
Source-Level Debugging of Scalar Optimized Code

Ali-Reza Adl-Tabatabai* and Thomas Grossl’2

1School of Computer Science 21nstitut fur Computer Systeme
Carnegie Mellon University ETH Ziirich

Pittsburgh, PA 15213 CH 8092 Zurich

Abstract

Although compiler optimizations play a crucial role in the

performance of modern computer systems, debugger tech-

nology has lagged behind in its support of optimization,, Yet

debugging the unoptimized translation is often impossible

or futile, so handling of code optimizations in the debugger

is necessary. But compiler optirnizations make it difficult

to provide source-level debugger functionality: Global op-

timization can cause the runtime value of a variable to be

inconsistent with the source-level value expected at a break-

point; such variables are called endangered variables. A, de-

bugger must detect and warn the user of endangered variables

otherwise the user may draw incorrect conclusions about the

program. This paper presents a new algorithm for detecting

variables that are endangered due to global scalar optimiza-

tion. Our approach provides more precise classifications of

variables and is still simpler than past approaches. We have

implemented and evaluated our techniques in the context of

the cmcc optimizing C compiler. We describe the compiler

extensions necessary to perform the required bookkeeping

of compiler optimization. We present measurements of the

effect of optimizations on a debugger’s ability to present the

expected values of variables to the user.

1 Introduction

Designing a source-level debugger for globally optimized

code is still an open problem and users must choose be-

tween debugging or optimization, Compiler implementors

This research was sponsored in part by the Advanced Research Projects
Agency/ITO monitored by SPAWAR under contract NO0039-93-C-0152 and
in part by donations from Intel Corp. and Motorola Inc.

Permission to make digitalhrd copy of part or all of this work for petsonal
or classroom use is ranted without fee provided that copies are not made

#or distributed for pro t or commercial advanta e, the copyfight notice, the
Jtitle of the publication and its date appear, an notice is given that

orrpying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

PLDI ’96 5/96 PA, USA
@ 1998 ACM 0-89791 -7954YWO005...$ 505O

have generally avoided supporting the debugging of opti-

mized code in the past, although some systems provide de-

bugger mechanics without warranties for the “debugging” of

optimized code. To cite from the description of the options

in the C manual of a major Unix vendor:

-g3 Have the compiler produce additional symbol

table information for fall symbolic debugging for fully

optimized code. This option makes the debugger inac-

curate.

For non-Unix systems, the situation is no better (to give an

example from the PC/Macintosh world):

Enable Debugging turns off all optirnizations.

When the compiler optimizes it sometimes rearranges

object code so that it does not correspond exactly to

the source code. This rearrangement may confuse the

debugger’s source code view.

A source-level debugger must solve two types of prob-

lems: First, the debugger must map a source statement to an

instruction in the object code to set a breakpoint and map an

instruction to the source code to report a fault or user inter-

rupt (code location problems [26]). Second, the debugger

must retrieve and display the values of source variables in a

manner consistent with what the user expects with respect to

the source statement where execution has halted (data-value

problems [26]). When a program has been compiled with

optirnizations, mappings between breakpoints in the source

and object code become complicated, and values of variables

can be inaccessible in the runtime state or inconsistent with

what the user expects.

This paper presents a solution to deal with the the data-

value problems caused by optimizing compiler transforma-

tions. Our focus are the global and local scalar optimization

that are included in current state-of-the-art compilers. There
are two novel aspects. First, we develop a unified model

of the data-value problem caused by global scalar optirniza-

tions; Figure 1 sketches the questions that a debugger must

address. Then we present an approach based on data-flow
analysis to analyze and propagate the effects of optimizing

33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F231379.231388&domain=pdf&date_stamp=1996-05-01

transformations. These algorithms have been implemented

in an optimizing C compiler: the data-flow analysis required

to support the debugger is similar to the data-flow analysis

performed for global optimization and in our compiler uses

the same modules. Compiler extensions are only necessary

to generate the information required to analyze the effect

of optimizing transformations on the data-value problems.

Moreover, our algorithms work on a single representation of

a program; this is in contrast to other approaches (e.g., [24])

that keep around a copy of the original source program repre-

sentation. Our paper concludes with an empirical evaluation;

we report on measurements for the eight C programs of the

SPEC92 suite.

1.1 The data-value problem

We summarize here the terminology; for examples and mo-

tivation we defer to the references.

When global register allocation is performed, the register

assigned to a variable V may be shared with other variables

as well as temporaries. Thus at a breakpoint there may be

no value of V available; V is nonresident [3] if the value in

the register assigned to V may be the value of some vari-

able other than V. The debugger reports that the value of a

nonresident variable V is unavailable since the value in the

register assigned to V does not correspond to a meaningful

source-level value of V [3]. If at a breakpoint a variable

V is resident, then the value in the runtime location of V

corresponds to some source-level value of V. This value is

referred to as the actual value of V, while the value that the

user expects V to have, based on the context of the source

breakpoint statement, is the expected value of V. Since the

actual value of a variable V is a source-level value of V, it

is meaningful to display this value to the user. However, if

optimizations have moved or eliminated assignment expres-

sions, the actual value of a variable V may not correspond

to the expected value of V, in which case V is endangered

[19, 13, 2] and additional information must be provided to

the user.

There are two mutually exclusive classes of endangered

variables: noncurrent variables and suspect variables. Some-

times the debugger can tell that the actual value of V definitely

does not correspond to the expected value of V, in which case

the actual value of V is displayed to the user with a warning

that V is noncurrent [19, 13, 2]. However, there are situa-

tions when a debugger cannot tell whether the actual value of

V corresponds to the expected value of V, in which case the

user is warned that V is suspect [2]. Suspect variables are

caused by ambiguities due to either multiple paths reaching

a breakpoint [1], or pointer assignment that are executed out

of order [2]. If a variable V is endangered, the debugger can

provide additional information about V to the user, such as
the source assignment expression(s) that (may have) assigned

the actual value of V, or the source assignment expression(s)

that (possibly) should have assigned the expected value of V.

