
Simple Garbage-CoIIector-Safety

HivzPJ Boehrn

Xerox PARC

boehm@parc, xerox. com

Abstract. Accmservative garbage collector can typically be
used with conventionally compiled programs written in C or
C++. Buttwosafety issuesmust reconsidered. First, the
source code must not hide pointm horn the garbage
collector. This primarily requires stricter adherence to
existing restrictions in the language definition. Second. we
must ensure that the compiler will not perform
transformations that invalidate this requirement.

We argue that the sametechnique can be used to addressboth
issues. We present an algorithm for annotating source or
intermediate code to either check the validity of pointer
arithmetic in the source, or to guarantee that under minimal,
clearly defined assumptionsabout the compiler, the optimizer
cannot “disguise” pointem. We discuss an implementation
basedon a prepromsor for the GNU C compiler (gee), and
give somemeasurementsof program slowdown.

Garbage=Collector=Safety

Automatic garbage collection can significantly simplify
program development It cart also help to isolate program
erroxsto one module by helping to ensurethat no module cart
invalidate a data structure maintained by another. Though it
is hard to quantify this bertefi~ most expert guessesseem to
place it in the range of 30-40%of program development time
for programs that manipulate complex linked data structures
(cf. [Rovner85J). Furthermore, in our experience, garbage
collected programs tend to be based on higher level
abstractions where appropriate, and thus tend to have fewer
arbitrary restrictions on functionality (e.g. input size
limitations).

Permissionto make digitabtwd copy of part or all of this work for pasonal
or olassroomuse is ranted without fee provided that copies are not made

Ior distributed for pro t or commercial advanta e, the copyright notice, the
ttitle of the publication and its date appear, an notice is given that

copying is by permission of ACM, Ino, To eop otherwise, to repubtish, to
!post on servers,or to redistribub to Iisk, requ res prior specific permission

andlor a fee.

PLDI ’06 W96 PA, USA
@ 1990 AcM o-as7el-7e5-Z7e610005...$505o

Tracing garbagecollectors identifi all accessiblememory
by starting at program pointer variables, and traversing all
pointers through the heap, Conservative garbage collectors
(cf. [Bartlett88], [BoehmWeiser88], [Rovner85], ~oehm 95])
can do so even in the presence of incomplete information
about pointer identity by treating any bit pattern that might
represent the address of a heap object asa pointer. This may
result in some extra memory retention, but this is rarely
significant mhrn93]. This approach enables garbage
collectors to operate easily with conventional programming
languages such as C and C++, and with minimal or no
modification to existing compilers. It has been used by many
language implementations that use C as an intermediate code
(cf. ~ett89], [AtkinsonEtA189J, [Grnohundro91],
[RoseMuller92], [SchelterBallantyne88J) , and it facilitates
interoperation between C and higher level programming
languages.

Although conservative garbage cdlectots require
minimal cooperation from the compiler, they do require some
to guarantee correct operation. For example, a conventional
C compiler may replace a final reference p[i - 1000] to the
heap characterpointer p by the sequence:

P=P - 1000;
,,. p[i], . .

If a garbage collection is triggered between the
replacement of p, and the reference to p[i], there may be no
recognizable pointer to the object referenced by p. Thus such
code is not GG@e. (Here we assume the existence of
multiple threads of control. Similar examples cart be
constructed if the collector can only be invoked at function
call sites.)

Note that the fidarnental problem is not the way in
which p[i - 1000] is computed, but the fact that the original
value of p is overwritten before the computation is complete.
Thus the problem is to convince the compiler to preserve
some valueslonger than they appear to be needed,rather than
to suppressspecific optirnizations.

Similar problems may occur as a result of induction
variable optimization, or in the construction of a large
constant address displacement on a machine that provides
only a small signed displacement field in machine

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F249069.231394&domain=pdf&date_stamp=1996-05-01

instructions. Other examples can be found in
[BoehmChase92].

Such problems are in fact extremely rare with existing
compilers. Conservative garbagecollection is commonly used
with conventional unmodified optimizing compilers, and to
our knowledge, the above problems have only been observed
in examples contrived for the purpose. This is in strong
contrast to conventional optimization bugs in production
compilem

Nonetheless we would like to be able to generate GC-
safe code to gumantee safety of the approach. We would at
least like to be able to point to a practical alternative in case
such a problem is discovered. And we would like to defend
against future clever optimization that may increase the
ftequency of such problems.

For most compilers, it is possible to guarantee GC-safety
by generating filly debuggable code. If the values of all
logically visible variables are explicitly stored for debugging
purposes at all program points, then they will also be available
for the garbage collector. Unfortunately, performanm
considerations make such an approach (and some other
solutions, eg involving frequent uses of v 01 at i 1e
variables) unattractive.

Unfortunately, GC-safety is likely to introduce some
runtime overhead, distinct from time spent in allocation and
garbage collection routines. (See, for example,
[OTooleNettles94], [DetlefsDosserZorn93], and
[BoehmDemersShenker91] for some measurements of
conventional collector overhead.) Since the problem is
essentially never observed in practice, there is some argument
that the introduced overhead should be very small with
“sufficiently good” program analysis. In particular all existing
programs can theoretically be compiled on existing compilem
asthey are now. Here we look at the performance of a rather
simple, but decidedly imperfect analysis.

Source Checking

A related problem is that of checking that the original
source code is safe for usewith a garbagecollector.

