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Abstract

The efficient design of networks has been an important eegimg task that involves challenging
combinatorial optimization problems. Typically, a netiwdesigner has to select among several alterna-
tives which links to establish so that the resulting netwsatisfies a given set of connectivity require-
ments and the cost of establishing the network links is asdswossible. The MiIMUM SPANNING
TREE problem, which is well-understood, is a nice example.

In this paper, we consider the natural scenario in which tmectivity requirements are posed by
selfish users who have agreed to share the cost of the netwdm éstablished according to a well-
defined rule. The design proposed by the network designeddimow be consistent not only with the
connectivity requirements but also with the selfishnesfeiusers. Essentially, the users are players in
a so-called network design game and the network designéolpaspose a design that is an equilibrium
for this game. As it is usually the case when selfishness cam@play, such equilibria may be sub-
optimal. In this paper, we consider the following questioan the network designer enforce particular
designs as equilibria or guarantee that efficient designsamsistent with users’ selfishness by appro-
priately subsidizing some of the network links? In an attetopunderstand this question, we formulate
corresponding optimization problems and present positicenegative results.

1 Introduction

Network design is a rich class of combinatorial optimizatjgroblems that model important engineering
guestions arising in modern networks. In an ideal scenarioetwork designer that acts on behalf of a
central authority is given an edge-weighted graph repteggethe potential links between nodes and their
operation cost, and connectivity requirements betweemdues. The objective of the network designer
is to compute a subgraph (the network to be established) oimmim cost that satisfies all connectivity
requirements. Depending on the structure of the conngctigguirements, this definition leads to many
optimization problems ranging from problems that are weltierstood and efficiently solvable such as the
MINIMUM SPANNING TREEto problems whose optimal solutions are even hard to apmabe.

In this paper, we consider the scenario in which users afistsaind have agreed to a well-defined rule
according to which they will share the cost of the networkeceltablished. The connectivity requirements
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are now posed by the users; each user wishes to connect teificpedes. A design should satisfy each
connectivity requirement through a path connecting theseniodes in the established network. According
to the particular cost sharing rule we consider, the cooedimg user will then share the cost of each link in
her path with the other users that use this link. Even thohghmetwork designer can still resort to the rich
toolset of network design algorithms in order to proposetaork of reasonable cost, this approach neglects
the selfish behavior of the users. A user may not be satisfidgxtia current design since a different path that
satisfies her connectivity requirement may cost her lessen;Téhe could unilaterally propose an alternative
path that possibly includes links that were not in the prapo$ the network designer. Other users could
also act similarly and these negotiations compute the rr&tteobe established in a chaotic manner. The
role of the network designer is almost canceled and, furbeg, it is not clear when the selfish users will
reach an agreement (if they ever do) and, even if they do,heh#tis agreement will be really beneficial for
the users as a whole, i.e., whether the total (or social)afdke established network will be reasonable. So,
the goal of the network designer is to propose a design diretwork and, subsequently, a path to each user
and an associated cost) that not only meets the conneatqtyirements of the users but is also consistent
with their selfish nature. Furthermore, since the netwosdigier acts on behalf of the central authority, the
design should be efficient, i.e., the network to be estadtisthould have reasonable social cost. Essentially,
the users are engaged as players in a non-cooperativeyitrgéene, called aetwork design gameand the
role of the network designer is to propose an efficient detfighis an equilibrium of this game.

Typically, efficiency is not an easy goal when selfishnessasmto play. This leads to the following
guestion which falls within one of the main lines of researchAlgorithmic Game Theoryhow is the social
cost affected by selfish behavior? The notion of piee of anarchy(introduced in the seminal paper of
Koutsoupias and Papadimitriou [27]; see alsad [32]) can tiiyathis relation. Expressed in the context
of a network design game, it would be defined as the ratio ostwal cost of the worst possible Nash
equilibrium over the social cost of an optimal design. Hernte pessimistic in nature and (as its name
suggests) provides a worst-case guarantee for conditidnsabanarchy. Instead, the notion of thece of
stability that was introduced by Anshelevich et al. [3] is optimistimature and quantifies how easy the job
of the network designer is. It is defined as the ratio of theas@ost of the best equilibrium over the cost of
the optimal design and essentially asks: what is the bestaméope from a design given that the players
are selfish?

Unfortunately, the price of stability can be large which Wbmean that every design that is consistent
with selfishness has high social cost. The central authoatyd then intervene in order to mitigate the
impact of selfishness. One solution that seems natural woeilltb contribute to the social cost of the
network to be established by partially subsidizing somehefrietwork links. According to this scenario,
the network designer has to compute a design and decide \ikshin the established network should be
subsidized by the central authority. The users will therrestihe unsubsidized portion of the cost of the
network links they use. Essentially, they will be involveda new network design game and the goal of the
network designer should be to guarantee that the desigrharglibsidies computed induce an equilibrium
for this new game. Let us take this approach to its extremederao show that it is a feasible one. The
network designer simply computes a design of low social (igabring the issue of selfishness) which is
fully subsidized by the central authority. The cost of easkrus now zero and the design is obviously
consistent with their selfishness. The problem becomestmaal when the central authority runs on a
limited budget. What is the best design the network desigaemguarantee given this budget? Alternatively,
what is the minimum amount of subsidies sufficient in ordesdbieve a given social cost? Can optimality
be achieved? Can the corresponding designs be computadref§ie

Problem statement.In an attempt to understand these questions, we introdwtstady two optimization
problems that arise in this context. Informally, they candadined as follows. In 8ABLE NETWORK
ENFORCEMENT (SNE), we are given a network design game on a graph togetitieravparticular target



network7’, and we wish to compute the minimum amount of subsidies ted ko be put on the links af
so that the design is acceptable to the usersThBSE NETWORK DESIGN (SND), we are given a particular
budget together with the input game, and we wish to computetwank 7" that satisfies the connectivity
requirements and to assign an amount of subsidies to the ¢ifiK within the stipulated budget so that the
design is acceptable to the users. The objective is to mueitie social cost df’. Besides the standard
version of both problems, we also consider thadiror-nothing version in which a link can either be fully
subsidized or not subsidized at all.

Even though some of our results apply to general networlgdegames, we have placed emphasis on
a special class of network design games, cdlleshdcast gamesin such a game, there is a special node
in the input graph called the@ot. There is one player associated with each distinct non+iode and her
connectivity requirement is a path from her associated tmthee root. A nice property of such games is that
an optimal design is a solution of theiIMMUM SPANNING TREE problem on the input graph and can be
computed efficiently. Even in this seemingly simple caseyawvill see, selfish behavior of players imposes
challenging restrictions. Furthermore, we consider ngtvaesign games in undirected graphs. Note that
this strengthens our results since they can be adapted ¢éasietwork design games on directed graphs
and, furthermore, undirected network design games areutadsrstood in terms of their price of stability
(see the discussion below).

Related work. Strategic games that arise from network design scenarias tregeived much attention in
the Algorithmic Game Theoriiterature. The first related paper is probahly [4]. The ipatar network
design games that we consider in the current paper weredindeal by Anshelevich et al. inl[3]. An
important observation made there is that network desigregadmit a potential function that was proposed
by Rosenthal [33] for a broader class of games called coiogegames. A potential function over all designs
has the property that the difference in the potential of tesighs that differ in the strategy of a single player
equals the difference of the cost of that player in thesegdssihence, a design that locally minimizes the
potential function is a Nash equilibrium. Using a simple élggant argument, Anshelevich et al. [3] proved
that the price of stability is at mogt,,, then-th harmonic number, whereis the number of players. Their
proof considers a Nash equilibrium that can be reached froropiimal design when the players make
arbitrary selfish deviations. The main argument used isttgapotential of the Nash equilibrium is strictly
smaller than that of the optimal design and the proof follolue to the fact that the potential function of
Rosenthal approximates the social cost of any design wétlféctor of at most,,. Much of the subsequent
research on network design games has focused on providjhgkounds on the price of stability. The
‘H,, bound is known to be tight for directed networks only. Foriuected networks, better bounds on the
price of stability ofO(log log n) for broadcast games and(log n/ log log n) for generalizations known as
multicast games are presented|[in/[29] &nd [20], respegti&tlll, the best lower bounds are only constant;
2.245 in general,1.862 for multicast, and..818 for broadcast games|[8]. The papers|[13] and [12] provide
bounds on the quality of equilibria reached when playersremimulticast game one by one and play their
best response and then (when all players have arrived) tmeyorently play until an equilibrium is reached.
They prove that the price of anarchy of the equilibria redciseat most polylogarithmic in the number of
players.

Another intriguing question is related to the complexitycomputing equilibria in such games. In gen-
eral, the problem was recently proved to be PLS-hard [36¢ ddrresponding hardness reduction does not
apply to multicast or broadcast games. Unfortunately, thestcal approach of minimizing the potential
function that has been proved useful in the case of netwongestion games [18] cannot be applied to
multicast games; the authors 0f [13] prove that minimizirgs@thal’s potential function is NP-hard. Fur-
thermore, as it is observed in [|36], computing an equilioriof minimum social cost in multicast games is
NP-hard. Approximate equilibria is the subject of the reqaper[2].

Monetary incentives in strategic games have been considemmany different contexts. Most of the



work in Mechanism Desiganses such incentives to motivate players to act truthfege([31] for an intro-
duction to the field). The (non-exhaustive) list also inésidheir use ifCooperative Game Theoiy order

to encourage coalitions of players reach stability [6] as@aneans to stabilize normal form games [30].
However, the particular use of monetary incentives in threetl paper is substantially different and aims at
improving the performance of the system the game represkmtkis direction, other tools have also been
considered recently. Besides their importance in creatiogme, the appropriate use taikescan also im-
prove system efficiency. A series of recent papers|[17, 1122135] study the impact of taxes (or tolls) in
the efficiency of network routing (extending early devel@mts in the literature of the Economics of Trans-
portation; see[[17] and the references therefajackelberg strategiegspplied to routing[[26], scheduling
[28,34,35], and, recently, network design games [19] aiimigrove performance by introducing a set of
non-selfish leaders whose strategies are controlled byytera designer and aim to motivate selfish play-
ers to reach efficient equilibriaCoordination mechanism@pplied so far to scheduling ihl[5,110,116, 24])
aim to improve performance by introducing priorities amdmg players. An approach that is closer to ours
has been followed in [9] where subsidies are used in muttgases; unlike our approach, the subsidies are
collected as taxes from the players in order to guarantesesftiworst-case equilibria.

Overview of results and roadmap. In this paper we present the following results. First, weeobs
that SNE can be solved in polynomial time using linear prograng; this observation applies to general
instances of SNE. The linear program has an exponential eauwfbconstraints but can be solved using
the ellipsoid method. A reformulation based on standartriggies yields an LP of polynomial size. For
instances of SNE with broadcast games, we present a muchesibi in which the number of variables
and constraints is linear and quadratic in the number ofgrigyrespectively. On the other hand, SND is
proved to be NP-hard even for broadcast instances. In platjaetecting whether a minimum spanning
tree can be enforced as an equilibrium without using anyidigssis NP-hard. This result implies that
detecting whether the price of stability of a given broatiggsne isl or not is NP-hard. In this direction,
we have a stronger result: approximating the price of staloif a broadcast game is APX-hard. The last two
statements significantly extend the NP-hardness resu@6dfend indicate that, besides the rough estimates
provided by the known bounds on the price of stability whidhdHor a broad class of games, the estimate
the network designer can make about the most efficient desifya particular broadcast game will also be
rough. These results are presented in Se€tion 3.