If the debugger can positively determine that the actual

value of V corresponds to the expected value of V, then

V is current and the actual value of V is displayed with-

out warnings. The techniques described in this paper allow

the debugger to detect whether a variable is noncurrent, sus-

pect or current, and convey to the user in source terms how

optimizations have affected the value of a variable.

1.2 Debugger model

Our model of debugging assumes that the debugger is non-

invasive [3, 2]; the code generated by the compiler and de-

bugged by the user is the default code generated with op-

timization enabled. The compiler is not allowed to insert

additional instructions into the object code to enable or sim-

plify source-level debugging; we are interested in debugging

the optimized version of a program.

Figure 1 orders the states of a variable with respect to de-

bugging. The debugger can determine whether a variable

should contain a source-level value by performing simple

reaching analysis. This analysis helps, since a register pro-

moted variable that is uninitialized is likely to be nonresi-

dent, and the debugger can provide a better classification by

informing the user that the variable is uninitialized. If a vari-

able is initialized, the debugger detects whether the variable

is resident. If the variable is resident, the analysis described

in this paper determines whether the variable is noncurrent,

suspect, or current, and its value is shown to the user, possibly

with a warning. This approach never misleads the user; an

endangered values is always accompanied by a warning (that

the value is noncurrent or suspect).

-

No ‘+ Warn V is
“;,::&g#&&U& noncurrent

. .,..-...’”:’ ‘, Yes
No

“A Show V’S value
Wam Vis ~

Show V without warnings
suspect ‘

Figure 1: Outline of our algorithm; shaded part corresponds

to the novel aspects discussed in this paper,

The above approach presents a baseline that can be im-

proved, for example, by using runtime values to reconstruct a

variable’s expected value (recoveV [19, l]). Runtime values

34

can also be used to differentiate between suspect and current

values (e.g., by determining which path was taken to reach a

specific breakpoint; an example is provided in Section 2.2).

However, all of these refinements are improvements to this

overall model, which therefore plays a central role in the

organization of a debugger.

1.3 Prior work

There exists a small body of literature on debugging opti-

mized code, starting with Hennessy’s paper [19], which de-

fined some of the basic terms (e.g., endangered, noncurrent).

DOC [14] and CXdb [8] are examples of two real debug-

gers for optimized code. These debuggers detect whether a

variable is nonresident (using a conservative approach based

on a variable’s live range [3]). CXdb only detects whether

a variable is resident; it is up to the user to determine the

correspondence between a variable’s actual value and scmrce

code values. DOC can detect variables that are endangered

due to instruction scheduling, but cannot deal with data-value

problems caused by global optimization. The shortcomings

and constraints of these debuggers are discussed in detail in

[3, 2, 1].

Our own earlier work [3, 2] concentrates on the effects of

global register allocation and local code scheduling. We do

not discuss these aspects any further in this paper, as urlder-

lined by Figure 1. This paper concentrates on a framework for

the source-level debugging of locally and globally optimized

code and discusses how to deal with endangered variables

caused by these optimization. Except for the italicized en-

tries, we discuss the optimization of Table 1 here for the

first time. Register optimization are included in our com-

piler (otherwise, we would not claim to have an optimizing

compiler) and therefore included in our evaluation.

Other researchers that have investigated the problem ofde-

tecting endangered variables caused by global optirnizations

are Copperman [13] and Wismueller [24]. Both of tlhese

works provide formal frameworks but do not specify how

their solutions can be extended to the problems faced by a real

compiler. Copperman’s approach [13] is based on data-ilow

analysis of intermediate representations of the program. This

representation captures the effects of transformations (global

optimizations), but does not cover all aspects of the transla-

tion (e.g., register allocation) and does not deal with faults

and user interrupts. Without an implementation, it is difficult

to evaluate the practicality of Coppemmn’s approach. Wis-

mueller [24, 25] concentrates only on detecting whether the

expected value of a variable can be displayed to the user;, his
algorithms do not distinguish between nonresident, suspect,

and noncurrent variables.

Both [13] and [24] assume that the compiler can mangle

the source code arbitrarily, resulting in an arbitrarily difficult

problem and in a solution that is difficult to both understand

and implement. Our work takes advantage of the fact that

program gcc -02 cc -02 ‘

li 0.98 1.05

eqntott 1.13 1.09

espresso 1.06 1.05

gcc 1.02 0.89
alvinn 1.06 0.94

compress 0.84 0.95

ear 1.07 0.95

Sc 1.09 1.03

Table 3: Performance of optimized code generated by cmcc,

relative to optimized code generated by gc c (version 2.3.2)

and MIPS cc on a DECstation 5000/200.

optimization do not transform code arbitrarily; there are

a number of invariants that are preserved when compilers

transform programs. For example, if code is hoisted to a

different basic block, the basic block is post-dominated by

the original block; this limits the range of breakpoints where

a variable is endangered. Or, if an expression is eliminated

due to redundancy, the value must be available somewhere,

and the debugger can provide this value to the user. [13] and

[24] fail to take these constraints into account.

Another major difference between the earlier work by Cop-

perman and Wismueller is that they attempt to capture a

“summary effect” of all optimizations. Then they attempt to

relate the optimized code back to the source code. In contrast,

our approach models each optimization step (of Table 1); the

compiler propagates the information about the effect of these

optimization steps through all all optimization phases. This

issue is discussed in more detail in Section 3.

