
Finding and Exploring Memes in Social Media

Hohyon Ryu, Matthew Lease, and Nicholas Woodward
School of Information

University of Texas at Austin
hohyon@utexas.edu, ml@ischool.utexas.edu, nwoodward@mail.utexas.edu

ABSTRACT

Critical literacy challenges us to question how what we read
has been shaped by external context, especially when infor-
mation comes from less established sources. While cross-
checking multiple sources provides a foundation for critical
literacy, trying to keep pace the constant deluge of new on-
line information is a daunting proposition, especially for ca-
sual readers. To help address this challenge, we propose
a new form of technological assistance which automatically
discovers and displays underlying memes: ideas embodied by
similar phrases which are found in multiple sources. Once
detected, these underlying memes are revealed to users via
generated hypertext, allowing memes to be explored in con-
text. Given the massive volume of online information today,
we propose a highly-scalable system architecture based on
MapReduce, extending work by Kolak and Schilit [11]. To
validate our approach, we report on using our system to pro-
cess and browse a 1.5 TB collection of crawled social media.
Our contributions include a novel technological approach to
support critical literacy and a highly-scalable system archi-
tecture for meme discovery optimized for Hadoop [25]. Our
source code and Meme Browser are both available online.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia—Architectures ; H.4.3 [Information
Systems Applications]: Communications Applications—
Information browsers ; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing—Miscellaneous

General Terms

Algorithm, Design, Experimentation, Measurement

Keywords

automatic hypertext, critical literacy, memes, MapReduce

1. INTRODUCTION
Web 2.0 technologies have broken down many traditional

barriers to authorship, enabling greater democratization of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’12, June 25–28, 2012, Milwaukee, Wisconsin, USA.
Copyright 2012 ACM 978-1-4503-1335-3/12/06 ...$10.00.

information exchange via online social media, where hyper-
text can blur distinctions between readers and writers [15].
However, the massive growth of information produced by
less established sources has created significant new criti-
cal literacy1 challenges for helping people effectively inter-
pret and assess online information [24, 5]. Our vision is
to complement traditional forms of critical literacy educa-
tion with additional technological support in the form of
smarter browsing technology. Such technology has addi-
tional promise for providing new paths for discovering and
exploring collections [19], as well as integrating information
expressed across multiple sources. Instead of understanding
online narrative through only a single source, we can instead
explore how broader community discourse has shaped its de-
velopment [2] or facilitates greater social engagement [9].

Our analysis centers on fine-grained discovery and dis-
play of memes: ideas represented by one or more similar
phrases which occur across multiple collection documents.
While our work is inspired by Leskovec et al.’s system for
meme detection and visualizion [12], their notion of memes
was restricted to explicit quotations only, ignoring the vast
majority of text. This assumption is limiting with social me-
dia, which often eschews use of quotations for reasons rang-
ing from innocuous social norms to more insidious “messag-
ing”campaigns which flood social media with repeated stock
phrases while obfuscating their central originating source.

Of course, mining complete texts instead of quotations
represents a significant scalability challenge. To address this,
we propose an adaption of Kolak and Schilit (K&S)’s scal-
able architecture for finding “popular passages” in scanned
books [11]. While their approach centered on use of the
MapReduce paradigm for data-intensive, distibuted comput-
ing [7], they utilized Google’s proprietary version of MapRe-
duce and omitted some important practical details. We
instead adopt the open-source Hadoop version of MapRe-
duce [25] and discuss practical implementation issues and
design patterns [14] for building scalable Hadoop systems
for tasks such as ours. Because the K&S algorithm gener-
ates a quadratic data increase in what is already a data-
intensive problem, requiring aggressive filtering, we describe
an alternative approach which avoids this problem.

To validate our approach, we report on using our system
to discover and browse memes in a 1.5 TB collection of 28
million crawled blogs. Our primary contributions include:
1) a novel approach and browser design for supporting criti-
cal literacy; and 2) a highly-scalable system architecture for
meme discovery, providing a solid foundation for further sys-
tem extensions and refinements. Our discussion of Hadoop
algorithms and design patterns used should also be helpful

1http://en.wikipedia.org/wiki/Critical_literacy

Figure 1: The Meme Browser makes readers aware of (discovered) underlying memes via highlighting. Navigation links let
the reader explore detected memes in context, investigating connections they reveal between different documents. A common

phrase (CP) is any phrase seen to occur in multiple documents, while a meme is a cluster a similar CPs. At all times, there
exists an Active CP (ACP) and associated Active Meme (AM), for which relevant information is shown.

At top: The Timeline Navigator 1) indicates the date of the current document being read; 2) shows the temporal profile of
mentions of the AM and 3) supports access and navigation to top memes on other days.

Below the timeline: The Content Pane 1) highlights a specific ACP for the AM in the context of the the current document;
and 2) marks in gray any other highly-ranked memes present in the document. The reader may select a new AM at any time.

At left: The Faceted Browsing Pane provides information and navigation links relevant to the ACP and AM. From top-
to-bottom, the pane shows 1) “Phrase”: the ACP; 2) “Other Mentions (Same Source)”: links to other mentions of the ACP
by the same source (i.e. information provider); 3) “Other Mentions (General)”: links to other mentions of the ACP by other
sources; 4) “Meme Related Phrases”: other CPs belonging to the AM; and 5) “Memes of the Day”: an automatically-generated
ranking of the the most informative memes for the current date.

At bottom: A Feedback Widget invites simple user feedback on meme quality to collect labels for training and evaluation.

for those more generally interested in data-intensive com-
puting and effective use of Hadoop. Our source code2 and
Meme Browser3 are both freely available online.

2. ENVISIONED USER EXPERIENCE
A screen shot of our Meme Browser interface is shown in

Figure 1. A reader’s experience with our system might start
by opening a document and finding memes displayed, select-
ing a meme from opening the Top Memes of the Day page,
or selecting some other date from the Timeline Navigator.
Imagine the reader selects September 3, 2008 and its top
meme, “laura bush and cindy mccain”. The names might
be familiar, but the reader might wonder why they are oc-
curring together on this day. After selecting the meme, a

2https://bitbucket.org/softbass/meme-extractor
3http://odyssey.ischool.utexas.edu/mb/

representative document opens to a paragraph where the
phrase is found highlighted:

God loves Republicans because he allowed Laura
Bush and Cindy McCain show how classy
they were. Either of these women has more class
in her little finger than Thunder Rodent Thighs
has in her whole body.

