulted from employing EDF algorithm, where the retrievals of 
object a, b, e and d are scheduled within time interval [0, 4], [4, 5], [5, 8] and [8, 10], respectively. 
All the objects in Figure 1 are prefetched because all the finish times are scheduled before their 
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deadlines. Data prefetching may result in a large amount of buffer requirement in the system. Note 
that, in the area of multimedia presentation, it would be meaningless if  related data cannot be 
synchronous to display, e.g., video and audio. For multimedia data scheduling, we define the 
deadline of an object as its synchronization point meaning that this object cannot be displayed 
before or after the deadline for the purpose of synchronization. That is, the retrieval of an object 
must be completed before its deadline and the buffer that allocated for holding this object must be 
preserved until its deadline. We refer to the buffer space reserved for an object from its start time to 
its deadline as the extra-buffer. The result in Figure 1 indicates that, by using EDF algorithm, we 
need a large amount of extra-buffer to accommodate all the prefetched data. As an example in 
Figure 1, we need an extra-buffer of four units from time 0 to 7 for accommodating object a and 
another of one unit from time 4 to 9 for object b, where we assume that the sizes of object a and b 
are four and one units, respectively. Without considering the prefetched object c and d, the extra- 
buffer of 5 units is required for holding object a and b in such a schedule. Note that, if object b is 
scheduled within time interval [8, 9] then only an extra-buffer of four units is needed. The reason is 
that the extra-buffer which object a resides has been released at time 7 such that it can be reused for 
holding object b from time 8. However, this may not be good if object c and d are also taken into 
consideration. Most of the current real-time algorithms, such as EDF, are designed for easily 
finding a feasible schedule (schedule all the requests within their time windows). In this paper, we 
focus on designing algorithms both to find feasible schedules and to minimize the extra-buffer 
requirement. 
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Figure 1" Schedule by using EDF algorithm 

In the following, we explored two real-time algorithms and a technique called migration 
to achieve this goal. Before that, an approach is first proposed in the next section to measure the 
extra-buffer requirement for a schedule, which is based upon the well-known graph-coloring 
technique. 

2. T h e  B u f f e r  M e a s u r e m e n t  A p p r o a c h  

Let Pi denote the time interval between the start time and the deadline of an object i, that 
is, Pi = [s i , di ], meaning that within which extra-buffer is required for holding object i. We refer 

to Pi as the prefetching interval of object i. Figure 2 shows all the prefetching intervals of the 
objects in Figure 1. Note that, two objects with overlappedprefetching intervals need to be located 
to different extra-buffer space such that their contents will not be corrupted by each other. As an 
example in Figure 2, we must allocate distinct extra-buffer space for object a and b because the 
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prefetching intervals of a and b are overlapped. However, the extra-buffer reserved for object a and 
d need not to be different because object d can use the extra-buffer released from object a. 

a i ! 

b ,  

C ! i 

d r "  :, 
t ime 

I I I I I I I I I I I I i i ,I I I 
0 2 4 6 8 10 12 14 16 

Figure 2: Prefetching Interval of schedule in Fig. 1 

We formulate such an extra-buffer allocation problem as a graph coloring problem: each 
node in the graph stands for an object, and two nodes are connected by an arc if two objects have 
overlapped prefetching interval. Such a graph is called an interference graph. Figure 3.(a) 
delineates the interference graph of Figure 2. The problem then is to color the graph using a number 
of colors less than or equal to the number of available extra-buffer units in the system. In graph 
coloring algorithm, no adjacent nodes may have the same color, meaning that no two objects with 
overlapped prefetching intervals may be assigned to the same extra-buffer (e.g., node a and b in 
Figure3.(a)). However, nodes that are not connected by an arc may have the same color, allowing 
objects whose prefetching interval do not overlap occupy the same extra-buffer space (e.g., node a 
and d). To better fit the problem, we further modify the graph coloring technique by allowing a 
nc~de to be assigned more than one color. This enables those objects with larger size to be hold in 
more buffer units. The number of colors assigned to a node is based on the degree of the object (say 
S) associated with that node, which is defined by: 

L = size of object S / size of extra-buffer unit 

where extra-buffer unit is defined by the greatest common divider (gcd) of all the object sizes. This 
means that L buffer units should be allocated to accommodate object S. Assuming that the degrees 
of object a, b, c and d are 4, 1, 3 and 2, respectively, a possible colored interference graph of Figure 
3.(a) is depicted in Figure 3.(b), where nodes associated with object a is assigned four colors and 
nodes associated with object b, c and d are assigned one, three and two colors, respectively. It can 
be seen that the four nodes in Figure 3.(b) are colored with eight colors in total, meaning that at 
least eight extra-buffer units are required to accommodate all the objects. 