1.4 Experimental framework

The algorithms described in this paper are implemented in

the cmcc compiler, CMU’S optimizing C compiler. cmcc

uses the ICC ANSI C front end [18]. Table 1 lists the op-

timization performed by cmc c. These optimization are

based mostly on the standard bit-vector algorithms described

in [12]. Our implementations of partial redundancy elimina-

tion, strength reduction and partial dead code elimination are

based on the algorithms described in [21], [20] and [22]. The

global register allocator is a Chaitin-style register allocator

[9] with the improvements described in [7]. So far, we have

retargeted cmcc to the MIPS, SPARC, DLX, and iWarp ar-

chitectures. We used the MIPS code generator to gather the

results that we report in this paper.

In this paper, we base our empirical evaluation on the

set of eight C programs from SPEC92, Table 2 shows the

sizes of these programs and statistics relevant to source-level

debugging. The third and and fourth column of this table

show the total number of source-level breakpoints in each
program and the average number of breakpoints per function.

35

Loop unrolling and peeling Linear function test replacement

Induction variable expansion Induction variable simplification

Constant propagation and folding Induction variable elimination

Assignment propagation Partial dead code elimination

Dead assignment elimination Partial redundancy elimination

Strength reduction Branch optimizations

Global register allocation (using graph coloring) Register coalescing

Instruction scheduling

Table 1: Optimizations performed by cmcc.

Lines Total source Breakpoints Variables per

Program of code breakpoints per function breakpoint

li 7741 2594 7.4 5.2

eqntott 3483 1267 21.6 5.1

espresso 14842 7424 21.5 9.4

gcc 102389 28433 20.7 9.3

alvinn 322 140 8.3 6.3

compress 1503 429 26.9 5.8

ear 4466 1108 11.8 6.9

Sc 8491 3400 23.1 7.1

Table 2: Programs used in this study.

The last column shows the average number of local variables

that were in scope at each source-level breakpoint. Table 3

shows that the optimized code generated by cmcc is roughly

of the same quality as the optimized code produced by gcc

and the native MIPS cc compiler. (This table presents the

perfommnce relative to these compilers; a number of less

than one means that cmcc produces better code.)

2 Our approach

Since the debugger interacts with the user, only values of

source program variables are of interest; compiler-internals

(temporaries) are never visible to the user. Therefore, data-

value problems cart be handled by restricting attention to

transformations that affect assignments to source-level vari-

ables. Many scalar optimizations, such as strength reduc-

tion, constant folding and constant propagation [4] do not

directly affect assignments to source variables 1. Other op-

timization, like loop induction variable strength reduction

and elimination, allow the debugger to infer source values
from compiler temporaries that replace eliminated variables.

There are other situations where the overall effect of a se-

ries of transformations is the replacement of a source-level

variable with a compiler temporary, again allowing the de-

bugger to infer values from compiler temporaries. Control

1Their effects maybe indirect, for instance, constant propagation or copy
propagation may eliminate all uses of an assignment’s left hand side, thus
subjecting the assignment to elimination by dead code elimination.

flow transformations, such as loop unrolling and code repli-

cation, change the control flow graph by duplicating basic

blocks. These transformations, however, do not reorder the

execution of source-level assignments and thus do not cause

data-value problems.

Compiler transformations cause endangered variables by

either eliminating or moving assignments to source variables.

An assignment A may be eliminated because it is either dead

(i.e., the value computed by A is never used), or available

(i.e., the value computed by A is already computed on all

paths leading to A). Code motion algorithms move an ex-

pression either upwards against the direction of control flow

(hoisting), or downwards towards the direction of control

flow (sinking). Code motion is constrained by safety con-

siderations: a computation cannot be introduced into a path

where it did not exist before. Therefore, code hoisting op-

timization copy an expression E from a block B to one

or more blocks that are post-dominated by B, while code

sinking optimization move an expression E from a block B

to one or more blocks that are dominated by B. By taking

advantage of these code motion invariants, our algorithms

are greatly simplified. In fact, it is these invariants that have
allowed us to produce a solution to the problem that is signifi-

cantly simpler than the approaches described in [25] and [13].

Examples of code hoisting optimization include partial re-

dundancy elimination [23, 12, 15, 21] and global instruction

scheduling algorithms that perform non-speculative hoisting

of instructions [5]2. Examples of code sinking optimiza-

2ne ~gofithms described in this paper have been extenrfedto cleatWifi

36

tions include partial dead code elimination [22], unspecula-

tion [17], global instruction scheduling algorithms that sink

code past conditional branches [10], superblock dead code

elimination [11] and forward propagation [6],

2.1 Core optimization

Code motion and elimination are related, since some code

motion algorithms operate by computing the set of program

points where insertions of expressions render other expres-

sions either dead or available [22, 23]. If the debugger can

detect endangered variables caused by code hoisting and dead

code elimination, then we have the foundation to debug op-

timized code, since these two transformations capture the

effects of the elimination and movement transformation dis-

cussed above (including code sinking).

Code hoisting causes endangered variables by hoisting an
expression that assigns to a source-level variable V, thus

causing V to be updated prematurely. Dead code elintina-

tion causes endangered variables by eliminating updates to

variables. In the case of an endangered variable V caused by

dead code elimination, the expected value of V is the value

that would have been assigned by a source-level assignment

Ed that was eliminated by dead code elimination, while the

actual value of V is the value assigned by a source-level as-

signment other than Ed. When both dead code elimination

and code hoisting have been performed, it is possible that

the expected value of a variable V stems from a dead assign-
ment, while the actual value of V stems from an assignment

that has been executed prematurely due to code hoisting; in

this case V is endangered due to code hoisting. Because

of control flow ambiguities, both transformations may c;ause

variables to be suspect; that is, the debugger may sometimes

only be able to tell that a variable is possibly noncurrent due

to code hoisting or dead code elimination. We now provide

an example to clarify these concepts.