Recall that the C language allows some arithmetic on
pointers. However a value maybe added to a pointer only if
the result and the original pointer are addresseswithin the
same object. Either may also point one past the end of the
object, which we handle by allocating all heap objects with at
least one extra byte at the end. We make some additional
assumptions about the input program

1) No integers are converted to heap pointers. In fact,
wnversion of a pointer to an integer and back, without

intervening arithmetic, is benign, as is the common practice of
converting very small integers to pointers that are never
dereferenced. Disguised pointer arithmetic is not. Hashing
on pointer values is no problem, since we effectively assumea
nonmoving garbage collector. Our preprocessor issues
warnings when nonpointer values are directly converted to
pointers. It could and should also issue warnings when the
same thing is accomplished by a cast between different

structure pointer types or the like.

2) Pointers are not hidden from the garbage collector by
writing them to files and reading them back in, or by writing
them to collector invisible (or misaligned) memory locations.
To our knowledge, this is possible in a strictly conforming
ANSI C program only via pointer input with either a scan f
variant and %p format or with f re ad into a pointer-
ccmtaining type, or with a call to memcpy or memmove with
arguments whine types don’t match, Thus this should be
easily checkable, though we currently don’t do so.

Thus the practical issue in checking the safety of a
program is to ensure that the ANSI C requirements on
pointer arithmetic are satisfied. Our main goals are to ensure
that no objects are prematurely collected, and that garbage
collector data structures are unlikely to be overwritten. We
restrict our attention to heap pointers, since that both ensures
the first goal, and makes the overwriting of collector data
structures much lesslikely.

Our garbage collector provides a facility for checking
whether two pointers reference the sameheap object. Hence
it suffices to check after eachpointer arithmetic operation that
the result still points to the original object. We argue below
that the program can be annotated with such checking calls in
exactly the same manner as annotating it for GC-safety. In
fact, the checking calls ensure GC-safety, though not in a
performance-optimal fhshion.

Admittedly the annotated program will incur a
significant performance loss, at least without substantially
more analysis than we perform. We expect such checking to
be performed only during debugging, by analogy to the
current useof systemslike Purify [HastingsJoyce92].

Our checking is not completely accurate, since the
garbagecollector rounds up object sizes. But it is sufficient to
ensure that on a machine with typical RISC alignment
restrictions at most unused memory can be accidentally
referenced through an incorrectly computed heap pointer to a
primitive type. It is currently still possible to reference or
overwrite other memory if C structures are accessedas a
whole, e.g. if they are passed as parameters or assigned to
other structures. This could be remedied at minimal cost with
the insertion of an additional check.

Related Work

We extend, refine and implement the work presented in
[BoehmChase92]and [EllisDetlefk93].

Unlike [BoehmChase92] we start with the assumption
that the garbage collector recognizes all pointers to the
interior of an object, not just to the tit byte of the object.

Recent experience suggeststhat this is the right framework
particularly for typical C++ implementations which
implicitly generate pointers to the interior of an object. The
techniques of ~oehrn93] can greatly reduce the danger of
space leakage that we previously associated with this
approach. This new assumption greatly simplifies our task.
Unfortunately, it also usually invalidate assumption (A) of
[BoehmChase92], so our correctness argument has to be

90

different.

An approach even more similar to ours here is presented
in [EllisDetJefk93],but not in a great amount of detail.

There has been much work on the generation and
representation of object and stack layout information by the
compiler for the garbage collector, Recent examples include
[DiwanMossHudson92] [Goldberg91], and [Fradet94]. The
idea is to generatestatic information (either tables or traversal
functions) to communicate pointer locations to the garbage
collector. Thus these techniques also introduce minimal
overhead into client code, while producing much more precise
information for the garbage collector. (The overhead is o!ten
very similar to that described here, though the details will vary
depending on the expressivenessof the layout representation
scheme.)The disadvantageaof such an approach are that it is
hard to accommodate code written in languagessuch as C or
often code compiled by more than one compiler, table size
and/or interpretation overhead may be a problem, and
typically garbage collections must be restricted to only be
triggered at specific interruption pointa. The last point may
introduce other forms of overhead in some multithreaded
environments.

To our knowledge, none of this work addreasesthe issue
of run-time overhead required to keep pointers accessible,
though [DiwanMossHudson92] does discussthe necessity for
such overhead.

There have also been many proposals for completely
source-level implementation of garbage-collection using
either the C++ constructor/destructor mechanism or Ada
9X “finalization”. These typically greatly increase the
number of memory references necessary for pointer
assignmentsor pointer variable creation. Hence they are not
performance competitive with conservative collectom, though

the expense may be unavoidable in hard real-time
environments ~eIson91].

There has been a substantial amount of work on safer C
implementations (cf. [HastingsJoyce92],
[AustinBreachSohi94], [JonesKelly95].) Most of these have
concentrated on detecting erroneous memory accessea,not
erroneous pointer or subscript arithmetic, Though the two
are related, the distinction is important. A common bug
(sometimesreferred to incorrectly asa “technique”) in C code
is to represent an array asa pointer to one element before the
beginning of the array’s memory. This fails in a garbage
collected system. It may also result in incorrect pointer
comparisonson segmentedmemory machines.

Like PurifY, but unlike [AustinBreachSohi94], our
checked code uses the same data structure layout as
unchecked code. Hence it is possible, indeed trivial. to use
checked code with third party object-code-only libraries, or
with faster, unchecked modules.