Next, we consider broadcast instances of SNE and the gonedtiiow much subsidies are sufficient and
necessary in order to enforce a given minimum spanning semaquilibrium. We show that this can be
done using a percentage 3% of the weight of the minimum spanning tree as subsidies. Toeffhas two
main components. First, we show how to prove this upper bdwyrdecomposing the game into subgames
with a significantly simpler structure than the original o8econd, in order to compute the subsidies in each
subgame, we use a virtual approximation of the cost expegkby the players on the links of the network.
We also demonstrate that our upper bound is tight: an amdw6 of the minimum spanning tree weight
as subsidies may be necessary for some simple instancese fidseilts are presented in Secfion 4.

Surprisingly, in contrast to the standard case, we proviethigeall-or-nothing version of SNE is hard to
approximate within any factor even when restricted to ims¢s with broadcast games. The corresponding
proof is long and technically involved and indicates that ¢mly approximation guarantee should bound
the amount of subsidies as a constant fraction of the weigjtiteominimum spanning tree. Interestingly,
we prove that significantly more subsidies may be necessanpared to the standard version of SNE. In
particular, there are broadcast instances which requier@ptage 061% of the weight of the minimum
spanning tree as subsidies in order to enforce it as an lequiti. These results are presented in Se¢fjon 5.

We begin with preliminary definitions and notation in Sect® and conclude with interesting open
problems in Sectionl 6.



2 Definitions and notation

A network design gameonsists of an edge-weighted undirected grapk (V, E, w), a setN of n players,
and a source-destination pair of nodes ¢;) for each playei. Each player wishes to connect her source to
her destination and, in order to do this, she can select aatagy any patfl; connectings; to ¢; in G. The
tupleT = (T3, T, ..., T),) that consists of the strategies of the players (with onéestygper player) is called
astate We say that player uses edge in T if her strategy7; containsa. With some abuse in notation, we
also denote by the set of edges included in strategigs s, ..., T;, as well as the subgraph 6f induced

by these edges. We say that an edge F is established if at least one player uses egdlg€onsider such
an edgez and letn, (7)) be the number of players whose strategie% icontaina. Throughout the paper,
we also use the notation,(T) to denote whether playéruses edge (n%(T) = 1) or not (2% (T") = 0).
Each playeii in N experiences a cost @bst;(T') = >_ e, % i.e., the weight of each established edge
is shared as cost among the players using it.

The statel” is called a (pure Nash) equilibrium if no player has an inivertb unilaterally deviate from
T in order to decrease her cost, i.e., for each playand possible stratedy/ that connects the source-
destination paif(s;,¢;) in G, it holds thatcost;(T) < cost;(7-;,7/). The notationl;, 7} denotes the
state in which playei uses strategy;} and the remaining players use their strategie$'inThroughout
the paper, we denote bygt(A) the total weight of the set of edgesin G, i.e.,wgt(A) = > ,c 4 Wa.
The quality of a state is measured by the total weight of thabéished edges. Since the weight of each
established edge is shared as cost among the players thattheejuality of a state coincides with the total
cost experienced by all players, i.egt(7) = >, cost;(7"). Theprice of stabilityof a network design
game is simply the ratio of the weight of the edges estaldish¢he best equilibrium over the optimal cost
among all states of the game.

Given an edge-weighted gragh = (V, E,w), a subsidy assignmemtis a function that assigns a
subsidyb, € [0,w,] to each edges € E. The cost of a subsidy assignment is simply the sum of the
subsidies on all edges df, i.e., > . b,. We use the ternall-or-nothing to refer to subsidies that are
constrained so thdt, € {0,w,} for each edge € E. Given a set of edged in GG, we use the notation
b(A) in order to refer to the total amount of subsidies assignedee@dges ofA in the subsidy assignment
b,i.e.,b(A) =3 ,c4ba. We refer tob(E) as the cost of the subsidy assignmenGiven a network design
game on a graply and a subsidy assignmenbn the edges of7, we use the termaxtensiorof the original
game with subsidies in order to refer to the network design game on grépfwith the same players and
strategy sets as in the original game) with the only diffeesheing that the cost of a player at a state
is now cost;(T;b) = > e Zz—(‘Tbg When a particular stat& is an equilibrium of the extension of the
original game with subsidieg we say that the subsidy assignmérgnforces’” as an equilibrium in the
extension of the original game.

An instance of the 8aBLE NETWORK DESIGN problem (SND) consists of a network design game on
a graphG, a budgetB, and a positive numbéek. The question is whether there exists a subsidy assignment
b of cost at mosB on the edges afF so that a subgraph @f of total weight at mosk is an equilibrium for
the extension of the original game with subsidie\n instance of the $8BLE NETWORK ENFORCEMENT
problem (SNE) consists of a network design game on a géapdn budgetB, and a statd". The question
is whether there exists a subsidy assignment of cost at Bast the edges off so thatb enforcesT” as
an equilibrium on the extension of the original game withsidiesb. Note that the subsidy assignment
does not need to put any subsidies to edges ndt iim the integral versions of SNE and SND, the subsidy
assignment in question is all-or-nothing. Of course, ofation versions of the above problems are natural.
For example, in an optimization version of SNE, we are givenrtetwork design game on a gra@lrand a
stateT’, and we require the subsidy assignment in question to berofmam cost.

Broadcast games are special cases of network design gamesbrbadcast game, the graghhas
exactlyn + 1 nodes; all players have the same destination node, whidlledaheroot and is denoted by



r, and distinct non-root nodes as sources. In such games,ferdoea player with a source nodeas the
player associated with node(and usey to identify the player). Clearly, any staféin such a game spans all
nodes ofG and a minimum spanning tree is a state that minimizes thedosa experienced by the players.
Given any spanning treE and a non-root node, we denote by, the path fromw to » in T'. In broadcast
games, we mostly consider equilibria that are spanningtriée€an be easily seen that if an equilibridim
contains a cycle, then all edges in this cycle must have zeight; then, there is an alternative spanning
tree with the same total weight that is also an equilibrium.

3 The complexity of SNE and SND

We begin the presentation of our results with the followihgervation.
Theorem 1 STABLE NETWORK ENFORCEMENTIS in P.

This theorem applies to general instances of SNE. By slighdlviating from the main focus of the paper
which is on broadcast games, we first discuss how generahicess of SNE can be expressed using linear
programming; analogous formulations have been proposdtdda@omputation of tolls in non-atomic selfish
routing games (e.g., see [21]). Then, specifically for bocaatl SNE instances, we present a much simpler
LP formulation.

We will describe a linear program which, given a network gegjame with a selV of n players on
an edge-weighted graph = (V, E,w) and a statd’, solves the optimization version of the problem by
computing a subsidy assignmeibf minimum cost so thaf” is an equilibrium of the extension of the
original game orG with subsidied. The subsidies in question are the variables of the LP. Wanlethat,
even though we only need to use variables for the subsididéiseoadges of ', we assume thai, is defined
for each edge of F in order to simplify the presentation; it should be cleat tir@any optimal solution
of the linear programs belows, = 0 for each edger € E \ T. The variables are constrained so that
b, € [0, w,] while there are constraints that capture the requiremenftis an equilibrium in the extension
of the original game with subsidiés For each playet, this means that the cost the player experiences in
T should not be higher than the cost she would experience wingatohg to any other strated¥! (i.e., a
path that connects her source nagéo her destination;). This is captured by the inequality in the second
line of LP (1), whereT; denotes the set of all paths connecting negéo nodet; in G. The left hand
side of the inequality is simply the cosbst;(T’;b) of playeri in T' while the right hand side is the cost
cost;(T_;,T!;b) she would experience in stdfe ;, 7/. Observe that the denominateg(T) + 1 — n% (T)
equals the number of players using edge 7-_;,7;. Also note that, gived” and:, the quantities:,(7')
andn’ (T) are fixed and, clearly, all constraints are linear.

minimize Y b, 1)
a€EFE
H a~ Ya a ba
subjectto Vi€ N, T} € T;, Wa — b <> v

5, D) = 2, na(T) + 1 n(T)

Va € F,0 < b, <w,

In general, the above LP has an exponential number of camtst{ane for each playérand each path iff;)
but can be solved in polynomial time using the ellipsoid rodtfsee([23]). All that is needed issaparation
oracle which returns a violating constraint (if one exists) for aegi subsidy assignmehtin polynomial
time. We demonstrate how this can be done for the constragssciated with player We construct an
edge-weighted grapH; over the set of nodeg (and set of edgeg’) so that the weight of edgeis defined

asw), = W‘fzm We compute a shortest path from nodes; to nodet; in H;. If the length of



pathp; satisfiesy ¢, w!, < cost;(T};b), then the constraint that is associated with patfor playeri is
violated. Otherwise, no constraint associated with playgwviolated.

We can transform the above LP to an equivalent one that hgs@uial size. The main idea is to
simulate the separation oracle for the above LP using additivariables and constraints. For each player
and nodev of G, we introduce the variable;(v) to denote a lower bound on the length of the shortest path
in graph H; from nodes; to nodev. The first two lines in the constraints of the following LP gastee that
m;(v) is indeed such a lower bound (in the first constrali{t;) denotes the set of neighbors of nadén
G). Then, the constraint;(¢;) > cost;(T'; b) guarantees that the playehas no incentive to deviate from
her strategy iff" in the extension of the original game with subsidies

minimize ) b, (2)
acE
Wu,w) ~ )
n(u,v)(T) + 1-— nzum) (T)

subjectto  Vie N,u e V,v e '(u),m(v) < m(u)+
Vi € N,?TZ'(SZ') =0

wg — b
Vie N,m(t) > Y ———
a€T; na(T)
Vie Nyue V\{s},mi(u)>0
Va € E,0 < b, <w,

LP (2) hasB(n|V]) variables an® (n|E|) constraints. We have a much simpler LP when the input is an
instance of SNE consisting of a broadcast game on gtafwith a root node-) and a spanning treg of G.
We use the same variables as in the original LP ¢.&ariables sincd’ is a spanning tree over—+ 1 nodes
now) and much fewer (i.eQ(|E|)) constraints. In particular, we just require that no pleggsociated with
a nodeu has an incentive to change her strategy’iand use an edge:, v) that does not belong t& and
the path fromw to r in T'. The corresponding LP is:

minimize > b, (3)
acl
subjectto  Vu € V \ {r},v € I'(u) such thatu,v) ¢ T,
Wq — ba Wq — ba
> SUEDS ;
& na(T) 2 na(D) + 1 - ni(T)

Va € E,0 < b, <w,

The correctness of the above LP (i.e., its equivalence Weloptimization version of SNE) is given by the
following lemma.

Lemma 2 Consider an instance 3TABLE NETWORK ENFORCEMENT consisting of a broadcast game
on a graphG and a statel’. A subsidy assignmentenforcesT” as an equilibrium in the extension of the
broadcast game i/ if and only if the constraints of LFP3) are satisfied.