2.2 Illustration of the effect of code hoisting

Figure 2 shows the intermediate representation (IR) flow

graph of a program fragment. Code hoisting has inserted

expression EB inside block B2, rendering expression .& in

block B3 redundant. We refer to expressions that are in-

serted by code hoisting (e.g., E3) as hoisted expressions,

while expressions that are made redundant by insertions and

thus eliminated from the program (e.g., ,?32)are referred to as
redundant expressions. If a hoisted expression Eh is inserted

to make one other expression E, redundant, then Er is re-

ferred to as the redundant copy RedCopy(Eh) of the hoisted

expression Eh. In Figure 2, Ez = Recopy.

Figure 2 shows three possible breakpoints that may oc-

cur: Bkpt 1, Bkpt2, and Bkpt3. At Bkpt 1, x is definitely

noncurrent, since the actual value of x is different from the

speculativecodehoistingtransformations[1].

EO: X= U-V ~.

E3 inserted by
El: X=Y+Z ~1 E3: X=Y+Z code hoisting

Bkpt 1 x noncurrent
at Bkptl

B3

u

Bkpt2 x suspect at Bkpt2

E&x+z., Ez deleted because

available

Bk&W3 x current at Bkpt3

Figure 2: Example of code hoisting.

expected value of x due to E3 prematurely assigning to x

the source-level value assigned by Ez. If the user queries

the value of x at this breakpoint, the debugger can display

the actual value of x and warn the user that this value is the

value assigned by the source-level assignment E2, which has

executed prematurely. At breakpoint Bkpt2, x is current if

execution has reached block B3 from block B 1 and noncur-

rent if execution has reached from block B2. In the absence

of knowledge regarding execution history, the debugger can-

not determine whether execution has reached B 3 via B 1 or

B2, and therefore the debugger cannot determine whether x

is current or noncurrent and must report x as being suspect

at breakpoint Bkpt2. If the user queries the value of x at

this breakpoint, the debugger can display the actual value of

x and warn the user that this value may be from expression

E2, which may have executed prematurely at block B2. The

user may be able to determine whether block B2 has exe-

cuted (e.g., based on the values that determine the outcome

of block BO’S conditional branch) and thus whether Ez has

indeed executed prematurely. Note that the compiler can

instrument the object code to collect runtime information,

allowing the debugger to determine which path was taken to

B3 and thus reporting x as either noncurrent or current. This

is disallowed, however, in our non-invasive debugger model.

Now consider breakpoint Bkpt3. At this breakpoint, the

expected value of x is the value assigned by E2. The actual

value of x is the value assigned by either El or E3, depending

on the path traversed to this breakpoint. The values of either

El or E3 are the same as the value that would have been
assigned by E2 (otherwise Ez would not have been eliminated

due to redundancy), and thus x is now current.

37

2.3 Detecting endangered variables causedby
code hoisting

The key idea is to determine if there exists a path to a break-

point that includes a hoisted expression that is not followed

(onthesatne path) bya redundant copy. Once execution

has progressed to the point that all paths include a redundant

copy, the variable is current, since the actual value of the vari-

able is the expected value. Path problems are easily solved

by an appropriate data-flow framework.

The data-flow analysis used to detect endangered variables

due to code hoisting is similar to the reaching definitions

analysis [4]. After the execution of a hoisted expression Eh
that assigns to a variable V, the actual value of V corresponds

to the source-level value that would have been assigned by

the redundant expression RedCopy(E~); for example, in

Figure 2, the actual value of x at breakpoint Bkpt 1 is the

value assigned by the hoisted assignment EB, which is the

source-level value that would have been assigned by Ez.

Let P = (start ,..., O) be an execution path traversed to a

breakpoint l?. If at B the actual value of a variable V is the

value assigned by a hoisted expression Eh, then V is non-

current at B if the expected value of V does not correspond

to the source-level value that would have been assigned by

RedCopy(Eh). Therefore, if Eh reaches along P and after

the last occurrence of Eh, P does not include RedCopy(E~),

then V is noncurrent. Or, expressed positively, V is current

whenever a path P includes RedCopy(Eh), and Eh does not

occur on P after RedCopy(Eh). For instance, in Figure 2,

E3 reaches Bkptl and Bkpt3. x is noncurrent at Bkptl, since

any path taken to Bkptl does not go through Ez, and current

at Bkpt3, since all paths taken to Bkpt3 go through Ez.

Therefore, given paths along which a hoisted expression

Eh reaches, those paths that do not gothroughRedCopy (E~)

are distinguished:

Definition 1 A redundant expression E, hoist reaches along

a path P = (start, 0), ifthere exists a hoisted expression

Eh such that Er = RedCopy(Eh), and Eh reaches along

P, and Er does not occur after the last occurrence of Eh

alovg P.

Note that hoist reach is a property of redundant expressions

only (i.e., expressions that are eliminated by partial redun-

dancy elimination). In Figure 2, the redundant expression Ez

hoist reaches Bkpt2 on the path from block B2. Ez does not

hoist reach on paths that reach via block B 1.

Lemma 1 Let ET be a redundant assignment expression that

assigns to a variable V. If E? hoist reaches along a path

P = (start, O) and P is the execution path traversed to a

breakpoint B, then V is noncurrent at B due to the premature

execution of ET 3,

swe ~tit tie ~roofs of lemmas as they are str~ght fo~~d.

Since the debugger does not know which execution path was

actually taken to reach a breakpoint, it must consider all

possible paths. The following lemmas describe the two cases

where a redundant assignment expression hoist reaches along

all or only some of the paths that lead to a point O, where a

breakpoint has occurred. Let E, be a redundant assignment

expression that assigns to a variable V:

Lemma 2 If E, hoist reaches along all paths leading to

a point O, then at any breakpoint occurring at O, V is

noncurrent due to the premature execution of ET.

Lemma 3 ~ Ev hoist reaches along at least one but not all

paths leading to a point O, then at any breakpoint occurring

at O, V is suspect due to the possible premature execution of

E,,

In Figure 2, x is noncurrent at Bkpt 1, since the redundant

assignment expression E2 hoist reaches on all paths to Bkpt 1.

