
ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 99

Perry, Humphreys, Kan, Cohen, Wilson, Fenton, et alia.

Reviewed by Dr. Robert Bruce Kelsey, Storage Management
Software, DEC - - robert.kelsey@cxo.mts.dec.com

How To Run Successful Projects

Fergus O'Connell

How To Run Successful Projects is written by Fergus
O'Connell and is published by Prentice-Hall 1994, softbound,
ISBN 0-13-138793-6, 170 pages, $44.95.

O'Connell wants to dispel the myth that software project
management is a "black art." His Structured Project Man-
agement approach is not, however, a tedious, cumbersome,
procedure-oriented workbook for those who lack telepathy or
crystal balls. The book is a loosely connected, four part col-
lection of (to use his words) "useful and practical ideas" pre-
sented "in an entertaining and stimulating way."

Parts I and II describe the Ten Steps of Structured Project
Management. They are quick reads, and one doesn't no-
tice that it isn't until chapter nine that O'Connell addresses
software- specific planning. Structured Project Management
isn't innovative - the steps include the ubiquitous visualizing
the goal, setting the tasks, resource assignment, etc. What
makes these sections worth reading is O'Connell's sense of hu-
mor and his emphasis on planning and people rather than on
how to give good Gant t charts.

Part III begins with short summaries of techniques for inter-
viewing, time management, conflict resolution, and acceler-
ated analysis and design (a technique for brainstorming and
documenting requirements). The final section offers a detailed
project schedule using Boehm's 1981 data on the relationship
between effort and schedule. Part IV describes O'Connell's
Probability of Success Indicator and applies this rating system
to some of the projects he has cited throughout the book.

Those not fond of militaristic similes and examples may
not always find O'Connell entertaining, but those who think
"project manager" and "tactician" are synonyms will cer-
tainly find a kindred spirit in O'Connell.

Reviewed by Dr. Robert Bruce Kelsey, Storage Management
Software, DEC - - robert.kelsey@cxo.mts.dec.com

A M A P F o r S o f t w a r e A c q u i s i t i o n

Jean E. Tardy

M A P For Software Acquisition is written by Jean E. Tardy
and is published by Monter~ge Design 1991, softbound, ISBN
2-9802283-0-3, 243 pages, price not available.

"Most texts...do not have many items of value within their
pages "

So begins this self-styled "guide book" on how to acquire soft-
ware. Tardy is the president of the consulting firm Monter~ge

Design, MAP stands for Monter~ge Acquisition Process, and
the book is a consulting support tool, as the course outline
in Appendix C makes clear. But instead of describing how to
acquire software, the book is little more than a tedious tax-
onomy of acquisition activities. M A P is full of verbiage but
offers little practical advice about how to manage a project,
how to develop and track requirements, how to monitor prod-
uct development, how to perform acceptance tests, and how
to determine support requirements.

But what a taxonomy! After oversimplifying "Software Engi-
neering Basics" and "The Software Lifecycle," Tardy dissects
"acquisition:" the acquisition process (of which there are four
types, Extension Acquisition, Substitution Acquisition, Com-
ponent Acquisition, and Autonomous Acquisition) comprises
production activities and management activities; four produc-
tion activities (definition, design, development, and delivery)
each generate one of the four major deliverables (specifica-
tions, plans, program, and product) while the product itself
matures through five distinct baselines; management activi-
ties include project initiation, direction, monitoring, and the
project conclusion. Etc., etc., for another hundred or so pages.

In Tardy's view, "software quality refers loosely to an as-
sessment of software based on features which are not part of
its specific functional requirements" (21, italics mine). Tha t
statement may be disputable but it is not without use, for
one could on the same logic separate the quality of a book
from its content. For a book that omits object oriented tech-
nology from its description of software engineering, cites only
one source and only four quality factors for software, and uses
the equations for estimation from Boehm without proper cal-
ibration (221), that may be advantageous

Reviewed by Dr. Robert Bruce Kelsey, Storage Management
Software, DEC - - robert.kelsey@cxo.mts.dec.com

D e b u g g i n g t h e D e v e l o p m e n t P r o c e s s

Steve Macguire

Debugging the Development Process is written by Steve
MacGuire and published by Microsoft Press 1994, (paper-
back), ISBN 1-55615-650-2, 183 pages, $24.95.

This book was a pleasure to read. It deals mostly with system
delivery issues (of which programming is just a part) which
are important to a technical contributor. It was easy to read
and made a number of important and useful points, most of
which are easy to implement in your day to day practice as a
technical person.

The key points are summarized in larger, italic type centered
on 3 inch lines. You can't miss them. For example:

Be sure that every report you ask for is worth the
time it takes for the writer to prepare it.