Our checked code is very similar in spirit to recent
independent work by Jones and Kelly [JoneaKelly95]. The
major differences are that we do not check references to
statically allocated and stack memory, we use the garbage
collector’s data structures to determine whether two pointers
referencethe sameobjecc and we take a different approach to

inserting the checking code. The garbage-collector-based
check is probably somewhat more efficient, since it relies
primarily on mapping any address to the beginning of the
corresponding object, an operation crucial to the collector’s
performance, (Their fundamental data structure is a splay
tree of objmts, we usea tree of fixed height 2 describing pages
of uniformly sized objects.) Hence both the allocator and
collector are tuned to make such Iookups very fast. Since we
use existing collector data structures, the checking can be
implemented purely in a preprocessor. Our approach to
inserting checking code is significantly different, in that we
essentially treat pointer offset calculations as pointer
arithmetic. This appears to result in better checking of
structure accesses.

Compiler Safety Problem Statement

We are interested in compiling ANSI C [ANS189],
minimally restricted as defined above, such that the object
code resulting from a strictly conforming program is
guaranteed to operate correctly with a conservative garbage
collector, if we replace every call to the malloc, canoe and
reallot fbnctions by corresponding calls to a collecting
allocator, and remove all calls to free.

We refer to the machine stack, registers, and statically
allocated memory as GC-roots. We assumethat the garbage
collector preservesevery object that is reachable by following
pointem from a GC-root, and possibly through heap resident
pointem. We assumethat the garbagecollector recognizesany
address corresponding to some place inside a heap allocated
object as a valid pointer. (Boehm95] satisfies these
assumptionsin its default configuration.)

It follows from our restrictions on C programs that every
heap object that may be accessedis accessibleby following a
chain of pointers from program variables Some of these
pointers may point to the interior of the object they reference.
We would like to guarantee that the generated object code
satisfies the same property at every program point. That is,
there must be a path from the GC-roots, possibly through
other heap objects, to every potentially accessibleheap object.
In particular, either program variables or equivalent compiler
temporaries, should be explicitly stored, possibly in a machine
register, as long asheap objects they refer to may be accessed.
This suffices to ensure the correctness of a suitable
conservativegarbagecollector.

Returning to our original example of compiling the
expression p[i -1000], our goal is to ensure that either the
pointer p, or a pointer to someplace inside the array, is kept
visible to the collector during the evaluation of the expression,
even if p is dead after the expression is evaluated. Note that
this does not necessarilyinhibit any traditional optirnizations.
It may require another register to preserve the original value
of p, and thus conceivably add register spill code. (On
machinea with only two operand instructions, it may also
directly add a small amount of additional code.)

Our goal is to ensure that this property is satisfied with
minimal effect on the quality of compiler generated code, and

91

in such a way that it can be retrofitted to existing
programming language implementations. We will describe
our algorithm for ensuring garbage-collector-safety primarily
as a source-to-source transformation on C code. We use a
source-to-source transformation both because it provides a
convenient vehicle for explanation, and becausein the short
term it appearsto be an interesting implementation strategy.
It makes it possible to provide for the GC-safety of some
compilers without altering the compiler at all. Since GC-
safety is usually not an issue for unoptimized code, we expect
that our prepass will generally be used only in conjunction
with the optimizer, and hence the time required to run the
prepassis lessof an issuein this context.

We make the following assumptions about the target
compiler, in addition to the expectedcorrectnessassumptions:

O) Every allocation call in the source results in a
corresponding call to an allocation function in the object code.
Every store or load to/from the heap in the object code
corresponds to an access of or assignment to the
corresponding object in the source. (There may be fewer
loads and storesin the object code.)

1) It must be possible to define a macro
KEEP_LIVE(e,y), with the following semantica:
KEEF_LIVl?(gy) evaluates to the value of the pointer
expression e, but with the added constraint that the value of
the pointer variable y must be visible to the garbage collector
(i.e. treated as live) until the expression is completely
evaluated, that is until the value of e is visible to the garbage
collector. We will augment the source program with
KEEPTLIVE expressionsto ensure that relevant pointem are
kept wsible by the compiler.

The useof the word “macro” here should not be take too
literally. The expansion may depend on the types of the
expressionsand involve additional temporary variables. Since
we can generate the expansion explicitly, it does not need to
be expressibleasa C macro.

2) The value of a KEEP.LIVE expression must be
treated as opaque, in the following sense:The value must be
explicitly and continuously stored in either a GC-root or the
appropriate heap object(s), provided the value is used directly
(without intervening pointer arithmetic) in a dereference
operation, or used as the second argument of another
KEEP_LIVE expression. It must be visible to the collector at
all points between the evaluation of the original KEEP_LIVE
and the final use. Thus, if we have p = KEEP_LIVE(...):

q = P; ...*q,.,, then the result of the KEEP.LIVE
expression must be explicitly stored until *q is retrieved.
However, the sameis not required for p = KE131_LIVE(...);
q.= p + 4; ...* q..., since the value of p is not dereferenced
dmctly, and the pointer addition might conceivably be
subject to optimization. We can force either p or q to be
explicitly visible at alI times by writing: p =
KEEP_LIVE(...) ; q = KEEP_LIVE(p + 4, p); ...”q

Informally, KEEP_LIVE has two effects; it causeay to be
kept live during the evaluation of e,and it causesthe compiler
to lose all inforniation about how the resulting value was
computed, thus preventing it from discarding the value and

subsequently recomputing it.

One way to implement KEEF_LIVE(ey) is asa call to an
external function whose implementation is unavailable to the
compiler for analysis, but which actually just returns its first
argument. In all environments of which we are aware, this
will force the value to be stored explicitly (perhaps in a
register), The value will continue to be explicitly available
through a dereference or another KEEF_LIVE in the
presenceof all standard compiler optimization.