Proof. If T is an equilibrium of the extension of the broadcast gamé& avith subsidies, then clearly the
constraints of LP[(3) are satisfied since otherwise a plagsva@ated with node would have an incentive
to deviate and use the path that consists of the edge drtoranother node that is not part ofl’ and the
path fromw to r in T" (or, simply, of the direct edge from to the root node i = r).

Now, assume that all constraints of P (3) are satisfied foabaisly assignmerit We will show that no
player has an incentive to deviate frafhin the extension of the broadcast game with subsitliesssume
for the sake of contradiction that the player associatell maideu has an incentive to deviate to some path

7



from w to r that includes edges not belongingo Among such paths, lei be the path that incurs the
minimum cost for the player associated with nadand, furthermore, contains the minimum number of
edges not belonging t6. Following the edges of paghfrom nodeu to noder, let (v1,v2) be its last edge
that does not belong t6. Using the constraint of the LP for the player associateth witddev; and edge
(v1,v2), we have that

wa—ba ba
2 ) S W T X g —|—1—n (7)

a€Ty, aETU2

Also, letvs be the least common ancestorgfandwv, in 7" and denote by, andg; the subpaths df,, and
T,, that connect; andwvs to vs, respectively. Sincé&,, and7,, use the same edges in order to conngct
to r andg; andg, are edge-disjoint (and, heneé;' (1') = 0 for eacha € ¢2), we also have that

Wq — ba wa - a
Z na(T) S Ul,U2 + Z ) (4)

agqe a

Now, observe that the cost experienced by playamen deviating to the pathis strictly smaller than the
cost she would experience by using the petbonsisting of the subpath gfconnectingu to vy, the edges
of ¢1, and the edges of from v3 to r. Otherwise, the path’ would either incur strictly smaller cost to the
player associated with nodethanp or it would also incur the same costzabut it would have strictly fewer
edges not belonging t6; both cases contradict our assumptions alpotitence,

b Wq — bg
W) + D T < T
1 P N ( ) —n¥(T) acan ng(T) +1—n¥(T)
which implies that
Wq — ba Wq — ba
W)+ D —m T < 2 ®)
1,02) i na(T) +1 acq na(T)

sincen(T") € {0,1}. We have reached a contradiction betwéén (4) ahd (5) anérth@éa follows. [ ]

Next, we prove that the restriction of SND to broadcast imsts is NP-hard. The hardness proof
uses instances of SND with budget equal to zero with targeiliegqum weight equal to the weight of
the minimum spanning tree. Note that in instances with aueniginimum spanning tree, the problem is
certainly in P; one can just compute a minimum spanning tngea@ply the LP approach described above.
In our reduction, there are many different minimum spanniegs but it is hard to detect whether there is
one that is an equilibrium in the corresponding broadcastega

Theorem 3 Given an instance dBTABLE NETWORK DESIGN consisting of a broadcast game on a graph
G, budgetB, and a positive numbek, it is NP-hard to decide whether there exists a subsidy agssant

b of cost at mosB so that the extension of the game with subsidibas a tree of weight at mo#t as an
equilibrium. Moreover, it is NP-hard even whéhis set to zero.

We will first describe a gadget that is used in the proof of Taet3; we call it theBypass gadget of
capacityx. The gadget is shown in Figure 1. Lidbe the minimum positive integer such thét. ,—H, > 1.
TheBypass gadget consists of a root nodeonnected to one end of a path/afiodes formed with edges
of unit weight. We call this théasic pathof the Bypass gadget. The node on the far end of the path
from r is called theconnector nodeThere is an edge fromto » of weight*, ., — H ., which we call the
bypass edge



Suppose this gadget is connected to a subgraph 5 nodes as shown in Figuré 1. For the moment,
we are not concerned with how the nodesSiare connected to each other. Consider the instance of SNE
consisting of the broadcast game on the grépbf Figure[1, budgeB = 0, and let7 be a minimum
spanning tree ofs. Note thatT" does not include the bypass edge; it includes all edges ibdkie path
from ¢ to r instead.

HK+€ —He>1

Subgraph S

bypass edge

¢ nodes

Figure 1: TheBypass gadget with capacity.

Lemma4 If 8 < k, then the player associated with nogbas an incentive to deviate from her strategy in
T and use the bypass edge. Otherwise, no player associate@wide in the basic path has any incentive
to deviate fronil".

Proof. Regardless of how the players associated with nodes in thgragphS are routed, sincé' is con-
nected to th&ypass gadget through node there are5 + 1 players that need to use a path froto r. Let
us focus on the player associated with neddéf she and all thes players fromS take the basic path, then
her cost will besz:1 ﬁ = Hpye — Hp. If B < Kk, thenH ..y — H, < Hpe — Hp, and therefore, the
player associated with nodehas an incentive to deviate to the bypass edge. On the othdr iig& > &,
thenH,., — H. > Hp+e — Hp and any player associated with a node in the basic path expes a cost
of at mostHz,, — Hg in T'. Hence, no such player has an incentive to deviate ffom u

Proof of Theorem[3. We show that the problem is NP-hard even when we consideptea case where
B = 0 and K equals the weight of the minimum spanning tree of the inpaply(=. In other words, given
a broadcast game on a gra@hwith root noder, we ask: does this game have a minimum spanning tree of
G as an equilibrium? We use a reduction frorNB?ACKING.

We use a stricter form of B PACKING defined as follows. We are given a setroftems indexed by
i € {1,2,...,n}. The size of each itemis a positive even integer denoted by Since bin packing is
strongly NP-hard[[22], we assume thagtis bounded by a polynomial in. We are also given a set &f
bins indexed byj € {1,2,...,k}, each of even integer capacity, which we assume to be at least as large
asmax; s;. We furthermore assume that* ; s; = kC. We ask whether each item can be allocated to
one of thek bins so that the total size of items in each bin is exa€tlyOur definition of BN PACKING
is somewhat stricter than the conventional definition inalithe capacity of bins and the size of the items
is not restricted to be even and bins are not required to leel fith the brim. However, we note that it is
quite straightforward to see that this restricted versiotie problem can be reduced from the conventional
version by first adding a suitable number of unit-sized itemd then doubling the size of all items and
the capacity of all bins. The number of additional items iperngbounded by the total capacity of the bins.
Therefore, our restriction of B PACKING is also strongly NP-hard.

Given a restricted instance ofiB PACKING, we now construct an instance of SNE as follows. For each
item ¢ of sizes;, we create a star graph with one center node which we denote agds; — 1 leaves.



Bypass gadgets
of capacity C'

Connector
nodes

)
T ---7 s9— 1 s3—1 Sp1—1 sp—1

Figure 2: The graplés constructed from an instance ofBPACKING.

The edges connecting the leaves to the center node of thieastazero weight. LeX be the set of center
nodes. For each bip, construct 88ypass gadget with capacity, = C. Again, let/ be the number of
unit-weight edges in the basic path of e&jpass gadget. Recall that is the minimum positive integer
such thati., — Hc > 1; this implies that is linear inC'. We denote the connector node in the gadget
corresponding to biry by c;. Let x be the set of all connector nodes. We connect geémd X by a
complete bipartite edge set with edges having weight, — H). Observe that any minimum spanning
tree of G consists of the:/ unit-weight edges in theypass gadgets, the zero-weight edges connecting
the leaves to their star center, andedges that connect nodes pfto nodes ofX so that each node of
X is connected to exactly one node of We setK to be the weight of the minimum spanning tree, i.e.,
K=kl +2n(Hcre — He)-

We claim that a minimum spanning trég. of GG is an equilibrium for the broadcast game @rif and
only if the BIN PACKING instance has a solution. We prove this claim in both direstio

Let T}, be a minimum spanning tree that is an equilibrium. Beti- 1 be the number of nodes in the
subtree ofl,. rooted at:;. From Lemmal4, we know that sin@&,. is an equilibrium, for allj, it holds that
B; > C. However, we also know from the properties of thevBPACKING instance and the construction
of graphG thatzé?:1 B = > ity si = kC. Clearly, it follows that for allj, we haves; = C. Therefore,
the allocation of item to bin j wheneverr; is connected te; will lead to a solution for the By PACKING
instance since the total size of these items is exatth: C.

To show the other direction, let us suppose that we have di@olto the BN PACKING instance.
We construct a minimum spanning trég. as follows. 7). contains the edges from the leaves to the
corresponding star center, the basic paths from the cammneatles to the root node and the edgéz;, ¢;)
for each itemi that is allocated to big. Note that, forj; = 1, ..., k, the number of nodes in the subtree of
T, rooted atc; is exactlyC'. So, any player associated with a node in a basic path expesea cost of at
mostHqc. ¢, — He in T,.. Furthermore, observe that each edgdgf between nodes of and X is used
by at least two players iff;,.. So, any player associated with a node in a star experiencest af at least
2(He4e — He). Hence, no player has an incentive to deviate to a path tbhtdes a node of that she
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does not use iff;,.. Any such path would include an edge of weiglit{c, — H¢) between a node in
and a node inX that is used only by that player. So, for egglihe C players associated with nodes in the
subtree of; in T, have no incentive to deviate to a path that does not use siodgy Lemmal4, player
c; (and, consequently, all players that have negd@ their path tor in 7;,.) has no incentive to deviate to
the bypass edge connectingto r. This holds for any other node in the basic path &fy@ass gadget as
well. Therefore, it follows thaf’,. is an equilibrium. [ ]

Note that the proof of Theorefd 3 essentially implies thatdieg whether the price of stability of a
given broadcast game Isor not is NP-hard. The next statement provides an even srarggative result.
It implies that given instances of SND consisting of a br@stlgame on a grapfi and a budgeB, it is
NP-hard to approximate within a factor better thai /570 the minimum weight among all equilibria in
any extension of the original game with subsidies of costatis.

Theorem 5 Approximating the price of stability of a broadcast gamehinita factor better thas71/570 is
NP-hard.

Proof. The proof is based on a reduction fromDEPENDENT SET in 3-regular graphs and uses an inap-
proximability result due to Berman and Karpinski [7]. GivaB-regular graphH with n nodes andn /2
edges, we construct an instance of a broadcast game cogsit graphz as follows. The grapliz has a
node for each node and each edgdioand an additional root-node We denote by/ the set of nodes of
G that correspond to a node &f and byV the set of nodes aff that correspond to an edge Bf. For each
non-root node of~, there is an edge connecting it with the root; these edges tnait weight. A node of
V that corresponds to an ed@e v) in H is connected with edges to the noded/ofhat correspond to the
nodesu andv of H. The weight of these edges%@‘; for somes € (0,1/12]. Clearly, the subgraph @
induced by the nodes i U V (i.e., all nodes besideg is bipartite; in this subgraph, the nodeslohave
degree3 while the nodes o have degree.

We claim that the grapli has an independent set of sizeif and only if the broadcast game has an
equilibrium of weightsn/2 — (1 — 0)m. Consider a spanning trdeof G and letF’ be the forest obtained
by removing the edges d@f that are adjacent te. We call abranch of 7" any subgraph consisting of a
connected component &f, the edge connecting a node of this connected componernint®', andr itself.