At Bkpt2, x is suspect since E2 hoist reaches on only some

paths. At Bkpt3, x is current since no expressions that assign

to x hoist reach.

Detecting whether a redundant expression hoist reaches

along all or only some paths can easily be done using data-

flow analysis. This data-flow analysis is performed on the

final instruction-level intermediate representation of a pro-

gram, that includes annotations describing the effects of op-

timization. In Section 3, we describe how this representation

can be built and maintained by the compiler. The hoist reach

data-flow attribute of an assignment expression E is gener-

ated by any code inserted by code hoisting that computes E.

The hoist reach of E is killed by any eliminated redundant

code that also computes E. Two flow analyses are done to

determine whether an assignment expression hoist reaches on

some or all paths to a breakpoint. Typically, a variable is en-

dangered over a small region of the program, and only a few

variables are endangered. Therefore, an efficient implemen-

tation of our analyses can be based on slotwise analysis [16].

(For more implementation details, see [1].) Note that the

data-flow analysis does not need to determine which instance

of an expression hoist reaches, but rather that some expres-

sion hoist reaches; that is, the compiler need not determine

that E2 = Recopy, but rather that E3 is a hoisted in-

stance of E, and that Ez is redundant. Note also that given

a redundant expression Er that is the redundant copy of a

hoisted expression Eh, E. post-dominates Eh, and thus the

hoist reach of E. is eventually killed on any path leading
from Eh. Therefore the region of endangerment caused by

code hoisting is limited.

2.4 Detecting endangered variables caused by
dead code elimination

The program fkagment of Figure 3 is used to demonstrate the

effects of dead code elimination on debugging. In this figure,

38

BO

B1

Q

B2

BkDt 2

x noncurrent

at Bkpt2 \

B3

Bk@3

E2: X=Y+Z

BkQt 4

T x suspect
Bk@ 5 at Bkpt5

El: X= U-V

B~t 6
x current
at Bkpt6

x noncurrent
at Bkpt3

E2inserted by

code sinking

x current
at Bkpt4

E. deleted

because dead

x noncurrent

Figure 3: Example of dead code elimination.

assignment sinking has inserted E2 and deleted expression

Eo. At breakpoint Bkpt 1, x’s expected value is the vah.w that

would have been assigned by Eo, while x’s actual value is

the value assigned by the last assignment that was executed

prior to this program fragment. Therefore, the actual value

of x is stale, and x is noncurrent. x is similarly noncurrent

at Bkpt2 and Bkpt3. At Bkpt4, x is current since expression

Ez assigns the expected value of x (i.e., the value that would

have been assigned by Eo). At Bkpt5, x is noncurrent if

execution has reached this breakpoint from block B 1 and

current if execution has reached from block B2. Therefore,

x is suspect at Bkpt5. Finally, at Bkpt6, both the expected

and actual values of x are from El, and thus x is current.

Unlike the hoist reaching data-flow algorithm where we

solved for whether a redundant IR expression is hoist reach-

ing, the data-flow algorithm for detecting endangered ‘mri-

ables caused by dead code elimination solves for whether

a van”able V is endangered due to the elimination of slome

dead assignment to V. After execution passes through a dead

assignment to a variable V, the actual value of V becomes

stale until another assignment to V is executed. For example,

in Figure 3, x becomes noncurrent after Eo, until after the as-

signments El and E2. Therefore, we distinguish those paths

where a variable’s value is stale due to a dead assignment:

Definition 2 A variable V is dead reaching along a path

P = (start, O), if there exists a dead assignment expres-

sion Ed that assigns to V such that Ed occurs in P and no

assignments to V occur along P after the last occurrence of

Ed.

If a variable V is dead reaching along a path P and P is the

execution path traversed to a breakpoint B, then V is clearly

noncurrent at B:

Lemma 4 If a variable V is dead reaching along a path

P = (start, O), and P is the execution path traversed to

a breakpoint B, and V is not noncurrent due to the premature

execution of a redundant assignment, then V is noncurrent

at B because the actual value of V is stale.

Lemma 5 If a variable V is dead reaching along all paths

leading to a point O, then V is noncurrent at any breakpoint

occurring at O.

Lemma 6 If a variable V is dead reaching along at least

one but not all paths leading to a point O, then V is suspect

at any breakpoint occurring at O.

In Figure 3, x is dead reaching along all paths leading to

Bkpt 1, Bkpt2 and Bkpt3, and thus x is noncurrent at these

breakpoints. At Bkpt5, x is dead reaching only along those

paths that pass through B 1 and thus x is suspect. At Bkpt6,

x is not dead reaching and thus x is current.

The data-flow analyses to detect whether a variable is dead

reaching on only some or all paths can be derived in a straight

forward manner from the above definitions and lemmas. The

dead reach of a variable V is generated by a dead assignment

to V and killed by any other kind of assignment to V[1].

2.5 Recovery

If dead code elimination eliminates an assignment to a vari-

able V, it may be possible to recover the expected value of

V from the values of compiler temporaries. Consider the

example in Figure 4(a). The right hand side of the expres-

sion X=Y+ z at statement S1 is propagated to the two uses

of x at statements S2 and S3. After this assignment prop-

agation, no uses of x remain and S1 is eliminated (Figure

4(b)). Common subexpression elimination detects the com-

mon subexpression y+ z, replacing the two computations of

y+z with fetches from the temporary trap (Figure 4(c)).

s]: X=y+ z tmp=y+ z

S2: ..x. . Sz: .. Y+z. . S2: ..tmp. .

S3: ..x. . S3: .. Y+z. . S3: ..tmp. .

(a) (b) (c)

Figure 4: Recovery example (a) Original source program (b)

After copy propagation and dead code elimination (c) After

common subexpression elimination.