(a) 

c5 

c 1 c2 c3 c4 c 1 c2 

~ ~ c 6  c7 c8 

(b) 

Figure 3: Interference Graph of Fig. 2 
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Note that the number of available colors is equal to the number of extra-buffer units for 
accommodating objects. As long as the available colors are sufficient to color the entire 
interference graph, the system is capable of accommodating all the retrieved objects until their 
deadlines. Although Graph Coloring is an NP-complete problem, there are heuristic algorithms that 
work well in practice. In the domain of compiler, for example, graph coloring technique has been 
widely employed in solving the problem of register allocation, which appeared wonderfully elegant 
and simple [1][2][3]. 

3. The  R e a l - T i m e  Schedul ing  A l g o r i t h m s  

In buffer measurement approach, it can be seen that extra-buffer requirement for an 
object S is dominated by two factors: the prefetching interval and the size of object S. This implies 
that extra-buffer requirement for all the objects can be reduced by taking these two factors into 
consideration. In the following, two real-time algorithms were exploited. 

3.1 Latest-Deadline-Last Algorithm 

The idea behind the Latest-Deadline-Last (LDL) is to schedule each task as much as 
close to its deadline such that the prefetching interval for each object is shorten and total amount of 
extra-buffer requirement can be reduced. With LDL algorithm, tasks are scheduled from the latest 
deadline backwards to the current time. While scheduling tasks, we keep a time called current 

deadline so that a task can be scheduled only before this time. A set of tasks called active task set is 
used to keep all the tasks whose deadline are greater than or equal to the current deadline. In other 
words, all the tasks in the active task set are the only one considered for scheduling among all 
unscheduled tasks. We select a task with the latest deadline to schedule its finish time at current 
deadline. The current deadline is then updated to the start time of the newly scheduled task. 
Whenever the current deadline is changed, the active task set is also updated by including more 
unscheduled tasks whose deadlines are behind the new current deadline. If there is no task in the 
active task set, the current deadline is shifted to the latest deadline of the unscheduled tasks. 
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time 
I I I I I I I I I I I I I I I I I 
0 2 4 6 8 10 12 14 16 

Figure 4: Schedule by using LDL algorithm 

Figure 4 shows the schedule by using the LDL algorithm, where only object a and b are 
need to be prefetched. By using graph coloring technique, five buffer units are required to 
accommodate all the objects, where the degrees of objects are assumed to be the same with Figure 
3. Compared with EDF in Figure 3, the extra-buffer requirement is reduced significantly when 
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LDL algorithm is employed. Given a set of real time tasks ordered by deadline, we can recursively 
derive the start time s i and finish time f of each tasks by using the following algorithm. 

i 

LDL Algorithm: 
Input: A set of tasks (1, 2 ..... n) sorted in an ascending order of deadlines. 
Output:  start time s and finish t ime f  of each task. The variable feasible is set to be TRUE if 

a feasible schedule is found; otherwise it is FALSE. 
Begin 

/* Initialization. */ 
f. :=d. ;  
s , = f , - -  c,; 

feasible := TRUE ; 

} 
End 

for i := n- -  1 to 1 { /* Go over the task list from */ 

fi := min (di, si+l) ; 
S i : =  ~ - -  C i ; 

if (si < ri)then { 
feasible := FALSE ; 
break ; 

} 
/* end of for loop */ 

3.2 Larges t -S ize -Las t  A l g o r i t h m  

With largest-size-last (LSL), the objects with larger size have higher priority to be 
scheduled closer to their deadline. The idea behind is to recognize that objects of larger size would 
occupy larger amount of buffer space when prefetching is required. This implies that if objects of 
large size can be scheduled as much as close to its deadline, the total requirement of extra-buffer 
would be reduced. By LSL algorithm, we schedule tasks in a descending order of object size with 
objects of larger size being scheduled first. While scheduling, we keep a reservation list which 
maintain a set of reserved intervals. A reserved interval in reservation list is a time interval that is 
assigned to a task in this schedule: it is reserved for tasks that have been scheduled. By LSL 
algorithm, we first select the task with largest size and schedule it by aligning the finish time to its 
deadline. The reservation list is then updated by attaching the reserved interval of time between 
start time and finish time of the newly scheduled task. Each time the reservation list is changed, all 
the unscheduled task with time window overlapped with reservation list are modified by excluding 
the reserved interval from its time window. We refer to the resulting windows as the surviving 
window. Each unscheduled task is then scheduled within one of its own surviving time window 
with finish time as much as close to deadline. 
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Figure 5: Schedule by using LSL algorithm 