At this point, the reader may become even more curious:
what happened that day and why was the blogger so excited?
He notices gray bars above the timeline indicating when the
current meme was mentioned and its popularity in mentions
over time. He then selects the first day where the peak is
observed and finds a document with the following paragraph:

Cindy McCain and first lady Laura Bush will ap-
pear before the Republican convention Monday
to encourage people to donate to the relief efforts

in the Gulf region, a senior McCain campaign of-
ficial told reporters in a conference call.

Depending on the reader’s familiarity with world events at
that time, more questions might come to mind. “What hap-
pened in the Gulf area?”; “What did other politicians think
about this?”; and“What was the public reaction?” The read-
ers realizes that the highlighted phrases lead to other docu-
ments where the given phrase is mentioned. They see that
“Hurricane Gustav slammed into the Louisiana coast,” and
“all political activity will be suspended for the time being.”

Glancing at the Meme Related Phrases section, the reader
can find additional phrases related to this same meme, along
with how often they were mentioned and the time period in
which they were most active. In this case, additional phrases
include “laura bush and cindy mccain’s speech” and “the
first lady and cindy mccain”, providing further points for
exploration. Looking at the Memes of the Day section, the
reader begins discerning relationships between other popular
phrases and can continue to explore further.

3. SYSTEM ARCHITECTURE
Figure 2 presents our system’s overall processing architec-

ture. Initial preprocessing extracts and normalizes textual
content (e.g. filtering out advertisements and HTML tags),
as well as non-English documents and extremely short doc-
uments (see Section 4 for preprocessing details). Our sub-
sequent processing follows Kolak and Schilit’s high-level ap-
proach for finding “popular passages” in scanned books [11].
First, near-duplicate documents are identified and removed
(Section 3.1). Next, we utilize a multi-stage, scalable MapRe-
duce process to automatically find common phrases (CPs)
that occur in multiple documents. We then rank CPs to
identify the most informative ones to display to the user
(Section 3.3). A clustering phase then groups similar CPs
to form memes (Section 3.4). We report efficiency statistics
in Section 4 and design of the Meme Browser in Section 5.

Figure 2: Our meme detection architecture involves pre-
processing, near-duplicate detection, then finding, ranking,
and clustering common phrases (CPs) to form memes.

3.1 Near-Duplicate Removal
Social media and news collections often contain many mi-

nor variants of the same document, e.g. different editors’

versions of the same Associated Press story [1]. Because
brute force near-duplicate document detection (NDD) re-
quires O(n2) comparison of all document pairs, we devel-
oped several simple heuristics to reduce the search space
and speed up comparison which served our immediate need.
While secondary to our core work, we describe our approach
here and refer the interested reader to other well-known
NDD methods (cf. [23, 8]) and MapReduce approaches for
performing efficient document comparison [13].

To reduce the number of comparisons required, we parti-
tion the document space to only compare documents which
begin with the same character and have total word length
within ± a parameter window size of each other. To speed
up the remaining comparisons, we: 1) reduce the vocabu-
lary size by conflating all terms starting with the same four
characters; 2) build a dictionary hashmap for mapping these
(4-character) “terms” to numeric indices; 3) ignore term fre-
quencies and record only binary presence vs. absence of each
term; and 4) represent each document by a bit-vector for fast
intersection operations. Note this representation of docu-
ments is used only for NDD.

Building the collection dictionary for the reduced vocab-
ulary represents a minor variant on the cannonical word
count example in the original MapReduce paper [7]. To
reduce intermediate output, rather than emitting all tokens,
we instead collected the document-specific vocabulary for
each document in the Mapper and then output this vocab-
ulary after the entire document has been processed (i.e. in-
Mapper combiner pattern [14]). We also save all document-
specific vocabulary from the Mapper (along with the docu-
ment’s length and first character) directly to HDFS. The
hashmap is trivially built from the vocabulary and then
shared with an embarassingly parallel processing stage which
partitions the collection (i.e. the document-specific vocab-
ulary for each document) across the cluster and uses the
shared hashmap to convert each document to a bit vector.

Next, all documents with the same first character and
word length are grouped together. The Mapper simply emits
(character,length) as the primary key for each document,
using the document ID as a secondary key. MapReduce sec-
ondary sorting [14] then groups documents by the primary
key and sorts them by the secondary key. The reducer is
just the identity function, outputting a sorted list of docu-
ment IDs for each (character, length) primary key. A second
hashmap is then trivially built for fast lookup.

Algorithm 1 details our NDD method. For each (char-
acter, length) bucket, we load the sorted list of document
IDs plus document IDs in buckets within ±window size.
By symmetry, we need only consider longer lengths, as well
as only compare documents with smaller IDs to those with
larger. If document similarity is below the dsim threshold

parameter, the document with greater ID is identified as a
near-duplicate and output for deletion.

As a slight variant to Jaccard similarity and Dice’s coeffi-
cient, we compute document similarity by:

dsim(A, B) =
|A ∩B|

min(|A|, |B|)
(1)

As an example, if one document has vocabulary [a, b, f, g,
h, i] and another has [a, f, g, h, i, j, k, l], the resulting simi-
larity is 5

6
. While this strict coefficient could be problematic

were the document lengths considerably different, the pa-
rameter window size prevents this case from occurring.