For any spanning tree @f, each of its branches can belong to one of the following types Figurél3):

e Type A: It consists of a single edge connecting the root todernoU U V' (see Figur¢l3a).

e Type B: It consists of an edge connecting the root to a nodé which in turn is connected with its
three adjacent nodes bf (see Figurél3b).

e Type C: It consists of an edge connecting the root to a nodeurl” which is connected to either one
or two of its adjacent nodes i (see Figurél3c).

e Type D: Itis atree of depth exactBrooted atr (see Figurekl3d arnd 3e).
e Type E: Itis a tree of depth at leastooted atr (see Figures]3f arid 3g).

We will first prove that ifT" is an equilibrium for the broadcast gamedh then it has a very special
structure. In particular, none of its branches rooted @n be of type”, D, or E. Assume otherwise and
let h be such a branch:

e If h is of type C, consider a leaf of h. The first edge in the path from to » in A (i.e., the one
adjacent tau) is not used by any other player besides the one associated@deu while the second
edge of the path is used by at magilayers (i.e., the players associated with the leaves anpldyer
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(e) (f) (8)

Figure 3: Examples with branches considered in the proofrefofenib. Black and white nodes denote
nodes ofU andV, respectively while the grey nodes represent the roafa) A branch of type A. (b) A
branch of type B. (c) A branch of type C. (d) and (e) Branchetypé D. (f) and (g) Branches of type E.

associated with the node éafwhich is connected witht). Thus, the cost player experiences is at
Ieast2—‘?'[5 +1/3 > 1 and, hence, this player has an incentive to change hergstratel use the direct
edge fromu to . See Figurél3c for an example.

e If his of type D, then it has at mogtnon-root nodes. Consider a leathat is at distanc8 from r.
If « belongs tal/, then its adjacent node finhas degre@. Thus, the first edge of the path fromto
r in h is not used by any other player besides the one associatkd wihile the second edge in the
path is used by at mo&tplayers. In total, the cost the player associated with nodgperiences in
these two edges of the path%§§ + 2%5 > 1 and, hence, this player has an incentive to change her
strategy and use the direct edge frarto r (see Figurél3d). If: belongs tal/, its adjacent node ih
belongs taJ and the next node in the path framto » belongs toV/. Thus, the first edge of the path
fromw to r in A is not used by any other player besides the one associatied: vifie second edge in
the path is used by at masiplayers, and the third edge in the path (the one adjacentisoused by
at most7 players. In total, the cost the player associated with noeeperiences in these three edges
of the path is%° + 252 +1/7 > 1 and, hence, this player has an incentive to change hergrate
use the direct edge fromto r (see Figurél3e).

e If his of type E, consider a leaf that is at maximum distance (i.e., at ledsfrom r. If u belongs
to U, then its adjacent node fnhas degre@. Thus, the first edge of the path fromto r in & is not
used by any other player besides the one associateduwittile the second edge in the path is used
by at most2 players. In total, the cost the player associated with nodeperiences in these two
edges of the path %‘5—5 + % > 1 and, hence, this player has an incentive to change hergstrate
use the direct edge fromato r (see Figurél3f). Ifx belongs tdl/, its next two nodes in the path from
u to r in h belong toU andV/, respectively. Thus, the first edge of the path frerto r in & is not
used by any other player besides the one associatedunitie second edge in the path is used by at
most3 players, and the third edge in the path is used by at thpktyers. In total, the cost the player
associated with node experiences in these three edges of the path is at@?és% 2%5 + %‘; >1
and, hence, this player has an incentive to change hergstratel use the direct edge fromto r as
well (see Figur¢l3g).

Instead, ifT" consists only of branches of types A and B, no player has amntive to deviate. Indeed,
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assume that a player associated with a no@tea branchh; has an incentive to change her strategy and use
a new path. Note that the cost she experiences on the edfjesloé uses is at most Clearly, her new path
cannot include an edge incident to the root which does natnigedo any branch since the cost experienced
in such a path would be at lealst So, assume that the new path of the player contains the efilgesther
branchhs in order to connect: to r. Clearly, this path should contain an edge-bthat is not contained in
any branches (and, hence, it is not used by any player bebidese associated with nodgwhile the first
edge of branclh, that the path contains is used by exactly one player bedigesrte associated with node
u; this follows by the structure aff and by the fact that branches Bfare of type A or B (and, hence, the
new path enters brandfy through one of its leaves). Thus, the cost the player expeg®in the new path

is at IeastQ—‘?'[‘S + QT” > 1 and, hence, she has no incentive to deviate.

Now, consider a spanning trdethat is an equilibrium for the broadcast gameGrand letm be the
number of branches of type B it contains. Clearly, the weddhihe edges in such a branchsig- 6 while the
total weight of the edges in branches of type A equals the murmbnodes inJ U V' which do not belong
to branches of type B, i.e5n/2 — 4m. Therefore, the total weight of the edgesTofs 5n/2 — (1 — d)m.

Let I be the set of nodes df which correspond to the nodes of the branches of type B teat@rnected
tor in T. Due to the structure af andT’, I is an independent set &f with sizem. Also, consider any
independent set i with sizem. We can conversely construct a spanning treé€/ofrhich consists of
branches of type A and B and, hence, is an equilibrium: foheexe ofU corresponding to a node ih

we create a branch of type B by connecting this nodedad to its three adjacent nodeslin In this way,
we createn branches of type B. Also, we credie /2 — 4m branches of type A by connecting each node
of U UV that does not participate in branches of type B to the roaidjin their direct edges. The cost of
this equilibrium tree is agaibn /2 — (1 — 0)m.

Now, we use the inapproximability result due to Berman andbiaki [7]. Their result can be thought
of as a polynomial-time reduction from the decision verstdrSATISFIABILITY . The reduction uses a
constant € (0,1/2). Given an instance of SATISFIABILITY , they construct an instance of DEPENDENT
SET which consists of &-regular graphA with 284% nodes (for some parametey such that

e H has an independent set of size at l€ad0 — €)k if ¢ is satisfiable, and
¢ H has no independent set of size more tEsD + €)k if ¢ is not satisfiable.

Using the particular graphs as input to our reduction, wevism it as a reduction from & ISFIABILITY
as well. Given an instancg of SATISFIABILITY , our reduction defines a broadcast game such that

e there exists an equilibrium of total weight at mé%0 + 1404 + (1 — 0)e if ¢ is satisfiable, and
e there exists no equilibrium of total weight less than + 1396 — (1 — §)e if ¢ is not satisfiable.

By selectinge and § to be arbitrarily small, we conclude that approximating thimimum total weight
among all equilibria (and, hence, the price of stability)hivi a factor better thaf71/570 is NP-hard. =

4 Bounds on the amount of subsidies

In this section, we provide tight bounds on the amount of islidss sufficient in order to enforce a minimum
spanning tree as an equilibrium in the extension of the maigbroadcast game. The result is expressed as
a constant fraction of the weight of the minimum spanning.tré/e first prove our upper bound which is
more involved. The proof uses two key ideas: first, the inpMESnstance is appropriately decomposed
into subinstances of SNE which have a significantly simpiercture. Our decomposition is such that the
desired bound has to be proved for the subinstances; in tod#y so, we use a second idea and exploit
a virtual cost function that upper-bounds the actual copesgnced by the players in the extension of the
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game (in the subinstances) with subsidies. The main pippéthis virtual cost function that simplifies the
analysis considerably is that the total amount of subsidézessary depends only on the weight of the tree
(and not on its structure).

Theorem 6 Given an instance d8TABLE NETWORK ENFORCEMENT consisting of a broadcast game on
a graphG and a minimum spanning trég of GG, there is a subsidy assignménbf cost at mosugt(T') /e
that enforcesl” as an equilibrium of the extension of the game with subsigiagheree is the basis of the
natural logarithm.

Proof. We decompose the graghinto copiesG*, G2, ..., G* so that the following properties hold:
¢ G/ has the same set of nodes and set of edgesith
e The edge weights i’ belong to{0, ¢; } for somec; > 0.

o If the weight of an edge in G’ is non-zero, then the weight afis non-zero in each of the copies
Gl ...,Gi7tof G.

e The weight of each edge i is equal to the sum of its weights in the copie<bf

The decomposition proceeds as follows. kete the minimum non-zero weight among the edge& of
We construct a copg'! of G (i.e., with the same set of nodes and set of edges) and withweights equal
to zero if the corresponding edge Gfhas zero weight and equal tp otherwise. Then, we decrease each
non-zero edge weight by in G and proceed in the same way with the definition of the edgehigig the
copy G2, and so on. We denote bythe number of copies aff that have some edge of non-zero weight.
Note thatc;, may be infinite ifG contains edges of infinite weight, bliis upper bounded by the number of
edges inG. Clearly, the weight of an edge in the original graph is the i its weights in the copies aF.

We denote byl the spanning tree af’ that has the same set of edges withWe first observe that
T7 is a minimum spanning tree @f/. Assume that this is not the case; then, there must be an@dge
with zero weight inG’ that does not belong t67 such that some edge of the edges of 7 with which a,
forms a cycle has non-zero weight By the definition of our decomposition phase, this impliestt, has
higher weight tham; in G. This means that we could remowgfrom 7" and includez; in order to obtain a
spanning tree with strictly smaller weight, i.&: would not be a minimum spanning tree.

Now, in order to compute the desired subsidy assignmentahfairces?” as an equilibrium in the
extension of the broadcast gameGh we will exploit appropriate subsidy assignments for theablicast
games in each copy @f. We have the following lemma.

Lemma 7 Letc; > 0. Consider a broadcast game on a gra@t whose edges have weights{in ¢; } and
let 79 be a minimum spanning tree 6F. Then, there is a subsidy assignméhof cost at mostgt(77)/e
that enforces/V as an equilibrium in the extension of the game with subsidlies

Proof. We call edges of weiglttandc; light andheavyedges, respectively. We also call a player associated
with a nodev a light player if the weight of the edge connectingo its parent in77 is zero; otherwise,
we call v a heavyplayer. We denote byn, the number of heavy players which use edgeClearly,

mg < ng(T7).

We will introduce avirtual costassociated with each edge®f in order to upper-bound the contribution
of the edge to the real cost experienced by each player thatthie edge ifi’’ in the extension of the game
with subsidies. In particular, given subsidigsassigned to the heavy edgewith y, € [0, ¢;], we define
the virtual cost of edge asvc(a,y,) = ¢;In #nya/cj The virtual cost of a light edge is always zero;
observe that no subsidies have to be assigned to these edges.
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Claim 8 For any heavy edge with subsidiesy,, it holds thatvc(a, y,) > T

Proof. We use the inequalitin x < = — 1 for z € [0, 1]. We have

(a,a) 1 i
vc(a, = ¢ln——
Ya J My — 1 +ya/cj
~ e (1 B ﬂ)
macj
> Cj Ya
= e
Cj — Ya
> 229
— ng(T7)

Definition 9 Consider a pathy in 77 and a subsidy assignmenon the edges df’. We say thay is such
that subsidies are packed on the least crowded heavy edges$ 9f < c; for a heavy edge implies that
Yy = 0 for every heavy edgé of ¢ with m, > m,,.

