
ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 103

pointing out that oversimplification. Suggested readings at
specific points along the way would have helped.

Reviewed by Brian O'Laughlin, 1903 W. Evergreen, Chicago,
IL 60622 - - briano@tezeat.com

F o u n d a t i o n s o f S o f t w a r e M e a s u r e m e n t

Martin Shepperd

Foundations of Software Measurement is written by Martin
Shepperd, and published by Prentice Hall 1995 (paperback),
ISBN 0-13-336199-3, 234 pages, $38.00

Software measurement is a growing interest in the software
community: There is a call for votes on Usenet for the pro-
posal to begin a new newsgroup, "comp. s o f t w a r e .m e t r i c s " .
Major journals (such as "IEEE Trans. on Software Engineer-
inff'), frequently have contributions on the topic. A newcomer
to such articles may find them quite difficult reading. Mar-
tin Shepperd's "Foundations of Software Measurement" offers
the necessary background for such readers.

The book has two parts: "Foundations," introduces the reader
to measurement and measurement theory - the basis for evalu-
ating measures. He introduces measurement types (nominal,
ordinal, interval, ratio, and absolute), and attributes (inter-
nal v. external). While only addressing introductory level
measurement theory, Shepperd manages to show its practi-
cal usefulness by applying it to the popular MeCabe Com-
plexity metric. He finds two problems. First, the attribute
"complexity" is problematic, since the meaning of complex-
ity is unclear. What 's complex to me may be simple to you,
and vice versa. The second, and lesser problem has to do
with how complexity is measured: McCabe measures decision
counts, but the measurement rules need to be very explicit:
for example, in a switch statement, it is unclear if each "case"
statement should be counted as a separate branch. Shepperd
concludes that under the facade of McCabe's Cyclomatic com-
plexity measure lies a powerful idea: control flow branching
is a worthwhile measure in its own right, and is useful in pre-
dicting test effort.

A distinction the reader gets from this examination is that
measures are different from prediction systems: Measures are
used in prediction systems, but they are validated by reference
to measurement theory. For example, "Lines of Code" is not
a "bad measure." It is a good measure of program length,
and a poor predictor of project maintenance effort or defects.

Since the 1970s, software architecture has been recognized as
having a huge effect on software quality. Design choices may
result in highly complex code, which in turn produces mainte-
nance difficulties. Shepperd discusses the influential coupling
and cohesion model. Module cohesion refers to the single-
ness of purpose of a module; module coupling is the degree
of independence of one module from another. Optimally, the
software designer should seek to maximize cohesion and min-
imize coupling. Having read the previous chapter, the reader
will be asking by now, "How can we measure the 'purpose of

a module' ?"

Shepperd discusses the various efforts to quantify software
architecture, focusing especially on information flow metrics.
These metrics, which are related to coupling, measure how
data flows between modules. Specifically, they measure data
emanating from a module and data terminating in a mod-
ule. Shepperd introduces these concepts and guides the reader
through an in-depth example of a simple reactor controller.
The metric points to a module that has a relatively huge num-
ber of information flows. He fixes the problem by delegating
some of its responsibilities to new modules. The result satis-
fies the information flow metric, and reduces coupling. Coders
will probably see some of their own coding experience flash
before them as they read this.

Software measurement is a typical tool for those concerned
with software quality. There are two types of quality metrics:
diagnostic quality metrics and discrepancy quality metrics.
Diagnostic metrics are used to identify and predict problems
before they occur in systems. Examples are "cyclomatic com-
plexity" and "module fan out". These identify problems in
code, ideally prior to integration. On the other hand, dis-
crepancy metrics count incidents or problems that actually
occurred in the software, and are used in statistical process
control. An example would be a simple count of defects. Dis-
crepancy metrics are often used as feedback for the software
development process.

Those managing software projects are typically asked to pre-
dict resource requirements for a project, to understand the
current status of a project, and to deliver it on time and with
the appropriate quality. Shepperd discusses effort prediction
and productivity in depth. Software development productiv-
ity is problematic, since it isn't clear what the output unit
of measure is. Just what is it that software engineers D O ?
While it's true that they write code, measuring, for example,
lines of code per person month is riddled with problems: It
penalizes parsimonious code, it is language dependent, and
it can be manipulated. Function points offer an alternative,
though they are geared towards commercial and information
system products. Nevertheless, they are available earlier in a
project than "lines of code". Shepperd discusses several such
models of productivity.

The second part of the book, entitled "Supporting Topics",
begins with a formal algebraic specification of a system archi-
tecture. Formal models allow a more precise study of specific
areas of a system. They offer a means of specifying the count-
ing (or "observing") of a system more exactly. Formal mod-
els can provide a theoretical basis for empirical research. If a
measure is theoretically flawed, there's no point in spending
the money to empirically validate it. And there's certainly no
point in developing a tool to perform the measure automati-
cally.