Algorithm 1 Near-Duplicate Document Removal

Parameter: t← dsim threshold

Parameter: ∆← window size
Parameter: map← (character c, length l) hashmap

1: for each (c, l) bucket ∈ map do
2: Sorted List L← ∅
3: for each i ∈ [0 : ∆] do
4: L.add(all document IDs ∈ map(c, l + i))

5: for each d ∈ L do
6: for each (d2.ID > d1.ID) ∈ L do
7: if dsim(d1, d2) > t then
8: output(d2)
9: L.remove(d2)

3.2 Finding Common Phrases
Our definition of memes was ideas represented by similar

phrases that occur across multiple documents. Based upon
the Kolak and Schilit (K&S) approach for finding “popular
passages” in scanned books [11], we find identical phrases oc-
curring in multiple documents, then group similar phrases
into memes. While we adopt a similar 3-stage MapReduce
architecture for finding the common phrases (CPs), our sec-
ond and third stages differ markedly. As we shall further
discuss, Stage 2 of the original K&S algorithm generates
quadratic growth of data in an already data-intensive com-
putation. While this growth can be mitigated by aggressive
filtering, such reduction comes at the cost of increasing the
false positive rate. Consequently, we describe an alternative
formulation which finds CPs while avoiding this scalability
tradeoff. We also replace the loosely-defined grouping phase
of K&S with a well-specified method based on established
clustering techniques (Section 3.4).

Algorithm 2 Stage 1: Shingle Table Generation

Parameter: shingle size
1: method MAP(doc id, text)
2: position← 0
3: for each shingle size shingle in text do
4: EMIT(shingle, pair(doc id, position))
5: position← position + 1

Parameter: min count

Parameter: max count . Maximum bucket size
1: method REDUCE(shingle, [(doc id, i)])
2: shingle count← count([(doc id, index)])
3: if (min count ≤ shingle count ≤ max count) then
4: EMIT (shingle, [(doc id, i)])

Stage 1: Shingle Table Generation. K&S begin by
shingling each collection document, i.e. extracting sequen-
tial n-grams which overlap like roof shingles. For example,
bigram shingling of “a man a plan”would yield three bigram
shingles: “a man”, “man a”, and “a plan”. For each observed
shingle, a bucket is maintained tracking all (document ID,
word position) pairs in which the shingle is seen to occur.
The set of all observed shingles and their associated buckets
defines the shingle table. Creating this table requires a single
pass over the corpus, followed by a massive MapReduce sort
for grouping bucket entries by shingle. To reduce the size of
the shingle table, K&S describe two pruning optimizations:

1) discarding singleton shingles occurring only once in the
collection (which cannot contribute to a match across mul-
tiple documents); 2) discarding very frequent shingles which
would generate very large buckets (though the upper-limit
they use is not specified). We adopt this shingle table gen-
eration process largely unmodified, although we do specify
a more general lower-bound parameter for discarding rare
shingles. A complete description of our shingle table gener-
ation process appears in Algorithm 2.

In the K&S approach, the bucket size upper-limit must
be set aggressively to keep data small enough for practical
processing in subsequent stages. While only the size of the
output shingle table is affected at this stage, we shall de-
scribe the greater impact of bucket size on Stage 2 & 3.

As a final note on Stage 1 processing, an important point
of Hadoop programming is not obvious from the canonical
form of MapReduce pseudo-code shown in Algorithm 2: the
Reducer does not actually load the entire bucket for a given
shingle into memory. Instead, the Hadoop run-time pro-
vides an iteration mechanism to sequentially process each
bucket entry one-at-a-time, avoiding this potential memory
bottleneck. However, this raises the question of how we can
implement an upper-limit constraint on bucket size shown
in Line 2 of the Reducer.

The simplest, but memory-intensive, option is Buffering,
which means retaining all bucket entries during iteration and
only emitting entries after ensuring the upper-limit is not vi-
olated. The Unbuffered approach instead emits each bucket
entry as we iterate but keeps count as we go. If the bucket
size limit is ever violated, we record the shingle and ignore
any subsequent bucket entries for it. After termination, we
then go back and iterate over the list of recorded shingle IDs
to prune them (and their associated buckets) from the shin-
gle table. Such options are indicative of a common tradeoff
in Hadoop programming. Buffering approaches are typically
more efficient if the size of memory required is manageable;
when data-intensive computing precludes this, however, we
instead adopt an Unbuffered approaches. Between these ex-
tremes, one can alternatively specify a limited-size buffer
and flush to disk whenever the buffer is filled. Since we as-
sume a relatively large limit on bucket size, we do not buffer.

Algorithm 3 Stage 2: Grouping Shingles by Document

1: method MAP(shingle, [(doc id, i)])
2: for each (doc id, i) in [(doc id, i)] do
3: EMIT(doc id, (shingle, i))

1: method REDUCE(doc id, [(shingle, i)]) . Identity
2: EMIT (doc id, [(shingle, i)])

Stage 2: Grouping Shingles by Document. Our
approach to Stage 2 marks a significant departure from that
of K&S; we simply perform a trivial a re-sort of the shingle
table by document ID. In contrast, K&S output the shingle
buckets for every shingle occurring in every document. To
give a simple example, assume we have D documents which
each contain S unique shingles, where each shingle occurs
in some constant fraction of the D total documents (i.e. has
bucket size D

k
, for some k). For the D ∗ S shingles to be

output, we must output a total of D2
∗S

k
bucket entries. This

quadratic number of bucket entries to output as a function

of the collection size D can be problematic for scaling the
method to realistic collection sizes.

At this stage, the challenge is I/O intensive rather than
memory intensive, impacting the amount of intermediate
and persistent data which must be transferred over the net-
work, buffered to/from disk, written persistently (end of
Stage 2), then redistributed by HDFS over the network and
read-in for Stage 3. As mentioned, K&S implicitly address
this issue by aggressively restricting maximum bucket size.
By using only positional information from the buckets for
Stage 3 matching, they also cleverly avoid having to out-
put shingle strings. Because we do not output buckets, we
instead do output the shingle strings for Stage 3 matching.

In either approach, document shingles must be sorted by
position for sequential processing in Stage 3. As before,
we encounter another Hadoop space vs. time tradeoff. We
could simply perform this sort in-memory with Buffering,
or we could instead utilize slower secondary sorting to let
the Hadoop run-time perform this sorting for us [25]. While
large limit on bucket size led us to avoid buffering before,
here we can buffer because documents are relatively short. A
complete description of our Stage 2 appears in Algorithm 3.

