
ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 94

Book R e v i e w s

R e l i a b l e O b j e c t - O r i e n t e d S o f t w a r e - A p p l y -

i n g A n a l y s i s a n d D e s i g n

Ed Seidewitz and Mike Stark

Reliable Object=Oriented Software - Applying Analysis and
Design, is written by Ed Seidewitz and Mike Stark, published
by SIGS Books 1995, ISBN 1-884842-18-6, 368 pages, plus
appendices and index, $45.

When I picked this book up, I feared that I might only have
YABOO - Yet Another Book on Object-Orientation. But
reading the book rewarded me with some interesting new
thoughts on fairly familiar subjects. And it further reinforces
some old thoughts on analysis, design, and the quest for uni-
versal answers.

Readers already familiar with OO will find nothing especially
radical in the authors ' introductory concepts and definitions.
Readers not familiar with OO will find useful, plain language
definitions not claiming to break new ground through the use
of esoteric jargon.

(Let me get a mild complaint out of the way early. Although
the title explicitly mentions 'analysis' and 'design', the au-
thors do not demonstrate rigor or consistency in their use of
the terms 'analyst ' , 'designer', and 'developer ' . Sometimes it
seems that 'developer' includes the other two, while at other
times the authors draw clear distinctions between the three
terms.)

The authors note that software builders operate in a less-than-
perfect world, where some sense of discipline about roles can
help alleviate some potential problems:

"In reality analysis and synthesis occur contin-
ually and in parallel during software develop-
ment and maintenance. However, a software-
engineering approach must impose some discipline
on these activities, organizing analysts and devel-
opers so that the analytic results properly feed
synthetic development." (p 4)

Even though analysis and design typically occur with some
overlap, we still must at tend to their differences. I especially
appreciated the authors ' comments contrasting the intents of
analysis and design. In reviewing the (much maligned) wa-
terfall method and comparing it with spiral or incremental
methods for developing software, they conclude that we can-
not discover the one right way to do things for all times and
all purposes:

"Such a separation of analysis and design has the
important advantage of clearly delineating what
are analysis issues (understanding the functional
decomposition of the problem) from what are de-
sign issues (creating control structures and mod-
ules). On the other hand, this separation requires

a discontinuous transition from analysis to design
that can prove to be a serious source of errors...

The resulting blurring of analysis and design has
the important advantage of supporting (even en-
couraging) a more incremental approach to devel-
opment and promoting the continued considera-
tion of problem-domain issues in design and imple-
mentation. There is, however the complementary
danger of making design decisions during analy-
sis." (p 105-106)

In addition, we see different levels of analysis and design. The
authors suggest that an organization would serve itself well by
having two clearly different focuses contributing to the over-
an creation of the whole suite of software systems, especially
with regard to hoped-for reuse. They suggest dual tracks: a
Domain Engineering Life Cycle which operates over an en-
tire problem domain (perhaps a business area), managed in
coordination with a System Development Life Cycle which
operates per software system:

"Domain analysis focuses on developing a general
understanding of the problem domain and cast-
ing that understanding in object-oriented terms.
System analysis, on the other hand, focuses on
providing a complete specification of the system
to be developed." (p 94)

This thinking can help an organization appropriately differen-
tiate between the system and the project. Thus, the domain
half of the organization can focus on the management of soft-
ware systems as corporate assets, while the development half
of the organization can focus on the projects which initially
create those assets.

They further underscore this division by noting that each half
of the organization will likely have its own value structure, and
those value structures will likely clash:

"Truly high levels of reuse must be based on a
firm architectural foundation of trusted assets .
. .. Unfortunately, experience has shown that a
system architecture that may be just fine in the
context of maintenance of a single system does not
necessarily provide a good foundation for reuse
beyond the initial system. Instead, it is necessary
to design an architecture with reuse as a specific
objective." (p 19)

The authors note that different sized software development
efforts pose different problems. They suggest that the use
of OO analysis and design techniques can help bring the soft-
ware builders closer to the audiences for their work, especially
through the use of the language of the problem domain. They
point out that the idea of objects seems to hold more natural
appeal to the non-technical staff:

"On a large system-development effort, it is cru-
cial to capture a common understanding of the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232069.565768&domain=pdf&date_stamp=1996-07-01

ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 95

system requirements between the developers and
the ultimate customers of the system and to cap-
ture the inevitable changes in this understanding."
(p 81)

Meanwhile, the builders may have to somehow unlearn the
habits of separating data from processes, and learn instead
to integrate these two into encapsulated objects. But the
builders cannot abandon their ultimate need to exercise ex-
treme precision in their language when required:

