
ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 95

system requirements between the developers and
the ultimate customers of the system and to cap-
ture the inevitable changes in this understanding."
(p 81)

Meanwhile, the builders may have to somehow unlearn the
habits of separating data from processes, and learn instead
to integrate these two into encapsulated objects. But the
builders cannot abandon their ultimate need to exercise ex-
treme precision in their language when required:

"To guard against unintended ambiguity and in-
accuracy, however, it is often very useful to think
in terms of more formal concepts such as precon-
ditions and postconditions, even when using a less
formal style of specification. (p 165)"

The authors ' pracatice of stopping short of lengthy discussions
of coding considerations appealed to me. We have here no
examples of how we might implement this object in C + +
or Smalltalk. The book uses a pseudo-object language for
the examples throughout the book section, even in the more
comprehensive examples in the third section. I interpret this
as a clever a t tempt to stay in the modes / roles of analysis
and design without plunging into code examples. It further
underscores the notion that you can do (or at least participate
in) OO analysis and design without being fluent in an OO
programming language.

I would, however, like to have seen more attention given to
the idea of business domain analysis for the sake of business
domain analysis. This book, like most, seems to assume that
we can only undertake analysis when we have to confront a
problem - hence 'problem domMn' analysis. The idea that
simply having these business models (not constructed subject
to the ' tyranny of the project ') adds value in itself seems gen-
erally lost. Think of the quickness and ease with which we
could respond to problems as they arise if we had the busi-
ness domain modeled already, in anticipation of problems!
But perhaps we only have time for such proactive efforts in
some alternate universe.

Reviewed by Michael Ayers, 3M/IT Education Svcs, 3M Cen-
ter 224-2NE-02, PO Box 33224, St Paul MN 55133-3224 - -
mbayers@mmm.com

B r i n g i n g D e s i g n t o S o f t w a r e

Terry Winograd, ed.

Bringing Design to Software is written by Terry Winograd,
ed., and published by Addison-Wesley / ACM Press 1996
ISBN 0-201-85491-0, 320 pages, $29.00.

This new book edited by Terry Winograd includes fourteen
chapters reflecting the thinking of fourteen different author-
ities on one common theme: the practice of software design.
The contributors include the likes of Mitchell Kapor, Donald
Norman, Peter Denning, and John Seely Brown.

In this thoughtfully compiled suite of pieces, they approach
that one theme from a variety of directions. We have pieces
on the art and science of software design; on the activities it
entails; on good habits for designers; on desirable approaches
to design; on cultures supportive of design; on comparing soft-
ware design to other fields of endeavor. As a result we get a
refreshing set of reminders that the world of software design
has many facets, and we can choose to focus on any one of
them. But if we strive to understand the world of software
design better, we need to at tend to all of them.

Kapor in 'A Software Design Manifesto' (written several years
ago and reprinted here) talks of the need to elevate software
design to a genuine discipline with its own special focus: "And
the most important social evolution within the computing
professions would be to create a role for the software designer
as a champion of the user experience."

Another chapter offer opinions on the point of concentration
for that discipline. Suggests David Liddle: "The most im-
portant component to design properly is the . user's
conceptual model, Everything else should be subordinated to
making that model clear, obvious, and substantial."

Still another chapter focuses not so much on the product
of design as on the activities in the process of its creation.
Gilliam Crampton Smith and Phillip Tabor point out that
the proficient designer must demonstrate clear competence in
the following activities (which they emphasize do not consti-
tute absolutely sequential steps) - understanding, abstract-
ing, structuring, representing, and detailing.

Other chapters offer suggestions on mindsets which a success-
ful designer must adopt. Paul Saffo pointedly reminds us,
with a wonderful phrase, "We do not use [software] tools sim-
ply because they are friendly. We use tools to accomplish
tasks, and we abandon tools when the effort required to make
the tool deliver exceeds our threshold of indignation - the
maximal behavioral compromise that we are willing to make
to get a task done."

More than one contributor brings up the ubiquitous question
of quality. Peter Denning and Pamela Dargan write that soft-
ware designers must focus on the use of the software within an
action-centered context: "The [traditional engineering] pro-
cess cannot offer a grounded assessment of quality, because
many of the factors influencing quality are not observable in
the software itself." Meanwhile, Michael Schrage notes that
"The questions that organizations choose not to ask are just
as important as the ones that they do ask. This point is par-
ticularly relevant in software development..." He maintains
that the culture of an organization contributes to the quality
of its products. And a successful software development orga-
nization must have a culture of prototyping, of genuine trial
and error, in order the get the right questions on the table.