This implementation of KEEP_LIVE is, of course,
terribly ineffkient. More efficient implementations are
suggestedin [BoehmChase92],and one is described below.

Our problem then is to annotate the original expression
by replacing a number of expressionsewith KEEP_LIVE(e,y)
in such a way that the above rules guarantee that every heap
object is accessiblevia an interior pointer chain from the time
of ita allocation until its last access.

We will assumethat allocation finctions return a result
that is (treated as) the value of a KEEP_LIVE expression.

In order to simplify the presentation, we will assumethat
the following kinds of expressions either return nonpointem
or occur as the right side of an assignment to a local variable
that is not assigned elsewhere in the same expression. In
effect we assume that temporaries have already been
introduced, so that we can name the results of these
subexpressions:

1) Pointer dereferences.

2) Function calls.

3) Conditional expressions.

We will refer to theseasgenerating expressions.

Note that the introduction of the appropriate temporaries
at source level is slightly more complex than one might like,
but it is possible.

We will also assume that the only pointer dereferences
are in expressions of the form *e, and dereferences occur as
late as possible with an explicit * operator. The [] and ->
operatom occur only inside an & operator. Thus the
expressions el[ez]. z (*e). xz, and e -> x have been
replaced by *a(ez[e2] .x), *&(e -> xz) and *&(e–> x)

respectively. We assume expressions of the form &* e have
been simplified toe.

Again, for the purposes of the presentation, we will
ignore some complexities that must be handled by a source
level implementation. For example, we ignore the fact that
the C expression e -> x will not actually involve a dereference
if the field xhas array type.

92

An Algorithm

We inductively define BASl?.(e), for pointer valued
expressionse, to be the pointer variable from which the value
of e is computed, or NIL if there is no such pointer variable;
that is we define BAS12(e) such tiat e and BASE(e) are

guaranteed to point to the sameobject whenever epoints to a
heap object.

This is somewhat complicated by the presence of the &
(address of) operator. Thus we simultaneously define
BASEADDR(e) to be the possible basepointer for &e.

BASE(O) = ML
BASE(X) = X

if x is a variable and possible heappointer
BASE(X = e) = x

if x is a pointer variable
BASE(X = e) = BASl?(e)

if x is not a pointer variable
BASE(el += e2) = BASE!(el)
BASJ3(e1- ❑ ez) = BASl?(el)
BASIZ(el ++) = BASIS(++ el) = BASF(el)
BASHel --)= BASE(-- el) = BASl?(el)
BASE(el + ea = BASl?(el)

where ezis the expressionwith pointer type
BASE(el - e2)= BAS12(e1)
BAS~ei, e2)= BASE(e2)
BASl?(&el) = BASEADDR(el)

BASEADDR(X) = NIL
if x is a variable

BASEADDR(e1[e2]) = BASE(el)
if BASE(el) is not NIL

BASEADDR(e1[e2]) = BASlZ(e2)
if BASE(ez) is NIL

BASEADDR(el -> x) = BAS33(ef)

Note that BASE is not defined for generating
expressions. Generating expressions as subexpressions need
not otherwise be considered, since they are assumed to fall
into the first assignment case. BASE is also not defined for
expressions with [] or -> as the outermost operator, since
they always occur inside &, and hence only BASEADDR is
relevant.

BASEADDR is again not defined for generating
expressions,since they are not l-values, and thus their address
may not be taken. (Pointer dereferencesare l-values, but have
been transformed so they do not occur inside an ‘&’ operator.)
Similarly BASEADDR is not defined for other expressions
that are not l-values, such as expressions with & as the
outermost operator.

Our algorithm is now simple to state: replace every
pointer-valued expression e that occurs asthe right side of an
assignment or as the argument of a dereferencing operation,
or as a fimction argument or resul~ by the expression
K13ET_LIV13(e, BASE(e)). C increment and decrement
operators are treated asassignments.

Correctness

This argument is of necessity informal, since a formal
argument would need to be based on formal semantics of
both C and at least some aspects of the target machine
language. But we claim that it’s sufficiently precise that given
both of theseit would not be hard to formalize.

Define an object to be sourc~reachable if a pointer to the
object can beproduced by a sequenceof pointer dereferences,
and (legal ANSI C) pointer addition operations starting from
a program variable. We claim that there is no way to aczessa
previously allocated object in a strictly conforming ANSI C
program meeting our restrictions if it is not source-reachable.

We define an object to be GC-mxzchubfeif it can be
reached by following a chain of addressesstarting with one
stored in a GC-root, and such that every subsequentaddressis
stored in the heap object referenced by the preceding one.

Observe that any pointer value which according to the
source semanticsshould be stored in a program variable or in
the heap is explicitly stored either in the GC-roots or in the
corresponding heap object until its final access. This follows
from the fact that all pointer values are generated by
KEEP.LIVE expressions.

Assume that at some point before the final aczessto
object P, it becomesGC-unreachable. Consider the path to P
along which the last accesstakes place. Consider the first
object Q in this path to become GC-unreachable. Since the
last accessto Q has not yet taken place, according to the
preceding observation, a pointer to Q must be source-
reachable. Hence it must have been generated by a
KEEP_LIVE expression, and the result of this KEEF.LIVE
expression will be subsequently referenced. Hence it should
be explicitly stored in a GC-root or in the preceding heap
object along the chain. Thus we obtain a contradiction.

Hence objects remain GC-accessible until the final
access. Since all accessesin the object code correspond to
accessesin the source, it follows that the object code cannot
accesscollected objects.