"To guard against unintended ambiguity and in-
accuracy, however, it is often very useful to think
in terms of more formal concepts such as precon-
ditions and postconditions, even when using a less
formal style of specification. (p 165)"

The authors ' pracatice of stopping short of lengthy discussions
of coding considerations appealed to me. We have here no
examples of how we might implement this object in C + +
or Smalltalk. The book uses a pseudo-object language for
the examples throughout the book section, even in the more
comprehensive examples in the third section. I interpret this
as a clever a t tempt to stay in the modes / roles of analysis
and design without plunging into code examples. It further
underscores the notion that you can do (or at least participate
in) OO analysis and design without being fluent in an OO
programming language.

I would, however, like to have seen more attention given to
the idea of business domain analysis for the sake of business
domain analysis. This book, like most, seems to assume that
we can only undertake analysis when we have to confront a
problem - hence 'problem domMn' analysis. The idea that
simply having these business models (not constructed subject
to the ' tyranny of the project ') adds value in itself seems gen-
erally lost. Think of the quickness and ease with which we
could respond to problems as they arise if we had the busi-
ness domain modeled already, in anticipation of problems!
But perhaps we only have time for such proactive efforts in
some alternate universe.

Reviewed by Michael Ayers, 3M/IT Education Svcs, 3M Cen-
ter 224-2NE-02, PO Box 33224, St Paul MN 55133-3224 - -
mbayers@mmm.com

B r i n g i n g D e s i g n t o S o f t w a r e

Terry Winograd, ed.

Bringing Design to Software is written by Terry Winograd,
ed., and published by Addison-Wesley / ACM Press 1996
ISBN 0-201-85491-0, 320 pages, $29.00.

This new book edited by Terry Winograd includes fourteen
chapters reflecting the thinking of fourteen different author-
ities on one common theme: the practice of software design.
The contributors include the likes of Mitchell Kapor, Donald
Norman, Peter Denning, and John Seely Brown.

In this thoughtfully compiled suite of pieces, they approach
that one theme from a variety of directions. We have pieces
on the art and science of software design; on the activities it
entails; on good habits for designers; on desirable approaches
to design; on cultures supportive of design; on comparing soft-
ware design to other fields of endeavor. As a result we get a
refreshing set of reminders that the world of software design
has many facets, and we can choose to focus on any one of
them. But if we strive to understand the world of software
design better, we need to at tend to all of them.

Kapor in 'A Software Design Manifesto' (written several years
ago and reprinted here) talks of the need to elevate software
design to a genuine discipline with its own special focus: "And
the most important social evolution within the computing
professions would be to create a role for the software designer
as a champion of the user experience."

Another chapter offer opinions on the point of concentration
for that discipline. Suggests David Liddle: "The most im-
portant component to design properly is the . user's
conceptual model, Everything else should be subordinated to
making that model clear, obvious, and substantial."

Still another chapter focuses not so much on the product
of design as on the activities in the process of its creation.
Gilliam Crampton Smith and Phillip Tabor point out that
the proficient designer must demonstrate clear competence in
the following activities (which they emphasize do not consti-
tute absolutely sequential steps) - understanding, abstract-
ing, structuring, representing, and detailing.

Other chapters offer suggestions on mindsets which a success-
ful designer must adopt. Paul Saffo pointedly reminds us,
with a wonderful phrase, "We do not use [software] tools sim-
ply because they are friendly. We use tools to accomplish
tasks, and we abandon tools when the effort required to make
the tool deliver exceeds our threshold of indignation - the
maximal behavioral compromise that we are willing to make
to get a task done."

More than one contributor brings up the ubiquitous question
of quality. Peter Denning and Pamela Dargan write that soft-
ware designers must focus on the use of the software within an
action-centered context: "The [traditional engineering] pro-
cess cannot offer a grounded assessment of quality, because
many of the factors influencing quality are not observable in
the software itself." Meanwhile, Michael Schrage notes that
"The questions that organizations choose not to ask are just
as important as the ones that they do ask. This point is par-
ticularly relevant in software development..." He maintains
that the culture of an organization contributes to the quality
of its products. And a successful software development orga-
nization must have a culture of prototyping, of genuine trial
and error, in order the get the right questions on the table.

In a piece on thinking about what we do, Donald Schon writes
about the philosophy of design. "Sometimes, we think about
what we are doing in the midst of performing an act. When
performance leads to surprise - pleasant or unpleasant - the