In cmcc, assignment propagation is performed to improve

partial redundancy elimination [12, 6] and the situation de-

scribed above occurs quite often. The final effect of this

series of transformations is that the source-level variable x

is replaced with tmp. If the user queries the value of x
at a breakpoint that occurs after statement S1, the debugger

can display the value of tmp, since these two variables are

39

aliased. This is one form of recovery, where the debugger re-

constructs the expected value of a variable from other runtime

values.

Recovery is performed by checking each expression E
inserted by code replacement transformations (Section 3 de-

scribes how we keep track of such transformations). If E
replaced a fetch from a source-level variable V in the orig-

inal program, then the value computed by E aliases V, and

V can be recovered from the storage location holding the

value of E. E may be a constant, a fetch from a temporary,

or some more general computation such as addition. In the

case that E is a fetch from a temporary T, we generate the

residence [3] of V in the storage location assigned to T. If

E is a constant, we generate a special constant residence for

V, indicating that the value of V is a constant. If E is neither

a constant nor a fetch, then we generate the residence of V

in the storage location assigned to the result register of the

instruction that computes E’s value. In all cases, the dead

reach of V is killed by E. A similar approach is used to

recover the value of a source-level induction variable that is

replaced by a strength-reduced expression. Linear function

test replacement [12] replaces a loop test involving a source-

level variable with a compiler synthesized tempormy. The

source-level induction variable V can then be eliminated if all

other uses of V have been eliminated (most likely by strength

reduction).

3 Tracking compiler transformations

To allow the debugger analyses described in Section 2, the

compiler must perform bookkeeping to record the effects of

optimizations in the program representation. In the cmcc

compiler, this bookkeeping is performed by annotating the

nodes of cmcc’s IR. These annotations record whether an

operation was inserted by optimizations (and if so by which).

Bookkeeping also inserts special IR marker nodes to mark

points of interest to the debugger. These annotations and

markers are ignored by optimizations and optimization are

not constrained in anyway. This is in contrast to the approach

described in [24] where a representation of the original source

program is kept as a copy, and links are maintained between

the intermediate representation used for optimizations and

the original representation (e.g., an abstract syntax tree).

The different ways in which global optimizations may

transfonu a program and the manner in which bookkeeping
is performed for these transformations, are as follows:

Code insertion Code motion and common subexpression

elimination transformations insert new code into the
program representation. Expressions that are inserted

by code hoisting or code sinking are marked as hoisted
or sunk expressions. Assignment expressions that are

marked as hoisted will generate the hoist reach of vari-

ables.

Code replacement Copy propagation and redundancy elim-

ination replace one expression with another. Copy

propagation replaces a reference to a variable with a

propagated expression, while redundancy elimination

replaces an available expression with a fetch from a

compiler temporary. When an expression E replaces

a fetch from a variable V, a reference to V is kept in

E. This information is needed only for recovery (as

described in Section 2.5) and can otherwise be omitted.

Code deletion Dead code elimination and partial redun-

dancy elimination delete assignment expressions that are

dead or available. When an assignment to a variable V is

eliminated, it is replaced with a special IR marker node,

unless this assignment has been previously marked as

sunk or hoisted. A marker node contains a reference

to the variable V and an indication why the assignment

to V was eliminated (i.e., whether the assignment was

dead or available). Markers are ignored by optimization

phases and are used only for the debugger analysis algo-

rithms. Markers that indicate an available assignment
to a variable V will kill the hoist reach of the assign-

ment, while markers indicating a dead variable V will

generate the dead reach of V.

Code duplication Control flow optimizations such as loop

peeling duplicate code. Code duplication, however,

does not create data-value problems since no move-

ment or elimination of assignments occur. Therefore,

the effects of this transformation need not be recorded.

However, marker nodes inside a block B must also be

duplicated when I? is duplicated. Moreover, if an IR

node containing debugging annotations is duplicated,
the annotations must be duplicated along with the node.

Basic block deletion A block of code can be eliminated if

the optimizer determines that this code is unreachable.

This transformation usually occurs after a conditional

branch is folded. Since the code that is eliminated

would not have executed in the original program, this

transformation does not cause data-value problems and

its effects need not be recorded.

Basic blocks can also be deleted because they become

empty after other optimizations, or because they contain

only unconditional branches (and are deleted by branch

chaining). If a deleted basic block contains any infor-

mation relevant to debugging (i.e., markers), then such
information must be retained and is transfemed to the

deleted block’s successor.

Basic block insertion Edge splitting and preheader inser-

tion insert new (empty) basic blocks into the program

representation. These transformations do not cause

data-value problems4.

4Code duplication, basic block deletion and basic block insertion create

40

Only after the final object code is produced are all opti-

mization exposed, and thus the analyses for detecting endan-

gered variables are performed on an instruction-level repre-

sentation of the program [3, 2]. Like most compilers, cmcc

has a two-level intermediate representation consisting of a

machine-independent IR used for global optimizations (e.g.,

partial redundancy elimination), and an instruction-level rep-

resentation used for machine-dependent optimization ((e.g.,

register allocation and instruction scheduling). Most of the

bookkeeping is performed on the machine-independent IR

(since most optimizations operate on this IR), and the anno-

tations and markers are passed along to the instruction-level

representation as the program representation is lowered. This

is similar to passing high-level information such as aliasing

information along to a compiler back end for use by an in-

struction scheduler. During code selection, annotations are

transferred from nodes in the machine-independent IR, to

the selected instructions. IR marker nodes are lowered to

special marker instructions, that convey essentially the same

information as the IR marker nodes. Instructions are also an-

notated with information indicating which instructions cor-

respond to source-level assignments. Additional information

is passed along for detecting endangered variables caused by

instruction scheduling, as described in [2, 1].

