
ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 97

Software Systems Construction with Exam-
ples in Ada

Bo Sanden

Software Systems Construction with Examples in Ada is writ-
ten by Bo Sanden, and published by Prentice-Hall, Inc., 1994,
ISBN 0-13-030834-X, 433 pages, $ unknown by reviewer

This book certainly lives up to its title. The author deliv-
ers a text "intended for readers with practical experience in
software construction. It targets graduate or upper-level un-
dergraduate students of software engineering as well as prac-
titioners who want to familiarize themselves with modern
trends in software construction applied in a mainstream lan-
guage environment." As the author notes, the book could be
complimentedby an Ada primer and a software engineering
text. This reviewer found the text well structured, filled with
appropriate references, expanded with a number of design ex-
amples, and supported by a large amount of Ada source code
fragments (specs and bodies). Additionally, each chapter con-
cludes with a number of problem statements. I am sure with
the author 's attention to detail, an updated edition covering
Ada95's new object oriented (OO) and real-time features will
be forthcoming.

The text includes nine chapters that cover software construc-
tion in Chapters 2-7, present entity-life modeling in Chapter
8, and conclude with Chapter 9 by walking through a case
study of a flexible manufacturing system from problem state-
ment to Ada implementation.

Discussions on software construction build through the text
and cover different aspects such as control structuring, mod-
ularization, information hiding, abstract data types, finite
automata, concurrent tasks, and resource sharing. Chapter
8 presents entity-life modeling as an approach for develop-
ment of concurrent programs. The discussion builds nicely
on the earlier topics and covers the properties of concurrent
programs. Then moves on to the analysis and design meth-
ods that support the modeling approach. Two well-known
problems (the buoy and elevator examples) are provided with
their ensuing entity-life solutions. Chapter 9 provides a de-
tailed case study by applying the modeling approach to a
non-trivial flexible manufacturing system. This culminating
chapter also serves to tie all of the earlier discussion together.

I would strongly recommend this book for a curriculum that
covers software construction and the Ada language. The in-
troduction of entity-life modeling broadens the target com-
munity to the OO realm; however, the experienced OO prac-
titioner may need only to focus on the final two chapters.

Reviewed by Frank Hollenbach - -
frankhol@nadc.nadc.navy.mil.

An ISO 9000 Approach To Building Quality
Software

(~sten Oskarsson and Robert L. Glass

An ISO 9000 Approach To Building Quality Software is writ-
ten by Osten Oskarsson and Robert L. Glass and is published
by Prentice Hall P T R 1996, hardbound, ISBN 0-13-228925-3,
274 pages, $49.95.

In this self-styled "schizophrenic" analysis of the ISO 9001
and 9000-3 standards, Oskarsson and Glass take contrasting
(but not incompatible) positions on the standard's value for
engineering quality software. In Part 1, Oskarsson is primar-
ily concerned with exegesis and application of ISO 9001 - how
to interpret the production-oriented standard into the design-
oriented world of software engineering and how to apply the
standard in the creation of a certifiable quality system. In
Part 2, Glass compares the stipulations of the ISO 9000-3
standard with the tools and techniques available for software
quality assurance and repeatedly concludes that the ISO doc-
ument, qua quality "procedure" (in the terminology of audit-
ing), is deficient.

In his monograph, Oskarsson takes the conventional auditor's
view that ISO 9001 stipulates the minimal management re-
quirements for a quality system. He explains the context in
which the ISO standards were developed, introduces some of
the terminology of audits and certification, and then explains
each of the 20 ISO 9001 elements in turn. To alleviate the
tedium of the exegesis, Oskarsson uses anecdotes from his au-
diting experiences to illustrate the standard's requirements
and to identify those policies and procedures that are par-
ticularly prone to non-conformance citations. He ends with
a brief summary of the necessary components of a quality
system and the steps along the way to certification.

Much of the current ISO literature is content to parrot the
standard; Oskarsson interprets it using his TickIT exper-
tise and auditing experience, examining fine distinctions and
problematic cross- references that other works ignore. (E.g.,
what are the implications of the traceability and inspection
requirements for testing policies?) Readers interested in de-
tailed analysis of what ISO 9001 says and doesn't say would
be better served by struggling through Allan Sayle's Meeting
ISO 9000 in a TQM World, and those concerned with how to
get a certificate will find Charles Schmauch's ISO 9000 For
Software Developers and Lawrence Wilson's Eight-Step Pro-
cess to Successful ISO 9000 Implementation more useful. But
as an overview of the standard, Oskarsson's discussion is un-
paralleled - - j u s t the sort of thing one would want to hand
to one's engineering manager when s/he comes by and says
"We've been told we have to go for ISO. What 's that mean?"

Glass's Part 2 will disappoint readers who view ISO 9001 and
ISO 9000-3 as an auditing standard, a verbose checklist for as-
sessing project management capability. For one hundred and
fifty pages he seems to belabour the obvious: the standards
specify a quality management system, they don' t guarantee
quality software; they address the principles used to manage

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232069.565788&domain=pdf&date_stamp=1996-07-01

ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 98

software, they don' t address the techniques required to de-
velop quality software.