Algorithm 4 Stage 3: Common Phrases (CP) Detection

Parameter: max gap length

1: method MAP(doc id, [(shingle, i)])
2: cp← first shingle

3: prev i← first i

4: for each (shingle, i) in rest of (shingle, i) do
5: if (i− prev i) ≤ max gap length then
6: start = end− (i− prev i)
7: cp← cp + shinglestart:shingle size

8: else
9: EMIT (cp, doc id)

10: cp← shingle

11: prev i← i

12: EMIT (cp, doc id)

Parameter: min doc count

1: method REDUCE(cp, [doc id])
2: if (count([doc id]) ≥ min doc count) then
3: EMIT (cp, [doc id])

Stage 3: Common Phrase (CP) Detection. Stage
3, shown in Algorithm 4, marks a complete departure from
the K&S approach [11]. Whereas they find phrase matches
based on shingle buckets, we use shingle strings instead for
scalability. Moreover, without aggressive bucket size filter-
ing, large bucket sizes become a problem of memory as well
as I/O in their Stage 3 since large buckets lead to large
numbers of active alignments buffered while iterating over
document shingles . Finally, they give a “free pass” to any
shingle pruned by the bucket size limit; because this limit
is set aggressively to reduce quadratic data growth, an in-
creasing number of spurious alignments will be made.

Our Mapper effectively just concatenates consecutive shin-
gles, giving our “free passes” only to shingle gaps of length
at most max gap length. Because scalability of our method
allows us to adopt a conservative upper-limit on bucket size,
we do not encounter many gaps from pruning of frequent
shingles. At the other extreme, whereas K&S only prune
singleton shingles in Stage 1, we prune rare shingles occur-

ring less than min count times (see Algorithm 2). However,
singleton shingles always break phrases for K&S, even if the
shingle is the only minor divergence from a longer alignment
that ought to be captured. In contrast, our max gap length

parameter allows us to preserve running phrases provided we
do not miss too many shingles in a row, in which case such
a gap is likely warranted anyway.

Whereas K&S find CPs by explicit sequence alignment
across documents, we simply use the MapReduce sort phase
to group together multiple occurrences of the same phrase.
Because by default we find many CPs that are not inter-
esting, we prune rare CPs (later ranking will further reduce
this set). Buffering CPs in the reducer until the minimum
threshold is met is trivial, after which we simply flush the
buffer and emit all subsequent occurrences directly.

3.3 Common Phrase (CP) Ranking
As with the“popular passages” found by Kolak and Schilit

(K&S) [11], the complete set of all CPs we find contains
many phrases that are unlikely to be interesting to a reader.
K&S perform ranking via a weighted geometric mean of
length and frequency statistics. Our different social media
data and usage context lead us to another formulation.

First and foremost, we are interested in developing a no-
tion of information source, where multiple documents are
agreed to originate from the same source. One challenge is
conceptual: with news posts, for example, is the source an
individual reporter, the reporter’s local news organization,
its umbrella corporation, or some other equivalence class
we define over individuals or organizations. Another chal-
lenge is practical: how can we automatically infer this source
(however source is defined), given the observable data? In
this work, we make a simple assumption of treating each
domain address as a unique source. For example, for a doc-
ument with URL http://copiouschatter.blogspot.com/
2009/02/grumpy-old-men.html, we take as source
copiouschatter.blogspot.com. In general, a long tail of
different URL naming patterns used by different social sites
makes this a challenging mining problem [6].

For our context of usage, we want to rank some top set
of CPs for each day to reveal to the reader. Unlike K&S,
we do not use length statistics, but rather use a variant of
TF-IDF style ranking. We use the number of unique sources
the CP appears (S) and the number of documents (DFdate)
for a given date, with an IDF-like effect from the number of
documents across all dates in which the CP occurs (DF):

scoredate =
S ·DFdate

DF
(2)

Algorithm 5 illustrates our MapReduce procedure of extract-
ing daily top k common phrases from CPs.

An interesting tradeoff to explore in future work is use of
greater Map-side local aggregation to reduce intermediate
data [14]. In particular, since we only want to output the
top k values per day, this is an associative and commutative
operation for which we could potentially filter in the Mapper
without any approximation to correctness. The problem is
that the Mapper here uses CPs as keys rather than dates,
so the Mapper would be required to buffer data over all col-
lection dates; more importantly, distribution of CPs for the
same date across Mappers loses the critical locality needed.
Another MapReduce process would be needed to re-sort the
CPs by date, potentially negating any subsequent savings.

Algorithm 5 Rank top-k Common Phrases (CPs)

1: method MAP(cp, [(doc id, source)])
2: Map[date 7→ source] sources← ∅
3: Multiset dates← ∅
4: for each (doc id, source) in [(doc id, source)] do
5: dates.add(date(doc id))
6: sources[date(doc id)].add(source)

7: Set uniqdates← set(dates)
8: DF ← |dates|
9: for each date in uniqdates do

10: Sdate ← |sources[date]|
11: if Sdate > 1 then
12: DFdate← |dates[date]|
13: EMIT (date, (cp, scoredate))

Parameter: top k

1: method REDUCE(date, [(cp,ms)])
2: ranked cps← sort([(cp, ms)] by ms)
3: for each i ∈ [1, top k] do
4: EMIT (date, ranked cps[i])

3.4 Common Phrase (CP) Clustering
Section 3.2 described how we find CPs at scale, while the

previous section discussed how to filter out less interesting
CPs. We now discuss how we cluster similar (unranked)
CPs to form memes. Our approach here replaces the loosely-
defined grouping phase of K&S with a well-specified method
based on more standard clustering techniques.

In comparison to traditional clustering, our task is some-
what unusual. First, term vectors are far sparser vs. tra-
ditional document clustering since CPs are much shorter.
Second, manual analysis suggests we are looking for many
memes with few CPs, rather than a more traditional assign-
ing of many examples to few clusters. We perform single-
linkage hierarchical clustering [21] with cosine similarity:

cos(A,B) =

n
P

i=1

AiBi

s

n
P

i=1

A2

i

s

n
P

i=1

B2

i

(3)

Terms in vectors A and B are weighted by standard TF-IDF
in which the weight w of a term t in CP p is given by

wtp = TFtp ∗ log
N

DFt

(4)

where TF denotes the frequency of term t in CP p, N de-
notes the total number of CPs, and DF denotes the number
of CPs in which term t appears.