4 Experimental results

To better understand the effect of global optimizations on

source-level debugging, we instrumented our algorithms to

count the number of variables that are endangered at each

breakpoint. The charts in this section show the average nulm-

ber of variables that are uninitialized, current, endangered,

and nonresident at a breakpoint 5. These numbers were col-

lected by counting the number of variables in each category,

for each possible breakpoint in the source program, and ,av-

eraging the results by the number of breakpoints. (These

static numbers assume that all breakpoints are equally likely.

We note that a long-term user study that records actual usage

patterns is still outstanding.)

Our measurements showed that although there are a large

number of global variables that can be queried at each bre&-

point, very few global variables are endangered on the aver-

age. Therefore, our figures depict only the results for local

variables.

Code hoisting did not affect source-level debugging for

these programs, and the measurements in this section show

endangerment caused by elimination and sinking of assign-

ments. The crncc optimizer hoisted mainly address compu-

tations. The few source-level assignments that were hoisted

code location problems, since they affect setting and reporting of break-
points. Code location problems are discussed in [26] and [1].

5We “se a “~mt of the nonresidency algofithm described in [31. This

algorithm was modified to handle live range splitting [1].

Program I % Suspectl

E

I

Sc 9.6%

Table 4: Percentage of endangered variables that are suspect

in Figure 5(a).

were also partially dead, and so the subsequent partial dead

code elimination phase sunk the hoisted assignments down

past their original locations, to points where they were less

frequently executed. Aggressive global scheduling may

increase the number of source-level assignments that are

hoisted.

Figure 5(a) shows the results when the programs are com-

piled with global optimization but without global register

allocation. Since register allocation is not performed, non-

resident variables cannot occur. On average, only about

10-30% of the variables are endangered at each breakpoint.

Table 4 shows the percentage of endangered variables that

are suspect. This table shows that the majority of endan-

gered variables are noncurrent.

Figure 5(b) shows the results when the programs are com-

piled with global optimizations and with register allocation.

About half the variables are current or uninitialized; these

are the “good” cases, since the debugger can provide accu-

rate and meaningful information to the user. It is interesting

to note that almost all the variables that cause problems for

the debugger are nonresident.

It is worthwhile to compare Figures 5(a) and 5(b): adding

global register allocation decreases the number of current

variables (the number of uninitialized ones is obviously un-

affected), and there are only a few endangered variables;

nonresident variables complicate the life of the debugger.

This result is not surprising, since we expect the register al-

locator to reuse registers assigned to dead variables. (Note

that on a machine like the MIPS R3000, there are only 26

integer and 16 floating point registers available for register

allocation.) This result suggests that if register allocation is

performed with dead code elimination, the effects of dead

code elimination are manifested in the form of nonresident

variables, rather than endangered variables.

Note that these results are no indication of how often a

debugger will be able to respond with a variable’s expected

value during a debugging session since we report an average

result for all possible breakpoints. Such measurements would
require a user study. The numbers presented above, however,

do give an indication of how different optimization may

41

I ~ Uninitialized W Current ❑ Endangered H Nonresident I
10

Ii espresso alvinn ear li espresso alvinm ear

eqntott gcc compress Sc eqntott gcc compress Sc

(a) (b)

Figure5: Average number oflocdvmiables atabre~point (a) Globdoptitizations only(b) Globdoptifizations mdregister

allocation.

affect a debugger’s ability to recover a variable’s expected

value. We conclude from our results that a debugger’s ability

to retrieve a source-level value will more likely be affected

by nonresident variables than endangered variables, if opti-

mization are performed in conjunction with global register

allocation. Moreover, code hoisting does not cause much of

a problem in practice, since this transformation very rarely

results in a hoisted source-level assignment.

5 Conclusions

In this paper we presented a concise model for the data-value

problem and described a simple approach to detecting endan-

gered variables caused by global scalar optimization. The

solution described in this paper is cast as a data-flow anal-

ysis problem. Since data-flow analysis is a well-understood

technique, there are limited obstacles to overcome for an

implementation of these techniques in a compiler/debugger.

Moreover, the analyses are very similar to other analyses

that are done by the compiler and can thus take advantage

of an infrastructure that is already present. This is in con-

trast to other approaches that require specialized data-flow

analyses and program representations [13, 24]. To gather the

information required for our data-flow analysis, the program

intermediate representation is annotated during optirnizations

to mark hoisted and sunk assignments, and additional mark-

ers are inserted to indicate points from which source-level

assignments are eliminated. The data-flow analysis can be

performed either by the compiler after optimizations and

code generation, or by the debugger, Neither the execution

time of the analysis phase nor the storage requirements are

significant.

We have used our implementation to measure the effects

of optimization on a source-level debugger’s ability to re-

trieve variable values. Measurements show that a debugger is

more likely to be affected by register allocation than by other

global optimization. Furthermore, hoisting of assignments

almost never occurs. Therefore, a debugger can take a con-

servative approach to detecting endangered variables caused

by code hoisting (e.g., a hoisted assignment can cause a

variable to become nonresident). Hence, a combination of

residence detection and our simple data-flow algorithm for

detecting endangered variables caused by dead code elimina-

tion is good enough for most practical situations. Moreover,

since assignments are almost never hoisted, the code location

issue of syntactic versus semantic breakpoints [26, 13, 24] is

not important; the simple syntactic breakpoint model is good

enough for a useful debugger.

There are three noteworthy aspects of our approach that al-

low us to proceed in solving a problem that researchers have

struggled with in the past. First, our approach concentrates on

two principal global scalar optimizations: code hoisting and

dead code elimination. Other global optimization either can

be expressed in terms of these optimizations, or do not cause

data-value problems. Second, our approach takes advantage

of invariants maintained by these two transformations, This

makes the problem tractable and enables us to provide addi-
tional information to the user by conveying the actual value

of a variable in source terms. Third, our approach is inte-

grated with other implemented solutions to problems caused

by local instruction scheduling and global register allocation,

described in [2] and [3]. Thus, we are able to address a wide

range of common global and local scalar optimizations in-

cluded in most research and production optimizing compilers

of the last decade.