Don't implement features simply because they are
technically challenging or "cool" or fun or...

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232069.565806&domain=pdf&date_stamp=1996-07-01

ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 100

How many times are these popular folk wisdom, often ne-
glected. Points like these are interspersed with war stories,
and the writer uses a easy to read style to explain these points.
Looking back, since the points are so poignant, most of the
book's value could be gained be merely looking at and remem-
bering these points. It probably would be valuable just to list
the points (in hindsight, it could be a valuable appendix to
the book). The text merely serves to give a foundation to
justify these conclusions.

I really liked the typography and layout: lots of good, en-
tertaining sidebars. It has an index and a brief bibliography
(listing a number of business and computer science books;
all the computer science books I've read and recommend if
you haven't read them). The table of contents contains an
abstract of each chapter. The book is of the same flavor
of Brook's M y t h i c a l M a n M o n t h , on a smaller scale and
somewhat updated. Definitely worthwhile to have on your
library shelf and refer to in the future.

Reviewed by Marty Leisner, Xerox Corp., Rochester, New
York - - leisner@sdsp.mc.xerox.com

M a n a g i n g Y o u r M o v e t o O b j e c t Technology:
G u i d e l i n e s a n d S t r a t e g i e s f o r a S m o o t h T r a n -

s i t i o n

Barry McGibbon

Managing Your Move to Object Technology is written by
Barry McGibbon and published by SIGS books 1995, in the
Managing Object Technology Series, ISBN 1-884842-15-2,269
pages, $35.

I have to admit: I 'm not a big proponent of object technology.
I am a big propopent of quality. Since quality is a elusive goal
which has had debatable success over the last 40 years, the
popular goal is now "Moving to Objects." I read this book
because I wanted to gain insight into what made object ori-
ented programming different than conventional programming.
I was disappointed in this book.

It talks about managing software development with the McK-
insey Seven S's (strategy, structure, systems, staff, styles,
skills and shared values). One chapter is devoted to each
"S." The analogy seemed interesting, but not unique.

The thrust of the book is taking a bland software software
management text from the 1980s, and randomly inserting the
word "object" once or twice each page and "class" every other
page. Much like many object-oriented programmers I've met
just rename their components without changing their method-
ology. I radically disagree with some of the points he makes.
For example, talking about the Software Component Factory
and reuse the author states:

The factory concept has been around for a long
time.. .It has not always been successful as the lan-
guages used tended to inhibit effective reuse...Now,
thanks to object-oriented lanagues, with their en-

capsulation and extension, the idea once more has
merit.

When did this the idea not have merit? And another good
quote:

Object-oriented development is much more than
the syntaz of the language, eJ... For ezample, you
can learn Smalltalk in roughly three days, but it
may take up ot siz months to fully comprehend
the eztensive library of classes.

Why is this any different than a convential language like C?
(of which I 'm very partisan to). The common logic taught in
schools is "a computer scientist can learn a language in two
weeks". But after practice, I 'd say a minimum of six months
practice is necessary to use it effectively, with several years to
master it.

There are pointers to other books (with an author and a date),
but no bibfiography. Which is too bad, since I like many of
the references.

I read the book primarily to learn what was different about
managing object technologies compares to structured tech-
nologies. The book did not fulfill this mission.

Reviewed by Marty Leisner, Xerox Corporation, Rochester,
New York - - leisner@sdsp.mc.xerox.eom

B e y o n d T e c h n o l o g y ' s P r o m i s e

Joseph B. Giacquinta, Jo Anne Bauer, & Jane E. Levin

Beyond Technology's Promise An Ezamination of Children's
Educational Computing at Home is written by Joseph B. Gi-
acquinta, Jo Anne Bauer, & Jane E. Levin, and published by
Cambridge University Press 1993, ISBN 0-521-40447-9 ISBN
0-521-40784-2 (paperback) 244 pages. $16.95.

The personal computer promised to change education. It
promised to help learning in the classrooms of public schools
that were increasingly under attack for failing to teach useful
skills. Moreover, it promised to help learning at home, where
parents were told that for their children to be successful, the
computer would be necessary. Educational Software promised
to become the modern tutor.

Beyond Technology's Promise is the result of a three year
study entitled "Studies of Interactive Technology in Educa-
tion". The research traced computer usage both at home and
in school among 70 families. The findings revealed a near-
absence of the promised academic computing, only a modest
amount of 'educational computing' -programming or word
processing - and almost no telecommunicating. Instead, game
playing took up most of the time these children spent on com-
puters. While not terribly surprising, the reasons children did
not use computers for academic learning are believed to be
social: first, their parents didn't encourage or aid such use;
second, schools emphasized other forms of use.