Like near-duplicate detection (Section 3.1), clustering is
also naively an O(n2) problem, involving similarity com-
parisons between all pairs of CP vectors. In this case, we
adopt a standard information retrieval (IR) approach of us-
ing inverted indexing to efficiently restrict similarity com-
parisons to only those vectors which share one or more com-
mon terms. Efficient inverted indexing with Hadoop has
been described in depth elsewhere [14]. We also use the
standard IR method of stopwords to reduce vocabulary for
further efficiency, though the set of stopwords is determined
via a parameter p threshold, where the stoplist = {w| fw

N
<

p threshold}. Crucially, stopwords are excluded from the in-

dex but not the CPs; if at least one non-stopword is shared
between vectors, then similarity will be computed over the
complete vocabulary. We refer to our approach as Indexed
Hierarchical Clustering with MapReduce (IHCMR).

The Mapper algorithm is shown in Algorithm 6. Initial-
ization begins by reading in all CPs (cp) from a shared
file and the inverted index. The set of CPs is partitioned
such that each node receives a subset of input IDs as in-
put for Map invocations, while all CPs are considered as
candidates (via the inverted index) to which the inputs CP
may be compared. Due to symmetry, the input CP is only
compared to candidate CPs with larger IDs. For each non-
stopword in the input CP, we lookup the postings list in the
inverted index and entries to the candidate set. Finally, the
set of candidates are evalated. Only if the cosine similarity
is greater than a parameter sim threshold will a key-value
pair of (sim, (cp1, cp2)) be emitted, where sim denotes the
cosine similarity, and cp1 and cp2 denote the CPs compared.
If a CP does not have any match above this threshold, then
(0.0, cp1) is emitted instead (creating a singleton cluster).

Algorithm 6 Cluster Common Phrases (Mapper)

Parameter: t← similarity threshold

1: index← read from disk . Inverted Index
2: cp← read from disk . Vector of Common Phrases

3: method MAP(id) . Common Phrase ID
4: Set candidates← ∅
5: for each w ∈ (cp[id] ∩ index) do
6: for each (cand id < id) ∈ index[w] do
7: candidates.add(cand id)

8: for each cand id ∈ candidates do
9: sim← cos(cp[id], cp[cand id]) . Cosine Sim.

10: emit flag ← False

11: if sim > t then
12: EMIT(sim, (cp[id], cp[cand id]))
13: emit flag ← True

14: if emit flag = False then
15: EMIT(0.0, (cp[id], null))

The Reducer, shown in Algorithm 7, is initialized with an
empty cluster list. While the sort phase between Map and
Reduce stages cannonically provides only “group-by” func-
tionality (i.e. grouping together values with the same keys
prior to invoking the Reducer), we utilize Hadoop’s ability
to sort the (floating point) keys in decreasing order. The
Reducer is then iteratively invoked on decreasing similarity
values, adding and merging clusters as appropriate. Final
clusters are emitted at Reducer termination.

4. CASE STUDY: ANALYZING BLOGS08
This section reports a case study for using our system to

discover memes in a large collection of crawled blogs. We
begin by describing the dataset, computing infrastructure,
parameter settings, and pre-processing. We then report em-
pirical results of processing efficiency (time and space).

Dataset. We utilize the TREC4 BLOGS08 collection5 of
Web Logs (blogs) crawled from January 14, 2008 to February
10, 2009. 1.3 million RSS feeds were polled weekly during

4http://trec.nist.gov
5
http://ir.dcs.gla.ac.uk/test_collections/blogs08info.html

Algorithm 7 Cluster Common Phrases (Reducer)

1: cl list← ArrayList

2: method REDUCE(sim, [(cp1, cp2)])
3: if sim = 0.0 then
4: Add cp1 to cl list as a new cluster
5: else
6: if cp1 in cl list and cp2 in cl list then
7: Merge clusters
8: else if cp1 in cl list then
9: Add cp2 to cluster containing cp1

10: else if cp2 in cl list then
11: Add cp1 to cluster containing cp2
12: else
13: Add new cluster(cp1, cp2) to cl list

14: method CLOSE()
15: EMIT(cl list)

the period, and “permalink” documents (blog pages) were
downloaded every two weeks. Each document includes all
the components of a blog page as would be presented to a
web browser. The collection consists of a total of 28,488,766
documents whose uncompressed size is 1445GB. Each doc-
ument has a unique identifier and an associated crawl date.
We have anecdotally observed differences of about 2-3 days
between the crawl date and the posting date as indicated in
the document text. At present, we simply use the crawl date
for document dating; accuracy of dating could be further
improved by either more frequent crawling or by extracting
document dates from the text (e.g. via HeidelTime [22]).

Pre-processing. Because the BLOGS08 collection con-
tains many non-English blog posts, advertisements, as well
as HTML tags, we perform the following preprocessing to
prepare documents for subsequent processing:

1. To extract meaningful content from a blog page (i.e.
filtering out navigation links, advertisements, sidebar
contents, and links to other sites), we apply Decruft, a
Python implementation of ARC90’s readability project6.

2. To filter out non-English content, we utilize NLTK7’s
language identification module.

3. For text analysis, HTML tags are removed with Beau-
tiful Soup8 and all text is converted to lowercase.

4. Short documents (fewer than five words) are removed

5. Documents are tokenized by words as follows (leading
punctuation: ampersand, middle punctuation: back
quote; final punctuation: apostrophe. “&” and “;” are
included to preserve HTML entries such as“&” or
“>.” Aposrophe is used as a grammatical marker.

Compute Cluster. Experiments reported below were
performed on a local Hadoop cluster at the Texas Advanced
Computing Center9 having 48 nodes, each having 8 2.53
GHz cores with 48GB RAM. When all 48 nodes are used, a
total of 376 mappers and reducers can run simultaneously,
using one Namenode and 47 Datanodes.

6
http://www.minvolai.com/blog/decruft-arc90s-readability-in-python

7http://www.nltk.org
8http://www.crummy.com/software/BeautifulSoup
9http://www.tacc.utexas.edu

Parameter Settings. Table 1 lists our system parame-
ters, the processing module in which each is used, and the
parameter settings yielding the empirical results reported
below. Current settings reflect heuristic tuning; our future
work will investigate this parameter space in greater detail.