42

Acknowledgments

We thank Ken Lueh for his many contributions to the cmcc

compiler. We appreciate comments, suggestions, and en-

couragement by John Ruttenberg and Fred Chow, Si [icon

Graphics, Geoff Lowney, DEC, and Bruce Olson, HP.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8

[9

[10]

[11]

[12]

[13]

A. Adl-Tabatabai. Source-Level Debugging of Globally Opti-

mized Code. PhD thesis, Carnegie Mellon University, 1996.

A. Adl-Tabatabai and T. Gross. Detection and recovery of

endangered variables caused by instruction scheduling. In

Proc. ACM SIGPLAN’93 Con~ on Prag. Lunguage Design

and Implementation, pages 13-25. ACM, June 1993.

A. Adl-Tabatabai and T. Gross. Evicted variables and the in-
teraction of global register allocation and symbolic debugging.
In Conj Record of the 20th AnnualACM Symp. on Principles

of Prog. Lag., pages 371-383. ACM, January 1993.

A. V. Aho, R. Sethi, and J. D. Unman. Compilers Principles,

Techniques, and Tools. Addison-Wesley, 1986.

D. Bernstein and M. Rodeh. Global instruction scheduling for
superscalar machines. In Proc. ACM SIGPL4N ’91 Con$ on

Prog. Language Design and Implementation, pages 241--255.

ACM, June 1991.

P. Briggs and K. Cooper. Effective partial redundancy elimi-
nation. In Proc. ACM SIGPLAN’94 Confi on Prog. Language

Design and Implementation, pages 159–170. ACM, June 1994.

P.Briggs, K. D. Cooper, K. Kennedy, and L, Torczon, Colc}ring
heuristics for register allocation. In Proc. ACM SIGPLAN’89

Conf on Prog. Language Design and Implementation, pages

275-284. ACM, July 1989.

G. Brooks, G. Hansen, and S. Simmons. A new approach to
debugging optimized code. In Proc. ACM SIGPLAN’92 Con~

on Prog. Lunguage Design and Implementation, pages 1-11.

ACM, June 1992.

G. J. Chaitin. Register allocation and spilling via graph color-

ing. In Proc. ACM SIGPLAN 1982 Symp. on Compiler Con-

struction, pages 98-105, June 1982. In SIGPLAN Notices, v.
17, n. 6.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. W. Hwu. Impact: An architectural framework for multiple-

instruction-issue processors. In Proc. 18th Intl. Symp. on Com-

puter Architecture, pages 266-275. ACMAEEE, May 1991.

P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile

information to assist classic code optimization. Software

Practice and Experience, 21(12): 1301-1321, Dec 1991.

E Chow. A Portable, Machine-independent Global Optimizer

Design and Measurements. PhD thesis, Stanford University,

1984.

M. Copperrnan. Debugging optimized code without being

misled. ACM Trans. on Prog. Lang. Syst., 16(3):387427,

May 1994.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24

[25

[26]

D. S. Coutant, S. Meloy, and M. Ruscetta. Dot: A practical ap-

proach to source-level debugging of globally optimized code.

In Proc. ACM SIGPLAN’88 Conf on Prog. Language Design

and Implementation, pages 125-134. ACM, June 1988.

D. M. Dhamdhere. Practical adaptation of the global optimiza-

tion algorithm of morel and renvoise. ACM Transactions on

Programming Lunguages and Systems, 13(2):291-294, April

1991.

D.M. Dhamdhere, B.K. Rosen, and F.K. Zadeck. How to an-

alyze large programs efficiently and informatively. In Proc.

ACM SIGPLAN’92 Conf on Prog. Language Design and Im-

plementation, pages 212–223. ACM, June 1992.

D. Ebcioglu, R. Groves, K. Kim, G. Silbennan, and 1. Ziv.

Vliw compilation techniques in a superscalar environment. In

Proc. ACM SIGPJL4N’94 Conf on Prog. Language Design

and Implementation, pages 36-48. ACM, June 1994.

C. Fraser and D. Hanson. A Retargetable C Compiler: Design

and Implementation. BenjarninlCumrnings, 1995.

J. L. Hennessy. Symbolic debugging of optimized code. ACM

Trans. on Prog. Lang. Syst., 4(3):323–344, July 1982.

J. Knoop, O. Ruthing, and B. Steffen. Lazy strength reduction.

Journal of Prog. Languages, 1(1):71–91, 1993.

J. Knoop, O. Ruthing, and B. Steffen. Optimal code mo-

tion: Theory and practice. ACM Trans. on Prog. f.ung. Syst.,

16(4) :1117-1 155, July 1994.

J. Knoop, O. Ruthing, and B. Steffen. Partial dead code elimi-

nation. In Proc. ACM SIGPLAN’94 Con. on Prog. Language

Design and Implementation, pages 147-158. ACM, June 1994.

E. Morel and C. Renvoise. Global optimization by suppres-

sion of partial redundancies. Communications of the ACM,

22(2):96-103, Feb 1979.

R. Wismueller. Debugging of globally optimized programs

using data flow analysis. In Proc. ACM SIGPLAN’94 Conf on

Prog. Lunguage Design and Implementation, pages 278–289.

ACM, June 1994.

R. Wismueller. Quellsprachorientiertes Debugging von op-

timierten Programmed. PhD thesis, Technische Universitaet

Muenchen, Munich, Germany, Dec. 1994. (in German). Pub-

lished (1995) by Shaker Verlag, Aachen (Germany), ISBN

3-8265-0841-6.

P, Zellweger. Interactive Source-Level Debugging of Opti-

mized Programs. PhD thesis, University of California, Berke-

ley, May 1984. Published as Xerox PARC Technical Report

CSL-84-5.

43