Figure 5 delineates the schedule by using LSL algorithm, where only object b is 
prefetched. In Figure 5, object a with largest size of  four units has the highest priority to be 
scheduled closest to its deadline, and then is object c, d and b. When object a is scheduled within 
[3, 7], the reservation list is modified by attaching time interval [3, 7] to it and the time windows of  
all the unscheduled object b, e and d are also updated. This results in two surviving windows, [0, 3] 
and [7, 10], for object c as depicted in Figure 5. In order to have finish time closest to deadline, 
object c is scheduled within surviving window [7, 10]. The same processes last until all the objects 
are scheduled. By using graph-coloring technique, five buffer units are required for 
accommodating all the objects, where the degrees of  objects are assumed to be the same with 
Figure 3. Compared with EDF in Figure 3, the extra-buffer requirement is reduced significantly 
when LSL algorithm is employed. Given a set of  real time tasks ordered by their sizes, we can 
recursively derive the start time s i and finish time f of  each tasks by using the following 

algorithm. 

LSL Algorithm: 

Input :  A set of  tasks (1, 2, ..., n) sorted in an ascending order of  their sizes. 
Output: start time s and finish t i m e f  of  each task. The variable f e a s i b l e  is set to be TRUE if 

a feasible schedule is found; otherwise it is FALSE. 
Begin 

/* Initialization. rl is t  denotes reservation list, w~ the surviving windows 
for task i, and #(w~) the number of  the surviving windows */ 

rl is t  = Nil ; /* set reservation list rl is t  to be empty */ 
#(w0 :--#(w2):= ... := #(w,):= 1 ; 
for i  := 1 t o n  { 

r~l :=r~ ; 
dil := di; 

} 
i : = n ;  
While  ( ( feas ible  = TRUE) A (i > 0) ) { 

f e a s i b l e  := FALSE; 

fo r j  := #(w~) to 1 {/* go over w~to find a time interval for task i */ 

73 



E n d  

} 
i : = i - - 1 ;  
} 

f~:= d~j; 
s~ := f~ - -  g ;  
if  ( s~ > r~j) { /* a feasible schedule is found */ 

feasible := TRUE; 
attach (s~, f~) to rlist ; /* update the reservation list*/ 
for  k: = 1 to i - -  1 

/* update serviving windows of all the 
unscheduled objects */ 

exclude interval (si, f~) from Wk; 
} 

} 
if  (feasible = TRUE) break;  

/* end of  loop j */ 

/* end of  while loop */ 

4. Object Migration Strategy 

The Object Migration Strategy reduces the extra-buffer requirement by regarding the 
disk storage as a special buffer, that is, adopt the disk storage instead of  memory buffer to 
accommodate objects. This strategy works well in a multi-disk environment. In a multi-disk 
environment, there are distinct meta-I/O schedules for different di:sks. Assuming that object A need 
to be prefetched into extra-buffer as a result of  meta-I/O schedule in some disk (say source disk, 
denoted by Ds). The extra-buffer can be released if object A can be written to another disk (say 
target disk, denoted by Dr) during its prefetching interval so that it can be retrieved directly from D, 
instead o fD  S before its deadline. Such an operation is called the miigration which involves one read 
operation at source disk and two operations at target disk, a write and a read operation. For a object 
i, a migration operation can be performed only when there is a feasible schedule in target disk for 
writing and reading object i within its prefetching interval [ s i , d i ], where si and di is the start time 

and deadline of  object i yielded from the schedule at source disk. As an example in Figure 6, the 
migration for object a (prefetehed from disk Ds) can be performed iff a feasible schedule is found 
for writing and reading object a at disk Dd within time interval [Sa, da]. 

Ds ~ ~ l  

Dd 

sa da 
. . . . . . . . . . . . . .  prefetching-interval . . . . . . . . . . . . . . . . .  