Process Parameter Value

Deduplication
dsim threshold 0.85
window size 5

CP Finding: Stage 1
shingle size 5
min count 5
max count 225,000

CP Finding: Stage 3
min doc count 5
max gap length 5

Ranking top k 200

Clustering
p threshold 0.01

sim threshold 0.7

Table 1: System parameters and settings used.

Our parameters for shingle size = 5 and min count =
5 and max count = 225, 000 differ from those of Kolak
and Schilit (K&S) [11] (8, 1, and unspecified, respectively).
While K&S were interested in finding long quotations in
books, we are interested in shorter expressions such as“putting
lipstick on a pig” and“the biggest financial fraud in history.”

4.1 Processing Efficiency
Preprocessing. Initial filtering of extraneous page con-

tent and non-English posts significantly reduces collection
size to 16,674,981 posts (totaling 96 GB). While HTML tags
are filtered out for meme discovery, we do preserve tags for
display in the Meme Browser (Section 5). HTML tag re-
moval further reduces collection size to 47 GB.

Near-duplicate Detection (NDD). 1,577,525 documents
(9.5%) were identified as near-duplicates, leaving 15,097,456
documents (43GB) after their removal. Unlike other ex-
periments, NDD was performed early in our project using
only a single 6-core server. With Hadoop pseudo-distributed
mode, it required 6.5 days to complete. While this was suf-
ficient for our proof-of-concept and could be further sped up
via greater parallelism, our future work will instead pursue
more efficient methods as discussed in Section 3.1.

Finding Common Phrases (CPs). Table 2 reports
run time and volume of data generated by each MapReduce
process in finding CPs. These results reflect use of 1 namen-
ode and 17 datanodes, allowing 136 simultaneous mappers
and reducers. A total of 5,631,742 CPs were found.

Stage Mappers Reducers Time Output
Stage 1 867 270 23:49 56GB
Stage 2 954 364 9:18 95GB
Stage 3 1786 364 4:03 2.0GB

Table 2: The total running time, number of mappers and
reducers used, and size of output data generated by each
MapReduce process in CP Finding.

Our lower-bound shingle frequency parameter min count =
5 for Stage 1 was quite aggressive, filtering out the vast
majority of shingles observed (4,608,276,420, accounting for
98.27% of all shingles). In contrast, our upper-bound pa-
rameter of max count = 225, 000 was very conservative and

had very limited impact on performance. We plan to explore
the tradeoff of more moderate settings in future work. After
filtering, a total of 81,099,356 shingles remained. Stage 3
produces a total of 6,224,087 CPs.

Common Phrase (CP) Ranking. From the top 200
daily CPs, we gathered 75,039 unique phrases. The MapRe-
duce process took 2 minutes and 51 seconds on a cluster of
18 nodes capable of 136 simultaneous mappers and reducers.
Our job used 480 Mappers and 86 Reducers, and 6.2 million
common phrases (2.0 GB) were processed.

Trial Indexed # Cores Time
WEKA - 1 > 96 hours
IHCMR no 1 10:59:11
IHCMR no 136 33:43
IHCMR yes 1 16:20
IHCMR yes 136 2:51

Table 3: Performance of alternative hierarchical clustering
approaches for meme generation.

Common Phrase Clustering. Savings shown include:

1. Without indexing, our sparse vector representation over
WEKA’s off-the-shelf clustering using single core: from
> 96 hours down to 11 hours

2. Indexed vs. unindexed: from 11 hours to 16 minutes
(single core), from 34 to 3 minutes (136 cores)

3. Distributed vs. single core: from 11 hours to 34 min-
utes (unindexed) to 16 minutes to 3 minutes (indexed)

IHCMR is optimized to process extremely sparse data. The
average length of the extracted common phrases is only 6.08
words while the vector space includes 28,694 words. When
the dataset is converted into Attribute-Relation File For-
mat (ARFF), 2.4MB of meme list data becomes 11GB in
dense matrix ARFF, and 8.5MB in sparse matrix ARFF.
We first tried to use WEKA COBWEB Hierarchical Clus-
tering10 with default settings. 2.5GB of memory was as-
signed to WEKA, and the clustering was run on a single
processor at 2.67GHz. WEKA took more than 96 hours to
finish the clustering. WEKA generates and processes the
full dense matrix even from the sparse ARFF input, thus
while WEKA compares the vectors of 28,694 dimensions,
IHCMR compares the vectors of 6.08 dimensions in average.

Indexing and stopword removal. As discussed earlier,
terms occurring more that 1% (p threshold) of documents
are not indexed (a total of 60 terms). Indexing and stopword
removal reduce comparisons to only 411.78 per CP on aver-
age (σ = 441.25, range [0− 10, 996] out of 75,034 phrases).

5. MEME BROWSER
As a first step toward our larger vision of enabling peo-

ple to achieve greater critical literacy via technological as-
sistance, we have designed a prototype Meme Browser for
viewing and exploring detected memes in context. By visi-
bly displaying underlying memes, readers become explicitly
aware of their presence and have an opportunity to investi-
gate them and the connections they reveal between sources.
In addition to supporting critical literacy, the browser also

10http://www.cs.waikato.ac.nz/ml/weka

allows readers to explore how such memes develop and prop-
agate across sources and time. The browser serves both a
casual reader, with limited time for independently finding
reading many sources for connections, as well as a more mo-
tivated reader, who requires technological assistance to cope
with the vast scale of diverse information sources today.

The Meme Browser (Figure 1) accesses collection doc-
uments via a DocID index, and an Apache-PHP-MySQL
server provides database access to discovered memes. The
browser interface is written in PHP with CSS, Javascript,
and jQuery used for layout and dynamic presentation.

The Meme Browser’s interface layout is informed by prior
eye-tracking studies for faceted browsers and sponsored search
results, which have shown typical heat-map distributions of
user attention focused on top and left with exponential de-
cay moving down and right [16]. Recall that a common

phrase (CP) is any (unfiltered) phrase found in multiple doc-
uments, while a meme clusters similar CPs. The Browser’s
state maintains at all times an Active CP (ACP) and asso-
ciated Active Meme (AM), for which relevant information is
shown. We describe each component in detail below.