We extend the notation of virtual cost so that ¢, ') denotes the sum of the virtual cost of the edges
of a pathg in 77 under the subsidy assignme#t The following claim follows by the definitions and will
be very useful later.

Claim 10 Consider a path; and denote by’ the set of heavy edges @fand a subsidy assignment If

Uqeq {ma} consists of thég'| consecutive integers— |¢'| + 1,t —|¢'| +2, ..., t, then the virtual cost of path
- . S N

g when subsidies are packed on its least crowded heavy edge&jig/) = ¢; In [ pEy oy

Proof. Recall that the only edges that contribute to the virtuak ods; are the heavy edges ifi. If

y(q) = 0 (i.e., no subsidies are put on the edgeg’ifthe virtual cost is

ve(q,y) = Y ve(a,ya)

aeq’
= Z ciln Ma
= ]

byt mq — 1+ Ya/cj

¢ 7
= Z c;ln -
fl _
i=t—|q’|+1
t

= ¢jln

The first two equalities follow by the definition of the virtuast, the third one follows sinag,c, {m.} =
{t—1d1+1,t—1|¢|+2,...,t} andy, = 0, and the last one is obvious.

We now consider the caggq) > 0. Since subsidies are packed on the least crowded heavy eflges
there must be a heavy edge= ¢ such thaty, > 0 so thaty,, = 0 for each heavy edg€ with m, > m,
andy,» = c; for each heavy edg€’ with m,» < m,. Letg) = {a’ € ¢’ : y =0} andgy, = ¢'\ (¢f U{a}).
Observe that the edges gf and the light edges af do not contribute to the virtual cost gf Hence,

ve(q,y) = Z ve(d, yar) + ve(a, ya)
a’Eq'l
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— 1 n— e
a%,cj nm —1+C] nma—1+ya/cj
1
t . /
? t— ||
= ¢ Z In —— +¢;jln ; :
i:t—|q’1|+1 1—1 t_|Q1|_1+ya/C]
t
= ¢jln

t—lgil =1+ ya/c
t

t—|d'[+yla)/c;

The first two equalities follow by the definition of the virtuzost, the third one follows since the definition
of ¢ implies thatUy ¢ {ma} = {t — |q1| + 1.t — |g1] + 2, ..., t} andm, = ¢ — [q;], the fourth equality is
obvious, and the last one follows sing@y) = y, + |g5|c; and|q’| = |¢}| + |g5] + 1. |

= ¢jln

Figure[4 provides a visualization of the virtual cost in ahpathen subsidies are packed on its less
crowded heavy edges.

SL'

11

ol

3

0 1 16 2 3 A 5 6
Mo =1 T =0
-

packed subsidies

Figure 4: A visualization of the virtual cost in a pathwith 6 heavy edges and,c,{m.} = {1,2, ...,6},
when subsidies are packed on its less crowded edges. Timo#fedge and a fraction of 60% of the second
leftmost one have been subsidized. The virtual lm%‘% (see Claini_10) is the area to the right of the dashed
line that is below the black line. The real cost experiencgthk player associated with the far left node is
the area to the right of the dashed line that is below the gney |

Now, we compute the subsidy assignmihthat assigns no subsidies to the light edges and subsidies to
the heavy edges df’ as follows. Denote by. the set of leaf-nodes @’ such that the patify connecting
such a leaf-node: to the root node- in 77 contains at least one heavy edge. For each leaf-nookeL,
we pack subsidies to the least crowded heavy edgéy sb that the virtual cost on the patlj is exactly

. In particular, letS be the set of edges @’ defined as follows: a heavy edge, p(v)) belongs toS
|f ve(T! ) < ¢j andvc(T?,0) > c¢;. Observe that the sét disconnects the leaves &ffrom the root
node. Inofeed if this was not the case, there would be a helgg/that is used by exactly one heavy player
and is not assigned any subsidies; by the definition of thaalicost, its virtual cost would be infinite. All
heavy edges that are on the side of the partition togethérthét root node are assigned zero subsidies; the
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heavy edges on the other side of the partition are assigreitises ofc; and do not contribute to the virtual
cost of the paths they belong to. An edge- (v, p(v)) of S is assigned subsidiég with

_ ve(T? ,0
bl = ¢; (l—ma (1—exp (%—1))).
J

This definition implies thatzc(Tg(U), 0) + vc(a, b)) = ¢;. In this way, we guarantee that the virtual cost of
any path to the root nodeis at most; if it contains at least one heavy edge and zero otherwise.

We will now show that, given the subsidies we have assigneith@écedges off7, no player has an
incentive to deviate from her path to the rootlih. Consider the player associated with a nadend letg,
be another path from tor in 77. Recall that the definition of subsidies and Claim 8 guaesithat the cost
experienced by the player that usesis at mostc;. Now, consider the edges ¢f that do not belong t@
(sinceq, # T there is at least one such edge). If any such edge has wejghis means that, by deviating
to ¢, the player associated with nodevould experience a cost of at leagtand, hence, has no incentive
to do so. So, in the following we assume that the edgeg, ¢hat do not belong t@” have zero weight.
Now, consider the subgrapii of G’ induced by the edges in the pathisandg,,. Let C be a cycle off. It
consists of edges @’ and edges not belonging T that have zero weight. This implies that all edges in
C have zero weight, otherwise we could replace an edge thiat belongs t@” (and has non-zero weight)
with an edge of” that does not belong t6 (which has zero weight) and obtain a spanning tre€“ofvith
strictly smaller weight thaf”. This contradicts the assumption thtis a minimum spanning tree 6¥.
So, all edges of/ that are contained in a cycle i have zero weight. The remaining edgegpfare also
used byg,. We conclude that the total cost experienced by the playsrcéted with node is the same no
matter whether she uses p&thor ¢, and, hence, she has no incentive to deviate from Patio ..

We will now show that the total amount of subsidies put on tlges of 77 in this way is exactly
wgt(T7)/e. In order to show this, we will show that the total amount dbsidies put on the edges @¥
equals the total amount of subsidies put by the same progextuthe edges of another tréethat consists
of a single path from the root that spans all the nodes anchieasaime number of heavy edges as the original
one. As an intermediate step, consider two edges (vi,p(v1)) andgs = (v2,p(v2)) of S such that the
least common ancestarof nodesv; andwv, in 77 has largest depth. We denote byandh, the number
of heavy edges in the subtreeswgfandwv,, respectively, and by; andg, the paths connecting to v; and
ve In T, respectively. Also, denote hy (resp. ¢5) the subset of; (resp. ¢2) consisting of heavy edges.
Assume that the virtual cost of the pathii from r to u is ¢ for some? € [0, ¢;); then, the virtual cost of
the pathsy; andg, is exactlyc; — £. Denote byb) andb’, the subsidies assigned to edgesndg. by the
above procedure, respectively. Since the edgemdg- are selected so that their least common ancestor
has largest depth, the edges in the pathre not used by any heavy player different than those in thizes
of TV rooted aty;. Similarly, the edges in the pata are not used by any heavy player other than those in
the subtree of 7 rooted atv,. Hence, both pathg, andg, satisfy the condition of Claifi 10 above in the
sense thaUaeqfl{ma} = {hl +1,h1+2,...,h1 + |q£|} anduaeqé{ma} = {h2 + 1, ho+2,....,ho + |qé|},
respectively. Hence, we can express the virtual cost olspathndq,, respectively, as

; hi + ||

ve(q, ) =c;ln —— =¢; — ¢
! hl—l—bjgl/Cj !

and

. h !
ve(ge, V) =c¢jln L’qﬂ
ho + ngQ/Cj

Equivalently, we havé,; +|q}| = exp(1—£/c;)(h1 +b], /c;) andhy + |g5| = exp(1 —£/c;)(ha + ), /c)).
By summing these last two equalities, we obtain that- ho + |¢}| + |g5| = exp(1 — £/cj)(h1 + ha +

:Cj—g.
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(bJ, + bl,)/c;) which implies

cjln fu + ho + |qi| +.|qé| = ¢ — L. (6)
hi + ha + (bg, + by.) /¢

Now, consider the following transformation @¥ to another tree”. The only change is performed
in the pathsg;, g2 and all subtrees of their nodes besides nedéVe replace all these edges i with
a pathgq originating fromw and spanning all the nodes in and ¢, and their subtrees so that exactly
hi + he + |¢}| + |¢5| heavy edges are used. Lgthe the set of heavy edgesdn We pack a total amount
¢j(h1+ha) +b§1 +b§2 of subsidies (i.e., f[he same total amount of subsidies ustéeiheavy edges qf, ¢
and in the subtrees of nodesanduw, in T7) on the least crowded heavy edges of patthile the assignment
of subsidies on the other heavy edged6fs the same as in the corresponding edgeE’/inNow, the path
¢ satisfies the condition of the Clalml10 above in the sense_thai{m,} = {1, ..., h1 +ho +|q1| + |¢5|}.
Hence, the virtual cost of pathwhen a total amount;(h1 + hs) + b}, + b/, of subsidies is packed on
its least crowded heavy edges is the one at the left hand Siefguality (6) and is exactly; — ¢ while the
virtual cost of the path from the root toin 7" is not affected by our transformation (the number of heavy
players in the subtree of nodestays the same after the transformation) and is equal iitence, we have
transformedI” to T" so that the same total amount of subsidies is used and geasattiat any path from
the root to a node has virtual cost at mest By executing the same transformationZifirepeatedly, we
end up with a tred” which consists of a patip spanning all the nodes and has the same number of heavy
edges as the original tré&’ (and, obviously, the same total weight). l¢te the set of heavy edgesgn
The transformation guarantees that by packing the origotal amount of subsidies on the least crowded
heavy edges of, we have that its virtual cost is exacity. Also, note thaty,cz{m.} = {1,2,....|7|}
and, by Claini_ID, the virtual cost of paghwhen a total amour(77) of subsidies is packed on its least

crowded heavy edgesa§ln 7 |c J) = ¢;. This implies that the total amount of subsidies in the oajtree
(T = [es /e  vgt(T) e .

Now, for each copyG’ of G, we use the procedure in the proof of Lemima 7 to compute adybsi
assignmend’ so that the tred” is an equilibrium for the extension of the broadcast gamenergtaphG’
with subsidies’. For the original game on the gragh we assign an amount 6f = f=1 b} as subsidies
to edgeu (i.e., equal to the total amount of subsidies assignedfto each copy ofy). We can easily show
thatT is an equilibrium for the original broadcast game. lgtbe the path used by the player associated
with nodew in T' and denote by, a different path connecting with r in G. The cost experienced by the
player associated with nodein T is

costy(T;b) = a;ﬂ%
bi
- £ mf
bi
- L3 v
= Z::; Tﬂwjl—b]n“(TJ)

= COStu(T—u7 Qu; b)>
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i.e., not larger than the cost she would experience by degiab pathg,, which implies thatl" is indeed
enforced as an equilibrium in the extension of the broadgaste onGG with the particular subsidies. The
equalities follow by the definition of the cost experiencadthe player associated with nodg or the
definition of our decomposition, or due to the exchange ofswand the inequality follows since, by Lemma
[7, T is enforced as an equilibrium in the extension of the brostdgame inG’ with subsidiest’. The
bound on the amount of subsidies follows by the guarantethéocost of the subsidy assignmebtsrom
LemmdY and the last property of our decomposition, and ghesubsidy,, on each edge is defined as
ba = YF_, ). m
We now present our lower bound.