\M ' igration c,,,¢~cl : 

,~ write read '. 
e I I ~ ~  . [ a I 

! m i g r a t i n g - i n t e r v a l  i 

Figure 6: Object Migration Strategy 
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The migration strategy can help reduce buffer requirement by reducing the prefetching 
intervals of objects. With migration strategy, extra-buffer requirement starts from the time object is 
prefetched at source disk and it can be released when the object has been moved to the target disk. 
We refer to the interval between start time of reading operation at source disk and finish time of 
writing operation at target disk as the migrating-interval. This means that extra-buffer holding time 
for accommodating the object is reduced to migrating-interval instead of prefetching-interval. 
Owing to shorter extra-buffer holding time, the buffer can be reused soon for another object such 
that total amount of extra-buffer requirement is reduced. Another benefit yielded from performing 
migration operation is load balancing among disks in the system. Although several researches have 
focus on load balancing storage design based upon data popularity, it is hardly to precisely catch all 
the user behaviors that may depends on several unpredictable factors. At this moment, real-time 
scheduling with on-line object migration can help system afford more unpredictable traffics and 
achieve a better performance. 

Our problem at hand is to determine a candidate for migration such that more buffer can 
be released. For the purpose, following two strategies are proposed: 1. Large Object Migrating, 2. 
Long-Prefetched Object Migrating. For Large Object Migrating strategy, the objects with largest 
size have the highest priority to be migrated first, while, for Long-Prefetched Object Migrating 
strategy, the objects with longest prefetching interval are first considered to be migrated. The 
reason is that the objects with larger size will need larger buffer space for accommodating and the 
objects with longer prefetching interval will occupy the buffer resource for a longer time. Both of 
them lead to more buffer requirement. Namely, when the two types of objects are migrated to an 
available disk, we can reduce buffer requirement significantly for the system. Migration strategy 
can be employed together with any real-time scheduling algorithm in a multi-disk environment. 

5. Simulation 

In our simulations, two criteria are used to compare the performance of various 
scheduling algorithms: 1. Average Delay Time: Upon request arrival, the start time of the request is 
generated if a feasible schedule is found, or the request is delayed. The delay time of a request is 
measured as the difference between arrival time and start time of the request. 2. Buffer 
Requirement: The amount of buffer required to hold the data, measured by the proposed buffer 
measurement approach. 

5.1 Simulation Model  

In our simulations, the user request arrivals are modeled by using a Poisson process and 
the file selection for a request is modeled by using uniform distribution. Each file in the simulation 
is characterized by a triple [O,, Os, Od], where O, is the number of real-time objects in the file, Os is 
the object size which is defined by the time for the object to be retrieved from disk, and the O d is the 
inter-object interval which is defined by the deadline difference between two successive objects in 
this file. The default values of parameters used in the simulation are given in Table 1, where the 
second column (M) is the mean value and the third column (V) the variation. All the parameters, 
except to the request arrival (which is modeled as a Poisson distribution), are generated uniformly 
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distributed in the interval [M(1--V), M(1 +V)].  For example, object sizes in our simulations are 
uniformly distributed in the interval [0, 20]. The deadlines of all the objects a file are relative to the 
deadline of the first object in this file. In our simulations, the user request for a file can be delay but 
the individual relative deadline in this file cannot be missed. The reason is that, in the domain of 
multimedia applications, it would be meaningless if related objects cannot be synchronized for 
display, e.g., video and audio. The display of the entire file must be delay if any individual deadline 
cannot be met. Moreover, in our simulations, we strip each file across multiple disks based upon the 
storage allocation approach proposed in [10], by which two real-time objects with overlapped 
interval of retrieval time are stored on different disks to avoid retrieval conflicts. In the multidisk 
environment, the schedule for a user request is said to be feasible iffwe can find a feasible schedule 
for each disk (Note that, the requested file may consist of several objects reside on different disks). 

We conduct two sets of experiments. For the first set, four real-time scheduling were 
examined in our study, which are Earliest-Deadline-First (EDF), Least-Laxity-First (LLF), 
Latest-Deadline-Last (LDL) and Largest-Size-Last (LSL). For the second set of experiments, two 
migration strategies, the Large object Migrating (say M1) and the Long-Prefetched Object 
Migrating (say M2), employed in different scheduling algorithms (EDF, LDL and LSL) were 
examined. 

Table 1: The default value of parameters used in the simulations 

Symbol Mean (M) Var (V) 
d 8 0.0 

6 1.0 On 
O~ 
Od 
Ri 

10 sec 
20 sec 
60 sec 

1.0 
1.0 

Description 
the number of disks 

i 

the number of real-time objects in a file 
e 

the real-time object size 
i 

the inter-object interval for real-time objects in a file 
the interarrival time of requests. 