Timeline Navigator. At top, the Timeline Navigator
1) indicates the date of the current document being read;
2) shows the temporal profile of mentions of the AM and 3)
supports access and navigation to top memes on other days.

If the mouse cursor hovers over the dateline, the date be-
low the cursor is shown to assist in correct date selection.
A click on the timeline reveals a pop-up display showing a
Top 10 Memes of <DATE> listing, from which the user may
then select a given meme. The selected meme then becomes
the AM, a representative ACP for the AM selected, and a
representative document for that day is opened.

Content Pane. Below the Timeline Navigator, the Con-
tent Pane 1) highlights a specific ACP for the AM in the
context of the the current document; and 2) marks in gray
any other highly-ranked memes present in the document. A
new AM may be selected at any time.

The Content Pane displays the document (with its original
formatting and layout) and any CPs found in it. The five
most common CPs in the document are visibly marked to
provide the user with multiple avenues for exploration. Any
CPs other than the ACP are marked in a lighter gray color,
which visibly indicates their presence while preserving the
ACP as the primary focus. If the user has arrived at the
document via a meme of CP-based navigation, the selected
CP becomes the ACP and the document is automatically
scrolled to vertically center the ACP and its surrounding
context. If the user arrived at the document via traditional
document-based navigation, then the document view opens
at the beginning of the document. In this case, the first-
occurring CP in the document is selected as the ACP, though
it may not be visible until it is scrolled into view during the
course of reading the document. If the user hovers the mouse
cursor over the ACP, a pop-up window invites feedback on
the ACP, similar to the Feedback Widget (see below).

Faceted Browsing Pane. Along the left side of the
interface, the Faceted Browsing Pane provides information
and navigation links relevant to the ACP and AM. From top
to bottom, the following panes are provided:

• Phrase shows the Active Common Phrase (ACP).

• Other Mentions (Same Source) lists other (dated)
documents from the same source which also contain
the ACP. This allows the user to quickly assess the

level of association between source and phrase. Navi-
gation via this list demonstrates how the phrase con-
text changes (or stays the same) over time.

• Other Mentions (General) takes a slightly broader
approach, giving the user a list of other sources that
also mention the ACP. Using this list, one can make
several rough determinations of relationships across
sources by looking at the dates in which they mention
the same phrase. For example, if Source A mentions
a meme and it consistently appears in the documents
of Source B afterwards then the user may decide that
the former ”feeds” the latter information. Similarly, if
different memes appear first in one source and then
another, the relationship may be more bidirectional.

• Meme Related Phrases shows a different relation-
ship than that between sources. Here, the focus is on
the cluster of phrases itself. The selector displays a
list of phrases that are similar to the ACP, along with
when they first appear in the collection. Again, the
user is able to quickly develop a rough idea of how the
cluster of related phrases has evolved, particularly how
the the meme text appeared and changed over time.

• Memes of the Day focuses less on relationships be-
tween sources and phrases and more on time and pop-
ularity. The selector shows a list of the 10 most fre-
quently mentioned phrases on the same day of the
viewed ACP. This list serves more as a ”pulse” of the
news by providing a snapshot of the topics that were
trending on a given day. The user is able to jump to
any of the most popular phrases and immediately see
their relationships across sources and related phrases.

Feedback Widget. At bottom, a Feedback Widget in-
vites user feedback on meme quality to collect labels for
training and evaluation. It is located directly below the
Timeline Navigator and above the Content Pane. Inspired
by volunteer-based crowdsourcing approaches [3], it collects
feedback on the quality and nature of discovered memes,
generating “gold” labels to evaluate accuracy of discovered
memes and training data for further improving this accuracy.
A second benefit is making explicit to the reader that au-
tomation is imperfect, and that the quality and usefulness of
detected memes should be critically assessed as should any-
thing being read. The widget also promotes greater reader
engagement through increased interaction.

To alert the reader to the Widget and invite their partic-
ipation, a simple question asks, Does the highlighted phrase

reveal an interesting connection between the sources men-

tioning it? Simple “Thumbs Up” and ”Thumbs Down” icons
fun, easy interaction. On clicking either button, a pop-up a
window offers thanks and invites the reader to answer one
further question (shown in Figure 3). Prior work has shown
the benefit of designing for such staged feedback [10].

Because the definition and nature of memes requires care-
ful explanation, the questions asked in Figure 3 reflect care-
ful scrutiny of (correct and incorrect) memes identified by
our system, as well as iterative revision, in order to pro-
vide annotators with clear guidelines for data labeling (e.g.
to distinguish near-duplicate documents erroneous missed in
earlier process vs. memes occurring in distinct documents).
In addition to inviting readers to provide such feedback, our
future work will also investigate use of Amazon Mechanical
Turk to perform pay-based annotation work [18].

Figure 3: Whenever the Feedback Widget is used to provide
yes/no feedback on meme quality, a pop-up dialog offers
thanks and invites the reader to answer one further question.

6. RELATED WORK
Leskovec et al. [12] detect and analyze reuse of quota-

tions online, but they do not address cases of text reuse
beyond quotations (e.g. how shared experience of contempo-
rary events can lead to to reuse of common phrases). Kolak
and Schilit [11] mine full texts in entirety, but their approach
was focused on scanned books, reflecting a different task and
usage scenario. Plagiarism detection [4] is clearly related,
though tends to focus on classifying documents rather than
identifying and exploring examples of reuse. Somewhat far-
ther afield, multiple sequence alignment methods from com-
putational biology [17] may also be used to align variant
phrases, though again our problem context and data differ.

Seo and Croft[20] detect local text reuse across newswire
and blogs by breaking documents into sequences of words
and measuring the frequency of shared phrases. Their DCT
fingerprinting approach appears to be especially robust against
small word variations within phrases, and they also exploit
the idea that less common components are more important
than higher frequency components. They show that DCT
fingerprinting is both effective and efficient on blog data.