Optimization

The above algorithm
respects:

is somewhat deficient in several

1. It inserts many unnecessaryKEEP_LIVE calls. There is
clearly no reasonto replacethe assignment p = q by p =
KEEP_LIVE(q, q).

This is primarily a problem of compilation speedand
compactnessof the intermediate representation. Itcan be
easily avoided by keeping track of whether or not an
expressionresult is statically known to be simply a copy of a
value Iogimlly stored elsewhere. If it is, then condition (2)
from the definition of KEEP_LIVE guaranteesthat there is
no need to add the KEEP_LIVE.

2. Certain C expressionsare difficult to transform at source
level. In general, apointer expression e++ should be
transformed to (tmp 1 = &(e), tmp2 = “tmpl,

93

*tmpl = tmp2 + 1, tmp2) before inserting
KEEP.LIVE calls. But this should be optimized to (tmp ❑

(e), (e) = tmp + 1, tmp) if eis asimplevariable that
might be register allocated, to avoid forcing eto memory.
This problem is very likely to disappear if the
transformation is made on intermediate code.

3. The choice of basepointer variables may significantly
impact the optimization that can still be performed by the
compiler, Consider the canonical string copying loop in C:

P
= S;q=t;

while (*p++ = *q++);

After the above optimization, we would transform the loop
to:

while(*(tmpa = p,
p = KEEP_ LIVE(tmpa+l,

tmpa) ,

tmpa)

= *(tmpb = q,
q = KEEP_LIVE(tmpb +1,

tmpb),
tmpb)):

This is correct, and really specifiesthe sameoperations as
the original, though lessconcisely. But it forces the values of
p and q to explicitly appear in a register. This prevents the
C optimizer from translating the pointer arithmetic back to
indexed loads basedons and t, which is profitable on some
machines that allow a free addition in the load instruction
(eg. SPARC).

A good heuristic appearsto be to replace basepointem in
KEEP_LIVE expressionsby equivalent, but lessrapidly
varying basepointem, especially if those are likely to be live
in any case. With a small amount of analysiswe can
generatethe following lessconstraining code instead:

while(*(tmpa = p,

P = KEEP_ LIVE(tmpa+l,
s),

tmpa)
❑ *(tmpb = q,

q = KEEP_LIVE(tmpb +1,
t),

tmpb));

4. So far, all transformations are safein a multi-threaded
environment, with an asynchronously triggered collector. If
we know that garbagecollections can be triggered only at
procedure calls, the number of KEEP_L IVE invocations
could often be reduced dramatically.

Debugging Applications

The above annotation scheme inserts a KEEP_LIVE call
around every pointer arithmetic expression. In order to check
that a pointer never leaves the object to which it points, it
suffices to ensure that the expression (the fhst argument to
KEEI_LIVE) always points to the same object as the base
pointer (the second argument to KEEF_LIVE). (If we use a
single KEEP.LIVE call around more than one arithmetic
operation, the intermediate results may not be valid. But the
equivalent program with KE~_LIVE calls will still be safe in
the presenceof a collector.)

Thus we can convert our GC-safety preprocessor to a
pointer arithmetic checker by simply replacing the
KEEp_LIVE call with a function call that does the
appropriate checking. For example, assuming p is a character
pointer, the expression p + 1 will be transformed by the
debugging mode preprocessor to

(char (*)) GC+same+obj ((void *)((p+l)),
(void *)(p)))

Here GC_same_obj is a real fimction which takes the
place of KEEP_LIVE. It checksthat both arguments point to
the sameobject and the returns the first argument, Since the
definition of this function is not available to the compiler, The
call to GC+Same+ob j will simultaneously have the intended
effect of the KEEF.LIVE call.

Our pointer arithmetic checking is not dependent on the
exact type of a pointer. If we cast a “s t ru ct A ● “ to
“struct B *”, accessesto fields of the resulting pointer
will be checked to verify that they are within the allocated
object. (As mentioned above, the only possible exception at
this stageis an accessto an entire substructure of B that is only
partially within the allocated object. That would need
additional checking code,)

An Implementation

We have built a GC-safe compiler for ANSI C (plus
some GNU extensions) by writing a C-to-C preprocessor that
annotates the input program as described in the previous
sections. The output for GC-safety is initially specific to gee,
i.e. the resulting code is safe only when compiled by gee. Gcc
dependencies are highly localized, so it should be possible to
accommodate other compilem in the future. It should be
possible to make the output in source-code-checking mode
usable with any ANSI C compiler.

The preprocessor could conceivably be used directly with
a C+ + implementation that first translatesto C. Or a similar
strategy could be applied at the intermediate code level inside
a C+ + compiler.

We implement the “KE EP_L IVE” primitive by taking
advantage of gee’s flexible syntax for inline assembly code,
Assembly code can reference the value of a C expression,
which may be reque@ed to be available in a register or
memory location. Thus KEEP_LIVE generates an empty

94

assembly code sequence, depending on both arguments,, It
requeststhat the first argument be assignedthe samelocation
asthe result. Seebelow for details.

Only optirnizations (1) and (2) from above are
implemented. However we do expand certain C constructs,
particularly increment and decrement operations, in more
specialized ways than suggestedabove. For example, if p is a
character pointer, then in debugging mode the expression
++p is expanded to

((char (*))
GC+pre+incr(&(p) ,

sizeof(char) *(+(l))))

Here GC_pre_i n c r is a function performing the
equivalent of a pre-increment operation which also checks
that the result pointa to the original object.