5.2 Simulat ion Results  and Discussion 

For the first set of experiments, Figure 7, 8 and 9 show the performance of scheduling 
with EDF, LLF, LDL and LSL algorithm, parameterized by different number of objects in a file, 
object size and interarrival time of requests, respectively. Figure 7.(a), 8.(a) and 9.(a) show the 
buffer requirement for scheduling algorithms, measured in retrieval units (ru), while Figure 7.(b), 
8.(b) and 9.(b) show the average delay time per request, measured in seconds (sec). The retrieval 
unit is defined by the amount of data retrieved from storage per second, which is varying with 
different storage. After comparing the results, we can make the following observations. 

1. It can be seen that, with the increase of either the mean number of real-time objects in a file 
or the average size of objects, the buffer requirement and the average delay time increase for 
all algorithms as shown in Figure 7 and 8. Furthermore, bolh buffer requirement and average 
delay time drops for all algorithms when mean inter-arrival time of requests increases as 
shown in Figure 9. 

2. Figure 7.(b), 8.(b) and 9.(c) show that LDL and LSL have a relatively worse average delay 
time over most ranges of parameters. Since a request will be delay when a feasible schedule 
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cannot be found, the results implies that both of them have the worse success ratio of 
generating a feasible schedule. 

3. Although LDL and LSL have a relatively worse average delay time, both of them achieve a 
significant improvement for reducing buffer requirement in comparison with EDF and LLF 
as can be seen in Figure 7.(a), 8.(a) and 9.(a). The result implies that'both LDL and LSL 
result in fewer objects to be prefetched and hence fewer buffer is required for holding these 
data. We also notice that, LSL performs better than LDL in terms of reducing buffer 
requirement. 

4. The results demonstrate that, by sacrificing a little average delay time of requests (within 
tens of seconds), the two proposed LDL and LSL algorithms can reduce buffer requirement 
significantly (more than hundreds of seconds) for real-time systems. 
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Figure 7: The effect of the number of real-time objects in a file 
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For the second set of experiments, Figure 10 shows the performance of migration when 
EDF is employed parameterized by the inter-object interval of real-time objects in a file, while 
Figure 11 shows the performance of migration when LDL and LSL are employed. The results show 
that migration strategies perform well in reducing buffer requirement when algorithm EDF is 
employed as depicted in Figure 10.(a). Note that, when the mean of Od (the inter-object interval) 
increases, the buffer requirement drops, with M1 dropping faster than M2. The reason is that, fewer 
migrating candidates can be found for a smaller Od when large object migrating strategy is used. In 
addition, Figure 10.(b) shows that migration strategies will lead to a worse average delay time 
bacon more disk bandwidth are wasted for migration operation and hence fewer feasible schedule 
can be generated for EDF. 

We also notice that, both M1 and M2 do not perform well when LDL or LSL is employed 
as shown in Figure 11. The reason is that, both LDL and LSL generate schedules with fewer 
prefetched objects and shorter prefetching interval, therefore no migrating candidates can be found. 
The results also demonstrate that both LDL and LSL achieve a better performance in reducing 
buffer requirement than EDF, even though when migration Strategies are employed in EDF 
algorithm. 
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Figure 10: The effect of migration in EDF algorithm 
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Figure 11' The effect of migration in LDL and LSL algorithms 

6. Conclusion 

Continuity is an important issue in the domain of multimedia applications. To ensure that 
continuous retrieval can be guaranteed in the presence of multiusers, a feasible scheduling 
mechanism is prerequisite for real time data retrieval from storage subsystem. However, several 
real-time algorithms such as earliest-deadline-first (EDF) suffer from wasting a large amount of 
buffer when employed in solving meta-I/O scheduling problem. In this paper, several techniques to 
reduce buffer requirement were explored for real-time meta-I/O scheduling, including latest- 
deadline-last (LDL), largest-size-last (LSL) and migration strategies. Moreover, we also propose a 
buffer measurement approach to estimate the performance of various scheduling algorithms. 

We conducted a simulation study of the proposed real-time algorithms. By comparing 
four algorithms, namely earliest-deadline-first (EDF), least-laxity-first (LLF), latest-deadline-last 
(LDL) and (largest-size-last) LSL, we find that both LDL and LSL perform much than EDF and 
LLF for real-time meta-I/O scheduling. Although LDL and LSL have a relative worse average 
delay time for requests, the reduced buffer requirement in significant for scheduling in real-time 
systems. Furthermore, the simulation results also show that migration strategies achieve an 
improvement ir~ reducing buffer requirement for some real-time algorithms in multi-disk systems. 
On-line migrating objects between disks also achieve a potential load-balancing among disks, 
which promotes the performance of the entire system. In conclusion, we believe that the proposed 
real-time algorithms and migration strategies show a promising prospect towards solving buffer 
requirement problem for meta-I/O scheduling in real-time systems. 
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