Kolak and Schilit [11]’s work, as our own, is made possible
by the MapReduce framework was pioneered at Google in
2004 for effectively processing massive amounts of data us-
ing distributed computing, i.e. data-intensive computing [7].
MapReduce is designed to distribute data and computa-
tional tasks across a cluster of computers that all work simul-
taneously. Google’s MapReduce architecture uses its pro-
prietary distributed GoogleFS filesystem to replicate data
in chunks across multiple computers and distribute it for
locality of computation, bringing computation to the data
as much as possible. The model is ideal for some forms of
computation which can be divided into individual units that

operate largely independently, unlike alternative message-
passing approaches supporting greater synchronization.

Hadoop is an open-source Java implementation of the
MapReduce programming model that operates on the Hadoop
Distributed File System (HDFS) [25]. Inspired by similar
work at Google, Hadoop offers developers a framework for
parallel computation of large-scale data analysis. As an
open-source system, Hadoop has gained tremendous pop-
ularity across industry and research environments in recent
years, especially as “big data” grows even bigger and more
common every day. As more researchers and practioners
have begun working with Hadoop, there has been increased
interest in developing and disseminating effective design pat-
terns for efficient and easier data-intensive programming [14].

7. CONCLUSION AND FUTURE WORK
The question of how to effectively find relevant informa-

tion has driven decades of information retrieval (IR) re-
search. Relatively less attention has been directed toward
helping people to more easily and effectively contextualize,
interpret, assess information once it is found. The scale of
information overload today threatens effective sense-making
as well search. More research is needed to develop effective
technologies for helping us better analyze and evaluate what
we read, e.g. to support critical decision making.

As a modest step in this direction, we utilized MapRe-
duce (Hadoop) and IR methods to identify and rank infor-
mative memes in a large-scale blog collection. These memes
can then be browsed and explored in context via our Meme
Browser. In future work, we are particularly interested in
tracking and letting the user interactively explore how sim-
ilar phrases in a meme cluster evolve over time, as well as
showing the individuals and communities involved in dissem-
inating, altering, and responding to memes. Readers should
be able to see how sources follow others in using the same
meme, or memes that commonly appear together. By rec-
ognizing inter-connection of sources through common meme
flow patterns, we can become more critical readers.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers and Luis Francisco-

Revilla for their valuable feedback. Prateek Maheshwari
contributed to our literature review, and Hang Yu contributed
to our preliminary work. This work was partially supported
by Science and Technology Foundation of Portugal (FCT)
grant UTA Est/MAI/0006/2009, a John P. Commons fel-
lowship, a Longhorn Innovation Fund for Technology (LIFT)
award, and Amazon Web Services. Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of their institution or funding agencies.

9. REFERENCES

[1] R. Barzilay and L. Lee. Learning to paraphrase: An
unsupervised approach using multiple-sequence
alignment. In Proc. NAACL HLT, pages 16–23, 2003.

[2] M. Bernstein. On Hypertext Narrative. In HyperText,
pages 5–14, 2009.

[3] A. Brew, D. Greene, and P. Cunningham. Using
crowdsourcing and active learning to track sentiment
in online media. In ECAI 2010, pages 145–150, 2010.

[4] S. Eissen and B. Stein. Intrinsic plagiarism detection.
Advances in Info. Retrieval, pages 565–569, 2006.

[5] R. Ennals, B. Trushkowsky, and J. Agosta.
Highlighting disputed claims on the web. In Proc. of
WWW, pages 341–350, 2010.

[6] G. Forman, E. Kirshenbaum, and S. Rajaram. A novel
traffic analysis for identifying search fields in the long
tail of web sites. In WWW, pages 361–370, 2010.

[7] S. Ghemawat and J. Dean. Mapreduce: Simplified
data processing on large clusters. In Proc. of OSDI,
pages 137–149, 2004.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proc. of

VLDB 1999, pages 518–529, 1999.

[9] M. A. Hearst. Emerging trends in search user
interfaces. In Proc. HyperText, pages 5–6, 2011.

[10] R. Kohavi, R. Longbotham, D. Sommerfield, and
R. Henne. Controlled experiments on the web: survey
and practical guide. Data Mining and Knowledge

Discovery, 18(1):140–181, 2009.

[11] O. Kolak and B. N. Schilit. Generating links by
mining quotations. HyperText, pages 117–126, 2008.

[12] J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the dynamics of the news cycle.
Proc. of ACM SIGKDD ’09, page 497, 2009.

[13] J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
Proceedings of ACM SIGIR, pages 155–162, 2009.

[14] J. Lin and C. Dyer. Data-intensive text processing
with mapreduce. Synthesis Lectures on Human

Language Technologies, 3(1):1–177, 2010.

[15] S. Moulthrop. What The Geeks Know: Hypertext and
the problem of literacy. In Proceedings of ACM

HyperText, pages 227–231, 2005.

[16] V. Navalpakkam, J. Rao, and M. Slaney. Using gaze
patterns to study and predict reading struggles due to
distraction. In ACM CHI, pages 1705–1710, 2011.

[17] C. Notredame. Recent evolutions of multiple sequence
alignment algorithms. PLoS computational biology,
3(8):1405–1408, Aug. 2007.

[18] H. Ryu and M. Lease. Crowdworker Filtering with
Support Vector Machine. In Proc. ASIS&T, 2011.

[19] B. N. Schilit and O. Kolak. Exploring a digital library
through key ideas. In JCDL, pages 177–186, 2008.

[20] J. Seo and W. Croft. Local text reuse detection. In
Proc. of ACM SIGIR, pages 571–578. ACM, 2008.

[21] R. Sibson. SLINK: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[22] J. Strötgen and M. Gertz. HeidelTime: High quality
rule-based extraction and normalization of temporal
expressions. In SemEval, pages 321–324, July 2010.

[23] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs:
robust and efficient near duplicate detection in large
web collections. In SIGIR, pages 563–570, 2008.

[24] J. Valenza. Web 2.0 meets information fluency:
Evaluating blogs, 2010. January 20.
http://21cif.com/rkitp/assessment/v1n5/

valenza1.5_blogeval.html.

[25] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 2nd edition, 2010.