It is highly desirable to run this preprocessorbetween the
normal C preprocessor (macro-expander) and the C compiler.
In this way arbitrary macros are handled correctly and the
preprocessoris not normally visible during debugging. Hence
KEEP_L IVE is not generated as a macro call; instead its
expansion is generated directly.

Our preprocessor maintains a copy of the input file
(including the source line information generated by the C
preprocessor). It parsesand partially type-checks the source.
In the process it generates a list of insertions and deletions,
sorted by character position in the original source string.
After paining is complete, the insertions and deletions are
applied to the original source. The yacc/bhon grammar and
scannerwere derived from their gcc equivalents.

We do not actually transform dereference operators as
described above. Instead we defer generating KEEP_LIVEs
until enough of the context has been seen to determine the
correct transformation. This again introduces complexity
which is solely the result of the source level implementation,
and wouldn’t be necessaryif the transformation were done at
a lower level.

We have not attempted to tune the performance of the
preprocessor to reduce compile time. But for our purposes
that hasn’t been a significant issue. (In fact we have yet to
compile the preprocessor with optimization enabled or
assertion checking disabled.) It should be much faster than
the rest of the compilation process,and certainly is no slower.

Performance

We meaaured a small collection of small-to-medium-
sized C programs, mostly drawn from the Zorn benchmark
suite[DetlefkDosserZorn93]. All of these programs are very
pointer and allocation intensive.

Standard C libraries were not preprcxxssed. This is
probably not unrealistic since the critical pieces are likely to
be either hand assemblycoded, or manually checked for GC-
safety or, fhiling that thoroughly tested for GC-safety of the
normalJy optimized version.

The programs measured were:

cordtest: 5 Iterations of the test normally distributed with our
“cord” string package. This wasrun with our garbage
collector. The string packageand the test program were
processed. No part of the garbagecollector itself was. We
uncovered and fixed one benign pointer arithmetic bug in
the measurement process. (2100 lines, excluding the
collector)

cfrac: A factoring program. The smallestmember (6000 lines)
of Ben Zorn’s benchmark collection. It wasrun with the
secondlargeatinput supplied by Zorn, and linked with the
default malloc/ffee implementation. Hence pointer
arithmetic checking wasnot operational. (The numbers for
unoptimized program execution are not included, sincethe
program makes useof explicit function inlining in a way that
doesnot appear to be immediately compatible with
unoptimized compilation by gcc 2.5.8.)

gawk: Version 2.11 of the GNU awk interpreter. This is the
secondsmallestmember of the Zorn benchmark suite (8500
lines). It waslinked with the default malloc/free
implementation and run with the secondlargest input
supplied by Zorn. (we also ran this linked againstour
garbagecollector in an attempt to get a another data point
for the cost of pointer arithmetic checking. It ran correctly
without checking. With checking enabled, it immediately
and correctly detected a pointer arithmetic error which was
alsoan array accesserror. After fixing that and uncovering
two more abusesof pointer arithmetic we gaveup. Some of
theseproblems would have been avoided with a more recent
version of gawk. It did however serveto test the pointer
arithmetic checking code.)

gs: Ghostacript, asdistributed with the Zorn benchmark suite
(29500lines). This waslinked to useour garbagecollector.
(In the SPARCstation 2 teats,only the version with pointer
arithmetic checking usedthe garbagecollector.) The
GhostScript custom allocator wasdisabled. It wasrun with
the secondlargest supplied input file. No pointer arithmetic
errors were found. This is probably due to a combination of
an unusually clean coding style and the fact that most heap
objects have prepended standard headers, Thus a pointer to
one before the body of the object would not be discovered.
It also could not confhse the garbagecollector.

All programs were compiled with gcc 2.5.8 and timed on
a Weitek-processor SPARCstation 2 running SunOS 4.1.4, a
SPARCStation 10 running Solaris 2.5, and a Pentium 90
running Linux 1.81. (The SPARCStation 2 tests were run
with a slightly older version of the preprocessor,but should be
comparable.) We give slowdown percentagesrelative to the
unpreproceased optimized version for the same code
preprocessed for GC-safety, the fully debuggable (and hence
probably guaranteed safe) code, and debuggable code
preprocessedto insert pointer arithmetic checks:

SPARCstation 2:
-O, sqfe -g -g, checked

cordtest 9% 54% 514%
cfrac 17% @eds modifications due to inlininp

gawk 8% 25% <fsw

gs 0% 33’% 205%

95

SPARC10:
-02,wfe

cordtest 9%
cfrac 8’%
gawk 896
gs 5%

Pentium 90:

-02,wfe
cordtest 12%
cfrac 11%
gawk 9%
gs 6%

-g -g, checked
56% 529’%

48% -
37% 366%

-g -g, checked
28% 510%

41% -
17% 279%

Early attempts at measurement suggest that all such
timing results are somewhat suspect due to cache effects. At
one point while measuring a dynamically linked executable
on a SPARCStation 10, we saw a consistent factor of 2
difference beween two copies of the same executable. We
subsequently attempted to minimize such effects. For
example, the SPARCStation 10 and Pentium 90 numbers
refer to an average of several runs of several copies of the
executable, with the highest running time discarded. We
avoided dynamic libraries on the SPARCStation 10, which
seemed to add significant variation. The resulting average
execution times appear to be reproducible to within 1 or 2%,
though individual execution times still occasionally varied by
more than 10%. The measurements remained more or less
constant through the last several rounds of bug fixes to the
preprocessor.