But Glass is simply taking seriously the ISO requirement that
a quality system must be "effective" (ISO 10011, 3.1 & 4.1):
the system must be practicable and it must result in a qual-
ity product. On his view, ISO 9000-3 describes the "neces-
sary, but not sufficient" components of such a quality system.
To predictably and consistently produce a quality product,
software development teams must look beyond the ISO docu-
ments to the literature on software process. And Glass intends
Part 2 to be a 'guideline for the application of defensible soft-
ware process engineering to ISO 9000-3' in the same way ISO
9000-3 is a 'guideline for the application of 9001 to a software
quality management system'.

Glass begins by explaining his classification system for de-
velopment projects using size, application domain, critical-
ity and innovation. He then presents the ISO 9000-3 stip-
ulations for several development areas (Requirements, De-
sign and Implementation, Testing and Validation, Repli-
cation/Delivery/Installation, and Maintenance), summarizes
the tools and techniques available to software engineers for
meeting those ISO requirements, and then maps those tools
and techniques to the project types. Readers familiar with his
Building Quality Software will notice (intentional) similarities
in organization and content between the monograph and the
book.

Glass warns in his Introduction that the material will be con-
troversial, and he makes no apologies for the fact that we can-
not "confirm or deny [his] taxonomy." As a rhetorical stance,
this is expedient: Glass can cite whom he likes to support
what he likes, ignore contrary evidence, wax polemic when it
suits him, and still manage to fit a field survey into the limited
space allotted him. Adherents to various schools will no doubt
find some of this section annoying, and those familiar with the
current work by Charles Engle and Michael Deck will find the
Cleanroom discussion, shall we say, 'typical'.... Still, if one
wanted to get an introduction to what tools are available to
help developers put ISO principles into practice, Part 2 of
An ISO Approach To Building Quality Software is the place
to start. To be followed we presume, based on Glass's own
statements, with a jaunt through Building Quality Software.

Introductory, Schizophrenic, and sometimes Oblique, this
book provides an excellent summary of the intentions, lim-
itations, and applications of those standards with which it
shares some characteristics.

Reviewed by Dr. Robert Bruce Kelsey, Storage Management
Software, DEC - - robert.kelsey@cxo.mts.dee.co

A Q u a n t i t a t i v e A p p r o a c h t o S o f t w a r e M a n -

a g e m e n t : T h e a m i H a n d b o o k

Kevin Pulford, Annie Kuntzmann-Combelles, Stephen
Shirlaw

A Quantitative Approach to Software Management: The ami
Handbook is written by Kevin Pulford, Annie Kuntzmann-
Combelles, Stephen Shirlaw, and is published by Addison-
Wesley 1996, softbound, ISBN 0-201-87746-5, 179 pages,
$24.69.

The Preface promises that this book will provide a "simple,
straightforward, and understandable" software metrics pro-
gram for those "who have yet to start on software measure-
ment." The program proposed is based on the experiences of
a European consortium of 9 organizations, but this is a hand-
book for newcomers to metrication and not an extended case
study.

a m i [sic] stands for "Application of Metrics In Industry" - and
appropriately the first chapter is spent trying to persuade the
reader that software metrics are indeed your friend. Chap-
ter two summarizes the Goal-Question-Metric approach a m i
uses, and chapters 3 through 6 describe step-by-step how to
implement an a m i system. The reader learns how to create
a metrics team, how to adjust a metrics program to organi-
zational goals, how to write a metrics plan, etc. Since metric
selection is organization- and goal-specific, the text itself of-
fers few examples of what data one might want to collect in
an a m i project; however, Appendix 3 provides a "Basic Set"
of metrics and Appendix 4 summarizes some sample imple-
mentations under the title "Case Studies." The book also
contains a glossary, a short annotated suggested reading list
(surprisingly short, given the literature available on metrics),
and contact information for a user group and further training
in this method.

The authors have set themselves a difficult task: how-to books
for beginners are seldom both comprehensive and practicable
and more often risk being simplistic and banal. With the
actual metrics relegated to an appendix, the authors provide
no comparative analysis of metrication programs (except for
a curt dismissal of Kitchenham and Boehm in Chapter 7).
Although the SEI Capability Maturity Model is frequently
alluded to (and Appendix 1 contains SEI's 1987 checklist),
the authors never explicitly correlate their metrics or imple-
mentation program to the requirements of the CMM. The
section on "exploiting" the data mentions causal analysis but
neither describes the techniques for root cause analysis nor
provides any examples of conclusions one might draw from
the defect typology metrics in the "Basic Set." Yet the au-
thors are careful to share with their readers such maxims of
Project Management 101 as "someone should be available for
trouble-shooting in the early days of data collection," or why
it is important to write a report summarizing the results of the
findings. If the readership needs that level of hand-holding in
project management, then one might expect the handbook to
be as careful in its presentation of metric use and interpreta-
tion.

Inexpensive compared to some of its better crafted and more
detailed peers, this book might be a good place to start if
you know little about software quality management. But it is
certainly no substitute for the works by Grady, Boehm, Gilb,