In a piece on thinking about what we do, Donald Schon writes
about the philosophy of design. "Sometimes, we think about
what we are doing in the midst of performing an act. When
performance leads to surprise - pleasant or unpleasant - the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232069.565769&domain=pdf&date_stamp=1996-07-01

ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 96

designer may respond by reflection in action: by thinking
about what she is doing while doing it, in such a way as to in-
fluence further doing." This reflection can lead to new insights
just because of the inevitable complexity of the environment.
Software design deals not only with the software itself but also
with the business that uses it, and the people in the business,
and the varied goals of those people, and... "A system is com-
plex in the specific sense that, whenever I make a move, I get
results that are not just the ones that I intend. That is, I
cannot make a move that has only the consequences that I
intend. Any move has side effects."

Winograd sets the tone for the book in a Preface (comment-
ing on the genesis of this compilation) and in his Introduction.
In addition, interleaved between the chapters, Winograd pro-
vides Profiles of specific products or organizations or practi-
tioners. In a feature I copme to find more and more useful,
he also includes an excellent bibliography. If you find any of
the writers especially compelling, you can easily track down
more work by that individual.

In his closing Reflections, Winograd writes "Quality is per-
haps one of the most elusive of the terms that we have in-
troduced. The assessment of quality is at once objective and
subjective, personal and political In every mature field
of design, standards of quality are a focus of attention, even
when they cannot be quantified and measured objectively."

I recently spent some months working with a group of people
in my organization exploring issues of software design and
software quality - and the relative dearth of designers and
poor comprehension of quality. I wish this book had come
out six months earlier. Anyone interested in striving to design
and build quality software would do well to read this book.
And, further, to follow up in more detail with specific authors
in areas of special interest.

Reviewed by Michael Ayers, 3M/ IT Education Svcs, 3M Cen-
ter 224-2NE-02, PO Box 33224, St Paul MN 5 5 1 3 3 - 3 2 2 4 -
mbayers@mmm.com

S o f t w a r e D e v e l o p m e n t U s i n g E i f f e l

Richard Wiener

Software Development Using Eiffel is written by Richard
Wiener and published by Prentice Hall as part of the Object-
Oriented Series, 1995, ISBN 0-13-100686-X, 425 pages,
$35.25.

The intent of this book is to provide readers with an alterna-
tive language to C + + . It introduces Eiffel along with object
oriented analysis and design utilizing the Booch'94 method-
ology.

Chapter topics are intro to Eiffel, classes and objects, cor-
rect programs, generic container classes, inheritance, poly-
morphism, and C + + versus Eiffel. In addition to these chap-
ters, included are case studies in object oriented analysis
and design, an ecological simulation project, a heuristic game

project, and a simulated annealing project.

This book is not the standard introduction to Eiffel, as it
admits in the Preface. But it is a very good complement to
it. In my opinion, this book is a good mix of: an introduction
to OOA, the overview of the language Eiffel with a substantial
amount of sample source code, and case studies in different
areas of computer science. This book is intended for those
persons seeking an alternative to C + + or Smalltalk. It is
assumed the reader has had an introduction of object oriented
concepts.

In summary, I found this book to be very informative, easy
to read and understand, and professionally written and pre-
pared.

Reviewed by Ronald B. Finkbine, Department of Computer
Science, Southeastern Oklahoma State University, Durant,
OK 74701-- finkbine@babbage.sosu.edu

S o f t w a r e Faul t T o l e r a n c e

Michael R. Lyu (ed.)

Software Fault Tolerance is editted by by Michael R. Lyu and
published by John Wiley and Sons 1995, ISBN = 0-471-95068-
8,425 pages, paperback.

The intent of this book is to collect the most recent advances
in Software Fault Tolerance (SFT). This is a, generally, un-
known or misunderstood area of software engineering. SFT
is concerned deals with handling errors once they have oc-
curred, as opposed to traditional software engineering areas
of software fault avoidance or software fault removal.

This book consists of two major divisions: survey of tech-
niques and models in SFT, and applications and experiments
in SFT. In other words, part one is theory and two is appli-
cations. N-version programming and recovery-block concepts
are covered in both the theory and application sections. Ex-
ception handling is covered in the theory section, as well as
various modeling schemes. The application chapters, in ad-
dition, discuss SFT features in three commercial OS's, a set
of software components to detect and recover from software
faults, and software fault insertion testing.

This book is appropriate for graduate students and practicing
software professionals. This book brings together state of the
art research papers on an area of software engineering that is
not well known. Most software professionals will find at least
a portion (or maybe all) of this book to offer techniques that
are a vast improvement to their own software development
process. This book was professionally written and prepared.

Reviewed by Ronald B. Finkbine, CS Dept. Southeastern
OSU, Durant, OK 74701 - - finkbine@babbage.sosu.edu