To obtain a more robust, though perhaps less relevant
measure, we also measured SPARC object code expansions
with and without preprocessing. These numbers include only
the code that was actually processed, not the standard
libraries:

-02, safe -g checked
co~test 9% ;g% 130%
cfrac 6%
gawk 15% 68% -
gs 19% 73% 160%

Note that the first two columns could be expected to be
somewhat indicative of execution times outside of libraries.
The last column, on the other hand, grossly understates
dynamic instruction counts, since additional procedure calls
are introduced.

Analysis

To understand the reasonsfor the performance cost, it is
instructive to look at a very simple C function:

char f(char *x)

{
return (x[l]) ;

}
The body is translated by our preprocessor to the

following code, which is not normally intended for human
consumption:

return ((*({ typeof(char) * _result; ;

asm(” “: “=r” (_result) :
“O” (&(x[l])),
“rfmi” (x));

_result; })));

This uses a gcc specific extension to introduce an
expression local variable _result, and then inserts an
empty assembly instruction with the constraint that the
address &(x [1]) must occupy the same location as the
output operand _res u1t. The assembly instruction has an
unused second argument x, which may be stored anywhere.
Finally _res u1t is dereferenced.

The SPARC code generated by gcc -02 for the return
expression is:

add %oO,l, %g2
! empty assembly instruction here
ldsb [%g2], %o0

In contrast, the normal optimized mde is simply

ldsb [%00+1] ,%00

Note that both versions are perfectly safe in the presence
of a garbage collector. The problem is that the empty
assembly instruction introduced an explicit program point at
which the pointer addition must have been completed, but the
load instruction cannot have been completed, since the
compiler views it as depending on the result of the assembly
instruction. Hence there is no way to take advantage of the
index arithmetic in the load instruction. Similar problems
occur with pure pointer arithmetic. Together these account
for a majority of the overhead.

This observation is consistent with the measurements
from the preceding section. If the overhead were primarily
due to additional register pressure and hence register spills,
one would have expected much more substantial performance
degradation on the Intel Pentium machine, which has
substantially fewer registersthan the SPARC-basedmachines.

Thus it is safe to assume that most of the slowdown is
caused by our somewhat naive implementation, and is not an
inherent cat of garbage-collector-safety. The next section
explores the possibility of eliminating much of this spurious
overhead, and thus getting better bounds on the unavoidable
overhead.

96

A Postprocessor

The above suggeststhat much of the decreasein object
code performance could be eliminated with some peephole
optirnizations. To test this hypothesis, we built a simple
peephole optimizer that operatea on the SPARC assembly
code level. (The code was derived fmm a simple SPARC 1./2
instruction scheduler [Boehrn94].) It first performs a simple
global, intraprocedural analysis that allows us to identify
possible usesof register values. It subsequently looks for one
of the following three patterns inside each basic block and
transforms thin” appropriately:
1)

add x,y, z ==>
,,,
Id [z], ,,,

2)
mov x,2 ==>
. . .

z.

3)
add x,y, z ==>
,,.
mov Z,W

. . .
ld [x+y]

. . .
x.

. . .
add x,y, w

Not all of the safety constraints are listed here. An
important one is that the register z should have no other uses.
For this purpose, we arranged for the KEEP.LIVE expansion
to introduce a use of the second argument right after the
evaluation of the tl’st argument. (It generated a special
comment understood by the peephole optimizer.) The
arguments that thesepreserve GC safety areas follows:
1) If the other safety constraints for this transformation are

obeyed, then x and y remain where they were originally
live. The transformation could not apply if z were originally
mentioned asthe secondargument of a KEEP-LIVE. All
other values remain live in the samerangesasbefore.
Hence we cannot invalidate KEEP.LIVE semantics.

2) The samevaluesremain live at all program points,
assumingthe already necessarysafety constraint that x is not
overridden.

3) The sameargument as(l).
We do not reassign registers or reschedule the resulting

code.
On a SPARC 10, the execution time and code size

degra&tions from the filly optimized normally compiled
code were reduced to:

running time code size
cordtest 4% 3%
cfrac 2% 3%
gawk 1% 7%
gs 2% 7%

Based on manual inspection of the remaining code, it
appearsthat this is still significantly worse than what could be

done with a more precise analysis. It appeared that many of
the remaining source of overhead were still basically of the
above form, but had been transformed suffkiently by the
optimizer that they were not as easily recognizable, often
becausethat would have required more global analysis.

Extensions

It is possible to extend this approach to a collector which
considem interior pointers as valid only if they originate from
the stack or registers (another possible operating mode of our
collector). This requires asserting that the client program
stores only pointers to the baseof an object in the heap or in
statically allocated variables. It would again be possible to
insert dynamic checks to verifi this. This avoids some
complications with allocating large objects as discussed in
[Boehm93]. However it interacts suboptimally with C++
compilers that use interior pointers as part of their multiple
inheritance implementation.

Acknowledgements

Some of this grew out of prior work with David Chase
and extensivediscussionwith John Ellis.

Rhonda Reesemade an earlier version of gcc GC-safe,
basedon a much earlier approach. That effort convinced me
that a source-level approach was intereating, at least in the
short-term.

Extensive news group discussions,primarily with Henry
Baker, helped to persuade me to pursue this issue more
aggressively.

The reviewers provided many usefid comments. Much
of this would not have been pmsible without the availability
of the GNU C compiler.

References

[ANS189] Stan&rdX3.lS9-1989, American National
Stanaivdfor Information Systems-Programming

Lunguage -C, American National Standards Institute,
Inc.