Theorem 11 For everye > 0, there exist a broadcast game on a graghand a minimum spanning tree
T of G such that any subsidy assignment that enfof€ess equilibrium of the extension of the broadcast
game with subsidies is at leagt/e — e)wgt(T).

Proof. Consider the graplr which consists of a cycle with + 1 edges of unit weight that span the root
noder and then nodes which are associated with the players. d_et (r,u) be an edge incident to the
root noder and letT" be the path that contains all edgesobesides:. Clearly,T" is a minimum spanning
tree of G. Now, in order to satisfy that the player associated withenedhas no incentive to deviate from
her strategy iri” and use edge instead, we have to put subsidies on some of the edges of thh&'pdhe
maximum decrease in the cost of the player associated with m@ obtained when subsidies are packed
on the least crowded edges BGf(i.e., on the edges df that are further from the root); equivalently, the
minimum amount of subsidies necessary in order to decréaseost of this player ta is obtained when
subsidies are packed on the least crowded eddEsloét & be the number of edges that are subsidized. Since
the player associated with noddas no incentive to deviate, the costf — 7 she experiences at the- &
edges on which we do not put subsidies is at maghile the total amount of subsidies is at least1. Using
the inequalityr > In (1 + z) for z > 0, we obtainl > H,, — Hp = Y7y 1§ = Soip g In 5 = In 255
which implies that that the total amount of subsidies is asté — 1 > "Tfl — 2. The weight ofl" isn and
the bound follows by selecting to be sufficiently large. [

5 All-or-nothing subsidies

In this section, we consider the all-or-nothing version &fES Interestingly, in contrast to the standard
version, we prove (Theorem112) that its optimization versghard to approximate within any factor.

Theorem 12 Given an instance of all-or-nothin@tABLE NETWORK ENFORCEMENT consisting of a

broadcast game on a grapf and a minimum spanning trég of G, approximating (within any factor)
the minimum cost over all-or-nothing subsidy assignmérasdnforcel” as an equilibrium in the extension
of the broadcast game is NP-hard.

Proof. We use a reduction from instances of 3SAT-4 which consistNiF @rmulas such that each clause
contains exactly three literals (corresponding to différeariables) and each variable appears in at most
four clauses. Deciding whether such an instance has autwth$ignment or not is NP-hard [37]. Given
an instancep of 3SAT-4 with a set of clauseS, our construction defines (in polynomial time) a broadcast
game on a grapli: and identifies a particular minimum spanning tfBeof G. Our construction uses a
parameter’ which is significantly larger thaB|C|. We will show that deciding whether the minimum cost
over all-or-nothing subsidy assignments that enfdarcas an equilibrium in the extension of the broadcast
game is at mos3|C| or at leastk is NP-hard.
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First, we assign #abel from {1,2,...,9} to each variable in such a way that two variables that appear
in the same clause are assigned different labels. Due tathéhfat each variable appears in at most four
clauses, it should have a different label than at most eitjiérovariables. Hence, nine labels suffice and
the correspondlng labeling can be computed in polynomiattiForj = 1,2, ...,9, we define the constants
n; = 1282”7 or, equivalently, forj = 1,2,...,8, n; = 4n? ) with ng = 7.

The graphG has a root-node and conS|sts of several gadgetliteral gadgets clause gadgetscon-
sistency gadgetsandauxiliary nodes and edges. The non-root nodeé& /@re partitioned interitical and
non-critical ones. The edges @f belong to three different typesteavy edgesf weight at least’, ultra
light edgesof zero weight, andight edgesof unit weight.

We start with the definition of the literal gadgets (see Fdly. For each appearance of a litefah a
clauser, we have a literal gadget which consists of four non-ctiticales! (c, £), u(c, £), u(c, £) andvy (c, £),
and the critical nodes;(c, ) andvs(c, ¢). Let j denote the label of the variable corresponding to litéral
Then, there are the following edges: the light edgés ), u(c,?)) and(u(c, £), u(c, £)), the heavy edges
(I(c,0),v1(c, E)) (v1(c,€),v2(c, 0)), and(vs(c, ), u(c,?)) of WeightK the heavy edg€(c,?),vs(c,t)) of
weight K 4+ —— and the heavy edg@x:(c, {), u(c,{)) of welght— — ——. Among them, the first five
edges belong t(T while the last two ones do not.

'Ul(c7 l) K ’L'Q(C, .l')

K W3E _ 1

vs(c, x)

Figure 5: The literal gadget for the appearance of literad clausec. The black nodes are the critical ones
and the solid edges are the ones that belong.td he thick and thin solid edges are the heavy and light
ones, respectively.

For each clause = (¢, (5, ¢3) with literals corresponding to different variables wittéds j;, j2, and
jz with 71 < jo < j3, we have a clause gadget (see Fidure 6) which connects te literal gadgets
corresponding to the appearance of litelalsls, and/s in clausec as follows. The nodéc, ¢,) coincides
with the root-noder, the nodel(c, ¢3) coincides with node(c, ¢1), and the nodé(c, ¢3) coincides with

u(c, £2). There is an extra critical nod€c) which is connected through a heavy edge of weight node
u(e, ¢3) and through a heavy edge of welgkit+ =+ _3
edges, the first one belongsZowhile the second one does not

Let ¢y, ¢, c3, @andey be the (at most) four clauses in which variablappears. For each= 1,2, 3, we
have a consistency gadget that connects the two literalegadgrresponding to the appearance of variable
x or its negation in clauses andc; 1. Letj be the label of variable. We use two different consistency
gadgets depending on whether the variable appears as tleelisamal in bothc; and ;. or not. An{-£
consistency gadget corresponds to the appearance of litémeclausesc; and ¢;1 and consists of two
critical nodesuy (¢;, ¢i+1,¢) andusa(c;, civ1,£). Nodew; (¢;, ¢;v1,¢) is connected through a heavy edge of
weight K to nodeu(c;, ) of the literal gadget corresponding to the appearance ofitdral ¢ in ¢; and
a heavy edge of weighk’ + 2 to nodeu(c;1,¢) of the literal gadget corresponding to the appearance
of literal  in ¢;41. Among these two edges, the first one belong§ tarhile the second one does not.
Nodeus(c;, ci11,¢) is connected through a heavy edge of weifihto nodeu(c;. 1, £) of the literal gadget
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Apex node

auxiliary gadget

Figure 6: The clause gadget for clause (z, y, z) along with the auxiliary nodes and edges. The auxiliary
gadget (shown in the right) indicates thatuxiliary nodes are connected to the apex node via ultra ligh
edges

corresponding to the appearance of the litéialc; . ; and a heavy edge of weight + ﬁ to nodeu(c;, ¢)
of the literal gadget corresponding to the appearanceelit in ¢;. Among these two edges, the first
one belongs td@” while the second one does not. Af consistency gadget corresponds to the appearance
of literals ¢ and/ in clauses:; andc;, 1, respectively, and consists of two critical nodagc;, c;, 1, ¢) and
ua(ci, cit1,€). Nodewu (¢, ¢iy1, ) is connected through a heavy edge of weifihto nodeu(c;, ¢) of the
literal gadget corresponding to the appearance of thalifén c; and a heavy edge of weight + n—lj + 52

J

to nodeu(c;, 1, £) of the literal gadget corresponding to the appearanceesélif in c; ;. Among these two
edges, the first one belongsfowhile the second one does not. Nodgc;, ¢;+1, ¢) is connected through

a heavy edge of weighk” to nodeu(c;+1,¥) of the literal gadget corresponding to the appearance of the
literal £ in ¢;;1 and a heavy edge of weiglif to nodeu(c;,¢) of the literal gadget corresponding to the
appearance of literdlin ¢;. Among these two edges, the first one belong# twhile the second one does
not. An example is depicted in Figure 7.

The last step in the construction is to include auxiliary4eatical nodes connected through ultra light
edges to nodes(c, /) andu(c, ¢) for each clause and each literaf that appear . These edges belong
toT. The purpose of the auxiliary nodes and ultra light edgee guarantee that for each appearance of
a variable of labelj or its negation as a literdl in a clausec, the number of players iff’ that use edges
(I(c, 0),u(c, £)) and(u(c, ), u(c, ¢)) is exactlyn,; andn; — 3, respectively. This is done as follows. Consider
a clause: = (¢4, (5, ¢3) such that the literalg, , /5, and/s correspond to variables with labels jo2, andjs
with j1 < jo < js. Fori = 1,2,3, lett_; be the number of nodes in consistency gadgets to which node
u(c, ;) is connected i’ and observe that. ; € {0,1,2}. We connect it t& — ¢, ; additional auxiliary
nodes through ultra light edges. Nodg:, ¢3) is connected irf” to nodev(c), nodewvs(c, £3), and tot. 4.,
nodes in the consistency gadgets it participates with € {0,1}. We connectu(c, ¢3) to nj, — 6 — t. s,
additional auxiliary nodes through ultra light edges. Fer 1,2, nodeu(c, ¢;) is connected irf’ to nodes
v3(c, ), vi(e, 4i41), and tot. ,, nodes in the consistency gadgets it participates with € {0,1}; we
connect it ton;, — nj,,, — 7 — t. ¢, additional nodes through ultra light edges (see Figlre 6).

In the following, we refer to players associated to nonialtnodes asion-critical players All other
players areeritical. The critical players associated with nodgsc, /) andvs(c, ¢) of a literal gadget corre-
sponding to the appearance of litefah clausec are callediteral players The critical players associated
with nodesu; (c1, 2, £) andus(cq, co, £) in consistency gadgets corresponding to the appearaniteraf £
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ez, ) O

u(cs, )

I(cq, ) O O OII,((:4, z)

u(cq, )

Figure 7: Three consistency gadgets connecting literademdassociated to the appearance of literil
clausecy, literal z in clausecs, literal  in clausecs, and literalz in clausec,. The first and the third ones
are (-¢ consistency gadgets; the second one ig-drconsistency gadget. Only nod&s, /), u(c, /) and
u(c, £) are shown in each literal gadget.

(or literals¢ and?) in clauses:; andc, are calledconsistency playersThe critical player associated with
nodev(c) in the clause gadget corresponding to clauiecalledclause player

Observe that our construction guarantees That connected, spans the nodeshfand the number of
its edges is equal to the number of non-root nodes.iflence, it is indeed a tree. Also, note that it consists
of all light and ultra light edges and heavy edges of weiglaicy K'; the edges ofs not included inT" are
all heavy and, hencd, is a minimum spanning tree.