From formal models Shepperd moves into empirical analysis
- the other side of metric evaluation. After a brief overview of
relevant statistics like regression and factor analysis, he gives
an example of using data analysis to measure development:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232069.566082&domain=pdf&date_stamp=1996-07-01

ACM SIGSOFT Software Engineering Notes vol 21 no 4 July 1996 Page 104

Can function points predict duration of a project and hours
worked on a project? His data set includes estimated hours,
actual hours worked, actual project duration, and software
size in function points. Using various regression techniques,
his resulting R-squared - - i.e., the amount of variance in ac-
tual hours that function points explain - - is rather low at
.258. (If it explained all of the variance, the R-squared would
be 1.00). He concludes that other factors must significantly
influence actual hours.

The last section changes focus from software engineering prod-
ucts to the processes that create them. Suddenly, a rather
large, non-deterministic element is introduced in the model:
people. Nevertheless, the issue of having sound models with
which to guide observation applies. Further, process is clearly
an important factor, and there is consensus that quantitative
analysis of process, though just emerging, is critical. Shep-
perd discusses several types of models, including Data Flow
Diagrams and life cycle models.

This is an excellent introduction for students, researchers,
or software professionals interested in software measurement.
Shepperd makes his subject mat ter very accessible without
oversimplification, and each chapter includes suggested read-
ings and exercises, to further explore this challenging area. I
highly recommend this book.

Reviewed by Brian O'Laughlin, 1903 W. Evergreen Ave.,
Chicago, IL 60622 USA - - briano@tezcat.com.

The Object P r i m e r

Scott W. Ambler

The Object Primer: Application Developer's Guide to Object-
Orientation is written by Scott W. Ambler, and published
by SIGS Books, 1995 (paperback), ISBN 1-884842-17-8, 248
pages, $35.00.

Object-oriented (OO) analysis and design techniques are the
focal point of this book. Although the book is relatively short,
it manages to present the basics in introducing the reader to
the subject. Highly technical readers will most likely find
the book lacking in depth, however, someone with little or
no OO background who is ready to learn OO technology will
probably find the book helpful without being overwhelming.

The first chapter of the book provides a comparison of struc-
tured software development with object-oriented software de-
velopment. Each approach is described and then a short ex-
ample is used to demonstrate how each development strategy
would be used to implement the example.

The second chapter deals with the potential advantages and
drawbacks of using OO. The standard benefits associated with
OO are presented (Reusability, Extensibility, etc.) as are po-
tential benefits such as increased chance of project success,
reduced maintenance burden, reduction in application back-
log and the ability to deal with complexity. Although listed
as potential drawbacks, several of the items in this list could

be viewed as potential benefits e.g. "Developers must work
closely with users." I would probably promote this one as a
potential benefit.

The next two chapters of the book deal with the actual "how-
to" of gathering user requirements and then ensuring the re-
quirements are complete. The author details CRC (class re-
sponsibility collaborator) modeling to the level of choosing
the CRC team, running a CRC session, and even arranging
the CRC modeling room. The author makes liberal use of
examples and case studies, however, they are not always pre-
sented logically within the text of the chapter which lends to
some confusion on the part of the reader. The second part of
this section discusses Use-Case Scenario Testing. This section
provides the "how-to" aspect as well as a section on why this
is a necessary part of the OO development life cycle.

In the fifth chapter, basic OO technical terminology and con-
cepts are introduced. Terms are defined using concise wording
and again, liberal use is made of examples to assist the novice
in understanding basic OO terms. Although the author uses
his own OO modeling notation, basic concepts such as in-
stance relationships, aggregation and collaboration are easily
understood by the reader.

Building on prior chapters, the reader is introduced to class
modeling in Chapter 6. This chapter is another "how-to" and
draws the reader further into the more technical side of OO.
A significant portion of the chapter is comprised of a case
study which allows the reader to put into practice what has
been presented previously.

The final chapter of the book, entitled "Putt ing It All To-
gether: OO in Practice" covers several different aspects of the
OO software process without providing a significant amount
of depth on any particular one. It is the most introductory in
nature of all of the chapters in the book. However, this does
not prevent the author from presenting some valid and useful
points to the reader.

Overall, I believe Mr. Ambler's book meets its objectives as a
primer. His use of examples and case studies help the reader
to grasp what will be for some an introduction to a completely
foreign approach to software development.

Reviewed by Suzette Person - -
102264,1242@Compuserve.corn

Rapid Software Development with Smalltalk

Mark Lorenz

Rapid Software Development with Smalltalk is written by
Mark Lorenz, and published by SIGS Books 1995, (paper-
back) SIGS Books ISBN 1-884842-12-7 Prentice Hall ISBN
0-13-449737-6,210 pages, $24.

Software developers want to build systems quickly yet deliver
results that have high quality. Methodologies such as Rapid
Prototyping combined with software tools such as Smalltalk
ought to assist in achieving these goals, and in the book