[AtkinsonEtA189] Atkinson, Russ,Alan Demers, Carl Hauser,
Christian Jacobi, Peter Kessler, and Mark Weiser,
“Experiences Creating a Portable Cedar”, Proceedings
of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation, SIGPLAN
Notices 24,7 (July 1989),pp. 322-329.

[AustinBreachSohi94] Austin, Todd M., Scott IZ Breach, and
Gurindar S. Sohi, “Efficient Detection of all Pointer
and Array AccessErrors”, Proceedings of the ACM
SIGPLAN 94 Cot#erence on Programming Language
Design and Implementation, SIGPLAN Notices 29,6
(June 1994),pp. 290-301,

[Bartlett88] Bartlett Joel F. “Compacting garbagecollection
with ambiguous roots”,
Lisp Pointers 1,6 (April-June 1988),pp. 3-12.

[Bartlett89] Bartlett Joel F., Scheme --> C a Portable Scherne-

97

to-C Compiler, WRL ResearchReport 89/1, Digital
Equipment Corporation Western ResearchLaboratory,
January 1989.

[Boehm93] Boehm, Hans-J., “Space Efficient Conservative
Garbage Collection”, Proceedings of the ACM
SIGPLAN ’93 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 28,6
(June 1993),pp. 197-206.

[Boehm94] The SPARC scheduler is available from
parcftp.xerox.com: pub/gc/sched.tar.Z. It also operates
in a GC-safe mode, along the lines of ~oebmChase92].

[Boehm95] An overview of our conservative garbagecollector
along with the sourcecode can be accessedfrom
ftp://parcftp.xerox.com/pub/gc/gc.html.

[BoehmChase92] Boehm, Hans-J., and David Chase,A
Proposal for GC-Safe C Compilation, The Journal of C
Language Twrw!ation 4,2 (December, 1992),pp.
126-141. Also available (with the publishers
permission) from
parcftp.xerox.com:pub/gc/boecha.ps.Z.

[BoehmDemersShenker91] Boehm, H., A. Demers, and S.
Shenker,’’Mostly Parallel Garbage Collection”,
Proceedings of the ACM SIGPLAN 91 Conference on
Programming Language Design and Implementation
SIGPLANNotices 26,6 (June 1991),pp. 157-164.

[BoehmWeiser88] Boehm, Hans-J. and Mark Weiser,
“Garbage collection in an uncooperative
environment”, Softwwe Practice& Experience 18,9
(Sept. 1988), pp. 807-820.

[DiwanMossHudson92] Diwan, Amer, Eliot Moss, Richard
Hudson, “Compiler Support for Garbage Collection in
a Statically Typed Language”, ACM SIGPLAN ’92
Conference on Programming Language Design and
Implementation, SIGPLAN Notices 27,7 (July 1992),
pp. 273-282.

[DetlefsDosserZorn93] Detlefk, David, Al Dosser, and
Benjamin Zorn, “Memory Allocation Costs in Large C
and C+ + Programs”, University of Colorado, Boulder
Technical Report CU-CS-665-93. Available for ftp
from ca.colorado.edu:pub/techreportalzorn/CU-
CS-665-93.PS.Z.

[Edelson91] Edelson, Daniel, “A Mark-and-Sweep Collector
for C+ +”, Conference Record of the Nineteenth
Annual ACM SIGPLAN-SIGACTSymposium on
Principles of Programming Languages, Albuquerque,
New Mexico, January 1992,pp. 51-58.

[EllisDetlef$93] Ellis, John R., and David L, Detlef$, “Safe
Efficient Garbage Collection for C+ +”, Xerox PARC
Technical Report CSL-93-4, September 1993. Also
available from parcftp.xerox.com: pub/ellis/gc/gc.ps.

[Fradet94] Fradet, Pascal,“Collecting More Garbage”,
Proceedings of the 1994 ACM Conference on Lisp and
Functional Programming, pp. 24-33.

[Goldberg91] Goldberg, Benjamin, “Tag-Free Garbage
Collection for Strongly Typed Programming
Languages”, ACM SIGPLAN ’91 Conference on
Programming Lunguage Design and Implementation,

SIGPLANNotices 26,6 (June 1991),pp. 165-176.
[HastingsJoyce92]Hastings, Reed, and Bob Joyce, “Fast

Detection of Memory Leaks and AccessErrors”,
Proceedings of the Winter 92 USENIXconference, pp.
125-136.

[JonesKelly95] Jones,Richard, and Paul Kelly, “Bounds
Checking for C, http://www-
ala.doc.ic.ac.uk/-phjk/BoundsChecking.html.

[Omohundro91] Omohundro, Stephen M., The Sather
Language, ICSI, Berkeley, 1991.

[OTooleNeties94] OToole, James,and Scott Nettles,
“Concurrent Replicating Garbage Collection”,
Proceedings of the 1994 ACM Conference on Lisp and
Functional Programming, pp. 34-42.

[RoseMuller92] Rose,John R., and Hans Muller, “Inte~ating
the Schemeand C languages”, Proceedings of the 1992
ACM Conference on Lisp and Functional Programming,
pp. 247-259.

[Rovner85] Rovner, Paul, “On Adding Garbage Collection
and Runtime Types to a Strongly-Typed
Statically Checked, Concurrent Language”, Technical
Report CSL-84-7, Xerox Palo Alto ResearchCenter,
prdo Alto, CA, July 1985,

[SchelterBallantyne88] Schelter, W. F., and M. Ballantine,
“Kyoto Common Lisp”, AZ Expert $3 (1988), pp.
75-77.

98