We have completed the description of our reduction. We useadimlight assignmento refer to all-
or-nothing subsidy assignments that subsidize only liglges (clearly, ultra light edges do not need to be
subsidized). In the rest of the proof, we show that theret®xidight assignment that enforcésas an
equilibrium in the extension of the broadcast game-oif and only if ¢ is satisfiable (Corollari 20). This
is done in a sequence of steps which can be briefly described@ss:

e Step 1. First, we observe that light assignments of sulssglimrantee that the non-critical players
have no incentive to deviate from their strategyifLemma13).

e Step 2. Then, we introduce the property klaflancefor light assignments which is proved to be
equivalent to the fact that the critical literal players di have an incentive to deviate either; this is
done in Lemma&_14 using the definition of the literal gadgets.

e Step 3. Then, we introduce the propertycohsistencyor balanced light assignments which is proved
to be equivalent to the fact that the critical consisten@ygits do not have an incentive to deviate
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either; this is done in Corollafy_18 using the definition of ttonsistency gadgets. A nice effect of
this property is that there is a one-to-one and onto mappétgden the consistent balanced light
assignments and the assignments of values to the varidbfes o

e Step 4. Finally, we introduce an additional property forgstent balanced light assignments that is
proved to be equivalent to the fact that the critical clausggrs do not have an incentive to deviate
either and, hencdl is enforced as an equilibrium in the broadcast game; thismedn Lemma 19
using the definition of the clause gadgets. A nice effectigfphoperty is that the mapping mentioned
above is a one-to-one and onto mapping between the condistieanced light assignments that satisfy
this property and the truthful assignmentsgof

We continue with Step 1.

Lemma 13 Consider the extension of the broadcast gamé-omith a light assignment of subsidies. Then,
no non-critical player has an incentive to change her stgt 7.

Proof. Consider a non-critical player whose strateg{'inonsists of light (and, possibly, ultra light) edges.
By the construction of", this player may use light edges in at most three literal gedgHence, the cost
she experiences is at mdstvhile any deviation should include a heavy edge ouf of

Now consider the non-critical player associated with node, ¢) in the literal gadget corresponding to
the appearance of literélin clausec. In her strategy iff’, she uses the edde (c, ¢), (¢, ¢)) (which is also
used by the player associated with nadéc, ¢)) as well as at most four light edges in at most two literal
gadgets. Hence, her cost is at mast2 4 4. If she deviates to a strategy that contains edgéc, ¢), l(c, ¢))
but not the path froni(c, ¢) to r in T', she would experience a cost of at lea&t/2 > K /2 + 4 since, in
addition to edgéwv (¢, £),1(c, £)), her strategy would include another heavy edge odt aéed only by her.
Also, any deviation that contains the pdth(c, £), va(c, £), u(c, ¢)) would have cost at lea8tK — # >

K/2 + 6, wherej is the label of the variable corresponding to litefal [

We proceed with Step 2. Consider a light assignment suchftragdach clause and each literal that
appears ir, exactly one among the light edg@éc, /), u(c,¢)) and (u(c,£), u(c, £)) in the literal gadget
corresponding to the appearance of literad clausec is subsidized; we call such an assignmehaknced
light assignment.

Lemma 14 Consider the extension of the broadcast gamé-omith a light assignment of subsidies. Then,
the critical literal players have no incentive to changeittstrategies inT" if and only if the assignment is
balanced light.

Proof. Consider the literal gadget that corresponds to the appearaf a literal/ in a clausec. If none
of the two light edges of the gadget is subsidized, the elititeral player associated with nodg(c, ¢)
has an incentive to deviate from her péth(c, ), u(c, ¢), u(c,£),1(c,£)) (where the cost she experiences is
+ 1 ) to the direct edge froms(c, ¢) to I(c, ¢) (where the cost she would experience would be

3
K + 3) If both of the two light edges of the gadget are subsidiziee critical literal player associated
with nodev2(c ¢) has an incentive to deviate from her path(c, ¢),vi(c,¢),l(c,£)) (where the cost she
experlences |§K/2) to the path(vy(c, £), u(c, £),u(c, £),l(c,£)) (where the cost she would experience
would be3k — —) If instead one of the edgé#(c, £), u(c,£)) and (u(c,£),u(c,¢) is subsidized, the
critical Ilteral player associated with nodg(c, ) experiences a cost 8f{/2 and has no incentive to change
her strategy to the pattws(c, £), u(c, £), u(c, £), l(c, £)) (since her cost there would be at Ie%t— # +

min{—L } > 3K, Also, the critical literal player associated with nagiéc, ¢) experiences a cost of

n;+17 n]—2
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L }and has no incentive to change her path fr(@a(c 0),u(c,?),u(c, E) l(c,0))
to the direct edge fromg(c l)tol(e,?) , L })

Also, note that if the critical literal player associatediwnodev(c, ¢) or vg(c, E) dewates toa strategy that
does not use the path from note, ¢) to the root-node- in T', this would contain two heavy edges which
are used only by this player for a cost of at leakt. [

We proceed with Step 3 where our goal is to prove Corollaty Titds will follow by Lemmad_16 and
[I7. In their proof, we will use the following additional lenam

Lemma 15 Consider the extension of the broadcast game5owith a balanced light assignment and a
literal gadget corresponding to the appearance of litefaih clausec. Then, any player who uses or
deviates to a strategy that contains the path from nidde’) to the root-node- in 7' experiences a cost of
at mostT}Lf on the edges of this path, whefrelenotes the label of the variable corresponding to litetal

Proof. If j =1, then our construction guarantees that /) coincides with the root-node If j = 2, then
the path fromi(c, ¢) to the root-node- (if any) may contain the light edges of at most one literalggd
corresponding to a variable with lab&l among which exactly one is subsidized since the assigniment
balanced light. Hence, a player that uses or deviates t@gegir that contains the path from noide, /)

to the root-node in T experiences a cost of at mo;%tl_—g < n% = # If 5 > 3, then the path from
2

l(c,?) to the root-node- (if any) may contain the light edges of at most two literal geid corresponding
to variables with labels at mogt— 1 andj — 2; in each of these literal gadgets, exactly one among the
two light edges is subsidized since the assignment is badhlight. Hence, a player that uses or deviates
to a strategy that contains the path from né@e/) to the root-node- in T' experiences a cost of at most

1 1 < 2 1 m

nj,2—3 n]‘,1—3 - Mj-1 - 2nj'

From now on, we will extensively use the following definitioRor each literal, we define the set of
light edges

E() = {(u(c,f),u(c,t)) : for each clause that containd as literal
U{(l(c, £),u(c,£)) : for each clause that containd as literal

Lemma 16 Consider the extension of the broadcast gamé-omith a balanced light assignment of subsi-
dies. Given arf-¢ consistency gadget for the appearance of lité¢ral clausesc; andc,, the following two
sentences are equivalent:

e The critical consistency players associated with nadgs, , c2, ¢) andus(c1, c2, £) have no incentive
to change their strategies ih.

e The light edges of the gadget that are subsidized are eittusetbelonging t@&'(¢) or those belonging
to E(0).

Proof. Consider arf-¢ consistency gadget that corresponds to the appearanderafdiin clauses:; and
co. Letj be the label of the variable corresponding to litefalSince the assignment is balanced light,
two light edges are subsidized: one among the eddes ¢), u(c1,£)) and(u(ci1, £), u(ci,£)) of the literal
gadget corresponding to the appearance of liteiralclausec; and one among the edg@$cs, £), u(ca, £))
and(u(co, £), u(co, £)) of the literal gadget corresponding to the appearanceeslif in clausecs.

If the subsidized edges afEc;, £), u(ci,£)) and(u(cz, £), u(ca, £)), then the critical consistency player
associated with nodey(c;, c2, ¢) has an incentive to change her strateg{'inThe cost she experiences in
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her strategy i7" is at leastk + % The cost she would experience by deviating to the strateggisting of
path(ug(cl, c2,0),u(e1, 0),1(c1,¢)) and the path fron(cy, ¢) tor in T would be at mosk + ﬁ + %; <

K + . Inthe left part of this inequality as well as in the ineqtied below we have used Lemr{rﬁl 15in
order to bound the cost experienced by the critical comsigtelayer on the edges of the path frén,, ¢)
torinT.

If the subsidized edges afe(ci, £), u(c1, ¢)) and(I(cz, £), u(ca, £)), then the critical consistency player
associated with node, (c1, c2, ¢) has an incentive to change her strateg{'irdue to symmetry, the argu-
ment is the same as above.

If the subsidized edges are the edgks;, ¢), u(c1,£)) and(I(cz,¢), u(cz, £)) that belong to sefr(?),
then no critical consistency player has an incentive to gharer strategy iA". The critical consistency
player associated with nodg (c1, c2, ¢) experiences a cost of at makt + # while the cost she would

J

experience by changing her strategy to the one that uses{rple(m, c2,0),u(ca,?)),1(c2, ¢)) and the path
in T from(cy, ¢) tor would be at leask + - T > K+ T Also, note that if the critical consistency player

associated with node, (c;, c2, ¢) deviates to a strategy that does not use the path from i{edée) to the
root-noder in T, this would contain two heavy edges which are used only ylaiyer for a cost of at least
2K. Due to symmetry, the argument for the critical consistguleyer associated with node(c1, co, ) is
the same.

If the subsidized edges are the edge§:1, ¢), u(c1, £)) and(u(c, £), u(cz, £)) that belong to sef(¢),
then no critical consistency player has an incentive to ghdmer strategy iff’ either. The critical consistency
player associated with node (¢, c2, ¢) experiences a cost of at mdst % + %Z while the cost she would

J

experience by changing her strategy to the one that uses{zpla(th Cco, ), u(c, ?)),1(ca,£)) and the path

in 7" from I(cz, ¢) to r would be at leask + ﬁ + +1 > K+ - o . Also, note that if the critical
J

consistency player associated with nagéc;, c2, ¢) deviates to a strategy that does not use the path from
nodel(cq, ) to the root-node- in T, this would contain two heavy edges which are used only by thi
player for a cost of at leagtX. Due to symmetry, the argument for the critical player aisded with node
ug(cy, co, ) is the same. ]

Lemma 17 Consider the extension of the broadcast gamesonith a balanced light assignment of sub-
sidies. Given arf-/ consistency gadget for the appearance of literatsnd 7 in clausesc; and c,, the
following two sentences are equivalent:

e The critical consistency players associated with nadgs, , c2, ¢) andus(c1, c2, £) have no incentive
to change their strategies ih.

e The light edges of the gadget that are subsidized are eitteeetbelonging t& (¢) or those belonging
to E(0).

Proof. Consider ar/-¢ consistency gadget that corresponds to the appearanceraidi¥ and ¢ in the
clausesc; andc,, respectively. Let be the label of the variable corresponding to literalnd ¢. Since
the assignment is balanced light, two light edges are siziesid one among the edgé&c;, ¢), u(cy, £))
and (u(c1, £),u(cy, £)) of the literal gadget corresponding to the appearance eflit in clausec; and
one among the edge&$(cs, £), u(co,£)) and (u(cz, ¢), u(cs, ) of the literal gadget corresponding to the
appearance of literdlin clausecs.

If the subsidized edges afEc;, £), u(c1,£)) and(I(ca, £), u(cz, £)), then the critical consistency player
associated with node; (¢1, co, £) has an incentive to change her strategyf'inThe cost she experiences
in her strategy inl" is at leastK + ﬁ The cost she would experience by deviating to the strategy

consisting of the patku; (c1, c2,£), u(ca, £),1(ca, £)) and the path fromd(co, £) to r in T would be at most
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K + -+ 7 + j < K + ——=. Inthe left part of this inequality as well as in the ineqtia§ below we

have used Lemrrlé]:llS in order to bound the cost experiencecelwyitital consistency player on the edges
of the path fromi(cy,¢) torin T.

If the subsidized edges afe(c1, £), u(c1, £)) and(u(cz, £), u(ca, £)), then the critical consistency player
associated with nodey(ci, c2, ¢) has an incentive to change her strateg{'inThe cost she experiences in
her strategy irf" is at leastK + n—lj The cost she would experience by deviating to the strateggisting

of the path(us(ci, ca, £),u(c1,£),u(c1,?),1(c1,£)) and the path frond(cy,¢) to » in T would be at most
Kt ti4sh <KL
J n; nj B B _
If the subsidized edges are the edg&g;,¢), u(c1,¥)) and (u(ce, £), u(ce,¢)) of the setE(¢), then

no critical consistency player has an incentive to changestnategy inl". The critical consistency player
associated with node, (i, ¢, £) experiences a cost of at mdstt- .- + 5. The cost she would experience
J J

by deviating to the strategy consisting of the p@.tbl(cl, c2,0),u(ct, £),ulcr, £),l(cy, ) and the path from
I(c1,¢) torin T would be at leask + ——5 > K + -+ 3 1 . Also, note that if the critical consistency

player associated with node(c;, ¢z, ¢) devrates toa strategy that does not use the path from ijedée)

to the root-node- in T', this would contain two heavy edges which are used only ts/player for a cost

of at Ieast2K The critical consistency player associated with nagé:, co, ) experiences a cost of at

3 + 5,2- The cost she would experience by deviating to the strateggisting of the path
J

<u1(c1, 2, €), (ca, €), I(c2,€)) and the path fromi(c,, £) to r in T would be at leask + - ~+ 7 +; +1 >

3 +5- 2 Also, note that if the critical consistency player asstatiavith nodeul(cl, ca, 6) deviates

toa strategy that does not use the path from ngdg /) to the root-node- in T', this would contain two
heavy edges which are used only by this player for a cost efest2 K .

If the subsidized edges are the edgeg:1, /), u(c1,¥))) and(I(cz, £),u(c, £)), then no critical consis-
tency player has an incentive to change her stratedy @ither. The critical consistency player associated
with nodeus(cy, co, £) experiences a cost of at mast+ # The cost she would experience by deviating

J —
to the strategy consisting of the pa(tzltg(cl, c2, ), u(c1, l),u(er, £),l(cr,¢)) and the path fromi(cy, £) tor
in T"would be at leask + — > K + 7 Also, note that if the critical consistency player asstetiavith

nodeus(cy, c2, ¢) deviates to a strategy that does not use the path from itedée) to the root-node- in T,

this would contain two heavy edges which are used only byaiaiger for a cost of at IeaQtK The critical

consistency player associated with nedéc;, co, ¢) experiences a cost of at md§t+ P . The cost
J

she would experience by deviating to the strategy conglstirthe path(us (c1, c2,¢),u (cz, 0), l(cQ, /7)) and
the path fromi(cy, ¢) to r in T would be at leasfs ot 7 Also, note that if the critical consistency

player associated with nodg (c;, c2, ¢) deviates to a strategy that does not use the path from ijogle)
to the root-node- in T, this would contain two heavy edges which are used only lsyplayer for a cost of
at least K. [

We call a balanced light assignment such that for each Jariabither the edges df(x) or the edges
of E(z) are subsidized (i.e., if the second sentence in Lenimas 16 #&hdlds for every literal) aonsistent
balanced light assignment. Under this definition, Lemimaarib1T yield the following corollary.

Corollary 18 Consider the extension of the broadcast gameCowith a balanced light assignment of
subsidies. The critical consistency players have no ineenid deviate from their strategy ifi if and only
if the assignment is consistent balanced light.

Note that there exists a one-to-one and onto mapping bete@esistent balanced light assignments of

26



subsidies and assignments of values to the variablesdgfsettingz = 1 for every variabler such that the
edges inF(z) are subsidized (and = 0 otherwise).
We proceed with Step 4.

Lemma 19 Consider a light assignment of subsidies. The followingeayavalent:
e T is enforced as an equilibrium in the extension of the broatigame.

e (a) The assignment of subsidies is consistent balancet l{gh For each clause = (¢, ¢, ¢3), at
least one of the following is true:

— the edges of/(¢;) are subsidized.
— the edges oF/(¢;) are subsidized.
— the edges of/(¢3) are subsidized.

Proof. If T is enforced as an equilibrium, then no player has any ineent deviate from her strategy
in 7. By Lemma1# and Corollary_18, we obtain (a). We will show ttie fact that the critical clause
players have no incentive to deviate from their strated¥ implies (b). Assume otherwise that there exists
a clause: = (41, ¢, ¢3) such that the edges ifi(¢;) U E(¢2) U E(¢3) are not subsidized. This means that
the light edgeu(c, £1),u(c, £1)), (u(c,f2),u(c,£2)), and (u(c, £3),u(c, £3)) in the three literal gadgets
corresponding to the appearance of liter&ls/,, and /s in ¢ are not subsidized. Lek, j», andjs be
the labels of the variables corresponding to literalsé,, and/s. Then, the cost the critical clause player
associated with node(c) experiences on her strategyihis at leasti” + njll—g + %1_3 + %1_3. Hence,
she has an incentive to deviate and use the direct @dgg ) of weight K’ + % + Lo+ nj‘1—3 which
contradicts our assumption. ' ’ ’

On the other hand, if (a) and (b) are true, we will show that fayqr has any incentive to deviate
from her strategy irf". Again, by Lemma 14 and Corollaky 118, we have that (a) imples critical literal
players and critical consistency players have no incertivdeviate while Lemma_13 implies that non-
critical players have no incentive to deviate. We will shdwatt(b) implies that no critical clause player
has an incentive to deviate either. Indeed, consider aelaus (¢, ¢3,¢3) and letj;, jo, andjs be the
labels of the variables corresponding to literéls />, and/s. (b) implies that one among the three light
edges(u(c, 4;),u(c, ¢;)) for i € {1,2,3} in the three literal gadgets corresponding to the appearahc
literal ¢; is subsidized and, due to (a), if a light edgéc, /;), u(c, ¢;)) is not subsidized, then the light edge
(I(c, 4;),u(c, £;) is subsidized. Hence, the cost of the critical clause plagsociated with node(c) is at

mostK+max{i+ L4 1 L4 14 1 L 1_3+ﬁ}§K+L+ 1y

njy Njy -3 nj3—3’ njy -3 Njy nj3—3’ njy -3 Njy njy nj2—3
1

77,73 and, hence, this player has no incentive to use €d@e, ). Also, she has no incentive to deviate to
another strategy which includes edgéc), u(c, £3)) but not the path fronu(c, £3) tor in 7. Any such path
contains two heavy edges which would be used only by theatitlause player associated with nade)
and, hence, her cost would be at le2kt. [

Note that the mapping mentioned above is a one-to-one awndeabping between consistent balanced
light assignments of subsidies and truthful assignmenis ®fe obtain the following corollary.

Corollary 20 There exists a light assignment of subsidies that enfdrcasan equilibrium in the extension
of the broadcast game ad if and only if¢ is satisfiable.

Hence, if¢ is not satisfiable, then the minimum amount of all-or-noghéuibsidies necessary to enforce
T as an equilibrium in the extension of the broadcast game Isast X' (some heavy edge has to be
subsidized). We conclude that distinguishing between kdredll-or-nothing subsidies of cost (at most)
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3|C| are sufficient or subsidies of cost at le&Stare necessary in order to enfor€eas an equilibrium in
the extension of the broadcast game is NP-hard. Thebrémllb®$oby setting K" to be arbitrarily large
compared taC/|. |

Theoreni IR probably indicates that the only approximatisergntee we should hope for all-or-nothing
SNE is to bound the amount of subsidies as a constant fraatitthre weight of an optimal design. The next
statement implies that significantly more subsidies maydmessary compared to the standard version of
SNE in order to enforce a minimum spanning tree as an equitibr

Theorem 21 For everye > 0, there exist a broadcast game on a graghand a minimum spanning tréé
of G such that the cost of any all-or-nothing subsidy assignniteait enforcesl” as an equilibrium in the
extension of the broadcast game is at Ieé;é(‘i_—l - e) wgt(T).

Proof. We will define a graphG with n + 1 nodes which has a minimum spanning tree that consists of
a path(r, vy, va, ..., v,). Letz = (n—n/e+1)"'. Edges(r,v1) and (v, viy1) fori = 1,...,n — 2 have
weight . Edge(v,—1,v,) has weightl. The graph contains two additional edges: edge,_1) has
weightx and edg€r, v,,) has weightl. If we do not put subsidies on the ed@e,_1, v, ), then we have to
put subsidies on each of the remaining edges in the path @r twduarantee that the player associated with
nodewv,, has no incentive to use the direct edgg, r), i.e., a total amount df» — 1)« as subsidies. If we put
subsidies on the edde,,—1, v, ), we still have to guarantee that the player associated witlen,, _; has no
incentive to deviate to the direct edge, 1, 7). Using the same reasoning as in the proof of Thedrem 11,
we will need an amount of at lea@t/e — 2)x as subsidies on the edges of the path, v, ..., v,—1), for a

total of 1 4 (n/e — 2)z. Due to the definition of, we have that the amount of subsidies is at I%@%%
in both cases while the total weight @fis :j‘;/’;fl. The bound follows by selecting to be sufficiently
large. [

6 Open problems

Our work has revealed several open questions. Concerningdfticular results obtained, it is interesting
to design a combinatorial algorithm for SNE which, on inpgrraphG and a minimum spanning trégéon

G, enforcesl” as an equilibrium on the corresponding broadcast game usimgium subsidies. Lemnia 2
may be helpful in this direction. For the integral versiorSMNE, we have left open the question whether it
is always possible to enforce a given minimum spanning tsegnaequilibrium in a broadcast game using
all-or-nothing subsidies of cost strictly smaller than theight of a minimum spanning tree. Given our
negative result in Theorem112, this is probably the only apipnation that makes sense. It is tempting to
conjecture that our lower bound is tight, i.e., there is goathm that always uses a fraction of at mgst;

of the weight of the minimum spanning tree as subsidies iermialdo so.

Approximating SND would also be interesting. Given the kndvardness statements (e.g., [36]) or the
lack of positive results concerning the complexity of commy equilibria, this is a far more challenging
goal. A concrete guestion for SND instances consisting ofdbcast games could be the following: can we
compute in polynomial time an equilibrium tree using sulesicbf cost at most an fraction of the weight
of the minimum spanning tree? Our results (Theorems 1 andd@dte that the answer is clearly positive
if & > 1/e. Is this also possible if is an arbitrarily small constant? Definitely, more genenstances
of SND (e.g., involving multicast games) are challengingnedl. Finally, variations of SNE and SND
that consider deviations of coalitions of players (as opdds unilateral deviations), players with different
demands [, 14], or different cost sharing protocols [15fedee investigation.
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